M|

securityandtrust.lu

Ungrafting Malicious Code from Piggy-
backed Android Apps

LiLi University of Luxembourg / SnT / SERVAL, Luxembourg

Daoyuan Li University of Luxembourg / SnT / SERVAL, Luxembourg

Tegawendé F. Bissyandé University of Luxembourg / SnT / SERVAL, Luxembourg

David Lo Singapore Management University, Singapore

Jacques Klein University of Luxembourg / SnT / SERVAL, Luxembourg

Yves Le Traon University of Luxembourg / SnT / SERVAL, Luxembourg
20 April 2014

ISBN 978-2-87971-149-2 TR-SNT-2016-2

o
www.securityandtrust.lu Il ll I ° I “

JNIVERSITE DU

HHYEMDNIIDC

University of Luxembourg e Interdisciplinary Centre for Security, Reliability and Trust e 4, rue Alphonse Weicker o L-2721 Luxembourg-Kirchberg

Ungrafting Malicious Code from
Piggybacked Android Apps

Li Li Daoyuan Li
SnT, Univ. of Luxembourg
daoyuan.li@uni.lu

Jacques Klein
SnT, Univ. of Luxembourg
Univ. jacques.klein@uni.lu

SnT, Univ. of Luxembourg
li.li@uni.lu

David Lo
Singapore Management

davidlo@smu.edu.sg

ABSTRACT

To devise efficient approaches and tools for detecting
malicious code in the Android ecosystem, researchers
are increasingly required to have deep understanding of
malware. There is thus a need to provide a framework
for dissecting malware and localizing malicious program
fragments within app code in order to build a compre-
hensive dataset of malicious samples. In this paper we
address this need with an approach for listing malicious
packages in an app based on code graph analysis. To
that end we focus on piggybacked apps, which are be-
nign apps repackaged with malicious payload. Our ap-
proach classifies each app independently from its po-
tential clones based on machine learning, and detects
piggybacked apps with a precision of about 97%. With
the built classifier we were also able to find new pig-
gybacked apps in market datasets, outside our ground
truth. We also identify malicious packages with an accu-
racy@5 of 83% and an accuracy@1 of around 68%. We
further demonstrate the importance of collecting ma-
licious packages by using them to build a performant
malware detection system.

1. INTRODUCTION

Malware is pervasive in the Android ecosystem. This
is unfortunate since Android is the most widespread op-
erating system in handheld devices and has increasing
market shares in various home and office smart appli-
ances. As we now heavily depend on mobile apps in
various activities that pervade our modern life, secu-
rity issues with Android web browsers, media players,
games, social networking or productivity apps can have
severe consequences. Yet, regularly, high profile security
mishaps with the Android platform shine the spotlight
on how easily malware writers can exploit a large attack
surface, eluding all detection systems both at the app
store level and at the device level.

Nonetheless, research and practice on malware detec-
tion have produced a substantial number of approaches

Tegawendé F. Bissyandé
SnT, Univ. of Luxembourg
tegawende.bissyande@uni.lu

Yves Le Traon
SnT, Univ. of Luxembourg
yves.letraon@uni.lu

and tools for addressing malware. The literature con-
tains a large body of such works [1-4]. Unfortunately,
the proliferation of malware [5] in stores and on user de-
vices is a testimony that 1) state-of-the-art approaches
have not matured enough to significantly address mal-
ware, and 2) malware writers are still able to react
quickly to the capabilities of current detection tech-
niques. Broadly, malware detection techniques either
leverage malware signatures or they build machine learn-
ing (ML) classifiers based on static/dynamic features.
On the one hand, it is rather tedious to manually build a
(near) exhaustive database of malware signatures: new
malware or modified malware are thus likely to slip
through. On the other hand, ML classifiers are too
generic to be relevant in the wild: features currently
used in the literature, such as n-grams, permissions or
system calls, allow to flag apps without providing any
hint on neither which malicious actions are actually de-
tected, nor where they are located in the app.

The challenges in Android malware detection are mainly
due to a lack of accurate understanding of what consti-
tutes a malicious code. In 2012, Zhou and Jiang [6] have
manually investigated 1260 malware samples to char-
acterize 1) their installation process, i.e., which social
engineering-based techniques (e.g., repackaging, update-
attack, drive-by-attack) are used to slip them into users
devices; 2) their activation process, i.e., which events
(e.g., SMS_RECEIVED) are used to trigger the malicious
behaviour; 3) the category of malicious payloads (e.g.,
privilege escalation or personal information stealing);
and 4) how malware exploit the permission system. The
produced dataset named MalGenome, have opened sev-
eral directions in the research of malware detection,
most of which have either focused on detecting specific
malware types (e.g., malware leaking private data [7]),
or are exploiting features such as permissions in ML
classification [8]. The MalGenome dataset however has
shown its limitations in hunting for malware: the dataset,
which was built manually, has become obsolete as new

malware families are now prevalent; and the character-
ization provided in the study is too high-level to allow
the inference of meaningful structural or semantic fea-
tures of malware.

1.1 The Goal of This Paper

The goal of our work is to build an approach for
systematizing the dissection of Android malware and
automating the collection of malicious code packages
in Android apps. Previous studies, including our own,
have exposed statistical facts which suggest that mal-
ware writing is performed at an “industrial” scale and
that a given malicious piece of code can be extensively
reused in a bulk of malware [5,6]. Malware writers
can indeed simply unpack a benign, preferably popu-
lar app, and then graft some malicious code on it be-
fore finally repackaging it. The resulting app which
thus piggybacks a malicious payload is referred to as
a piggybacked app. Our assumption that most malware
are piggybacked of benign apps is confirmed with the
MalGenome dataset where over 80% of the samples were
built through repackaging.

In this work we focus on 1) collecting a curated set
of piggybacked apps and their corresponding originals
to constitute a ground truth; then 2) we use the ground
truth to build a classifier for detecting other piggy-
backed apps; and finally 3) we identify the malicious
payload from each piggybacked app.

1.2 Taxonomy of Piggybacked Malware

We now provide a taxonomy to which we will refer to
in the remainder of this paper. Figure 1 illustrates the
constituting parts of a piggybacked app. Such malware
are built by taking a given original app, referred to in
the literature [9] as the carrier, and grafting to it a
malicious payload, referred to as the rider. The ma-
licious behaviour will be triggered thanks to the hook
code that is inserted by the malware writer to connect
his rider code to the carrier app code. The hook thus
defines the point where carrier context is switched into
the rider context in the execution flow.

Android Apps

Malware

original
APP (a1)

Piggybacked

- ﬁ

piggybacked
APP (a2)

Figure 1: Piggybacking terminology.

1.3 Contributions

The contributions of this paper are as follows:

e We propose a ML approach for detecting piggy-
backed apps. To the best of our knowledge, we
are the first to consider piggybacked app detection

as a classification problem. The originality of our
approach, compared to the literature, is that we
analyze a single app independently from its poten-
tial clones. The state-of-the-art on cloned/repack-
aged /piggybacked app detection does comparisons
between apps, either directly based on source code
similarity, or based on the distance between ex-
tracted feature vectors. Such approaches thus re-
quire the presence of the carrier apps in the dataset
to work. This requirement is however unrealistic,
since the piggybacked app may be in a different
market than the original app (e.g., Google Play vs
AppChina).

e We propose an approach for localizing malicious
code within piggybacked apps. Our approach yields
a ranked list of most probable malicious packages.
The collection of such malicious packages can be
used by researchers and practitioners to build tools
that output explainable results (i.e., when an app
is flagged as a malware because it shares features
from a particular malicious package, it is straight-
forward to indicate the relevant type/family of mal-
ware).

e We perform evaluation experiments which demon-
strate that our identified features indeed allow to

discriminate between piggybacked and non-piggybacked

apps. Applying the classifier to apps in the wild,
we were also able to find new piggybacked apps
outside our ground truth dataset.

e Finally, we show the benefit of our work by build-
ing a malware detection tool with features extracted
from the samples of identified malicious payloads.

