AT

securityandtrust.lu

A Representation Theorem for

Abstract Cumulative Aggregation

Diego Agustin Ambrossio, SnT, University of Luxembourg
Xavier Parent, CSC, University of Luxembourg

Leendert van der Torre, CSC, University of Luxembourg

23 May 2016

978-2-87971-152-2/TR-SNT-2016-5

] I
www.securityandtrust.lu I' II I b “
UNIVERSITE DU
LUXEMBOURG

University of Luxembourg  Interdisciplinary Centre for Security, Reliability and Trust « 6, rue Richard Coudenhove-Kalergi * 11359 Luxembourg-Kirchberg



A Representation Theorem for
Abstract Cumulative Aggregation

Diego Agustin Ambrossio!, Xavier Parent!, and Leendert van der
Torre!

'University of Luxembourg
{diego.ambrossio,xavier.parent,leon.vandertorre} @uni.lu

Abstract

From any two conditional obligations “X if A” and “Y if B”, cumulative
aggregation derives the combined obligation “X UY if AU (B \ X)”, whereas
simple aggregation derives the obligation “X U Y if A U B”. We propose FC
systems consisting of cumulative aggregation together with factual detachment,
and we give a representation result for FC systems, as well as for FA systems
consisting of simple aggregation together with factual detachment. We relate FC
and FA systems to each other and to input/output logics recently introduced by
Parent and van der Torre.

Keywords: simple aggregation, cumulative aggregation, abstract normative sys-
tems, input/output logic.

Foreword

This technical report serves as companion to the contribution submitted under the title
“Cumulative Aggregation” to the 13th International Conference on Deontic Logic and
Normative Systems (DEON16) to be held the 18-21 July 2016 in Bayreuth, Germany.

The purpose of this technical report is to provide detailed proofs for the main the-
orems in the formerly mentioned contribution.

1 Introduction

In this paper, we contrast and study two different principles of aggregation for norms
in the context of the framework of Abstract Normative Systems (ANS) due to Tosatto
et al. [8].

This one is intended as a general framework to compare logics for normative rea-
soning. Only fragments of the standard input/output logics [5] are covered by Tosatto et
al., and so here we set ourselves the task of applying the framework to the input/output



logic recently introduced by Parent and van der Torre [6]. (Cf. also [7].) Its most salient
feature is the presence of a non-standard form of cumulative transitivity, called “ag-
gregative” (ACT, for short). Such a rule is used in order to block the counter-examples
usually given to the principle known as “deontic detachment”: from the obligation of
X and the obligation of Y if X, infer the obligation of Y.

Our contribution is first and foremost technical. We acknowledge that the benefits
of using the theory of abstract normative systems may not be obvious to the reader.
We will not discuss the question of whether it has a reasonable claim to be a general
framework subsuming others, nor will we discuss the question of whether aggregative
cumulative transitivity is, ultimately, the right form of transitivity.

A central feature of the Tosatto et al. account is that it abstracts away from the
language of propositional logic. We recall that as initially conceived input/output logic
is an attempt to generalize the study of conditional obligation from modal logic to
the abstract study of conditional codes viewed as relations between Boolean formulas.
The underlying language is taken from propositional logic. It contains truth-functional
connectives, and is assumed to be closed under application of these connectives. It is
natural to ask if one can extend the generality further, by working with an arbitrary
language, viewed as a collection of items, and without requiring that the items under
consideration be “given” or regimented in some special way. Similar programs have
been run for propositional logic and modal logic. Koslow [4]’s structuralist approach
to logic is perhaps one of the best-known examples of such a program. Unlike Koslow,
we do not even assume that the items under consideration can enter into some special
implication relations with each other. There are scholars who (rightly or wrongly) take
the well-known Tarskian conditions for the consequence relation to be objectionable on
the grounds that, for reasons of vagueness (or more), important consequence relations
over natural languages (however formalized) are, for instance, not generally transitive.
(See, e.g., [?].) The idea is just to investigate the possibility of a formal theory of
normative reasoning that avoids such commitments (be they justified or not).!

Tosatto et al.’s account has no apparatus for handling conjunction of outputs, and
our main purpose in this paper is to develop it to do so. We follow the ideas of so-called
“multiple-conclusion logic”, and treat normative consequence as a relation between
sets, whose elements are understood conjunctively. No assumption about the inner
structure of these elements is made.

Conditionals:

) . - Rules
Input: A+X,B-Y,.. Detachments:

I Derivations: Arguments: X.Y

) A= X L—Y (A, X)
(4. X) (Y] (B,Y) )

(AU XUY) (AUl XuY)

Figure 1: An Abstract Normative System

An example of an abstract normative system studied in this paper is given in Figure

IThis motivation for using ANS is ours.



1. It should be read as follows. Conditionals A — X, B — Y, ... are the norms of
the normative system. Each of A, X, B and Y is a set of language elements (whose
inner structure remains unanalyzed). Sets are understood conjunctively on both sides
of —. The input [ is a collection of language elements representing the context. Rules
are used to generate derivations and arguments based on I. The set of detachments
{X,Y, ...} is the output consisting of all detached obligations. The elements of Figure
1 are explained in more detail in the next two sections.

The prime focus in [6] was the contrast between two forms of transitivity, called
“cumulative transitivity” and “aggregative cumulative transitivity”. This paper shifts
the emphasis on the contrast between the following two forms of aggregation.

Simple aggregation If X is obligatory in context A, and Y is obligatory in context B,
then X UY is obligatory in context A U B. In other words, simple aggregation
derives the obligation “X UY if A U B” from any two conditional obligations
“X if A” and “Y if B”.2

Cumulative aggregation If X is obligatory in context A, and Y is obligatory in con-
text B, then X U Y is obligatory in context A U (B \ X). In other words,
cumulative aggregation derives the combined obligation “X UY if AU(B\ X)”
from the same two conditional obligations.

The rule of simple aggregation gives the most straightforward way of collecting
items as detachments are performed. When A = B, simple aggregation gives the rule
“If X is obligatory given A, and Y is obligatory given A, then X UY is obligatory given
A” A drawback of simple aggregation is that it does not capture transitive reasoning.
Given the two conditional obligations “{z} if {}” and “{y} if {z}”, simple aggregation
only yields “{x,y} if {}”. This motivates the rule of cumulative aggregation. In
the particular case where B = A U X, cumulative aggregation yields the form of
transitivity introduced by Parent and van der Torre [6] under the name ACT. This is the
rule (A, X), (AU X,Y)/(A, X UY). In our example, one gets “{z, y} if {}.

To summarize, we adress the following issues:

e How to develop the theory of abstract normative systems to handle conjunction
of outputs and the form of cumulative transitivity described in [6]?

e How to define the proof theory of the system? What are the most significant
properties of the framework?

e How to provide a semantical characterisation, along with a representation result
linking it with the proof theory?

