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Abstract
We study the nonequilibriumproperties of an electronic circuit composed of a double quantumdot
(DQD) channel capacitively coupled to a quantumpoint contact (QPC)within the framework of
stochastic thermodynamics.We show that the transition rates describing the dynamics satisfy a
nontrivial local detailed balance and that the statistics of energy and particle currents across both
channels obeys a fluctuation theorem.We analyze two regimeswhere the device operates as a
thermodynamicmachine and study its output power and efficiency fluctuations.We show that the
electrons tunneling through theQPCwithout interacting with theDQDhave a strong effect on the
device efficiency.

1. Introduction

Semiconductingmultichannel circuitsmade of quantumdots and quantumpoint contacts (QPCs) are
nowadays commonly devised and studied experimentally [1–10]. The progress in the control of electronic
temperatures at themeso-scale [7, 8]has for instance driven the experimental [11, 12] and theoretical [13–22]
study of their thermoelectric properties. In the isothermal case, these circuits have also been used to probe the
fluctuating properties of heat andmatter transfers using counting statistics experiments [5, 9, 10, 23]. A circuit of
particular interest in that regard is the double quantumdot (DQD) channel probed by aQPCdetector. It has
been used to perform the bidirectional counting of single electrons in theDQDchannel [23, 24] and to provide
thefirst experimental verification of the current fluctuation theorem (FT) inmesoscopic physics [25]. Several
studies have theoretically analyzed the backaction induced by theQPCdetector on themean current of theDQD
channel due toCoulomb drag [26–28], as well as on theDQDcurrent statistics [29–33]. TheQPCdetector was
also shown tomodify the thermodynamic affinity of theDQDchannel while preserving the FT symmetry in the
DQDcircuit [30]. In this latter work, the tunneling events in theQPCwere treated non perturbatively to account
for possible high transparency and as a result, the combinedDQD–QPC statistics was not accessible within this
approach.

In this paper, we study the nonequilibrium thermodynamics of theDQD–QPCcircuit using stochastic
thermodynamics [34–36].We consider the general case where theQPC andDQD reservoirsmay be at a different
temperatures and chemical potentials. The counting statistics of the energy andmatter currents across both
channels is calculated using themodified quantummaster equation formalism [37] assumingweak coupling
between theDQDand its reservoirs as well as between the reservoirs composing theQPC. Even though in the
isothermal case this last assumptionmay seemmore restrictive compared to the nonperturbative approach of
[30, 38], it enables us to analytically calculate the joint distribution of the energy andmatter currents across both
channels, and to identify the entropyflows associated to the exchange processes at hand. As a result, we are able
to derive a bivariate FT for the statistics of the energy andmatter currents in both channels.

An interesting feature of this setup is that themicroscopic processes associated to transitions in theDQD
involvemore than one reservoir at a time. In particular, transitions in theDQD induced by theQPChave
corresponding transition rates proportional to the product of Fermi functions in both reservoirs of theQPC.
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Themicroscopic processes underlying such transitions involve the tunneling of an electron between theQPC
reservoirs which exchanges a fraction of its energywith theDQD.As a result, the transition rates cannot be
written anymore as a sumwhere each termonly involves one single reservoir. Despite this non additivity of the
rates, the local detailed balance (LDB) [37, 39] is shown to hold, and is explicitly written in terms of the fluxes of
entropy from the reservoirs involved in the transitions.

Furthermore, since some electrons tunnel between theQPC reservoirs without exchanging energy with the
DQD, they do not induce transitions in theDQDbut need to be taken into account in the counting statistics.We
show that their statistics is well described by themodified quantummaster equation and corresponds to the
Levitov–Lesovik formula [40–44] to second order perturbation theory in the coupling between theQPC
reservoirs. Though such processes do not reveal themselves in themaster equation for theDQDpopulations,
they are shown to strongly impact the circuit performance.

We proceed by analyzing two different regimeswhere the circuit operates as a thermoelectric and as a
current converter, respectively.We identify the optimal working conditions to reach large average output power
and highmacroscopic efficiency and study the statistical properties of the output power as well as of the
efficiency, as recently proposed in [45–47].

The paper is organized as follows: themodel is introduced in section 2. In section 3, we derive themodified
quantummaster equation to calculate the counting statistics of energy andmatter currents, and analyze the
microscopic processes contributing to the transition rates. In section 4, using the LDBproperty of the rates, we
identify the entropy flows associated to eachmicroscopic processes in the circuit, and the steady state FT is
derived. The expressions for the average energy andmatter currents aswell as the average irreversible entropy
production are also provided. The thermodynamic analysis of the circuit operating as a thermoelectric and as a
current converter is done in section 5. Conclusions are drawn in section 6.

2.Hamiltonian

TheDQDchannel ismade of two quantumdotsA andB, each connected to its own reservoir, labeled by j= 1
and 2 respectively. TheQPC is the junction between reservoirs j= 3 and 4. The circuit is drawn infigure 1.

TheHamiltonian of the circuit is given by

H H H V , 1
j

jDQD
1

4

( )å= + +
=

where HDQD denotes theDQDHamiltonian,

H c c 2j
k

jk jk jk ( )†å=

is the reservoir jHamiltonian expressed in terms of the creation (anihilation) operators cjk
† (cjk) of the reservoir

single-particle states with energy ,jk andV is the interactionHamiltonian between theDQDand the reservoirs.
TheDQDHamiltonian is given by

H c c c c T c c c c E s s , 3A A A B B B A B B A
s

sDQD ( ) ∣ ∣ ( )† † † †  å= + + + = ñá

expressed in terms of the single-dot annihilation (creation) operators in eachQD, cA B (cA B
† ), of single dot states

with energies ,A B and of the tunneling amplitudeT between the two dots. ThisHamiltonian can alternatively
be expressed in terms of themany-body eigenstates s∣ ñof HDQD with energiesEs. In the following, we consider a
regime inwhich the sum in the last termof (3) can be restricted to the empty eigenstate 0∣ ñand the single-

Figure 1.Double channel circuitmade of aDQDand aQPC. Electrons can be exchanged between reservoirs 1 and 2 across theDQD,
and between reservoirs 3 and 4 of theQPC. There is no electron transfer between the two channels, but the electrons tunneling
through theQPC are affected by the charge state of the quantumdots via Coulomb interaction (wavy lines).
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occupied eigenstates ∣+ñand ∣-ñ (see the appendix). This assumption is often justified at low temperature since
multiple charging in one of the quantumdots requires large amounts of energy.

