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Abstract

We study the nonequilibrium properties of an electronic circuit composed of a double quantum dot
(DQD) channel capacitively coupled to a quantum point contact (QPC) within the framework of
stochastic thermodynamics. We show that the transition rates describing the dynamics satisfy a
nontrivial local detailed balance and that the statistics of energy and particle currents across both
channels obeys a fluctuation theorem. We analyze two regimes where the device operates as a
thermodynamic machine and study its output power and efficiency fluctuations. We show that the
electrons tunneling through the QPC without interacting with the DQD have a strong effect on the
device efficiency.

1. Introduction

Semiconducting multichannel circuits made of quantum dots and quantum point contacts (QPCs) are
nowadays commonly devised and studied experimentally [1-10]. The progress in the control of electronic
temperatures at the meso-scale [7, 8] has for instance driven the experimental [11, 12] and theoretical [13-22]
study of their thermoelectric properties. In the isothermal case, these circuits have also been used to probe the
fluctuating properties of heat and matter transfers using counting statistics experiments [5, 9, 10, 23]. A circuit of
particular interest in that regard is the double quantum dot (DQD) channel probed by a QPC detector. It has
been used to perform the bidirectional counting of single electrons in the DQD channel [23, 24] and to provide
the first experimental verification of the current fluctuation theorem (FT) in mesoscopic physics [25]. Several
studies have theoretically analyzed the backaction induced by the QPC detector on the mean current of the DQD
channel due to Coulomb drag [26-28], as well as on the DQD current statistics [29-33]. The QPC detector was
also shown to modify the thermodynamic affinity of the DQD channel while preserving the FT symmetry in the
DQD circuit [30]. In this latter work, the tunneling events in the QPC were treated non perturbatively to account
for possible high transparency and as a result, the combined DQD-QPC statistics was not accessible within this
approach.

In this paper, we study the nonequilibrium thermodynamics of the DQD—-QPC circuit using stochastic
thermodynamics [34-36]. We consider the general case where the QPC and DQD reservoirs may be at a different
temperatures and chemical potentials. The counting statistics of the energy and matter currents across both
channels is calculated using the modified quantum master equation formalism [37] assuming weak coupling
between the DQD and its reservoirs as well as between the reservoirs composing the QPC. Even though in the
isothermal case this last assumption may seem more restrictive compared to the nonperturbative approach of
[30, 38], it enables us to analytically calculate the joint distribution of the energy and matter currents across both
channels, and to identify the entropy flows associated to the exchange processes at hand. As a result, we are able
to derive a bivariate FT for the statistics of the energy and matter currents in both channels.

An interesting feature of this setup is that the microscopic processes associated to transitions in the DQD
involve more than one reservoir at a time. In particular, transitions in the DQD induced by the QPC have
corresponding transition rates proportional to the product of Fermi functions in both reservoirs of the QPC.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Double channel circuit made of a DQD and a QPC. Electrons can be exchanged between reservoirs 1 and 2 across the DQD,
and between reservoirs 3 and 4 of the QPC. There is no electron transfer between the two channels, but the electrons tunneling
through the QPC are affected by the charge state of the quantum dots via Coulomb interaction (wavy lines).

The microscopic processes underlying such transitions involve the tunneling of an electron between the QPC
reservoirs which exchanges a fraction of its energy with the DQD. As a result, the transition rates cannot be
written anymore as a sum where each term only involves one single reservoir. Despite this non additivity of the
rates, the local detailed balance (LDB) [37, 39] is shown to hold, and is explicitly written in terms of the fluxes of
entropy from the reservoirs involved in the transitions.

Furthermore, since some electrons tunnel between the QPC reservoirs without exchanging energy with the
DQD, they do not induce transitions in the DQD but need to be taken into account in the counting statistics. We
show that their statistics is well described by the modified quantum master equation and corresponds to the
Levitov—Lesovik formula [40—44] to second order perturbation theory in the coupling between the QPC
reservoirs. Though such processes do not reveal themselves in the master equation for the DQD populations,
they are shown to strongly impact the circuit performance.

We proceed by analyzing two different regimes where the circuit operates as a thermoelectricand as a
current converter, respectively. We identify the optimal working conditions to reach large average output power
and high macroscopic efficiency and study the statistical properties of the output power as well as of the
efficiency, as recently proposed in [45—47].

The paper is organized as follows: the model is introduced in section 2. In section 3, we derive the modified
quantum master equation to calculate the counting statistics of energy and matter currents, and analyze the
microscopic processes contributing to the transition rates. In section 4, using the LDB property of the rates, we
identify the entropy flows associated to each microscopic processes in the circuit, and the steady state FT is
derived. The expressions for the average energy and matter currents as well as the average irreversible entropy
production are also provided. The thermodynamic analysis of the circuit operating as a thermoelectricand asa
current converter is done in section 5. Conclusions are drawn in section 6.