2. GROUND TRUTH INFERENCE

Research on Android security, especially malware de-
tection, is challenged by the scarcity of datasets and
benchmarks. Despite the abundance of studies and ap-
proaches on detection of piggybacked apps, accessing
the associated datasets is limited. Furthermore, while
other studies focus on various kinds of repackaged apps,
ours targets exclusively piggybacked malware. Finally,
related work apply their approach on random datasets
and then manually verify the findings to compute per-
formance. We take a different approach and automate
the collection of a ground truth that we share with the
community [10]. The process that we used is depicted
in Figure 2.

Our collection is based on a large repository of over
2 million apps crawled over several months and that
was used for large-scale experiments on malware de-
tection [11-13]. Apps in this repository were obtained
from several markets (including Google Play, appchina,
anzhi), open source repositories (including F-Droid) and
researcher datasets (such as the MalGenome dataset).
To identify malware, we sent all the apps to the anti-

malicious (m1, m2, ...)

k VirusTotal
e

g benign (b1, b2, ...)

identical packages

different authors
| 543,002 pairs (e.g., m1 ->b1) |—> 71,206 pairs

same SDK/version

\4

1,497 pairs

Similarity Results === Ground Truth (Similarities)
Figure 2: The ground truth build process.

Ground Truth (App pairs) <&

l similarity analysis

virus products hosted by VirusTotal!, and we collected
the corresponding reports. We further filtered apps
based on Application Package name. This information,
which is recorded in the Manifest file of each app, is
supposed to identify uniquely the app?. Considering
the identicality of package names, we were able to focus
on a subset of about 540 thousands pairs of apps, one
benign and the other malicious, with the same app pack-
age name. In other words, this subset is composed of
about 540, 000 pairs of apps < appg, app,, >, for which
appg and app,, have the same package name, and app,
has been classified as a goodware and app,, as a mal-
ware? by anti-viruses from VirusTotal.

We do not consider cases where a developer may pig-
gyback his own app to include new payload. Indeed,
first we consider piggybacking to be essentially a par-
asite activity, where one developer exploits the work
of another to carry his malicious payload. Second, de-
velopers piggyback their own app mainly to insert an
advertising component to collect revenue transforming
these apps to adware which are often classified as mal-
ware. As a result, to follow our definition of piggyback
app and avoid the presence of too many adware, we
choose to clean the dataset from such apps. Thus, we
discard all pairs where both apps are signed with the
same developer certificate. This step brings the subset
to about 70 thousands pairs.

Finally, we assume that, in most cases, malware writ-
ers are not very sophisticated and they are using least
effort to bypass some defences. For instance, they are
not focused on modifying app details such as version
numbers or reimplementing functionality which require
new SDK versions. By considering pairs where both

Thttp:/ /virustotal.com hosts over 40 anti-virus prod-
ucts from providers such as Symantec, McAfee, Kasper-
sky.

2Two apps with the same Application Package name
cannot be installed on the same device. New versions of
an app keep the package name, allowing updates instead
of multiple installs.

3In this study, we consider an app to be malware if at
least one of the anti-virus products from VirusTotal has
labeled it as such.

apps share the same version number and SDK require-
ments, we are able to compile a reliable ground truth
with 1,497 pairs where one app piggybacks the other to
include a malicious payload.

100

80
1

60
1

40
Percentage of Methods

20

o -

T T T T
Identical Similar Deleted New

Figure 3: Overview of the similarity analysis findings for
the pairs of apps in our collected dataset. In 610 pairs, the
piggybacked app includes 100% of the carrier code. In the
863 apps where the carrier code is modified, on median only
one method is concerned. In 256 pairs, a few methods have
been deleted. Finally, in the large majority of pairs (1031),
the piggybacked has new methods. The median value of the
proportion of added methods is about 20%.

To validate the relevance of each pair in the ground
truth, we further perform a similarity analysis to de-
tect whether an original app indeed constitutes a pig-
gybacked app, being responsible for carrying the ma-
licious payload. We expect that, given a pair of apps
< appg, appm >, appy’s code is part of app,, and appy,
includes new code to constitute the malicious payload.
We leverage Androguard [14] to compute similarity met-
rics (identical, similar, new and deleted) at the method
level between apps in each pair of the ground truth.
The metrics are defined as follows:

e identical: a given method code is exactly the same
in both apps.

e similar: a given method has slightly changed (at
the instruction level) between the two apps.

e new: a method has been added in the piggybacked
app.

e deleted: a method has been deleted from the car-
rier code when including it in the piggybacked app.

Figure 3 plots the similarity analysis results of our
ground truth apps. Generally, a small amount of meth-
ods in carrier are modified in the piggybacked code
and the remaining methods are kept identical. In most
cases, piggybacked apps also introduce new methods
while only in a few cases that piggybacked apps remove
methods from the original carrier code.

This experiment also allowed to further consolidate
the ground truth. Indeed, we have identified some cases
of “piggybacked” apps where no new code was grafted
to the carrier (e.g., only resource files have been mod-
ified/added). We exclude such apps from the ground

http://virustotal.com

truth. The final set of ground truth is now composed
of 1031 pairs of apps.

Finally, we investigated the diversity of malicious rider
code in the piggybacked apps from our ground truth. To
that end we analyzed the new methods added by rider
code. Out of the total 504,838 new methods in the set of
piggybacked apps, 196,753 (i.e., 39% of new methods)
can be found exactly identical in more than one piggy-
backed app. Moreover, we noted that 124 methods of
rider code are shared by more than 100 apps.

3. APPROACH

We remind the reader that one primary objective
of our work is to provide researchers and practitioners
means to systematize the collection of malicious pack-
ages that are used frequently by malware writers. To
that end, we propose to devise an approach for au-
tomating the localization of malicious code snip-
pets which are used pervasively in malware distributed
as piggybacked apps. We are thus interested in iden-
tifying malicious rider code as well as the hook code
which triggers the malicious behaviour in rider code.
To fulfil this objective we require:

e First, a scalable and realistic approach to the de-
tection of piggybacked apps. Unfortunately, state-
of-the-art approaches have limitations in scalabil-
ity or in practicality (we will give more details in
the following subsection).

Second, reliable metrics to automatically identify
malicious payload code within a detected piggy-
backed app. To the best of our knowledge, in the
literature, there are no such works have addressed
this before.

Classifier
Building

Ground truth

L)
* Feature Supervised
lzﬁ_’[Extraction]—»[Learning)—> CIalssIerr

¥
Classificati
L
App to ;

analyze P\ggytlJacked
1

App
Classificati
App Raider snippets

Dissection Automatic
Dissection

Figure 4: The main steps of our approach.

Hook

Figure 4 illustrates the main steps of our approach.
We rely on the ground truth collected in Section 2 to
build a machine learning classifier which will be applied
for a given app to detect if this app is a piggybacked
malware app or not. Then, if an app is flagged as pig-
gybacked we statically analyze it to extract features on
its constituting parts to distinguish the rider and hook
code from the carrier code. The output of this step
is a list of packages ranked with a probability score of
maliciousness.