The interactionHamiltonian can be split into

V V V V . 4
j

j
1

2

34 34
DQD ( )å= + +

=

Thefirst term is the sumof the tunnelingHamiltonians between theDQDand the reservoirs

V t c c c c T s c c s0 0 5j
d A B k

jd
k

d jk jk d
s k

js
k

jk jk
, ,

( ) ( )∣ ∣ ∣ ∣ ( )† † †å å å å= + = ñá + ñá
= =+ -

with the tunneling amplitudes tjd
k andTjs

k in theDQD single andmany-body basis, respectively, and for j= 1 and

2. Each dot is only connected to its own reservoirs, i.e. t t 0.B
k

A
k

1 2= = This part of theHamiltonian is responsible
for the charging and discharging of theDQD through the exchange of electronswith reservoir j= 1 and 2.

TheQPC reservoirs 3 and 4 are directly coupled through the tunnelingHamiltonian

V T c c c c , 6
kk

kk
k k k k34 3 4 4 3( ) ( )† †å= +

¢

¢
¢ ¢

whereTkk¢ denote the bare tunneling amplitudes between theQPC reservoirs, i.e. independently of theDQD
state.

Finally, electrons tunneling through theQPC interact with the electrons in theDQDdue toCoulomb
interactions. This ismodeled by the capacitive coupling

V t c c t c c c c c c , 7
kk

A
kk

A A B
kk

B B k k k k34
DQD

3 4 4 3( )( ) ( )† † † †å= + +
¢

¢ ¢
¢ ¢

T s s c c c c 8
s s kk

ss
kk

k k k k
,

3 4 4 3( )( )∣ ∣ ( )† †åå= ñá ¢ +
¢ ¢

¢
¢

¢ ¢

in terms of the capacitive couplings tA B
kk¢ and the tunneling amplitudesT .ss

kk
¢
¢ Expression (8) shows that some

electrons in theQPC can induce transitions in theDQD, exchanging energywith theDQDwhile tunneling
between reservoirs 3 and 4.

TheHamiltonian termdescribing the bare tunneling in theQPC,V ,34 is included in the interactionVwhich
will be subsequently treated to second order in perturbation theory. This is in contrast to our previous work [30]
where the bare tunneling in theQPCwas treated non-perturbatively. The present approach has the advantage to
treat all the energy andmatter transfers on the same footing, allowing us to develop a consistent thermodynamic
description of the full circuit and to evaluate the joint full counting statistics (FCS) of the energy andmatter
currents in bothDQDandQPC channels.

3. Counting statistics

The FCS of thefluxes inweakly coupled open quantum systems can be calculated using themodified quantum
master equation formalism [37]. The statistical properties of the energy andmatter currents flowing out of the
reservoirs and integrated over a time t, EjD and N ,jD are determined by the generating function (GF)

G t, , e . 9j j
E N

t
j j j j j( ) ( ) ( )x l = å x l- D + D

The probability distribution of the fluctuating energy andmatter fluxes J E tE
j

jº -D and J N tN
j

jº -D is
then obtained by applying an inverse Fourier transform to theGF (9)

P J J t t t G t, ,
d

2

d

2
e i , i , . 10E

j
N
j

j

j

j

j E N
j j

0

2
i

j j j j j1

4( ) ( )( ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ò ò 

x

p
l
p

x l= - -å
p

x l

-¥

¥
D + D=

In the following, we evaluate theGF (9) by performing the FCS of the energy and particle number operators
within each reservoir, respectively given by (2) and N c c .j k jk jk

†åº Following [37], we introduce themodified
Hamiltonian

H H, e e , 11j j
H N H Ni i

j j j j j j j j j j1

4

1

4( ) ( ) ( ) ( )x l º å åx l x l+ - += =

where the counting parameters jx and jl for j 1 ,..., 4= keep track of, respectively, the energy andmatter
fluctuations in the reservoirs. TheDQDand reservoirHamiltonians, HDQD andHj respectively, remain
unchanged after this transformation.However, the interactionHamiltonians transform according to
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V T s c, e 0 h.c. , 12j j j
s k

js
k

jk
,

i j k j( )( ) ( ) ∣ ∣ ( )å åx l = ñá +x l

=+ -

- +

V T c c, e e h.c. , 13j j
kk

kk i
k k34

i
3 4

k k3 3 4 4( )( ) ( ) ( ) ( )† åx l = +x l x l

¢

¢ + - +
¢¢

and

V T s s c c, e e h.c. . 14j j
ss kk

ss
kk

k k34
DQD i i

3 4
k k3 3 4 4( )( )( ) ( ) ( )∣ ∣ ( )† ååx l = ñá ¢ +x l x l

¢ ¢
¢
¢ + - +

¢¢

With these definitions, theGF can be expressed as

G t t, , Tr i , i , , 15j j j j{ }( ) ( ) ( )x l r x l=

where themodified densitymatrix t, ,j j( )r x l satisfies themodified quantummaster equation

t H t t Hi , , 2, 2 , , , , 2, 2 . 16t j j j j j j j j j j( ) ( ) ( ) ( ) ( ) ( )r x l x l r x l r x l x l¶ = - - -