The layout of this paper is as follows. In Section 2, we introduce FA systems for
simple aggregation. In Section 3, we introduce FC systems for cumulative aggregation.
We give representation results for both systems. In Section 4, we show how FA and FC

Note that intersection as used in abstract normative systems does not correspond to disjunction in propo-
sitional logic. Take ({p},{z}) and ({q}, {z}). The intersection of the two contexts yields ({}, {z}).
Reasoning by cases would yield ({p V ¢}, {z}) instead.

3 As mentioned, it is not our purpose to discuss this rule in any greater depth. For more details on it, see
Parent and van der Torre [6].



systems relate to one another, and we discuss some properties of the systems. In Sec-
tion 5 we show how FA and FC systems relate with the input/output logics introduced
by Parent and van der Torre [6].

Due to space limitation, we focus on the logical framework and the results, and
leave the proofs of the representation theorems to a technical report [1]. We would
like to stress that these are not just a re-run of the proofs given by Parent and van der
Torre [6] in a classical logic setting. The two settings are very different. The question of
whether the proofs of our representation results can be adapted to yield a completeness
result in a classical logic setting remains an open problem.

2  FA systems for simple aggregation

In this section, we introduce abstract normative systems for simple aggregation, and
we give a representation result. Though FA systems may be interesting in their own
right, in this paper the main role of FA systems is to set the stage for FC systems for
cumulative aggregation, introduced in the next section. Thus, although we talk about
normative systems and use examples from normative system it must be kept in mind
that FA systems are not appropriate for all kinds of normative reasoning.

In general, a system (L, C, R) consists of a language L, a set of conditionals C'
defined over this language, and a set of rules R. The input is a set of sentences from
L. If (L, C, R) is a normative system, then a conditional A — X can be read as the
norm “if A, then obligatory X”. A normative system contains at least one set of norms,
the regulative norms from which obligations and prohibitions can be detached. It may
also contain permissive norms, from which explicit permissions can be detached, and
constitutive norms, from which institutional facts can be detached. In this paper we do
not consider permissive and constitutive norms. In the present setting, a system gen-
erates or produces an obligation set, a subset of the universe, reflecting the obligatory
elements of the universe.

All abstract normative systems we consider satisfy at least factual detachment. To
represent factual detachment, we write (A, X) for the argument for X in context A,
in other words, for input A the output contains X. Factual detachment is the rule
A — X/(A, X), and says that if there is a rule with the context as antecedent, then the
output contains the consequent.

Besides factual detachment, FA systems have the rule of so-called simple aggre-
gation. This one is usually given the form (A, X), (4,Y)/(A, X UY). In this paper
aggregation is given the more general form (A, X),(B,Y)/(AU B,X UY). This
more general form allows for the inputs not to be the same. Given strengthening of
the input, (4, X)/(A U B, X), the two rules are equivalent. Since we do not assume
strengthening of the input, our rule is strictly stronger.

Definition 1 (FA system with input) A FA system is a triple (L,C, R) with L a lan-
guage, C C 2L x 2L g set of conditionals written as A — X, and R a set of rules.
For every conditional A — X € C, A and X are finite sets. A FA system is a sys-
tem (L, C, R) where R consists of the rule of factual detachment (FD) and the rule of
aggregation (AND):



A— X (A,X) (B,Y)
A,x) "™ TAUuB XUY)

FD

Aninput I C L for system (L, C, R) is a subset of the language.

Let FA = {FD,AND}. We write a(A — X) = A for the antecedent of a
conditional, and c(A — X) = X for the consequent of a conditional. We write
a(C) = Wa(A = X) | A = X € C} for the union of the antecedents of all the
conditionals in C. We write ¢(C) = U{c(A — X) | A — X € C} for the union of
the consequents of all the conditionals in C.*

The following example is meant to exercise the notation. We build a language, and
introduce a set of conditionals and an input. The language L is the domain (or universe)
of discourse. For the purpose of the example, L is a set of literals. Following Tosatto
et al., we also introduce a complement function € for the elements e of the language L.

Example 1 (Sing and dance, adapted from Goble [3]) Given a language Ly which
does not contain formulas of the form ~ a, the language L is LoU{~a | a € Ly}. For
a € L, ifa € Ly then a =~ a, and otherwise a = b for the b € L such that a =~ b.

Let Lo be {x,y,d, s}. Intuitively: “it is Spring” (x); “it is Sunday” (y); “a dance
is performed” (d); and “a song is performed” (s). The language L adds classical
negation to the language, L = Lo U {~y,~x,~d,~s}. The complement function
says & =~x, ~T = x, and so on.

Suppose the conditionals Cy = {y — d,x — s} apply to a wedding party. This
says that on Sundays one ought to dance, and in Spring one ought to sing. The an-
tecedents of the conditionals are: a(y — d) = y; alx — s) = z; a(Cy) = {z,y}.
Their consequents are: ¢(y — d) = d; c(x — s) = s; ¢(C1) = {s,d}.

We distinguish three related kinds of output from a system and an input, called
derivations, arguments and detachments, respectively. A derivation is a finite tree,
whose leaves are elements from the set of conditionals and whose root is a pair (A4, X)
obtained by successive applications of the rules, with the further constraint that A C 1.5
An argument is a pair (A, X) for which such a derivation exists, and X is a detachment
for which such an argument (4, X) exists.®

Definition 2 (Derivations der, Arguments arg, and Detachments det ) Given a sys-
tem (L,C, R) and an input I,

4To ease readability we will omit curly braces when referring to singleton sets, and we write a — = for
{a} — {z}.

3 Alternatively, we could add the condition A C I only to the definitions of arguments and detachments,
or only to the definition of detachments. There are pros and cons to both choices. For example, the advantage
of our definition is that the set of derivations is smaller, but the disadvantage is that the set of derivations is
not closed under sub-derivations, which complicates the proofs of the formal results.

%Note the special feature of our formal framework that weakening of the output can be added in different
ways. For example, one can add a rule (A, X UY)/(A, X), or one can adapt the definition of detachment
such that X is detached for input [ if there is an argument (A,Y") such that A C I and X C Y. The
same holds for other properties added to the formal system. We leave the formal analysis of such kinds of
extensions to further research.



e aderivation of (A, X) on the basis of I in system (L, C) is a finite tree’ using the
rules R, with as leaves elements of C, and as root the pair (A, X)) where A C I
and X C L.

e an argument is a pair (A, X)), such that there exists a derivation d with root(d) =
(A, X).

e a detachment is a set X such that there is an argument (A, X).

We write der(L, C, I, R) for the set of all the derivations which can be constructed
in this way, we write arg(L, C, I, R) for the set of all such arguments, and we write
det(L,C, 1, R) for the set of all such detachments.