3.1 Piggybacked App Detection

We now provide details on the first step of our ap-
proach which consists in building a classifier for piggy-
backing detection. Contrary to previous work we have
already collected a sizeable ground truth of piggybacked
apps which can be immediately leveraged in our work.
Before presenting the approach, we revisit current state-
of-the-art approaches to list some limitations that mo-
tivated our use of Machine Learning techniques instead.

3.1.1 Limitations of the state-of-the-art

The problem of detecting piggybacked apps is eventu-
ally related to the problem of detecting app clones and
repackaged apps. State-of-the-art approaches such as
DroidMoss [15] or DNADroid [16] have focused on per-
forming pairwise comparisons between apps to compute
their degree of similarity. Obviously, such approaches,
which are based on source code, cannot scale because
of the combinatorial explosion of pairs to compare. For
example, in the case of our dataset of 2 millions apps,
there are 022*106 candidate pairs for comparison?.

With PiggyApp [9], the authors have improved this
comparison approach by first extracting semantic fea-
tures from the app components that they identified as
implementing the primary functionality. They then build
vectors using normalized values of the features. Thus,
instead of computing the similarity between apps based
on their code, they compute the distance of their as-
sociated vectors. This approach however remains im-
practical since one would require the dataset to con-
tain exhaustively the piggybacked apps as well as their
corresponding carrier apps. In practice however, many
piggybacked apps are likely to be uploaded on different
markets than where the original app can be found.

Conclusion. The main limitation in the state-of-the-
art of piggybacked app detection is the requirement im-
posed by all approaches to have the original app in order
to search for potential piggybacked apps which use it as
a carrier. We claim however that because it is alien
code that is grafted to an app to create a piggybacked
app, there is a possibility to automate the identifica-
tion of such apps separately from the original app, by
considering directly how piggybacking is performed.

3.1.2 A Machine Learning-based approach

To get intuitions on how piggybacked apps are built,
we consider samples from our ground truth and manu-
ally investigate how the piggybacked app differentiates
from the original carrier app. Building on the character-
istics of piggybacking that emerge, we propose a feature

4022*106 = 1.999999 * 10'2. If we consider a comput-
ing platform with 10 cores each starting 10 threads to
compare pairs of apps in parallel, we would still require
several months to complete the analysis when optimisti-
cally assuming that each comparison would take about

1ms.

set for machine learning classification:

<manifest package=‘“se.illusionlabs.labyrinth.full”>
uses-permission:"android.permission.WAKE_LOCK"
+ uses-permission:"android.permission.GET_TASKS"
+ uses-permission:"android.permission.WAKE_LOCK"
activity:"se.illusionlabs.labyrinth.full.
StartUpActivity"
action:"android.intent.action.MAIN"
category:"android.intent.category.LAUNCHER"
activity: “com.loading. MainFirstActivity”
action:"android.intent.action.MAIN"
category:"android.intent.category.LAUNCHER"
receiver:"com.daoyoudao.ad.CAdR"
action:"android.intent.action.PACKAGE_ADDED"
<data android:scheme="package" />
service:"com.daoyoudao.dankeAd.DankeService"
16 action:"com.daoyoudao.dankeAd.DankeService"
17| </manifest>

© O U s WN —

—
)
R T |

Listing 1: Simplified view of the manifest file of
se.illusionlabs.labyrinth.full (app’s sha256 ends with
7EBT789).

Component Capability declarations. In Android, In-
tents are the primary means for exchanging information
between components. These objects contain fields such
as the Component name to optionally indicate which app
component to whom to deliver the object, some data
(e.g., a phone number), or the action, which is a string
that specifies the generic action to perform (such as view
a contact, pick an image from the gallery, or send an
SMS). When the Android OS resolves an intent which
is not explicitly targeted to a specific component, it will
look for all registered components that have Intent fil-
ters with actions matching the intent action. Indeed, In-
tent filters are used by apps to declare their capabilities
(e.g., a Messaging app will indicate being able to pro-
cess intents with the ACTION_SEND action). Our manual
investigation into piggybacked apps has revealed that
they usually declare additional capabilities to the orig-
inal apps to support the needs of the added malicious
code. Usually, such new capabilities are used for the ac-
tivation of the malicious behaviour. For example, pig-
gybacked apps may add a new broadcast receiver with
an intent-filter that declares its intention for listening to
a specific event. Listing 1 illustrates an example of pig-
gybacked app from our ground truth. In this Manifest
file, components CAdR (line 12) is inserted and accom-
panied with the capability declaration for handling the
PACKAGE_ADDED system event (line 13).

In our ground truth dataset, we have found that 813
(i.e., 78.9%) piggybacked apps added new capability
declarations. Top intent-filter actions added by these
apps include PACKAGE_ADDED (used in 696 piggybacked
apps, but only in 66 original apps), and CONNECTIV-
ITY_CHANGE (used in 681 piggybacked apps, but only in
36 original apps). Thus, some capability declarations
are more likely to be found in piggybacked apps.

We have further noted that piggybacking may add
a component with a given capability which was already
declared for another component in the carrier app. This
is likely typical of piggybacking since there is no need
in a benign app to implement several components with

the same capabilities (e.g., two PDF reader components
in the same app). For example, in our ground truth
dataset, we have found that in each of 643 (i.e., 72.4%)
piggybacked apps, several components have the same
declared capability. In contrast, this duplication only
happens in 100 (i.e., 9.7%) original apps. Thus, dupli-
cation of capability declarations (although for different
components) may be indicative of piggybacking.

App Permission requests. Because Android is a privilege-

separated operating system, where each application runs
with a distinct system identity [17], every app must be
granted the necessary permissions for its functioning.
Thus, every sensitive resource or API functionality is
protected by specific permissions (e.g., the Android per-
mission SEND_SMS must be granted before an app can
use the relevant API method to send a SMS message).
Every app can thus declare in its Manifest file which
permissions it requires given its use of the Android API,
via the <uses-permission> tag. Malicious rider code
in a piggybacked app often calls sensitive API methods
or use sensitive resources that were not needed in the
carrier app. For example, a game app can be piggy-
backed to send premium rate SMS. Thus, to allow the
correct functioning of their malicious apps, piggyback-
ers have to add new permission requests in the Manifest
file.

The app example from Listing 1 illustrates this prac-
tice. Permission GET_TASKS has been added (line 3)
along with the malicious code. Moreover, this exam-
ple further supports the finding that piggybacking is
done in an automated manner and with the least effort
possible. Indeed, we note that a new entry requesting
permission WAKE_LOCK (line 4) has been added in the
piggybacked app, ignoring the fact that this permission
had already been declared (line 2) in the carrier app.
Within our ground truth, we have found that 87% (914)
of piggybacked apps request new permissions. These
new permission types also appear to be more requested
by piggybacked apps than original apps. For exam-
ple, permission SYSTEM_ALERT_WINDOW is additionally
requested by 482 piggybacked apps, whereas this per-
mission is only requested by 32 (i.e., 3%) original apps.
Thus, some permissions requests may increase the prob-
ability for an app to be a piggybacked app. We have also
identified 619 (i.e., 60%) piggybacked apps which dupli-
cate permission requests. This happens more rarely in
original apps: only in 91 (i.e., 8.8%) such apps. Thus,
we consider that duplicating permission requests can be
indicative of piggybacking as well.