The initial densitymatrix 0( )r of the total system is assumed of the factorized form 0 0 ,
j jS( ) ( ) r r r= Ä

where 0S ( )r is an arbitraryDQDdensity operator and H Nexpj j j j j j{ ( )}r b m f= - - - denotes the grand-

canonical density operator in the reservoir jwith inverse temperature k Tj jB
1( )b = - and chemical potential jm

with j 1 ,..., 4.= The corresponding thermodynamic grand-potential is denoted

H Nln Tr exp .j j j j j j
1 { }{ ( )}⎡⎣ ⎤⎦f b b m= - - -- This factorization assumption has no implication because only

steady state properties will be considered in the following.
In theweak coupling limit to the reservoirs, where the interaction parametersT ,js

k Tkk¢ andTss
kk
¢
¢ are assumed

small enough, the dynamical equation (16) leads to a closedmodified quantummaster equation for the reduced
densitymatrix of the system [48–52]

t t, , Tr , , , 17S j j j jR{ }( ) ( ) ( )r x l r x l=

where TrR{ · }denotes a trace over the reservoirsHilbert space. t0, 0,S ( )r is theDQD reduced densitymatrix.
A common assumption in the present context is that theDQD free oscillations, characterized by the

frequencies E E ,ss s sw = -¢ ¢ are fast compared to the relaxation time scale Rt induced by the reservoirs on the
DQD.One can then apply the rotatingwave approximation (RWA) [53–57]which consists in an average of the
system free oscillations over a time scale tD which is intermediate between

t , 18C R ( )t tD 

where Ct denotes the short correlation time in the reservoirs. As a result, the effective dynamics of theDQD
populations, g t s t s, , i , i , ,s j j S j j( ) ∣ ( )∣x l r x l= á ñ and the coherences, s t si , i ,S j j∣ ( )∣r x lá ¢ñ for s s ,¹ ¢ decouple.

Under the aforementioned hypotheses, the diagonal elements of theDQD reduced densitymatrix satisfy a
Markovianmaster equation of the form

t tg W g, , , , , , 19t j j j j j j( ) ( ) ( )· ( )x l x l x l¶ =

wherewe introduced the vector notation

t

g t

g t

g t

g , ,

, ,

, ,

, ,

, 20j j

j j

j j

j j

0

( )
( )
( )
( )

( )

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
x l

x l

x l

x l

= +

-

with thematrix product denoted by ‘·’, andwhere the counting parameters dependent ratematrix W ,j j( )x l is
expressed here below in terms of the transition rates betweenDQD states.

The reservoirs j= 1 and 2 induce random charging and discharging of theDQDdue to the tunneling
interaction (5). The correspondingmicroscopic processes are depicted onfigures 2(a) and (b). During such
tunneling events, the particle number in reservoir j= 1 or 2 changes by an amount N 1jd = ( N 1jd = - )when it
charges (discharges) theDQD.On the other hand, the energy change in the reservoir can take the values
E ,j s0d w=  depending onwhichmany-body state s ,∣ ñ with s=+ or−, is involved in the transition. The
charging and discharging rates induced by reservoirs j= 1 and 2 are given by

a f b fand 1 21js js j s js js j s0 0( )( ) ( ) ( )w w= G = G -

for s=+ or−, in terms of the Fermi distribution of single particle states in the reservoir j,
f x x1 exp ,j j j

1( ) ( ( ))b m= + - - and of the rate constants
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T T
2 2

. 22js
k

jk s js
k

j s js s2 0
2

2 0 0
2( ) ( ) ( ) ( )




åp
d w

p
r w wG = - =

We took the continuum approximation for the electron density of states in the reservoirs, denoting the energy-
resolved tunneling amplitudes byT ,js ( ) and the density of electron states by .j ( )r

On the other hand, theQPC also induces transitions between theDQD states. Though there is no exchange
of electrons between theQPC and theDQD, electrons tunneling between the reservoirs j= 3 and 4may
exchange energy with theDQD (mainly through photon exchange [6]), thus driving transitions between the
single-charged states ∣+ñand .∣-ñ These processes are illustrated infigures 2(c) and (d). The corresponding
transition rates are given by

c f f

d f f

1

1 23

jj jj j j

jj jj j j

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

   

   

w

w

= G - -

= G - -

¢ ¢ ¢ +-

¢ ¢ ¢ +-

for jj 34¢ = and 43where the energy-dependent rate constants jj ( )G ¢ are given by

T
4

, 24
kk

kk
k k34 2

2
3 4( ) ( ) ( ) ( )


   åp

d d wG º - - -
¢

-+
¢

+- ¢

T
4

, , 25
2

2
3 4( ) ( ) ( ) ( )


   p

w r r w= - --+ +- +-

T
4

, 26
kk

kk
k k43 2

2
3 4( ) ( ) ( ) ( )


   åp

d w dG º - - -
¢

+-
¢

+- ¢

T
4

, 27
2

2
3 4( ) ( ) ( ) ( )


   p

w r w r= - -+- +- +-

in terms of the energy resolved tunneling amplitudesT , .ss ( )  ¢¢ Interestingly, the transition rates (23) are
written as a product of Fermi functions in bothQPC reservoirs and as such, cannot bewritten as a sumof
individual reservoir contributions. These transition terms are responsible for Coulomb drag effects between the
DQDand theQPC. By providing energy to the electrons tunneling through theQPC, theDQDmay induce
electron transfers against the applied bias and vice versa. The current converter considered in section 5.2 is
precisely driven by such processes.

The tunneling events between theDQDand the reservoirs j= 1 and 2 contribute to the ratematrix through
thematrix elements

aW , e , 28j j
s

j
js

0
1,2

j s j0( ) ( ) ( )⎡⎣ ⎤⎦ åx l º x w l

=

+

bW , e , 29j j
s

j
js

0
1,2

j s j0( ) ( ) ( )⎡⎣ ⎤⎦ åx l º x w l

=

- +

Figure 2. Illustration of the severalmicroscopic processes inducing transitions in theDQD. Each sub-figure illustrates pairs of
processes which are time-reversed of each other. The vectors Ej{ }d and Nj{ }d denote, respectively, the energy and particle number
changes in the reservoirs associated to eachmicroscopic processes.
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where the counting parameters jx and jl keep track of the netfluxes of energy s0w and particles±1flowing out
of reservoir j at each such transition.

The contribution from theQPC transfers can be separated into two categories, depending onwhether or not
the electrons tunneling between reservoirs 3 and 4 exchange energy with theDQD. In the first case, tunneling
events in theQPC contribute to the ratematrix through the components

cW , d e , 30j j
jj

jj j j j j( ) ( )( ) ( )( )⎡⎣ ⎤⎦    òåx l = x x w l l
+- ¢

¢
- - + -¢ +- ¢

W , d d e , 31j j
jj

jj j j j j( ) ( )( ) ( )( )⎡⎣ ⎤⎦    òåx l = x x w l l
-+ ¢

¢
- + - - +¢ +- ¢

where the sum in these last two equalities runs over jj 34¢ = and 43. Each transition involves a net transfer of
one electron from reservoir j to reservoir j′ of theQPCor vice versa. If the energy of the outgoing electron
coming from j is ò, it enters reservoir j′with energy  w +- depending onwhether it emits or absorbs energy
from theDQD.