2.Hamiltonian

The DQD channel is made of two quantum dots A and B, each connected to its own reservoir, labeled by j = 1
and 2 respectively. The QPC s the junction between reservoirs j = 3 and 4. The circuit is drawn in figure 1.
The Hamiltonian of the circuit is given by
4

H=Hpqp + Y H+V, (1)
j=1

where Hpqp denotes the DQD Hamiltonian,
Hj = ejxcicir @)
k

is the reservoir j Hamiltonian expressed in terms of the creation (anihilation) operators cj‘; (¢ji) of the reservoir
single-particle states with energy €, and V'is the interaction Hamiltonian between the DQD and the reservoirs.
The DQD Hamiltonian is given by

Hpap = €achca + epches + T(cj\cB + c;cA) = Els) (s, 3)
S

expressed in terms of the single-dot annihilation (creation) operators in each QD, ¢4 /5 (C}; /B) of single dot states
with energies €45, and of the tunneling amplitude T between the two dots. This Hamiltonian can alternatively
be expressed in terms of the many-body eigenstates |s) of Hpqp with energies E;. In the following, we consider a
regime in which the sum in the last term of (3) can be restricted to the empty eigenstate |0) and the single-
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occupied eigenstates [+ ) and | —) (see the appendix). This assumption is often justified at low temperature since
multiple charging in one of the quantum dots requires large amounts of energy.
The interaction Hamiltonian can be split into

2
V=3V 4 Vi + VP (4)
j=1

The first term is the sum of the tunneling Hamiltonians between the DQD and the reservoirs

Vi= > Zt1d<cdc]k + c]kcd) Z Z (ls )0l cjx + ¢ k |0) (sl) (5)

d=A,B k

with the tunneling amplitudes 5 izand T in the DQD single and many-body basis, respectively, and forj= 1 and
2. Each dot is only connected to its own reservoirs, i.e. tf = &, = 0. This part of the Hamiltonian is responsible
for the charging and discharging of the DQD through the exchange of electrons with reservoir j =1 and 2.

The QPCreservoirs 3 and 4 are directly coupled through the tunneling Hamiltonian

V3y = ZTkk/ (CSTk Cak’ + Cik’CSk)) (6)
kk!
where T*' denote the bare tunneling amplitudes between the QPC reservoirs, i.e. independently of the DQD
state.
Finally, electrons tunneling through the QPC interact with the electrons in the DQD due to Coulomb
interactions. This is modeled by the capacitive coupling

DQD kk'
Viy Q Z(t cAcA + tB cch)(c3kc4k/ + c4k,(:3;<) 7)
kk'

= ZZ(Tkk/ )(C3kC4k’ + C4er3k) (8

s,s" kk'

in terms of the capacitive couplings tﬁk//B and the tunneling amplitudes Tslffl. Expression (8) shows that some
electrons in the QPC can induce transitions in the DQD, exchanging energy with the DQD while tunneling
between reservoirs 3 and 4.

The Hamiltonian term describing the bare tunneling in the QPC, V4, is included in the interaction Vwhich
will be subsequently treated to second order in perturbation theory. This is in contrast to our previous work [30]
where the bare tunneling in the QPC was treated non-perturbatively. The present approach has the advantage to
treat all the energy and matter transfers on the same footing, allowing us to develop a consistent thermodynamic
description of the full circuit and to evaluate the joint full counting statistics (FCS) of the energy and matter
currents in both DQD and QPC channels.

3. Counting statistics

The FCS of the fluxes in weakly coupled open quantum systems can be calculated using the modified quantum
master equation formalism [37]. The statistical properties of the energy and matter currents flowing out of the
reservoirs and integrated over a time t, AE; and AN;, are determined by the generating function (GF)

G(g A 1) = (e Deannan)) ©)

t

The probability distribution of the fluctuating energy and matter fluxes Jj = — AE; / tand Jj, = — AN; / tis
then obtained by applying an inverse Fourier transform to the GF (9)

Pt = [ T2 [T 2 ptesnsvooig g oo
] ]

In the following, we evaluate the GF (9) by performing the FCS of the energy and particle number operators
within each reservoir, respectively given by (2) and N; = Zk cfk cj. Following [37], we introduce the modified
Hamiltonian

H(éa /\j) = eizjzl(ngi'*"\fM)H e_iz;zl(éfHﬁ)‘fM), (11)

where the counting parameters §; and ); for j = 1,..., 4 keep track of, respectively, the energy and matter
fluctuations in the reservoirs. The DQD and reservoir Hamiltonians, Hpqp and H;respectively, remain
unchanged after this transformation. However, the interaction Hamiltonians transform according to
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o) = £ T A0 he),

s=

V34(§j, )\j) = ZTW(ei(535k+A3)e’i(54fk’+A4)c;fkc4k/ + h.c.), (13)
Kk’
and
Vg}QD(g’ )\j) ZZ(Tkk )(ei(§36k+)\3)efi(§4Ek’+)\4)(:;kc4k/ + h.c.). (14)
/ kk/