We write leaves(d) for the set of all the leaves of derivation d, i((A, X)) = A for
the input of a pair (A, X ) and o((A, X)) = X for the output of a pair (A, X). Also we
write i(D) = U{i((4, X)) | (A,X) € D} and o(D) = U{o((A, X)) | (A, X) € D}
for the inputs and outputs of sets of such pairs.

The derivation rules take one datatype, norms, and outputs another, arguments.
Nonetheless, the main idea is that derivations are always based on an input. This is
reflected by the constraint i(root(d)) C I. But we stress that such a constraint is put
on the root of the derivation only, and that all the other nodes need not verify this
constraint. Otherwise we would not be able to chain conditionals together. Because of
this, the property of closure under sub-derivations does not always hold. It depends on
the rules being used. We will see an example of this phenomenon with system FC in
Section 3. This also makes the proof of the representation theorem for FC trickier. The
standard method of induction over the length of derivations is not available any more.

A derivation is a relative notion, since it is meant to represent the inner structure of
an argument. As argued before derivations are tied to the context giving a justification
for the argument put forward based on what is, or is not, the case. In the literature, the
notion of argument is defined in two ways. Either an argument is viewed as either a pair
whose first element is a set of formulas (the support) and second element a formula (the
conclusion), or as a derivation in a logical proof system, i.e. a sequence, tree or graph
of logical formulas. Here we choose the first definition. In the context of this study, the
pair itself denotes a norm. However, it could represent any conditional statement. We
use the term argument rather than norm, just to emphasize that we are interested in the
relationship between a set of premises and its set of conclusions.

We now can briefly explain the notion of abstraction at stake in the theory of ab-
stract normative systems. Intuitively, the detachment system treats the elements of L
as atomic, in the sense that detachments have no relation with the logical structure of
language L. Formally, we can replace one language L by another one L', define a
one-to-one function f between elements of L and L', and extend f to subsets of L and
C'. Then we have f(det(L,C,I, R)) = det(f(L), f(C), f(I), R). In this sense, it is
an abstract theory.

We continue Example 1 to illustrate factual detachment and aggregation, as well
as the distinction between derivations, arguments and detachments. In the absence of
the rule of strengthening of the antecedent, one cannot derive that X is obligatory in

"By a finite tree, we mean one with finitely many nodes.



context AU B from the fact that X is obligatory in context A. This reflects the idea that
arguments are minimal, in the sense that one cannot add irrelevant elements like B to
their support. For example, if the input is {4, B} and the sole conditional is A — X,
then there is no argument (A U B, X). But X will be detached, since the input set
triggers the conditional in question. The absence of the rule of strengthening of the
antecedent does not reflect the fact that rules may leave room for exceptions.

Example 2 (Example 1 - Continued) Given L = LoU{~a | a € Ly}, we say that an
element a € I is a violation if there is a detachment containing @, and this detachment
is called a violated obligation. Moreover, we say that a detachment is a cue for action
if it is not a violated obligation.

The derivations for C1 = {y — d,x — s}and I, = {x,y} are der(L,C1, I;, FA)

— s
y—d s e=d gy Y FD
dy = FD, d2 = FD | (z,d) (v 9) ,
(y,d) (z,s) ds = AND

({z,y}, {s,d})

the arguments are arg(L,C1, I, FA) = {(y,d), (z, s), {z,y}, {s,d})} and the de-
tachments are det(L,C1, I, FA) = {{d}, {s}, {s, d}}, which are all cues for action.
Thus I does not contain violations. Factual detachment derives d and s, and aggrega-
tion combines them to {d, s}. First, note that some strengthening of the input is built in
the aggregation inference rule AND, as we derive the conditional norm ({z,y}, {s,d})
whose antecedent is stronger than the antecedent of the conditional norms in C. Sec-
ond, note that, for the context where there is no singing Is = {x,y,§}, we obtain
exactly the same derivations, arguments and detachments. However, now § is a viola-
tion, and the detachments {s} and {s,d} are violated obligations, and only {d} is a
cue for action.
Now consider Co = {{x,y} — {s,d}} and, e.g., I. The derivation is

{z,y} = {s,d}
der(L,Cy, Iy, FA) = {d4 = v e FD} ,
the arguments are arg(L, Ca, Iz, FA) = {({z,y}, {s,d})} and the detachments are
det(L,Cy, I, FA) = {{s,d}}.
It should not come as a surprise that the set of detachments is syntax-dependent.
This follows at once from letting the rule of weakening of the output go. This phe-
nomenon is familiar from the literature on belief revision.

Theorem 1 gives a representation result for FA systems. The left-hand side of the
bi-conditional pertains to the proof theory, while the right-hand side of it provides a
semantic characterization in terms of subset selection. For X to be derivable from a set
of conditionals C' on the basis of input 7, X must be the union of the consequents of
finitely many conditionals in C, which are all ‘triggered’ by the input set I.°

Theorem 1 (Representation result, FA) X € det(L,C, 1, FA) if and only if there is
some non-empty and finite C' C C such that a(C') C I and X = ¢(C").

8For more on the rule of weakening of the output, and the reason why it may be considered counter-
intuitive, we refer the reader to the discussion in Goble [3] (see also Parent and van der Torre [6].)
9 In FA systems, we call ‘triggered’ those conditionals whose antecedents are in 1.



Proof. See [1].

Corollary 1 (Monotonicity of der) det(L,C,I,FA) C det(L,C’,1, FA) whenever
ccc.

The following example illustrates how to calculate the detachments using the se-
mantic characterization described in the statement of Theorem 1.

Example 3 (Example 1 - Continued) We calculate det(L,Cy, I, FA), now using The-
orem 1. The set of conditionals Cy has three non-empty subsets: C11 = {y — d},
Cio={x = s}, and C13 = {y = d,x — s}. Herea(C11) C Iy, a(C12) C I
and a(Ch13) C I1. Also ¢(C11) = {d}, ¢(C12) = {s} and ¢(C13) = {s,d}. So
det(L, 01711, FA) = {C(Cl,1>,c(01,2)7C(Cl,g)} = {{d}, {8}, {S,d}}

3 FC systems for cumulative aggregation

In this section we introduce FC systems for cumulative aggregation. FC is much alike
FA except that the rule of aggregation AND is replaced with that of cumulative aggre-
gation CAND.

Definition 3 (FC system with input) A FC system is a triple (L, C, R) where R con-
sists of the following rule of factual detachment (FD), and the rule of cumulative ag-
gregation (CAND). We write FC' = {FD,CAND}.

A— X (A, X) (B)Y)
CAND =

b= (A,X) (AU(B\ X),XUY)

To illustrate the difference between FA and FC systems, we use the same example
as the one that Parent and van der Torre [6] use in order to motivate their rule ACT. We
reckon that, compared to the framework described in [6], the present framework does
not yield any new insights into the analysis of the example itself.