Finally, the contributions from the electrons tunneling in theQPCwithout exchanging energywith the
DQDappear along the diagonal elements of the ratematrix

GW W, 0,0 , . 32j j
ss

s s
s s s j j( ) ( )[ ( )] ( )⎡⎣ ⎤⎦ åx l x l= - +

¢¹
¢

Thefirst term in the right-hand side of this equation ensures the conservation of the probability for the
occupation probabilities in theDQDwhen the counting parameters are set to zerowhile the second one accounts
for the tunneling of electrons through theQPCwithout interactionwith theDQD (see figure 3). As amatter of
fact, G ,s j j( )x l is theGF of the energy and particle transfer in theQPCgiven that theDQD is in state s ,∣ ñ i.e.

G f f

f f

, d 1 1 e e

1 1 e e . 33

s j j s 3 4

4 3

3 4 3 4

3 4 3 4

( )
( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥

   

 





òx l g= - -

+ - -

l l x x

l l x x

- -

- - - -

It turns out that this is the Levitov–Lesovik formula [40–44] to second order in the tunneling amplitudeT ,s ( ) or
equivalently, tofirst order in

V2 , 34s ss
2

3 4( ) ( ) ( ) ( ) ( )   g p r rº

which results from the fact that we treated the interaction (8)perturbatively. In contrast tomany previouswork
on transfer through quantumdots (such as [58]), where eachmicroscopic process is associated to an actual
transition in theQD, the present circuit provides a nice example of an open quantum system inwhich the
microscopic processes do not necessarily affect the system (DQD) populationswhile contributing to the energy
and particle flows out of the reservoirs. Themodified quantummaster equation formalism is thus essential in
order to keep track of these processes.

Figure 3. Illustration of the tunneling processes in theQPC that do note induce transitions in theDQD.
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The Fourier transformof the diagonalmatrix elements (20)

E N t

t

p

g

, ,
d

2

d

2
e

i , i , 35

j j
j

j

j
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4( )
( )

( )

( )

⎡
⎣
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⎤
⎦
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⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ò ò 

x

p
l
p

x l

D D =

´ - -

å
p

x l

-¥

¥
- D + D=

gives the joint probability distribution E N t p E N tp , , , ,j j s s j j( ) ( )⎡⎣ ⎤⎦D D = D D of observing the system in state s∣ ñ
at time t and the changes in energies EjD and particle numbers NjD in each reservoir.

By applying a Fourier transform to themodified rate equation (19), we get amaster equation describing the
dynamics of theDQDaswell as the exchange processes with the reservoirs

E N t E E N

E E N N t

p W

p

, , d ,

, , , 36

t j j
j

j
N

j j

j j j j

j

( ) ( )
( )

ˆ

· ( )

⎡⎣ ⎤⎦ò åd d d

d d

¶ D D =

D - D -

d

where the ratematrix E NW ,j j
ˆ ( )d d is obtained as the Fourier transformof themodified ratematrix

E NW W,
d

2

d

2
e i , i . 37j j

j

j

j

j E N
j j

0

2
i

j j j j j( ) ( )( )ˆ ( )
⎡
⎣
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⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
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x

p
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x l= - -å
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¥
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The Fourier transformof themodified ratematrix is easily taken by using the relations

x xd

2
e and

d

2
e 38x x

0

2
i

,0
i ( ) ( )ò òp

d
p

d a= =
p

a
a

a

-¥

¥

in terms of theKronecker delta symbol ,0da and theDirac delta distribution .( )d a Accordingly, the ratematrix
E NW ,j j

ˆ ( )d d is obtained bymaking the following substitutions

Ee and e 39j j N , 1j j j
j( ) ( )d d a d x a l

d
  

in themodified ratematrix elements (28)–(32).
By integrating equation (36) over the energy and particle fluctuations EjD and N ,jD or equivalently by

setting the counting parameters to zero in themodified rate equation (19), we obtain a stochasticmaster
equation for the occupation probabilities in theDQD

t tp W p 40˙ ( ) · ( ) ( )=

with ratematrix given by

a a a a b b b b

a a b b d d c c

a a d d c c b b

W , 41
1 2 1 2 1 2 1 2

1 2 1 2 34 43 34 43

1 2 34 43 34 43 1 2

( )
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟=

- - - - + +
+ - - - - +
+ + - - - -

+ + - - + + - -

+ + + +

- - - -

andwhere

c cd and d d d . 42jj jj jj jj( ) ( ) ( )   ò ò= =¢ ¢ ¢ ¢

Now, by formally solving the rate equation (19), theGF of the energy andmatter currents can be expressed as

G t 1 p, , e , 43j j
tW ,

0
j j( ) ( )· · ( )x l = x l

where 1denotes the line vector 1, 1, 1( )while p0 is the initial occupation probability of theDQD states. All the
moments of the currents can be obtained by takingmultiple derivatives of theGFwith respect to the counting
parameters.

At steady state, the statistics of the currents is captured by the cumulant generating function (CGF)

t
G t, lim

1
ln , , . 44j j

t
j j( ) ( ) ( ) x l x lº -

¥

Using expression (43) for theGF, one sees that the CGF is obtained as the dominant eigenvalue of the ratematrix
W , ,j j( )x l independently of the initial condition on the system p .0
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4.Nonequilibrium thermodynamics

4.1. LDB andFT
The charging and discharging rates (21) depicted onfigures 2(a) and (b) satisfy the LDB condition [39]

a

b
ln 45

js

js
j s j0( ) ( )b w m= - -

in terms of the inverse temperature jb and chemical potential jm of the reservoir involved in the transition. This
property is a direct consequence of theKubo–Martin–Schwinger conditionwhich is satisfied by the equilibrium
correlation functions of the reservoirs [37].