Mismatch between Package and Launcher compo-
nent names. As previously explained (cf. Section 2),
Android apps include in their Manifest file an Appli-
cation package name that uniquely identifies the app.
They also list in the Manifest file all important compo-
nents, such as the LAUNCHER component with its class

name. Generally Application package name and Launcher
component name are identical or related identically. How-

ever, when a malware writer is subverting app users,
she/he can replace the original Launcher with a compo-
nent from his malicious payload. A mismatch between
package name and the launcher component name can
therefore be indicative of piggybacking. Again, the app
example from Listing 1 illustrates such a case where the
app’s package (se.illusionlabs.labyrinth.full, line
1) and launcher (com.loading.MainFirstActivity, line
10) differ. In our ground truth, 1,045 piggybacked apps
have a launcher component name that does not match
with the app package name.

Package name diversity. Since Android apps are mostly

developed in Java, different modules in the application
package come in the form of Java packages. In this
programming model, developer code is structured in a
way that its own packages have related names with the
Application package name (generally sharing the same
hierarchical root, e.g., com.example.*). When an app
is piggybacked, the inserted code comes as separated
modules constituting the rider code with different pack-
age names. Thus, the proportions in components that
share the application package names can also be indica-
tive of piggybacking. Such diversity of package names
can be seen in the example of Listing 1. The presented
excerpt already contains three different packages. Since
Android apps make extensive use of Google framework
libraries, we systematically exclude those in our analy-
sis to improve the chance of capturing the true diversity
brought by piggybacking.

Sub-graph Density. Finally, we have computed the
Package Dependency graph (PDG) of each piggybacked
app in our study samples. We then noted that different
modules (i.e., packages) can be located in a sub-graph
with varying densities. Figure 5 illustrates the PDG
of a piggybacked app, that is constituted of two dis-
connected sub-graphs whose densities are significantly
different. One of the subgraph (the largest one in this
case) represents the module constituting the rider code.
We thus consider that comparing the variation between
minimum, mean and maximum sub-graph’s density can
provide a hint on the probability for an app to be pig-
gybacked.

org.fmod com jumptap.adtag

com.unity3d.player gom:google.ads
commillermialmedia.android com.amazon

com.veegao.demo com.prife3t Som-iugy{android

com.mobiixandroid.

com.primé31.ti |

com: com.ifimobitandroidsdk

\ com. andro\é.vendmg
Nom:va
comivd,)& \ comfufryrorg.
K Somiv.ui

com.amazon.inapp

com.amazof.venezia

org.joda.time}
o com.amazon.android

comy-c’ J‘ava rmi.server
com.thoughtworkS parahamer
comtb org.xerial.snappy

Figure 5: Sub-graphs in the Package Dependency Graph of
a Piggybacked app.

Let E and V be the sets of edges and vertices of a
PDG sub-graph sg. The density of sg is computed using

formula (1).

, |E|

density(sg) V= (V=D (1)
Summary of piggybacking detection approach:
To design our machine-learning classifier, we build fea-
ture vectors with values inferred from the characteris-
tics detailed above. Table 1 summarizes the feature set.
The classifier is expected to infer detection rules based
on the training dataset that we provide through the col-
lected ground truth. For duplicate capabilities, duplicate
permissions and name mismatch features, the possible
values are 0 or 1. For the feature new capability, we an-
alyze each app and for each of its declared capabilities
we indicate in its feature vector the number of times
this capability type was added by piggybacking in the
training data. The same procedure is applied for new
permission feature. For the sub-graph density feature,
we add in the feature vector of each app, the minimum,
maximum and average values of its PDG sub-graph den-
sities. We then apply the ML algorithm which will then
learn the correlation between feature vector values and
piggybacking.

Table 1: Feature categories for ML classification.
Category

Feature Values
new capability’ occurrence frequency of capability in ground truth

App Info

Components - = = —°— ol it g = g
name mismatch boolean

PDG sub-graph density max, min, mean

3.2 Identification of Malicious Riders and
of Piggybacking Hooks

The ML classifier enables to produce a set of apps
that are identified as piggybacked malware. These apps
however require further analysis to ungraft the malicious
rider code. To automate this approach, we consider
the identification of malicious riders as a graph analysis
problem.

Figure 6 illustrates the package dependency graph
(PDG) of a piggybacked app®. The PDG is a directed
graph which makes explicitly the dependency between
packages. The values reported on the edges correspond
to the number of times a call is made by code from a
package A to a method in package B. These values are
considered as the weights of the relationships between
packages. In some cases however, this static weight may
not reflect the relationship strength between packages
since a unique call link between two packages can be
used multiple times at runtime. To attenuate the im-
portance of the weight we also consider a scenario where
weights are simply ignored.

Identification of Hook/Rider Packages.

SName: rapscallion.sharg?, the last six letters of its
sha256 are 6486FF.

com.unity3d.player

T

com.gamegod

org.fmod 4
/)

com.umeng.analytics

4
132 ¢ com.mobile.co
com.umeng.common 3
6
'
com.umeng.xp com.android.kode_p com.ah.mf

Figure 6: Package Dependency Graph of a Piggybacked app.

We then compute four metrics for estimating the re-
lationships between packages in an app:

1. weighted indegree: In a directed graph, the in-
degree of a vertex is the number of headpoints ad-
jacent to the vertex. In the PDG, the weighted
indegree of a package corresponds to the number
of calls that are made from code in other packages
to methods in that package.

2. unweighted indegree: We compute the normal
Indegree of a package in the PDG by counting the
number of packages that call its methods. The rea-
son why we take into account indegree as a met-
ric is based on the assumption that hackers take
the least effort to present the hook. As an ex-
ample, com.gamegod in Figure 6 is actually the
entry-point of the rider code, which has a smallest
indegree for both weighted and unweighted inde-
gree.

3. maximum shortest path: Given a package, we
compute the shortest path to every other pack-
age, then we consider the maximum path to reach
any vertex. The intuition behind this metric is
based on our investigation with samples of pig-
gybacked apps which shows that malware writers
usually hide malicious actions far away from the
hook, i.e., multiple call jumps from the triggering
call. Thus, the maximum shortest path in rider
module can be significantly higher than in carrier
code.

4. energy: we estimate the energy of a vertex (pack-
age in the PDG) as an iterative sum of its weighted
outdegrees and that of its adjacent packages. Thus,
the energy of a package is total sum weight of all
packages that can be reached from its code. The
energy value helps to evaluate the importance of a
package in the stability of a graph (i.e., how rele-
vant is the sub-graph headed by this package?).

The above metrics are useful for identifying packages
which are entry-points into the rider code. We build
a ranked list of the packages based on a likelihood
score that a package is the entry point package of the

rider code. Let v; be the value computed for a metric
i described above (i = 1,2 for in-degree metrics, the
smaller the better; ¢ = 3,4 for others, the bigger the
better) , and w; the weight associated to metric i. For
a PDG graph with n package nodes, the score associ-
ated to a package p, with our m metrics, is provided by
formula (2).

4
Sy = wy * 1—7%@) + w; * 7%(]9)
! g SR i L g S
(2)

In our experiments, we weigh all metrics similarly
(i.e., Vi,w; = 1). For each ranked packaged p,., the po-
tential rider code is constituted by all packages that are
reachable from p,.. A hook is generally a code invoca-
tion from the carrier code to the rider code. Thus, we
consider a hook as the relevant pair of packages that are
interconnected in the PDG.