Example 4 (Exercise, from Broome [2]) C contains two conditionals. One says that
you ought to exercise hard everyday: {} — x. The other says that, if you exercise hard
everyday, you ought to eat heartily: x — h. Intuitively, in context {}, we would like to
be able to derive {x, h}, but not {h}.

FA systems do not allow us to do it.

Let I = {}. With simple aggregation the set of derivations is der(L,C,I, FA) =

{dl = % FD}, the set of arguments is arg(L,C,I, FA) = {({},x)} and the
set of detachments is det(L,C,I,FA) = {{x}}. Thus the desired obligation is not

detached. Norms can be chained together only in so far as the input set contains their
antecedent. Let I' = {x}. Then the set of derivations is der(L,C,I', FA) =

{} =z r — h
{dl_ {}—= . dy— £ .o FD ) FD}7

’ x, h ’ =
({}, z) (z, h) ds ERT AND




the set of arguments is arg(L,C,I', FA) = {({}, x), (z, h), (z,{x, h})} and the de-
tachments are det(L,C,I' | FA) = {{z}, {h}, {z, h}}.
With cumulative aggregation, the derivations for C and I = {} are der(L,C, I, FC) =

{} == z— h
fo-tizn |, i )
({3 {=. h})
The arguments are arg(L,C,I, FC) = {({},z), {},{z, h})} and the detachments
are det(L,C,I,FC) = {{z},{z,h}}. Factual detachment allows us to detach {x},
and cumulative aggregation allows us to detach {x,h} in addition. Like in [6], h
cannot be derived without x. Intuitively, the obligation to eat heartily no longer holds,

if you take no exercise.

Definition 4 introduces the functions f and g, to be used later on in the semantic
characterization of cumulative aggregation. Intuitively, given a set D C L, the function
f(C, D) gathers all the consequents of the conditionals in C' that are triggered by D.
The function g(C, I') gathers all the sets D that extend the input set I and are closed
under f(C, D).

Definition 4 (f and g) We define
f(C,D)=|J{X|A= X eC;AC D}
g(C.I)={D | 1< D2 f(C,D)}
We illustrate the calculation of functions f and g continuing Example 4.

Example 5 (Example 4 - Continued) Consider the following table. The left-most col-
umn shows the relevant subsets C' of C. The middle column shows what consequents
can be detached depending on what set D is used as input. The right-most column
shows the sets D extending I and closed under f(C', D), for each subset C'.

' f(C', D) g(C" . {})

R =T R O {D|zeD}
v h {}ifz & D, {D|x¢&Dor
L {hyifeeD_  {x,h}C D}
UIE ey elenen

Theorem 2 gives a representation result for FC systems. For X to be derivable from a
set of conditionals C' on the basis of input 7, X must be the union of the consequents
of finitely many conditionals in C, which are either directly triggered by the input set
I (in the sense of Footnote 9), or indirectly triggered by the input set  (via a chain of
norms).

Theorem 2 (Representation result, FC) X € det(L,C, I, FC) if and only if there is
some non-empty and finite C' C C such that, forall D € g(C’,I), we have a(C") C D
and X = f(C', D).

10



Proof. See [1].
We show with an example how to calculate the detachments using the semantic
characterization given in the statement of Theorem 2.

Example 6 (Example 5 - Continued) We again calculate det(L,C, I, FC), now us-
ing Theorem 2. We use the Table shown in Example 5.

The top row tells us that, {x} € det(L,C, I, FC). This is because, for all D in
9(C", {}). £(C', D) = {a}.

The bottom row tells us that, {x,h} € det(L,C, I, FC). This is because, for all D
ing(C',{}), f(C', D) = {x, h}.

We can also conclude that, {h} & det(L,C, I, FC) because, for all C’, there is a
D in g(C’,{}) such that f(C', D) # {h}.

Finally, the set of detachments is det(L,C, I, FC) = {{z}, {x, h}}.

4 Some properties of FA systems and FC systems
We start by showing how FA systems and FC systems relate to each other.

Definition 5 (Argument subsumption) Argument (A, X) subsumes argument (B,Y)
if AC Band X =Y. Given two sets of arguments S and T, we say that T' subsumes
S (notation: S T T), ifforall (B,Y) € S there is an argument (A, X) € T such that
(A, X) subsumes (B,Y).

Example 7 Consider the following derivation.

(A,X) (AUBUX,XUY)
d= CAND
(AUB, X UY)

The argument (AU B, X UY') subsumes the argument (AU BU X, X UY).

Proposition 1 arg(L,C,I, FA) C arg(L,C, I, FC).

Proof. Let (A, X) € arg(L,C,1,FA), where A C I. Let d be the derivation
of (A, X) on the basis of I using the rules FD and AND. Let leaves(d) = {4; —
Xi,...,Ap = X} Wehave A = |J_; A; and X = J_; X;.!° That is,

n n

(A4,X) = (U A, U x)

One may transform d into a derivation d’ of (A’, X') on the basis of I using the rules
FD and CAND. Keep the leaves and their parent nodes (obtained using FD) as they are

10Strictly speaking, this follows from a lemma used in the proof of the representation result for FA systems,
Lemma 1 in [1].

11



in d, and replace any application of AND by an application of CAND. The result will
be a tree whose root is

i—1 n

U Xj)? U Xi)

j=1 i=1

(A, X) = (A U [ J(Ai\
=2

We have

n

i—1 n n
Xj)clJAicrand | X=X,
j i=1 i=1 i=1

U

A u i

=2 j=1
On the one hand, (4’, X) € arg(L,C, I, FC). On the other hand, (A’, X) subsumes
(A, X).

Corollary 2 det(L,C,1,FA) C det(L,C, I, FC)

Proof. This follows at once from Proposition 1.
We now point out a number of other properties of FA and FC systems.

Proposition 2 (Applicability) The rules AND and CAND can be applied to any argu-
ments (A, X) and (B,Y).

Proof. Trivial. Assume arguments (A, X) and (B,Y). By definition of an argument,
ACI,BCI,XCLandY CL. Thus, AUB C I, AU(B\X) C I and
XUY CL.

Proposition 3 (Premises permutation, F’/A) AND can be applied to two arguments
(A, X) and (B,Y) in any order.

Proof. Straightforward.

It is noteworthy that Proposition 3 fails for CAND, as shown by the following
counterexample, where A # B:
(B,4)  (A4B)

(A, B) (B, A)
A AUB) CAND <= B.AUD) CAND

The arguments (A, AU B) and (B, A U B) are distinct.
Proposition 4 considers two successive applications of AND, or of CAND.

Proposition 4 (Associativity) Each of AND and CAND is associative, in the sense of
being independent of the grouping of the pairs to which it is applied.