Regarding theQPC induced transitions on theDQD, it has previously been noted [30, 38] that the
corresponding total rates do not satisfy a LDB, unless theQPC is assumed to be at equilibrium ( 3 4b b= and

3 4m m= ). However, we showed in the previous section that in theweak coupling limit, one can identify the pairs
ofmicroscopic processes related by time reversal (see figures 2(c) and (d)), andwrite the total rates as a sumof
contributions from such elementary processes, see equations (30) and (31) together with (23). Each of these
contributions satisfies the LDB condition

c
ln

d
, 46

jj

jj
j j j j( ) ( )( )

( )
( )




 b m b w m= - - + - -¢

¢
¢ +- ¢

where cjj ( )¢ is the rate at which electronswith energy ò tunnel from reservoir j to j′ in theQPCwhile releasing an
amount of energy w+- to theDQD, and djj ( )¢ is the rate of the associated time-reversed process.

We note that the right-hand sides of expressions (45) and (46) is nothing but the entropyflowing from the
reservoirs during these processes

S E N Q Q E N, , with 47ss j j
j

j j j j j j( ) ( )åd d b d m dD = - = - +¢

andwhere the components of the vectors

E E E E E N N N N N, , , and , , , 48j j1 2 3 4 1 2 3 4{ } { } { } { } ( )d d d d d d d d d d= =

denote the changes in energy and particle number in the reservoirs associated to eachmicroscopic transition, as
given in figure 2. Relations (45) and (46) can then both be rewritten in terms of the ratematrix (37) as

E N

E N
S E N

W

W
ln

,

,
, , 49

j j
ss

j j
s s

ss j j

( )
( ) ( )
ˆ

ˆ
( )

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

d d

d d
d d

- -
= D¢

¢

¢

where the transition rate E NW ,j j
s s

ˆ ( )⎡⎣ ⎤⎦d d- -
¢
corresponds to the time-reversed process of the one associated to

E NW , .j j
ss

ˆ ( )⎡⎣ ⎤⎦d d
¢
Relation (49) implies that themodified transition rates (28)–(32) satisfy

W W, , . 50j j
ss

j j j j j
s s

( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦x l b x b m l= - - -
¢ ¢

These relations also hold for the diagonal elements of the ratematrix, given in equation (32),
G G, , .s j j s j j j j j( ) ( )x l b x b m l= - - -

They ensure the invariance of the characteristic polynomial of thematrix W ,j j( )x l under the
transformations

and . 51j j j j j j j ( )x b x l b m l -  - -

Since theCGF is obtained as the largest eigenvalue of themodified ratematrix W , ,j j( )x l this invariance
property leads to the symmetry

, , . 52j j j j j j j( ) ( ) ( ) x l b x b m l= - - -

We further note that the CGF only depends on the differences

, , and , . 531 4 2 4 3 4 1 2 3 4 ( )x x x x x x l l l l- - - - -

This can be directly shownby verifying that the characteristic polynomial of the ratematrix W ,j j( )x l only
depends on the differences (53). It is a direct consequence of the conservation of the total energy and particle
number. In addition, the particle numbers in each sub-channel is also conserved since electrons cannot tunnel
between theDQDand theQPC.Accordingly, we introduce theCGF

8

New J. Phys. 17 (2015) 095005 GBCuetara andMEsposito



, , , . 54l j j1 3
04 2 4

( ) ( )˜ ( ) x l l x lº
x l l= = =

where l 1, 2, 3.= TheCGF (54) satisfies the steady state current FT symmetry [59, 60]

A A A, , , , 55l E
l

l N N1 3
1

1
3

3( ) ( )˜ ˜ ( ) x l l x l l= - - -

in terms of the thermodynamic forces applied to the system:

A lfor 1, 2, 3, 56E
l

l4 ( )b bº - =

A Aand . 57N N
1

1 1 2 2
3

3 3 4 4 ( )b m b m b m b mº - º -

More explicitly, this FT can be expressed in terms of the joint probability distribution

P J J J t J J J P J J t, , , d d d , , 58E
l

N N E N N E
j

N
j1 3 4 2 4( ) ( )˜ ( )ò ò ò=

as

t

P J J J t

P J J J t
A J A J A Jlim

1
ln

, , ,

, , ,
, 59

t

E
l

N N

E
l

N N l
E
l

E
l

N N N N

1 3

1 3
1

3
1 1 3 3( )

( )
˜

˜
( )å

- - -
= + +

¥ =

whichmakes explicit reference to the steady-state entropy production (right-hand side) generated by thefluxes
against the thermodynamic affinities (56), (57).

In the isothermal setups, one obtains a bivariate FT for the joint distribution of particle currents through
each channel

t

P J J t

P J J t
J Jlim

1
ln

, ,

, ,
, 60

t

N N

N N

N N

1 3

1 3 1 2
1

3 4
3( )

( ) ( ) ( ) ( )b m m b m m
- -

= - + -
¥

thus extending previous result obtained in [30], where the statistics of the current in theQPCwas not assessed.

4.2.Mean currents and entropy production
Using (44) together with (43), we can formally write the steady-statemean energy and particle currents out of
reservoir j as

J
E

t
W Plim 1 0, 0 61E

j

t

j

j
· ( ) · ( )º -

D
= ¶x

¥

J
N

t
W Plim 1 0, 0 , 62N

j

t

j

j· ( ) · ( )º -
D

= ¶l
¥

where P plim et
t W

0·= ¥ denotes the vector of steady-state occupation probabilities P Ps s[ ]= on theDQD.
The steady-state probabilities are directly obtained by solving the equation W P 0.· =

Using the ratematrix of the presentmodel W given by (41), we find for outgoing currents of particles and
energy from reservoirs j= 1 and 2 that

J a P b P J a P b P, . 63N
j

s
js js s E

j

s
s js js s

,
0

,
0 0( ) ( ) ( )å å w= - = -

=+ - =+ -

The particle currents for reservoirs 3 and 4 can be expressed as the sumof two contributions

J J d id , for , , 64N N
3 ( ) ( ) ò n= =

n n

in terms of the energy resolved currents

J f f , 65N
i

s
s 3 4( )( ) ( ) ( ) ( ) ( )   åg= -

J c c P d d P . 66N
d

34 43 43 34( ) ( )( ) ( ) ( ) ( ) ( ) ( )    = - + -- +

The current JN iá ñ is conveyed by electronswhich tunnel between theQPC reservoirs without affecting theDQD
while JN dá ñ is the current of electrons that induce transitions between states ∣ ∣+ ñ -ñ in theDQD through
the exchange of an amount w +- of energy with theDQD.The energy currents out of the reservoirs 3 and 4 are
in turn given by