Finally, to increase accuracy in the detection of hooks
we further dismiss such packages (in stand-alone hooks
or in package-pair hooks) whose nodes in the PDG do
not meet the following constraints:

e No closed walk: Because rider code and car-
rier code are loosely connected, we consider that
a hook cannot be part of a directed cycle (i.e., a
sequence of vertices going from one vertex and end-
ing on the same vertex in a closed walk). Other-
wise, we will have several false positives, since typ-
ically, in a benign app module (i.e., a set of related
packages written for a single purpose), packages in
the PDG are usually involved in closed walks as in
the example of Figure 7.

com.facebook.internal

~—— 1

com.facebook.android
com.facebook

T~ /
com.facebook.widget

Figure 7: Excerpt PDG showing a set of related packages
in the carrier code of com.gilpstudio.miniinimo (sha256 -
CB6534)

e Limited clustering coefficient: A hook must
be viewed as the connection link between carrier
code and rider code via two packages. Since both
packages belong to different (malicious and be-
nign) parts of the app, they should not tend to
cluster together in the package dependency graph
as it would otherwise suggest that they are tightly
coupled in the design of the app. To implement
this constraint we measure the local clustering co-
efficient [18] of the vertex representing the car-
rier entry package. This coefficient quantifies how
close its adjacent vertices are to being a clique (i.e.,
forming a complete graph). Given v, a vertex, and
n, the number of its neighbors, its coefficient cc(v)

is constrained by formula (3)

Chy

4. EVALUATION

We have implemented our approach for piggybacking
detection and malware dissection. We now present the
results of our evaluation campaign for the different steps
of the approach.

4.1 Performance in Piggybacking Detection

Our machine learning-based detection of piggybacked
apps is based on the Random Forests [19] ensemble
learning algorithm. This algorithm, which operates by
building a multitude of decision trees, was selected over
simple decision trees because it is well known to cor-
rect for decision trees’ habit of overfitting to the train-
ing dataset [20]. In our case, Random Forests are more
suitable since our ground truth is limited by the criteria
used to collect its sample apps.

Our evaluation of piggybacking detection is performed
in two parts to answer two research questions:

RQ 1: Is the trained model accurate in discriminating
piggybacked apps from non-piggybacked apps?

RQ 2: Can the classifier built on the collected ground
truth generalize to other piggybacked apps?

To answer these questions we perform experiments in
different settings, selecting the testing sets from the
ground truth and in the wild (i.e., with market apps
which are unlabelled).

4.1.1 10-Fold Cross Validation

We leverage the ground truth to directly measure the
performance of our approach. To that end, we only
train the classifier with a portion of the ground truth
and use the remaining portion for testing the accuracy
of the prediction. To ensure that our results are statis-
tically significant and reduce variability depending on
the partitioning of the dataset, we use 10-Fold cross val-
idation which combines measures from several rounds.
We are then interested in the measure of recall (i.e.,
the percentage of known piggybacked apps that are de-
tected by the model) and precision (i.e., the percentage
of all predicted piggybacked apps that are truly pig-
gybacked). The harmonic mean of the two, called F-
measure, gives an overall estimate of the performance.
Our experiments show that our classification approach
yields a performance of 97%, 97% and 97% respectively
for precision, recall and F-measure. This high perfor-
mance suggests that the considered features extracted
in our approach are suitable for discriminating between
piggybacked and non-piggybacked apps. However such
extremely high performance are indicative of overfitting
in the training model. We thus undertake to perform
other evaluations in the following subsections.

4.1.2 Experiments in the Wild

In a second experiment, we consider all the ground
truth to build a classifier that will be used to test a
randomly selected subset of apps from our 2 millions
dataset. The challenge is now to evaluate whether the
predicted apps which are not part of our ground truth
are indeed piggybacked malware. First we immediately
verify based on VirusTotal labels that a classified pig-
gybacked app is indeed flagged as malware. Second, for
predicted apps that are indeed malicious we explore all
other apps in an attempt to find its original counter-
part. This simplifies the task of verification by having
a baseline for comparison, beyond our limited hands-on
experience with Android malware app writing.

Malicious piggybacking.

We randomly select 1000 apps from our initial dataset
of 2 million apps, which consists of 650 goodware and
350 malware. The classification with this sample dataset
yields a set of 290 apps as candidate piggybacked apps,
where 130 of these apps are from the malware subset.
These results do not presume of the performance of the
approach. Instead, it may indicate that: (1) some apps,
which are identified as piggybacked may indeed be be-
nign. However, they present characteristics of clone or
repackaged apps, which can be assimilated to “benign”
piggybacking since the rider code is not malicious. This
is the case for example when a legitimate adware library
is inserted into benign apps; or (2) some apps, which are
piggybacked apps presenting new malicious behaviours,
had not yet been flagged by any anti-virus product at
the time of analysis. We simply confirmed the plausibil-
ity of this explanation: we remind the reader that our
initial set of apps is composed of 2 millions apps. After
each app was downloaded, we immediately requested
an analysis by VirusTotal anti-virus products. Thus,
for many of the apps, the VirusTotal report is several
months old. We have now requested an updated anal-
ysis to VirusTotal for the set of goodware apps which
have been classified as piggybacked. Interestingly, we
have found two of these apps are now labeled as mali-
cious by at least one of the anti-virus products hosted
by VirusTotal.

Previously unknown piggybacked apps.

We now verify whether the detected piggybacked apps
are really piggybacked. To avoid the researcher bias
that would come with manual verification, we proceed
to automatically find the carrier app that will confirm
the piggybacking. We focus on the malicious piggy-
backed and search the potential clones in a set of benign
apps.

To find the original carrier apps of identified piggy-
backed apps, we proceed as in the PiggyApp [9] ap-
proach, and position all apps (i.e., over 1,4 million be-
nign apps + 130 malicious piggybacked apps) in a high
dimensional space where each app is represented as a

vector of features which allow to distinguish it from the
others. These features include permissions requested
by the app, all actions declared in its manifests and all
component names. The features are first represented
into a vector of 0 and 1 values (where 0 indicates the
absence of a feature in the app, and 1 its presence). The
vectors, one for each app, are then projected into a met-
ric space where the problem of detecting similar apps
is reduced to a nearest neighbour search problem. The
metric space is constructed using the Jaccard distance
expressed by formula (4) to estimate the dissimilarity
between the features of a pair of apps (a,b).

|fa U Sol = [fa N fo

dJaccard(ftu fb) ‘fa U fb‘ (4)

Out of the 130 identified malicious piggybacked apps,

we were able to find the original benign carriers of 53

apps (~41%). Since 1) our search space, with benign

apps, was limited by the available dataset and 2) it is

possible that some carrier apps are already classified as

malicious and thus not included in our search space, the

remaining apps, for which we did not find the original

counterparts, cannot be classified as false positives of
our approach either.

Comparison with other approaches..

The closest work, which is comparable to ours is Pig-
gyApp [9]. Unfortunately, the authors (1) do not release
their dataset, preventing us to apply our approach and
compare results, (2) do not give the values of some im-
portant parameters of their approach (e.g., not knowing
the threshold of similarity for deciding that two primary
modules are cloned) preventing us to implement their
approach for comparison. We contacted the PiggyApp
authors about these issues but did not hear back from
them.

4.2 Performance in Malware Dissection

We now evaluate the second step of our approach
which consists of automating the dissection of piggy-
backed malware apps to identify rider and hook code.

The output of the malicious rider identification step
being a ranked list of packages, our evaluation consists
in verifying the percentage of rider packages in the top
5 items (i.e., accuracy@5) in the list that are effectively
correctly identified, and the proportion of rider code
that is included in the list. For this experiment we have
randomly selected 500 piggybacked apps from our col-
lected ground truth (cf. Section 2). First, we automati-
cally build the baseline of comparison by computing the
diff between each of the selected piggybacked app and
its corresponding original app. With this diff, we can
identify the rider code and the hook.

Then, we apply our dissection approach to the 500
apps and compare the top ranked packages against the
baseline. Our approach yields an accuracy@5 of 83%
and an accuracy@1 of 68.4% for rider packages.