Proof. The argument for AND is straightforward, and is omitted. For CAND, it
suffices to show that the pairs appearing at the bottom of the following two derivations

12



are equal:

BY) (€2 ax) (B

A% (BU(C\Y),Y UZ) (AU(B\X),XUY) . 2)
(AU((BU(C\Y)\X),XUY UZ) (AUB\X)U(C\(XUY)),XUY UZ)

The fact that the two pairs in question are equal follows at once from the following
two laws from set-theory:

(AUB)\ X = (A\ X)U(B\ X) (1)
B\(XUY)=(B\X)\Y @)
We have:

AU((BU(C\Y)H)\X)=AUB\X)U((C\Y)\ X) [by law (1)]
=AU B\X)U(C\(XUY)) [by law (2)]

Proposition 5 FA systems are closed under sub-derivations in the following sense:
given aderivationd € der(L,C, I, FA), for all sub-derivations d' of d, d' € der(L,C,I, FA)-
that is, i(root(d')) C I.

Proof. Letd € der(L,C, I, FA) with root(d) = (A, X)and A= A, U...UA, C T
and X = X; U...U X,,. Without loss of generality, we can assume that n > 1. By
Proposition 4, d can be given the form:

A1—>X1F A — Xo D
(A1, X1) (A2, X2) AND —————FD
(A1UA2,X1UX2) (Ag,X3) AND
(A1 UA2U A3, X5 U X2 U X3)
: D A, — X
(AHU...UA, 1, X1 U...UXp) (An, Xn)

AND

(A1U...UA7L,X1U...UXH)

Let d’ be a sub-derivation of d with root (A", X”). Clearly, A’ C A, andso A’ C I,
since A C I.

Proposition 6 FC systems are not closed under sub-derivations.

Proof. We prove this proposition by giving a counterexample. Let C be the set of
conditionals {A — X, X — Y} and let I = {A}. Consider the following derivation:

dy = A—-X X-oVY
d= (AvX) (va)
(A, XUY)

:d2

13



We have i(root(d)) C I, so that d € der(L,C, I, FC). Since i(root(dz)) = X and
X ZI,dy & dexr(L,C,I,FC).

Proposition 7 (Non-repetition) For every d € der(L,C, I, FA) with root (A, X)
and leaves leaves(d), there exists a derivation d' € der(L,C, I, FA) with the same
root and the same set of leaves, such that each leaf in leaves(d') is used at most once.
The same holds for every derivation d € der(L,C, I, FC).

Proof. We only consider the case of FC systems (the argument for FA systems is
similar). Assume we have a derivation d with root(d) = (A, X) and leaves(d) =
{A; — X4,... A, — X, }. By Proposition 4, one can transform d into a derivation d’
of the form

A1—>X1 F A2_>X2 FD
(A1, X1) (A2, X2)
AND A3 — X3
S8 mp
(As, X3)
AND
A, — X
FD 2 2n
AND (An, Xn)
(A, X)

Suppose that in d’ some A; — X decorates at least two distinct leaves. We show that
we can eliminate the second one. To aid comprehension, let B be mnemonic for the
following union, where [ < j:

Ay U (As\ X1) U (A5 \ (X1 U X)) U U (A \ (X1 U..UX;_1))

Suppose we have the step:

A1 ~>X1 AQ A)XQ
(A1, X1) (A2, X2) Az — X3
(A1 U (A2\ X1), X1 U X2) (As, X3)
(Al U (AQ\Xl) U (A3 \ (Xl U XQ))7X1 U Xo UX3)
A; = X5
(A5, X;5) A= X
(B,Ul_; X;) (A, X1)

(BU A\, Xi), U, XiU X))

where the sub-derivation with root (B, ngl X;) contains a leaf carrying A, — X.
That is, A; — X;is one of Ay — X3, ... and A; — X, and it is re-used immediately
after A; — X. Since X, is one of X1, ... and X, J]_, X; UX; = J]_; Xi. Onthe
other hand, (A; \U/_, Xi) C (4 \U'Z] Xi) C B, sothat BU (4, \|J_, X;) = B.
Thus, we can remove from d’ all the re-occurrences of the leaves as required.

14



5 Related research

As mentioned in Section 1, the present paper extends the framework described by
Tosatto et al. [8] in order to handle conjunction of outputs along with the form of
cumulative transitivity introduced by Parent and van der Torre [6].

At the time of writing this paper, we are not able to report any formal result showing
how the Tosatto et al. framework relates with the present one. Care should be taken
here. On the one hand, the present account does not validate the rule of strengthening
of the input, while the Tosatto et al. one does in the following restricted form: from
(T, z), infer (y,z). On the other hand, in order to relate the proof-theory with the
semantics, the authors make a detour through the notion of deontic redundancy [9].
A more detailed comparison between the two accounts is left as a topic for future
research.

There are close similarities between the systems described in this paper and the
systems of I/O logic introduced by Parent and van der Torre [6]. As explained in
the introductory section, our rule CAND is the set-theoretical counterpart of their rule
ACT. In both systems, weakening of the output goes away. At the same time there are
also important differences between the two settings. First, the present setting remains
neutral about the specific language to be used. This one need not be the language of
propositional logic. Second, the present account does not validate the rule of strength-
ening of the input.

Tosatto et al. explain how to instantiate the ANS with propositional logic to obtain
fragments of the standard input/output logics [5]. In this section we rerun the same
exercise for the systems studied in [6]. Unlike Tosatto et al., we argue semantically,
and not proof-theoretically, because of the problem alluded to above: derivations in FC
are not closed under sub-derivations.

For the reader’s convenience, we first briefly recall the definitions of O; and O
given by Parent and van der Torre [6]. Given a set X of formulas, and a set N of
norms (viewed as pairs of formulas), N(X) denotes the image of N under X, i.e.,
N(X) = {z : (a,x) € Nforsomea € X}. Cn(X) is the consequence set of X
in classical propositional logic. And z - y is short for - y and y - x. We have
x € O1(N,I) whenever there is some finite M/ C N such that M (Cn(I)) # {}
and z 4+ AM(Cn(I)). We have © € O3(N,I) if and only if there is some finite
M C N such that M(Cn(I)) # {} and for all B, if I C B = Cn(B) 2 M(B), then
x4+ AM(B)."

Theorem 3 (Instantiation) Ler (L,C, R) be a FA system, or a FC system, with L
the language of propositional logic (without T) and C' a set of conditionals whose
antecedents and consequents are singleton sets. Define N = {(a,z) | {a} — {z} €
C'}. The following applies:

i) If X €det(L,C,I,FA), then NX € O1(N,I), where NX is the conjunction of
all the elements of X ;

'"The proof-system corresponding to 01 has three rules: from (a, ) and b I a, infer (b, z) (SI); from
(a,z) and (a,y), infer (a,z A y) (AND); from (a,z) and b - a, infer (b, z) (EQ). The proof-system
corresponding to O3 may be obtained by replacing (AND) with (ACT). This is the rule: from (a,z) and
(a A z,y), infer (a,z A y).