J J J c P d Pd 67E N
d

N
i

3
43 43( ) ( )( ) ( ) ( )  ò w= + + -+- - +
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J J J c P d Pd . 68E N
d

N
i

4
34 34( ) ( )( ) ( ) ( )  ò w= - + + -+- - +

From these expressions, one readily verifies the conservation laws

J J J J J J J0, and . 69
j

E
j

N N N N d N i N
1

4
1 2 3 3 3 4 ( )å = = - = + = -

=

The entropy flow from the environment reads

J J J , 70S
j

j E
j

j N
j

1

4

r ( ) ( )åb m= - -
=

while the rate of entropy production Si
˙ in thewhole setup can be expressed as

S S J , 71i t Sr
˙ ( )= ¶ +

where S p pln
s s så= - denotes the Shannon entropy of the systemwhose time derivative vanishes at steady

state. As a result, the steady-state rate of entropy production can be linked to the energy andmatter currents by

S J J J . 72i S
j

j E
j

j N
j

1

4

r ( )˙ ( )åb m= = - -
=

Using the conservation laws (69), this equation can be rewritten as a sumof terms that can be interpreted as
the dissipation generated by each current against its thermodynamic affinity

S A J A J A J . 73i
l

E
l

E
l

N N N N
1

3
1 1 3 3˙ ( )å= + +

=

This expression takes the same form as the left-hand side of equation (59), which can be used to prove that it is
always non-negative, i.e. S 0.i

˙  The entropy production (73) plays a central role for the thermodynamic
analysis of our device driven out of equilibriumby thermal and chemical potential gradients. It is essential in
order to define proper notions of efficiencywhen the device is set towork as a thermodynamicmachine. In the
next section, wemake use of our analysis in order to characterize the performance of our device when operating
as a thermoelectric and an isothermal electric converter.

5.Device operating as a thermodynamicmachine

5.1. Regime of thermoelectric conversion
Weconsider a regime inwhich theQPC is the hot reservoir with inverse temperature h 3 4b b b= = whereas the
DQD reservoirs j= 1 and 2 constitute the cold reservoir with inverse temperature .c 1 2b b b= = A fraction of
the heatflow from theQPC

J J 74E E
3 4˙ ( ) = +

may then be converted by theDQD into electro-chemical work against a bias 1 2m m mD º - applied between
the reservoirs 1 and 2

J . 75N
1˙ ( ) m= -D

Weassume a vanishing bias in theQPC so that theworking regime of our heat engine is

, and 0. 76h c 3 4 ( )b b m m m< = D <

The irreversible entropy production (73) reduces to

S 0, 77i c c h( )˙ ˙ ˙ ( )  b b b= - + -

where ̇á ñ is the average output power and ̇á ñ the average heatflow from theQPC.One observes that a positive
output power always contributes as a negative term to the entropy production, which is compensated by the heat
term c h( ) ̇b b- á ñ so as to satisfy the second law inequality (77).

The efficiency η of the heat towork conversion process described above is defined by the ratio

J

J J
, 78

N

E E

1

3 4 C

˙

˙
( )




h

m
hº =

-D

+

where 1 h cCh b b= - is the Carnot efficiency of themachine and the inequality is a direct consequence of the
positivity of the entropy production (77). TheCarnot efficiencymay only be reached for a heat engine working
reversibly, i.e. satisfying S 0.i

˙ = However, suchmachines work infinitely slowly so that the extracted power
vanishes in the limit of a reversiblemachine. This issue hasmotivated the study of the efficiency atmaximum
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output power in thermal engines [15, 61–66]. In particular, the Curzon–Ahlborn efficiency

1 79h

c
CA ( )h

b
b

= -

has been shown to provide a universal upper bound on the efficiency atmaximumpower inmachinesworking
in the linear regime [62], as well as a good reference in the nonlinear regime [65]. Reachingmaximal output
power and optimal conversion efficiency requires afine tuning of the device parameters. For fixed ,mD theDQD
spectrum and its coupling to the reservoirs via the tunneling amplitudes need to be adjusted. In particular,
highest efficiencies are attained in the so-called regime of tight-coupling where the input and output power
become proportional to each other [65, 66].

This can be understood in the present context by comparing the rates of the second order processes depicted
infigure 4. In presence of the temperature gradient (76), theQPCwill preferentially give energy to theDQDby
inducing transitions from state ∣ - ñ to state .∣+ñ Themicroscopic process leading to a net flowof charge against
the bias mD and involving such transitions is depicted infigure 4 (a).Without optimization, this process is not
more likely to happen than the other processes depicted infigure 4, which do not involve a charge transfer in the
desired direction thus lowering the output power as well as the efficiency of the heat towork conversion.
However, provided the tunneling rates satisfy

, , , 801 2 1 2 ( )G G G G+ - - +

the process depicted in 4(a) becomes the dominant one, leading to a highly efficient conversion of the heatflow
into electric output power.

In the tight-coupling limit, i.e. for , 0,1 2G G + - thematter current through theDQDand the energy
current from theQPC are totally correlated, their average being thus proportional to each other

J J J , 81E E N
3 4 1 ( )w+ = +-

as is verified by using the explicit expressions for the currents given in section 4.2. Consequently, the efficiency
takes the simple form

. 82( )h
m

w
=

-D

+-

This last relation shows that in the tight coupling regime, our device onlyworks as a heat engine producing a
positive output power in the range 0 .m w< -D < +- The similarity of expression (82) and the one obtained for
the efficiency of themachine considered in [16] stems from the quantized character of the amount of energy
exchanged between the reservoirs and thework converter in bothmodels. In the present case, theQPC
exchanges energy with theDQD in the formof quantas whose energy is given by .w+-

Infigure 5 (a), the average output power is plotted against the rescaled efficiency Ch h for different values of
the ratio

Figure 4. Illustration of the different processes involving a transtion from state ∣-ñ to state ∣+ñ in theDQD.
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, 831

1

2

2

( )q º
G
G

=
G
G

+

-

-

+

whichmeasures the distance from the tight coupling regime (80). For each curve, the Carnot efficiencywas held
at the fixed value 0.6,Ch = whereas theDQD spectrumwas numerically adjusted tomaximize the output power
atfixed .mD Only values in the rangewhere the device works as a heat engine are shown. As can be seen, the
range over which a positive output power can be produced aswell as itsmagnitude decrease as onemoves away
from the tight coupling regime, i.e. as θ increases.