The manual analysis further provided some insights
on how malware writers perform piggybacking at a large
scale. Table 2 presents three samples of hook code (at
the package level) which suggest that piggybackers of-
ten connect their payload to the carrier via one
of its included libraries. Thus, malware can system-
atize the piggybacking operation by targeting apps that
use some popular libraries. For example library package
com.unity3d.player is the infection point in 53 (out
of the 500) piggybacked apps. In 14 of those apps, the
entry package of the rider code is com.gamegod.

Table 2: Three hook samples and their affected number of

apps.
Hook Affected Apps (#.)
com.unity3d.player — com.gamegod 14
com.unity3d.player — com.google.ads 7
com.ansca.corona — com.gamegod 4

S. OUTLOOK & DISCUSSION

Our prototype implementation has demonstrated promis-

ing results in automating the dissection of Android mal-
ware. First we have devised a ML classifier to detect
piggybacked apps, then we have proposed an approach
to localize the malicious payload at the granularity level
of packages. We now discuss how the approach and
datasets built in our work can be exploited in the hunt
for malware in the Android ecosystem. Subsequently,
we enumerate a few threats to validity.

5.1 Malware Detection

Our work was motivated by the need for building ef-
fective malware detectors for Android. After collecting
snippets of malicious rider code from piggybacked apps,
we explore their potential for improving malware detec-
tion approaches.

5.1.1 Basic Malware detection

In a first scenario, we consider the case of machine
learning-based malware detection leveraging features of
the identified rider code in our ground truth of piggy-
backed apps. The malware prediction in this case is a
one-class classification problem as we only have knowl-
edge on what features a malware should include. We
first apply the classifier built with these new features
on our ground truth. In 10-fold cross validation experi-
ments, we recorded an accuracy of 91.6%. These results
suggest that rider code features are effective in detecting
piggybacked malware.

We further investigate the MalGenome dataset to de-
termine the proportion of malicious apps which share
the same malicious payloads with the piggybacked apps
of our ground truth. To that end we consider the pack-
age dependency graph of each app of the MalGenome
dataset and map them with the collection of rider pack-
age pairs collected in our ground truth. 125 MalGenome
apps contain only 1 package. They are thus irrelevant
for our study. Among those apps with several packages,

252 (i.e., 22.2%) contained rider code features of our
ground truth. With a malware detection tool based on
our rider code collection, we could have directly flagged
such apps with no further analysis.

5.1.2 Malware family classification

In a second scenario, we consider the case of classify-
ing malware to specific families based on the rider fea-
tures. To that end, we consider the apps of our ground
truth dataset and apply our dissection approach. We
then collect the identified rider code of all apps and
apply the Expectation-Maximization (EM) [21] algo-
rithm® on the edges related to rider code in the app
PDG to cluster them. This leads to the construction of 5
clusters of varying sizes. Our objective is then to inves-
tigate whether the clusters of rider code thus built are
also related to specific malware families. To that end,
we consider the labels” that anti-virus products provide
after analysing the piggybacked apps corresponding to
the rider code in each cluster.

We compute the Jaccard distance between the sets of
labels for the different clusters. The results summarized
in Table 3 reveals that the malware labels in a given
cluster are distant from those of any other clusters. This
suggests the dissected rider code contribute to malware
of specific families.

Table 3: Jaccard distance (dissimilarity) of malware label
sets between clusters built based on rider code. The first
two rows show the number of apps and anti-virus labels in
each cluster, respectively.
#. of Apps 10 236 27 7 37
#. of #labels 22 269 51 5 27
C; C, C; Cy CGCs
C, 0 0.96 0.89 0.92 0.88
Ce 0.96 0 0.91 0.99 0.96
Cs; 089 0091 0 0.94 0.94
Cy 092 099 094 0 0.95
Cs; 088 096 094 0.95 0

We also consider clustering the piggybacked apps based

directly on the malware labels. The EM algorithm pro-
duces six clusters. We then compute the Jaccard dis-
tance between each of those clusters and the 5 clusters
of apps previously constructed based on rider code. Ta-
ble 4 summarizes the results which reveals that each
cluster (built based on malware labels) is much closer
to a single cluster (built based on rider code) than to any
other clusters. The difference are not significantly high
for clusters C; and Cy4, two cases where the contained
app sets are small. Nevertheless, these experiment re-
sults overall illustrate that the malicious code ungrafted
from piggybacked apps indeed represent a signature of
a malware family.

6 This algorithm is able to decide itself an appropriate
number of groups to cluster.

"An anti-virus label (e.g., An-
droid. Trojan. DroidKungFu2.A) represents the sig-
nature identified in a malicious app.

Table 4: Jaccard distance between clusters of apps. MC;
is a cluster built based on anti-virus labels, while C; is a
cluster built based on rider code features.
Z of Apps 90 11 69 a7 4 53
#. of # labels 170 82 35 57 13 67
MC; MC, MC; MC,; MC; MCg
C, 0.90 0.90 0.84 0.87 0.97 0.91
Cy 043 0.70 0.88 0.79 0.96 0.85
Csz; 0091 0.90 0.93 0.89 0.93 0.24
C, 099 0.94 0.95 0.97 0.94 0.96
Cs; 0.96 0.93 0.73 0.94 0.55 0.95

5.2 Threats to Validity and Limitations

Our approach and the experiments presented in this
work present a few threats to validity. First of all, the
collected ground truth is constrained to specific types
of piggybacking. However, with our experiments in the
wild, we have demonstrated that the collected dataset
is diverse enough to allow identifying new piggybacked
apps. Second, we only focus on a specific kind of piggy-
backing where rider code is shipped with its own pack-
ages, i.e. the carrier and the rider are only linked by the
hook. Third, our dissection is at the granularity level
of packages.

6. RELATED WORK

The problem of piggybacked app detection is closely
related to that of Software clone detection in general,
and repackaged app detection in particular. Our work
is also relevant to the field of malware detection in the
wild.

6.1 Code clone & plagiarism detection

Traditional code clone detection approaches [22-26]
work at the level of a fragment of code (or graphs/trees),
the objective being to measure the similarity of two frag-
ments of code (or graphs/trees). Generally, this code
fragment is a method/function. Work however exists for
detecting higher-level clones (e.g., file-level clones) [27].
Cesare et al. have also recently proposed Clonewise [28],
an approach to detect package-level clones in software
packages. Even if the notion of clone fragment, be it
a method, file or package, could be very useful for app
similarity measurements, it is not sufficient in the con-
text of Android, since Android apps are composed of
multiple components. In other words, two apps with
similar code fragments are not necessarily similar. Note
that mostly this is the case, mainly because of the in-
tensive use of libraries in Android apps.

Closely related to our work is Clonewise which, to
the best of our knowledge, is the first to consider clone
detection as a classification problem. Our approach,
also in contrast with state-of-the-art, considers piggy-
backing detection as a classification problem to enable
a practical use in real-world settings.

6.2 Repackaged/Cloned app detection
Although the scope of repackaged app detection is be-

yond simple code, researchers have proposed to rely on
traditional code clone detection techniques to identify
similar apps [15,16,29,30]. With DNADroid [16] Crus-
sell et al. presented a method based on program depen-
dency graphs comparison. The authors later built on
their DNADroid approach to build AnDarwin [30] an
approach that uses multi-clustering to avoid the scal-
ability issues induced by pairwise comparisons. Droid-
MOSS [15] leverages fuzzy hashing on applications’ Op-
Codes to build a database of application fingerprints
that can then be searched through pairwise similarity
comparisons. Shahriar and Clincy [31] use frequencies
of occurrence of various OpCodes to cluster Android
malware into families. Finally, in [32], the authors use a
geometry characteristic of dependency graphs to mea-
sure the similarity between methods in two apps, to
then compute similarity score of two apps.