15



ii) If X € det(L,C,I,FC), then NX € O3(N,I).
Proof. See [1].

6 Summary and future work

We have extended the Tosatto et al. framework of abstract normative systems in order
to handle conjunction of outputs along with the aggregative form of cumulative transi-
tivity introduced by the last two co-authors of the present paper. We have introduced
two abstract normative systems, the FA and FC systems. We have illustrated these two
systems with examples from literature, and presented two representation theorems for
these systems. We have also shown how they relate to the original I/O systems.

FA systems. They supplement factual detachment with the rule of simple aggregation,
taking unions of inputs and outputs. The representation theorem shows that the
sets of formulas that can be detached in FA precisely correspond to sets of con-
ditionals that generate this output.

FC systems. They supplement factual detachment with the rule of cumulative aggre-
gation, a subtle kind of transitivity or reuse of the output, as introduced in [6].
The representation theorem shows how the cumulative aggregation rule corre-
sponds to the reuse of the detached formulas.

Besides the issues mentioned in the previous section, we are currently investigating the
question of how to use FA and FC systems as a basis for a Dung-style argumentation
framework.

Acknowledgments We thank three anonymous referees for valuable comments. Leen-
dert van der Torre has received funding from the European Union’s H2020 research and
innovation programme under the Marie Skodowska-Curie grant agreement No. 690974
for the project “MIREL: MIning and REasoning with Legal texts”.

References

[1] D. A. Ambrossio, X. Parent, and L. van der Torre. A representation theorem for ab-
stract cumulative aggregation. Technical report, University of Luxembourg, 2016.

[2] J. Broome. Rationality Through Reasoning. Wiley-Blackwell, 2013.

[3] L. Goble. A logic of good, should, and would. Part I. J. Philos. Log., 19(2):169—
199, 1990.

[4] A. Koslow. A Structuralist Theory of Logic. Cambridge University Press, Cam-
bridge, 2001.

16



(5]

(6]

(7]

(8]

(9]

D. Makinson and L. van der Torre. Input-output logics. Journal of Philosophical
Logic, 29(4):383-408, 2000.

X. Parent and L. van der Torre. “Sing and dance!”. In F. Cariani, D. Grossi,
J. Meheus, and X. Parent, editors, Deontic Logic and Normative Systems, DEON
2014, volume 8554 of Lecture Notes in Computer Science, pages 149-165.
Springer.

X. Parent and L. van der Torre. Aggregative deontic detachment for normative
reasoning. In C. Baral, G. De Giacomo, and T. Eiter, editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014.

S. Tosatto, G. Boella, L. van der Torre, and S. Villata. Abstract normative systems:
Semantics and proof theory. In G. Brewka, T. Eiter, and S. A. Mcllraith, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Thir-
teenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012, pages
358-368. AAAI Press, 2012.

Leendert van der Torre. Deontic redundancy: A fundamental challenge for deontic
logic. In Guido Governatori and Giovanni Sartor, editors, Deontic Logic in Com-
puter Science: 10th International Conference, DEON 2010. Proceedings, pages
11-32, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

17



Appendix

Proof of Theorem 1

X € det(L,C,I,FA) if and only if there is some non-empty and finite
C' C C suchthat a(C’) C I and X = c(C").

The argument from the left to the right appeals to the following lemma.

Lemma 1 Foralld € der(L,C, 1, FA),
o(root(d)) = c(leaves(d)) and i(root(d)) = a(leaves(d)) P(d)

Proof. [Proof of Lemma 1] We prove the lemma by induction:

e Basis: the derivation d consists in an application of the rule FD; d = AA_S?).

Then, root(d) = (A, X) and leaves(d) = {A — X}. We have o(root(d))
c(leaves(d)) = X and i(root(d)) = a(leaves(d)) = A. Thus P(d) holds.

—~

e Inductive step: the derivation d ends with an application of the rule AND. That is,

= ds
AND

d="="G% By

(AUB,XUY)

The sub-derivations d; and ds in d are such that roor(d;) = (A, X) and root(ds) =
(B,Y). The derivation d is such that root(d) = (AU B, X UY).

As inductive hypothesis we assume that the claim holds for d; and ds. That is,
we assume that:
o(root(dy)) = c(leaves(dy)) and i(root(dy)) = a(leaves(dy)) P(dy)
o(root(ds)) = c(leaves(ds)) and i(root(ds)) = a(leaves(ds)) P(ds)
We have the following chains of equalities:
o(root(d)) = X UY
o(root(dy)) U o(root(ds))
= c(leaves(dy)) U c(leaves(dz)) (by P(dy) and P(d3))
= c¢(leaves(dy) U leaves(ds))
= c¢(leaves(d))

i(root(d)) = AUB
= i(root(dy)) Ui(root(ds))

= a(leaves(dy)) U a(leaves(ds)) (by P(dy) and P(d3))
= a(leaves(dy) U leaves(ds))
= a(leaves(d))

This shows that P(d) holds under the assumption that P(d;) and P(ds) hold.

18



With Lemma 1 in hand, we can establish the left-to-right direction of Theorem 1
as follows. Let X € det(L,C, I, FA). By definition 2, there is some derivation d €
der(L,C, I, FA) such that root(d) = (A, X) and A C I. We have o(root(d)) = X
and i(root(d)) = A. Consider leaves(d). By construction, leaves(d) C C, leaves(d) #
{} and leaves(d) is finite, since a derivation tree has finitely many nodes. Lemma 1
tells us that o(root(d)) = c(leaves(d)). Thus, c(leaves(d)) = X. Lemma 1 also tells
us that i(roor(d)) = a(leaves(d)), so that a(leaves(d)) C I too. Thus, there exists
some non-empty and finite C/ C C' such that a(C’) C I and X = ¢(C") as required.

We now establish the right-to-left direction of Theorem 1. Assume there is a non-
empty and finite ¢/ C C such that a(C’) C I and X = ¢(C’). Let ¢! = {B; —
Yi,...,B, — Y,}. We construct a derivation d € der(L,C,I, FA) such that
root(d) = (A, X)where A=ByU...UBy,and X =Y, U...UY,.

Bl — Yl F BQ — )/2 FD
(B17Y1) (B27)/2) M D
(Bi1U Bz, Y1 UYs) (Bs, Ys) Bi— Yy
(B1UB2UB3,Y1UY2UY3) (B4,Y21)
(B1U...UBn717Y71U...UYn71) (Bn,Yn)
AND

(B1U...UB,,Y1U...UY,)

The fact that d € der(L,C, I, FA) is guaranteed by the fact that a(C’') = A C I.
Hence, X € det(L,C, I, FA) as required.

Proof of Theorem 2, left-to-right

If X € det(L,C, I, FC), then there is some non-empty and finite C' C C
such that, for all D € g(C',I), a(C') C D and X = f(C’', D).