Figure 5(b), shows curves of the efficiencywhere theDQD spectrum aswell as the bias mD were adjusted to
reach the regime ofmaximumoutput power. As θ increases, the efficiency is lowered due to the increasing
contributions of the undesired processes described infigure 4. In the tight coupling regime, the thermodynamic
efficiency attains values close to .CAh

Up to this point we have considered the average properties of the output power and the so-called
macroscopic efficiency, i.e. the efficiency defined as the ratio of the average output power over the average input
power. In small devices displaying strong fluctuations, amore accurate characterization is provided by
considering their statistical properties. Several works have recently shown that the so-called stochastic efficiency,
defined along a single stochastic realization of a thermal engine as

, 84s

˙
˙ ( )


h =

exhibits universal properties [45, 46, 67–70].We nowbriefly show that the FCS of the currents developed in
section 3 can be used in order to study these fluctuations.

The probability distribution of a stochastic variable x x t˙ = D is characterized in the long time limit by its
large deviation function (LDF) x ,( ) that is, p x x texp( ) { ( ˙) }D ~ - for t . ¥ It is shown in [46] that the
LDFs for the output power and stochastic efficiency LDFs can respectively be obtained as

max , 0 , 85w q,( ) ( )˙ ( ) ˙ ( )˙ ˙   a a= -
a

I min , , 86s w q s,( ) ( ) ( )˙ ˙h ah a= -
a

where the heat andworkGF ,w q w q, ( )˙ ˙ a a is obtained by setting ,q3 4x x a= = w1l ma= -D and the other
counting parameters to 0 in the current CGF (54).

The LDFs of the fluctuating output power and efficiency are both illustrated onfigures 6(a) and (b)
respectively, for different values of the asymmetry parameter chosen as infigure 5 andwith theCarnot efficiency
set to 0.6.Ch = Both output power and efficiency LDFswere evaluated in the regimes ofmaximal average
output power. They thus characterize, respectively, theworkfluctuations around themaxima’s of the curves
depicted onfigure 5(a), and the efficiencyfluctuations at the intersection points between the curves and the
dashed vertical line infigure 5(b). Theminimumof the output power LDF, corresponding to themost probable
output power in the long time limit, corresponds to the average value of the output powerwhich increases as one
gets closer to tight coupling, i.e. as θ decreases. Similarly, themost likely value of efficiency in the long time limit,
which lies at theminimumof ,s( ) h corresponds themacroscopic efficiency (78) evaluated infigure 5(b).
Furthermore, one observes that itsmaximum (along the dashed vertical line) lies at the Carnot efficiency

Figure 5. (a)Average output power as a function of the rescaled efficiency Ch h for different values of the asymmetry parameter θ
defined in (83). TheCarnot efficiencywas taken as 0.6.Ch = (b)Efficiency atmaximumpower as a function of Carnot efficiency. The
continuous red line is for Carnot efficiencywhile the dotted one follows the Curzon–Ahlborn efficiency (79). Remaining parameters
were chosen for both plots as 1,cb = E 0,0 = V V 0,3 4= = 2 0.7,1 2( )m m+ = 0.01,34 43G = G = 0.1.1 2G = G =- + The
energies E+ and E- of the single-occupied states of theDQD, as well as the bias mD in the case of the right plot, were numerically
adjusted in order to reach amaximal output power.
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( 0.6Ch = ) in agreement with previous results [45, 46, 67–69]. TheCarnot efficiency is thus the least likely to be
observed in the long time limit.

5.2. Regime of isothermal electric current conversion
Wenow consider an isothermal regime jb bº j," inwhich the current in the electrically biasedQPC is
converted intowork done against the electrical bias applied to theDQD. TheDQDandQPC channels are
subject to the chemical potential biases

0 and 0 , 87q1 2 3 4 ( )m m m m m mD º - < < D º -

respectively. The irreversible entropy production in the system at steady state is then given by (see equation (73))

S 0 88i out in( )˙ ˙ ˙ ( )  b= - +

in terms of the input Jq Nin
3̇ má ñ = D á ñand output JNout

1̇ má ñ = -D á ñpower.
The efficiency of the conversion process can bewritten in terms of the input and output powers as

0 1. 89
out

in

˙

˙
( )




 h º

A strong asymmetry in the tunneling amplitudes of theDQDchannel was needed in order to achieve high
power and efficiency in the regime of thermoelectric conversion. In the present case, a similar asymmetry in the
tunneling amplitudes of theQPC is alsomandatory as a consequence of the directional nature of the driving
processes in theQPC. To understand this point, it is useful to consider the low temperature limit of themachine.
In this limit, energy is transferred from theQPC to theDQDonly if .qm wD > +- The several transfer processes
involving a single electron transfer from reservoir 3 to 4 of theQPC,with associated transition in theDQDare
depicted infigure 7. By considering the rate constants involved in these two processes, we see that positive energy
flow from theQPC to theDQD is enhanced provided

Figure 6. (a)Output power LDF. (b) Stochastic efficiency LDF. Parameters are chosen as infigure 5(b) and theCarnot efficiency is set
to 0.6Ch = in bothfigures. These LDFs thus characterize the output power and efficiency fluctuations at the intersection points
between the dashed vertical line and the curves illustrated infigure 5. As explained in the text, the Carnot efficiency corresponds to the
maximumof the LDF (dashed vertical line) and is thus the least likely to be observed in a single run experiment.

Figure 7. Illustration of the processes involving a transfer of a single electron from reservoir 3 to 4 and the corresponding transition in
theDQD system.
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9043 34 ( )G G

so that the process depicted infigure 7 (a) becomes the dominant one.
On top of this, processes without net transfer of charge across theDQD like those depicted infigures 4(b)

and (c) are also undesirable since theywaist energy.We thus assume both (90) and (80) to hold in order for our
machine towork in optimal conditions.