Instead of relying on code, other approaches build
upon the similarity of app “metadata”. For instance,
Zhauniarovich et al. proposed FSquaDRA [33] to com-
pute a measure of similarity on the apps’ resource files.
Similarly, ResDroid [34] uses application resources such
as GUI description files to extract features that can
then be clustered to detect similar apps. In their large-
scale study, Viennot, Garcia, and Nieh [35] also used as-
sets and resources to demonstrate the presence of large
quantities of either rebranded or cloned applications in
the official Google Play market.

Our work, although closely related to all aforemen-
tioned works, differs from them in three ways: First,
these approaches detect repackaged apps while we fo-
cus on piggybacked apps. Although a piggybacked app
is a repackaged app, the former poses a more serious
threat and its analysis can offer more insights into mal-
ware. Second, practically all listed approaches perform
similarity computations through pair-wise comparisons.
Unfortunately such a process is computationally ex-
pensive and has challenged scalability. Third, these
approaches depend on syntactic instruction sequences
(e.g., opcodes) or structural information (e.g., PDGs)
to characterize apps. These characteristics are however
well known to be easily faked (i.e., they do not resist
well to evasion techniques). Instead, in our work, we
rely on semantic features of apps to achieve better effi-
ciency in detection.

6.3 Piggybacked app search and Malware
variants detection

Cesare and Xiang [36] have proposed to use similar-
ity on Control Flow Graphs to detect variants of known
malware. Hu, Chiueh, and Shin [37] described SMIT,
a scalable approach relying on pruning function Call
Graphs of x86 malware to reduce the cost of computing
graph distances. SMIT leverages a Vantage Point Tree
but for large scale malware indexing and queries. Simi-
larly, BitShred [38] focuses on large-scale malware triage
analysis by using feature hashing techniques to dramat-
ically reduce the dimensions in the constructed malware

feature space. After reduction, pair-wise comparison is
still necessary to infer similar malware families.
PiggyApp [9] is the work that is most closely related
to ours. The authors are indeed focused on piggybacked
app detection. They improve over their previous work,
namely DroidMoss, which was dealing with repackaged
app detection. PiggyApp, similar to our approach, is
based on the assumption that a piece of code added
to an already existing app will be loosely coupled with
rest of the application’s code. Consequently, given an
app, they build its program dependency graph, and as-
signs weights to the edges in accordance to the degree
of relationship between the packages. Then using an
agglomerative algorithm to cluster the packages, they
select a primary module. To find piggybacked apps,
they perform comparison between primary modules of
apps. To escape the scalability problem with pair-wise
comparisons, they rely on the Vantage Point Tree data
structure to partition the metric space. Their approach
differs from ours since they require the presence of the
original to be able to detect its piggybacked apps.

6.4 ML-based malware detection

In a recent study with antivirus products we have
shown that malware is still widespread within Android
markets. This finding is inline with regular reports from
Anti-virus companies where they reveal that Android
has become the most targeted platform by malware
writers. Research on systematic detection of Android
malware is nevertheless still maturing. Machine learn-
ing techniques, by allowing sifting through large sets of
applications to detect malicious applications based on
measures of similarity of features, appear to be promis-
ing for large-scale malware detection [4,39-42].

Researchers use a diverse set of features to detect mal-
ware. In 2012, Sahs and Khan [4] built an Android mal-
ware detector with features based on a combination of
Android-specific permissions and a Control-Flow Graph
representation. Use of permissions and API calls as fea-
tures was proposed by Wu et al [43]. In 2013, Amos et
al [44] leveraged dynamic application profiling in their
malware detector. Demme et al [1] also used dynamic
application analysis to profile malware. Yerima et al
[2] built malware classifiers based on API calls, external
program execution and permissions. Canfora et al [3]
experimented feature sets based on SysCalls and per-
missions.

Unfortunately, through extensive evaluations, the com-
munity of ML-based malware detection has not yet shown
that current malware detectors for Android are actually
efficient in detecting malware in the wild. Chief among
the candidate reasons to this situation is the fact that
features are “elaborated” by research teams based on
the behaviour of specific malware families whose be-
havioural description has provided the intuitions for
constructing the classifiers. Our work will allow for bet-
ter classification of malware, e.g., through the imple-
mentation of multi-classifiers, taking into account the

different ways that exist for writing malware (and in-
directly the different structures and behaviours of mal-
ware).

7. CONCLUSION

We have proposed in this paper an approach for de-
tecting and dissecting piggybacked apps to localize and
collect malicious samples. We consider piggybacking
detection as a classification problem and investigated
a collected clean ground truth to infer the most reli-
able features to leverage for the machine learning exper-
iments. Through extensive evaluations, we have demon-
strated the performance of our approach in piggybacked
detection and malware dissection. Finally, we have shown
how collected malicious payload (i.e., rider code) infor-
mation can be used to detect malicious apps. Further
investigations revealed how rider code clusters correlate
with malware signatures by anti-virus products.

Acknowledgments

This work was supported by the Fonds National de la
Recherche (FNR), Luxembourg, under the project An-
droMap C13/15/5921289.

8. REFERENCES

[1] John Demme, Matthew Maycock, Jared Schmitz,
Adrian Tang, Adam Waksman, Simha
Sethumadhavan, and Salvatore Stolfo. On the
feasibility of online malware detection with
performance counters. In Proceedings of the 40th
Annual International Symposium on Computer
Architecture, ISCA 13, pages 559-570, New York,
NY, USA, 2013. ACM.

[2] S.Y. Yerima, S. Sezer, G. McWilliams, and
I. Muttik. A new android malware detection
approach using bayesian classification. In
Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th
International Conference on, pages 121-128, 2013.

[3] Gerardo Canfora, Francesco Mercaldo, and
Corrado Aaron Visaggio. A classifier of malicious
android applications. In Awvailability, Reliability
and Security (ARES), 2013 eight International
Conference on, 2013.

[4] Justin Sahs and Latifur Khan. A machine
learning approach to android malware detection.
In Intelligence and Security Informatics
Conference (EISIC), 2012 European, pages
141-147. IEEE, 2012.

[6] Symantec. Internet security threat report. Volume
20, April 2015.

[6] Yajin Zhou and Xuxian Jiang. Dissecting android
malware: Characterization and evolution. In
Security and Privacy (SP), 2012 IEEE
Symposium on, pages 95-109, May 2012.

[7] Li Li, Alexandre Bartel, Tegawendé F Bissyandé,
Jacques Klein, Yves Le Traon, Steven Arzt,

[12]

[16]

Siegfried Rasthofer, Eric Bodden, Damien Octeau,
and Patrick Mcdaniel. IccTA: Detecting
Inter-Component Privacy Leaks in Android Apps.
In Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015),
2015.

Daniel Arp, Michael Spreitzenbarth, Malte
Hiibner, Hugo Gascon, Konrad Rieck, and CERT
Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In
NDSS, 2014.

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian
Jiang, and Shihong Zou. Fast, scalable detection
of "piggybacked” mobile applications. In
Proceedings of the Third ACM Conference on
Data and Application Security and Privacy,
CODASPY ’13, pages 185-196, New York, NY,
USA, 2013. ACM.

Shared data repository, Aug. 2015.
https://github.com/serval-snt-uni-
lu/Piggybacking.