The proof requires two lemmas:
Lemma 2

f(C1UCy, D) = f(C1,D)U f(Cs, D) ©)
Ay C Ay = g(C,As) Cg(C,Ay) 4)

Proof. [Proof of Lemma 2]
For (3):

o Left-in-right inclusion. Let x be such that z € f(Cy U Cs, D). Hence, x € X
for some X suchthat A - X € C; UCy and A C D. Either A - X € C;
or A —» X € Cy. In the first case, € f(C1,D) while in the second case
x € f(Cy, D). Hence z € f(Cy, D) U f(Cs, D) as required.

19



e Right-in-left inclusion. Let x be such that x € f(Cy, D) U f(Cq, D). Either
x € f(C1,D)orx € f(Cq,D). Assume the first applies. Then z € X for
some X suchthat A - X € C;and A C D. But A — X € C; UC(Cs, and so
x € f(CyUCy, D) as required. The argument for the case where x € f(Cq, D)
is similar.

For (4), assume A; C A, and let D € ¢(C, A3). By definition of g, A, C D D
f(C, D). From the opening assumption, A; C D, which suffices for D € ¢(C, 4;).

Lemma 3 Foralld € der(L,C, I, FC),

a(leaves(d)) C D, and

f(leaves(d), D) = o(root(d)) P(d)

D € g(leaves(d), i(root(d))) = {

Proof. [Proof of Lemma 3] We prove the lemma by induction:

e Basis: the derivation d consists in an application of the rule FD; d = &”)‘(X),

where A C I. Then, root(d) = (A, X), leaves(d) = {A — X}, i(root(d))
a(leaves(d)) = A, and o(root(d)) = X.

Let D € g({A — X}, A). By definition of g, A C D D f({A — X}, D).
Since A C D, the first half of the claim, a(leaves(d)) C D, holds. By defi-
nition of f, f({A — X}, D) = X. Therefore, the second half of the claim,
fleaves(d), D) = o(root(d)), is also verified.

e Inductive step: the derivation d ends with an application of the rule CAND. That
is, d has the form

Al—)Xl An_>Xn Bl—)Yl Bm—>Ym

b= X B

(AU(B\X),XUY)

The sub-derivations d; and dy are such that root(d;) = (A, X) and root(ds) =
(B,Y). The derivation d is such that root(d) = (AU (B\ X),X UY).

Throughout the proof, C; and C3 abbreviate leaves(d;) and leaves(ds), respec-
tively:

Cy = leaves(dy) = (A; — Xi)ie{l,i..,n}

Co = leaves(da) = (B; — Yj)jeq1,....m}

As inductive hypothesis we assume that P(d;) and P(dz2) hold. That is, we
assume that:

a(Cy) € D, and

f(C1.D) =X )

AgDQf(Cl,D)é{

20



a(Cs) C D, and

f(C2, D) =Y Plda)

BCDDf(CQ,D):{

To show:

AU(B\X)C DD f(C1UCy, D) = {“(Cl V) € D, and

f(Cl UCQ,D) =XUY
Let D be such that AU (B\X) C D D f(CyUC4, D). We have a(C; U Cs) =
a(C1) U a(C3). On the other hand, Lemma 2 (3) tells us that f(Cy; U Cy, D) =
f(C1,D) U f(Cs, D). Thus, it suffices to show that a(C;) C D, a(Cs) C D,
f(C1,D) =X and f(C2,D) =Y

- AU (B\X) C Dentails A C D. Also, f(C; UC2,D) C D entails
f(Cy, D) C D. The first half of the inductive hypothesis, P(d;), may thus
be applied to D, yielding a(Cy) C D and f(C1, D) = X;

— Similarly, (B\ X) € D and f(C3,D) C D. On the other hand, from
f(C1,D) C Dand f(C1,D) = X, one gets X C D. Thus, (B\X)UX C
D.ButB C (B\X)UX,andso B C D. The second half of the inductive
hypothesis, P(d3), may thus be applied to D, yielding a(C) € D and
f(Cq,D) =Y.

Hence a(Cy UC3) C D and f(Cy UCy, D) = X UY as required.

Since D was arbitrary, the proof of Lemma 3 is complete.

Now, we can turn to the proof of the left-to-right direction of Theorem 2. Let
X € det(L,C,I,FC). By definition 2, there exists some A C I, and a derivation
d € der(L,C, I, FC) with root(d) = (A, X). Consider leaves(d). By construction,
leaves(d) C C, leaves(d) # () and leaves(d) is finite, since a derivation tree has
finitely many nodes. By Lemma 3, VD € g(leaves(d), A), a(leaves(d)) C D and
f(leaves(d), D) = X. By Lemma 2 (4), g(leaves(d),I) C g(leaves(d), A), since
A C I. Tt follows that, a fortiori, VD € g(leaves(d),I), a(leaves(d)) C D and
X = f(leaves(d), D). Thus, there exists a finite and non-empty C’ C C' such that
VD € g(C",I),a(C") C Dand X = f(C', D).

Proof of Theorem 2, right-to-left

X €det(L,C,I,FC) onlyif there is some non-empty and finite C' C C
such that, for all D € g(C",I), a(C") C D and X = f(C', D).

The proof appeals to three lemmas.

Lemma4 [f B =T1UJdet(L,C' I, FC), then f(C',B) C B

Proof. [Proof of Lemma 4] Assume that B = I U |Jdet(L,C", I, FC), and let = €
f(C’,B). To show: x € B.

21



If € I, then we are done. So assume z ¢ I. By definition of f, there is some
A — X € ¢' withz € X and A C B. Consider the following derivation of (A, X)
using FD:

A— X

FD 04’)()

If A C I, then z € Jdet(L,C’,I,FC), and so we are done. So assume that
A Z I. We show how to transform the derivation of x into one based on I.

A is finite, and so is A \ I where A\ I = {ai,...,a,}. Foralla; € A\ I,
a; € Jdet(L,C',I,FC), since A C B. Thus, for all a; € A\ I, there is some
Y; € det(L,C’, I, FC) such that a; € Y;. This in turn means that, for all a; € A\ T,
there is some (B;,Y;) € arg(L,C’, I, FC) such that a; € Y;. By definition of arg,
each such (B;,Y;) is derivable on the basis of I. That is, each B; is contained in I.
Furthermore, there are finitely many such (B;, Y;) to consider—one for each a; € A\ I.
Therefore, one may apply CAND to each to get:

(Bllv Y1) (32.7 Y2) :
(fﬁlJ(fiz\}ﬁ),}ﬁLJ}E) (Eﬁ,Y%)
(B1U(B2\Y1)U(B3\ (Y1 UY2)), Y1 UY2UYs3)

CAND

CAND

(Ba,Y2)
(B UU, (B \ U= ¥o), Ui, Vi)

CAND

We have (B UJ!_,(B; \ U;;ll Y;)) C I, since each B; is contained in I.
A further application of CAND yields the desired result:

o A= X
(B1UUL,(Bi \U;Z1 Ya), Ui, Ya) (4, X)

(B VUL (Bi \ U2y YV5) U (A\ UL, Ya), Ui, Yi U X)

The important point to note is that A \ |J"_, ¥; C I. This is because all the elements
of A not in I are all gathered in |J._, Y.