We further note that theDQDcurrent and the contribution to theQPC current from electrons interacting
with theDQDare tightly coupled in the regimewhere (80) and (90) are satisfied, that is J J .N N d

1 3á ñ µ á ñ However,
due to the presence of bare tunneling events in theQPC, theDQDcurrent and the total QPC current are not
necessarily tightly coupled.Only in the case 0( )g = does the bare current in theQPCvanish, J 0,N d

3á ñ = and
theDQDcurrent and the total current through theQPCbecome tightly coupled, i.e. J J J .N N d N

1 3 3á ñ µ á ñ = á ñ
This remark has important consequences on the properties of efficiency atmaximumpower, and illustrates

well the crucial role played by the FCS formalism in determining all the thermodynamically relevant processes
when analysing thermodynamicmachines. The efficiency is illustrated infigure 8 for different values of the bare
tunneling amplitude taken in thewide band limit, .( )g gº Weobserve a significant difference in the
qualitative behavior of efficiency depending on the value of the bare tunneling amplitude γ. In particular, we
observe that 1h  or 0h  in the far from equilibrium regime, i.e. ,qmD  ¥ depending onwhether 0g =
or 0g ¹ respectively.

The behavior of efficiency is best understood bywriting it as

1

, 91

q

J

J

N
i

N

3

1

( )⎛
⎝⎜

⎞
⎠⎟

h
m

m

=
-D

D +

in terms of the bare current of electrons through theQPC JN i
3á ñ andwherewe assume both (80) and (90).

For 0,g = the bare current vanishes and the efficiency atmaximumpower in the equilibrium limit
0qmD  converges to the value 1 2,h = as predictedwithin linear response theory for systemsworking in the

tight coupling regime [62]. In the large bias ,qmD  ¥ efficiency reaches themaximal value 1.h = This is

easily understood in the low temperature limit, i.e. .b  ¥ In this limit, the output power is non-zero provided
that

. 92q ( )m w mD < < D+-

When the bias qmD applied to theQPC is large, the values of mD and w+- can be optimized to reach

1. 93
q

( )m
m

D
D

~

For 0,g ¹ a fraction of the electrons tunneling through theQPCdissipates entropywithout exchanging
energywith theDQD thus lowering the efficiency as suggested by (91). Close to equilibrium, the efficiency
converges to values below 1 2.h <

Tounderstand the properties of efficiency in the large bias limit qmD  ¥we consider the behavior of the

two contributions to theQPC current JN d
3á ñ and JN i

3á ñ infigure 9.We have assumed the tunneling amplitude
,( )g to be a stepwise function equal to γ on the interval a a2, 2[ ]- and 0 elsewhere. In thewide band limit,

i.e. a , ¥ we see that the current JN i
3á ñ is linearly growing and diverges as qmD  ¥ as can be seen from its

Figure 8.Efficiency of the current converter as a function of the input bias and for increasing bare tunneling parameter γ. From top to
bottom linewe chose 10 ,1g = - 5 10 ,2´ - 10 ,2- 5 10 ,3´ - 10 ,3- 5 10 ,4´ - 10 ,4- 5 10 5´ - and 10 .5- The energies E+ and E- and
the bias mD in theDQDwere optimized to reachmaximumoutput power. The remaining parameters were chosen as 1,b =
V V1 2 2 1.5,( )+ = E 0,0 = 0.1.2 1 34G = G = G =+ -
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definition (64), (65). This is in contrast to the current J ,N d
3á ñ which remains bounded qm" D since it is ultimately

constrained by theDQD splitting w+- as can be inferred from (64), (66) and the expressions for the rates (23)
and (42).

These remarks together with expression (91) for the efficiency and the fact that JN
1á ñ remains bounded qm" D

explains why the efficiency decreases at least as fast as q
1m~D - in the large bias limit qmD  ¥ as soon as 0.g ¹

Wehave thus shown that the bare tunneling events in theQPC can highly reduce themachine efficiency. The
FCS formalism is here crucial in order to keep track of thermodynamically relevant processes which are
otherwisemissing in a stochastic description of theDQDpopulations. Let usfinallymention that such processes
did not affect the performance of the thermal engine considered in the present section due to the fact that the
matter current in theQPCdoes not contribute to the entropy production since its corresponding affinity was set
to zero, i.e. .3 4m m=

6. Conclusion

We fully characterized the nonequilibrium thermodynamics of a circuit composed of aDQDandQPC channels
within the framework of stochastic thermodynamics.

By using themodified quantummaster equation formalism,we identified and provided a detailed
description of all themicroscopic processes contributing to the entropy changes in the system and the
environment.We showed that the transition rates of processes related by time reversal satisfy the LDB condition.
This condition holds for the rates of electron transfers between theDQDand its reservoirs as well as for the rates
of energy exchange processes with the out-of-equilibriumQPC.We also established a steady-state FT for the
heat andmatter currents across both channels, which reduces to a bivariate FT for thematter currents across
each channel in an isothermal circuit.

Based on this analysis, we considered two regimeswhere the circuit operates as a thermoelectric or electric
converter.We identified the optimal working condition in both cases and evaluated the statistics of output
power and efficiency at steady state.

Our study illustrates verywell how stochastic thermodynamics enables one to structure the analysis of the
transport properties of non-trivialmesoscopic devices such as theDQD–QPCcircuit and to discriminate the
universal (i.e. thermodynamic) features from the system specific ones. This theory has become an essential tool
for quantum transport in theweak coupling regime.
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Appendix. Diagonalization of theDQDHamiltonian

Diagonalization of theDQDHamiltonian (3) can be performed analytically.Wefirst introduce the basis of single
dot occupation states as

Figure 9.Curves of the current contributions in theQPCwhich do (left plot) and do not (right plot) induce transitions in theDQD, for
different values of the bandwidth a (see text). Parameters have been chosen as 1,b = V V 1.5,1 2= = E 0,0 = E 0.5,=+ E 0.1,=-

0.1,2 1 34 gG = G = G = =+ -
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c1 0 0 0 , 94A B A A B ( )†=

c0 1 0 0 , 95A B B A B ( )†=

where 0 0A B∣ ñdenotes the empty state of theDQD. The eigenstates of theDQDHamiltonian (3) are then given by
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