Li Li, Alexandre Bartel, Jacques Klein, and Yves
Le Traon. Automatically exploiting potential
component leaks in android applications. In
Proceedings of the 13th International Conference
on Trust, Security and Privacy in Computing and
Communications (TrustCom 2014). IEEE, 2014.
Li Li, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. Parameter Values of Android
APIs: A Preliminary Study on 100,000 Apps. In
Proceedings of the 23rd IEEE International
Conference on Software Analysis, Fvolution, and
Reengineering (SANER 2016), 2016.

Li Li, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. An investigation into the use of
common libraries in android apps. In The 23rd
IEEE International Conference on Software
Analysis, Fvolution, and Reengineering (SANER
2016), 2016.

Anthony Desnos. Android: Static analysis using
similarity distance. In System Science (HICSS),
2012 45th Hawaii International Conference on,
pages 5394-5403. IEEE, 2012.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng
Ning. Detecting repackaged smartphone
applications in third-party android marketplaces.
In Proceedings of the Second ACM Conference on
Data and Application Security and Privacy,
CODASPY ’12, pages 317-326, New York, NY,
USA, 2012. ACM.

Jonathan Crussell, Clint Gibler, and Hao Chen.
Attack of the clones: Detecting cloned
applications on android markets. In Sara Foresti,
Moti Yung, and Fabio Martinelli, editors,
Computer Security d/IS ESORICS 2012, volume
7459 of Lecture Notes in Computer Science, pages
37-54. Springer Berlin Heidelberg, 2012.

[17] System permissions. http://developer.android.
com/guide/topics/security /permissions.html.
Accessed: 2015-08-23.

[18] Duncan J. Watts and Steven H. Strogatz.
Collective dynamics of /‘small-world/’ networks.
Nature, 393(6684):440-442, 06 1998.

[19] Leo Breiman. Random forests. Machine Learning,
45(1):5-32, 2001.

[20] Trevor Hastie, Robert Tibshirani, and Jerome
Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York
Inc., New York, NY, USA, 2001.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):pp. 1-38,
1977.

[22] Chanchal Kumar Roy and James R. Cordy. A
survey on software clone detection research.
SCHOOL OF COMPUTING TR 2007-541,
QUEENGAZS UNIVERSITY, 115, 2007.

[23] B.S. Baker. On finding duplication and
near-duplication in large software systems. In
Reverse Engineering, 1995., Proceedings of 2nd
Working Conference on, pages 86-95, Jul 1995.

[24] 1.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna,
and L. Bier. Clone detection using abstract
syntax trees. In Software Maintenance, 1998.
Proceedings., International Conference on, pages
368-377, Nov 1998.

[25] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su,
and Stephane Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference
on Software Engineering, ICSE 07, pages 96-105,
Washington, DC, USA, 2007. IEEE Computer
Society.

[26] Chao Liu, Chen Chen, Jiawei Han, and Philip S.
Yu. Gplag: Detection of software plagiarism by
program dependence graph analysis. In In the
Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (KDDd/iZ/Oﬁ, pages 872-881.
ACM Press, 2006.

[27] H.A. Basit and S. Jarzabek. A data mining
approach for detecting higher-level clones in
software. Software Engineering, IEEE
Transactions on, 35(4):497-514, July 2009.

[28] Silvio Cesare, Yang Xiang, and Jun Zhang.
Clonewise éAS detecting package-level clones
using machine learning. In Tanveer Zia, Albert
Zomaya, Vijay Varadharajan, and Morley Mao,
editors, Security and Privacy in Communication
Networks, volume 127 of Lecture Notes of the
Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering,
pages 197-215. Springer International Publishing,

[29]

[31]

[32]

[33]

[34]

[37]

2013.

Luke Deshotels, Vivek Notani, and Arun
Lakhotia. Droidlegacy: Automated familial
classification of android malware. In Proceedings
of ACM SIGPLAN on Program Protection and
Reverse Engineering Workshop 2014, PPREW’14,
pages 3:1-3:12, New York, NY, USA, 2014. ACM.
J. Crussell, C. Gibler, and H. Chen. Andarwin:
Scalable detection of android application clones
based on semantics. Mobile Computing, IEEE
Transactions on, PP(99):1-1, 2014.

H. Shahriar and V. Clincy. Detection of
repackaged android malware. In Internet
Technology and Secured Transactions (ICITST),
2014 9th International Conference for, pages
349-354, Dec 2014.

Kai Chen, Peng Liu, and Yingjun Zhang.
Achieving accuracy and scalability simultaneously
in detecting application clones on android
markets. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014,
pages 175-186, New York, NY, USA, 2014. ACM.
Yury Zhauniarovich, Olga Gadyatskaya, Bruno
Crispo, Francesco La Spina, and Ermanno Moser.
Fsquadra: Fast detection of repackaged
applications. In Vijay Atluri and GAijnther
Pernul, editors, Data and Applications Security
and Privacy XXVIII volume 8566 of Lecture
Notes in Computer Science, pages 130-145.
Springer Berlin Heidelberg, 2014.

Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei
Zhu, and Lei Zhang. Towards a scalable
resource-driven approach for detecting repackaged
android applications. In Proceedings of the 30th
Annual Computer Security Applications
Conference, ACSAC ’14, pages 56—65, New York,
NY, USA, 2014. ACM.

Nicolas Viennot, Edward Garcia, and Jason Nieh.
A measurement study of google play.
SIGMETRICS Perform. Eval. Rev.,
42(1):221-233, June 2014.

Silvio Cesare and Yang Xiang. Classification of
malware using structured control flow. In
Proceedings of the Fighth Australasian Symposium
on Parallel and Distributed Computing - Volume
107, AusPDC 10, pages 61-70, Darlinghurst,
Australia, Australia, 2010. Australian Computer
Society, Inc.

Xin Hu, Tzi-cker Chiueh, and Kang G. Shin.
Large-scale malware indexing using function-call
graphs. In Proceedings of the 16th ACM
Conference on Computer and Communications
Security, CCS 09, pages 611-620, New York, NY,
USA, 2009. ACM.

Jiyong Jang, David Brumley, and Shobha
Venkataraman. Bitshred: Feature hashing
malware for scalable triage and semantic analysis.

http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

[41]

In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS
'11, pages 309-320, New York, NY, USA, 2011.
ACM.

J. Zico Kolter and Marcus A. Maloof. Learning to
detect and classify malicious executables in the
wild. J. Mach. Learn. Res., 7:2721-2744,
December 2006.

Boyun Zhang, Jianping Yin, Jingbo Hao,
Dingxing Zhang, and Shulin Wang. Malicious
codes detection based on ensemble learning. In
Proceedings of the 4th international conference on
Autonomic and Trusted Computing, ATC 07,
pages 468-477, Berlin, Heidelberg, 2007.
Springer-Verlag.

R. Perdisci, A. Lanzi, and Wenke Lee. Mcboost:
Boosting scalability in malware collection and
analysis using statistical classification of

executables. In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pages

[43]

301-310, 2008.

Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel,
Tegawendé F Bissyandé, and Jacques Klein.
Potential Component Leaks in Android Apps: An
Investigation into a new Feature Set for Malware
Detection. In The 2015 IEEE International
Conference on Software Quality, Reliability €
Security (QRS), 2015.

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei,
Hahn-Ming Lee, and Kuo-Ping Wu. Droidmat:
Android malware detection through manifest and
api calls tracing. In Information Security (Asia
JCIS), 2012 Seventh Asia Joint Conference on,
pages 62-69, 2012.

Brandon Amos, Hamilton Turner, and Jules
White. Applying machine learning classifiers to
dynamic android malware detection at scale. In
Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International,
pages 1666-1671, 2013.