FD

Lemma 5 If, forall D € g(C,I), f(C,D) = X, then X = ¢(C).
Proof. [Proof of Lemma 5] Assume that, for all D € ¢(C,I), f(C, D) = X. We have
ICLDf(C,L)=c(C),sothat L € g(C,I). Hence X = ¢(C).

Lemma 6 If X € det(L,C, I, FC), then X C ¢(C).

22



Proof. [Proof of Lemma 6] Assume X € det(L,C,I, FC). By the left-to-right di-
rection of Theorem 2, there is some non-empty and finite C’ C C' such that, for all
Deyg(C',I), X = f(C',D). By Lemma 5, X = ¢(C") C ¢(C) as required.

Now, we can turn to the proof of the right-to-left direction of Theorem 2. Suppose
there exists a non-empty and finite C’ C C' such that, for all D € g(C’,I),a(C’") C D
and X = f(C’, D). By Lemma 5, X = ¢(C").

Let B=1UJdet(L,C’, I, FC). By Lemma4, f(C’, B) C B. By the definition
of g, B € g(C’,I). The opening assumption yields a(C’) C B and X = f(C’, B).

By Theorem 1, X € det(L,C’, B, FA). By Corollary 2, X € det(L,C’, B, FC).
This means that there exists a derivation d € der (L, C’, B, FC') whose root is (B’, X)
with B’ C B. If B’ C I, then we are done. So assume otherwise.

Here one can re-run the same kind of argument as that used in the proof of Lemma 4.
B’ is finite, and so is B’ \ I where B’ \ I = {a1,...,a,}. By construction, for all
a; € B'\I, a; € Jdet(L,C",I,FC). Thus, for all a; € B’ \ I, there is some
(B;,Y;) € arg(L,C’,I,FC) such that a; € Y;. By definition of arg, each such
(B;,Y;) is derivable on the basis of I. That is, each B; is contained in I. Further-
more, there are finitely many such (B;,Y;) to consider—one for each a; € B’ \ I.
Therefore, one may apply CAND to each to get:

(BLY)  (BaYa) .
(fﬁlJ(f%z\}ﬁ),YﬁLJ}E) (fﬁ,Y%)
(B1U(B2\Y1)U (B3 \ (Y1 UY2)), Y1 UY2UYs3)

CAND
CAND

(Ba, Y2)
(Bl U U?:2(Bi \ U;;11 YJ)v U:'l:l Yi)

CAND
It is noteworthy that
n i—1
Bruld\Uy)cr
i=2 j=1
A further application of CAND yields:
(BrUUL(Bi \U;Z1 Y)) UiZ, Vi) (B, X)

(BrUUi (B \UZ V) U (B \ UL, Ya), UL, Yi U X)

The elements of B’ that are not in [ are all in | J!"_, ;. Hence

Bols\Unmue\Ur) e

We are almost done. For all Y;, Y; € det(L,C’, I, FC). By Lemma 6, for all Y;, Y; C
c(C"). But¢(C”) = X. Hence | J;-_,; Y; UX = X. Thus there exists a derivation in
der(L,C’, I, FC), and hence in der (L, C, I, FC), whose root is (A, X ) with A C I.
Therefore X € det(L,C, I, FC) as required.

23



Proof of Theorem 3

Let {L,C, R) be a FA system, or a FC system, with L the language of
propositional logic (without T) and C a set of conditionals whose an-
tecedents and consequents are singleton sets. Define N = {(a,z) |
{a} — {z} € C}. The following applies:

i) If X € det(L,C,1,FA), then NX € O1(N,I), where ANX is the
conjunction of all the elements of X ;

ii) If X € det(L,C,I,FC), then NX € O3(N,I).

For i), assume X € det(L,C, I, FA). By Theorem 1, there is some non-empty and
finite C" C C such that a(C”) C I and X = ¢(C"). The crux of the argument consists
in showing that AX € O1(N,a(C")). Put M = {(a,z) : {a} —» {2} € C"}. M
is finite, since C” is finite. Also M C N, since C’ C C. Since C’ is non-empty,
there is some {a} — {z} € C’. We have a € Cn(a(C")) and (a,z) € M. Hence
M(Cn(a(C"))) # {}. Now, we show that

M(Cn(a(C"))) = c(C") Q)

For the C-direction of (5), let y € M (Cn(a(C"))). This implies that there is (b,y) €
M with a(C") F b. By construction, {b} — {y} € C’, and hence y € ¢(C’) as
required. For the D-direction of (5), let y € ¢(C’). Hence 3{b} — {y} € C".
By construction (b,y) € M. Also a(C’) + b, since b € a(C’). Therefore, y €
M(Cn(a(C"))) as required.

It follows at once that AX € O1(N,a(C")), by definition of O;. By monotony
of O; with respect to the input set, theorem 1 in [6], we then get AX € O1(N, I), as
required.

For ii), let X € det(L,C, I, FC). By Theorem 2, there is some non-empty and fi-
nite ¢’ C C such that, for all D € ¢(C’,I), a(C') C D and X = f(C’, D). Put
M = {(a,z) | {a} = {z} € C"}.

First, we show that M (Cn(I)) # {}. Inspection of the proof of the left-to-right
direction of Theorem 2 reveals that C” is the set of all the leaves of the derivation of
(A,X), where A C I. PutC" = {{aa} — {=1},..,{am} — {zm}}. By con-
struction, A has the form {a1} U ({az} \ {z1}) U {as} \ {z2}) U .... Since A C I,
ay € I CCn(I). Also (ay,x1) € M. Soxzy € M(Cn(I)) as required.

Next, we show that, for all B for which I C B = Cn(B) 2 M(B),a) f(C",B) =
X and b) f(C’, B) = M(B). Putting the two together, one gets X = M (B), from
which the desired conclusion AX € O3(N, I) follows.

For a), let z € f(C’, B). By definition of f, there is some a € B with {a} —
{z} € C’. But (a,x) € M, so that x € M(B). Since M (B) C B, x € B. Therefore,
f(C’',B) C B,and so B € g(C", I). The opening assumption yields X = f(C’, B).

For the left-in-right inclusion of b), let z € f(C’, B). By definition of f, 3{a} —
{z} € C" with a € B. By construction, (a,z) € M, and so x € M(B). The argument
for the right-in-left inclusion of b) is similar, and is omitted.

Therefore, AX € O3(N, I) as required.

24