With these definitions, the GF can be expressed as

G(& A t) =Tr {p(i N, t)} (15)
where the modified density matrix p (&, A;, t) satisfies the modified quantum master equation
100 (& Nj» t) = H(&/2, Mi/2)p (& Ao t) = p(& N ) H (=62, = i/2). (16)

The initial density matrix p (0) of the total system is assumed of the factorized form p (0) = pg(0) Hj ® pps
where pg (0) is an arbitrary DQD density operator and p; = exp {—B;j(H; — wilN; — ¢j) } denotes the grand-
canonical density operator in the reservoir j with inverse temperature 3; = (kg T;)~' and chemical potential 1. ;

with j = 1,...,4. The corresponding thermodynamic grand-potential is denoted
¢j = — ﬁfl In [Tr {exp {—B;(H; — 1 Np) } } ] This factorization assumption has no implication because only
steady state properties will be considered in the following.

In the weak coupling limit to the reservoirs, where the interaction parameters T]ks, T and Tk are assumed
small enough, the dynamical equation (16) leads to a closed modified quantum master equation for the reduced
density matrix of the system [48—52]

ps(& Ao t) = TrR{p(é, A t)} (17)

where Trr { - } denotes a trace over the reservoirs Hilbert space. pg(0, 0, t)is the DQD reduced density matrix.

A common assumption in the present context is that the DQD free oscillations, characterized by the
frequencies w,y = E; — Ey, are fast compared to the relaxation time scale 7z induced by the reservoirs on the
DQD. One can then apply the rotating wave approximation (RWA) [53—57] which consists in an average of the
system free oscillations over a time scale At which is intermediate between

Tc K At <K TR> (18)

where 7 denotes the short correlation time in the reservoirs. As a result, the effective dynamics of the DQD
populations, g (&, \j, t) = (s| ps(&;, i), t)s), and the coherences, (s| pg(i&;, i);, t)|s') for s = s', decouple.

Under the aforementioned hypotheses, the diagonal elements of the DQD reduced density matrix satisfy a
Markovian master equation of the form

0:8(& Mo t) = W(E N) - 8(& Ao 1) (19)

where we introduced the vector notation
§
g(§> >\]y t) = g+(§‘) )\]r t) > (20)

with the matrix product denoted by ‘’, and where the counting parameters dependent rate matrix W (£ > Aj)is
expressed here below in terms of the transition rates between DQD states.

The reservoirs j = 1 and 2 induce random charging and discharging of the DQD due to the tunneling
interaction (5). The corresponding microscopic processes are depicted on figures 2(a) and (b). During such
tunneling events, the particle number in reservoir j= 1 or 2 changes by anamount 6N; = 1 (6N; = —1) when it
charges (discharges) the DQD. On the other hand, the energy change in the reservoir can take the values
OE; = Fwy, depending on which many-body state |s), with s = 4- or —, is involved in the transition. The
charging and discharging rates induced by reservoirs j = 1 and 2 are given by

Tifj(wo)  and by = Tu(1 = f(wo) 1)

for s=+ or —, in terms of the Fermi distribution of single particle states in the reservoir j,
f]. (x) = (1 + exp Bj(x — uj))fl, and of the rate constants

4
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{0N;} = {£1,0,0,0} {5N]} ={0,+£1,0,0}
a)  {0E,} = {%w.0,0,0,0} B (0B} = {0,%w.,0,0}
‘7>©‘+> ‘*>®‘+>

{oN;} = {0,0,+1,F1} {6N;} = {0,0,+1, F1}
¢) {6E;} =1{0,0,%e, F(c —wy_)} d) {6E;} ={0,0,£(c —w4_), Fe}

Figure 2. [llustration of the several microscopic processes inducing transitions in the DQD. Each sub-figure illustrates pairs of
processes which are time-reversed of each other. The vectors {5E j} and {6NJ} denote, respectively, the energy and particle number
changes in the reservoirs associated to each microscopic processes.

2 k 2
Fjs = ;zk:(s(ej‘k — ws()) ‘Tjs

2
= 50y | | (22)

We took the continuum approximation for the electron density of states in the reservoirs, denoting the energy-
resolved tunneling amplitudes by Tj; (¢), and the density of electron states by p; (¢€).

On the other hand, the QPC also induces transitions between the DQD states. Though there is no exchange
of electrons between the QPC and the DQD, electrons tunneling between the reservoirs j = 3 and 4 may
exchange energy with the DQD (mainly through photon exchange [6]), thus driving transitions between the
single-charged states |+ ) and | — ). These processes are illustrated in figures 2(c) and (d). The corresponding
transition rates are given by

(€)= Ty()fy(e)(1 = f; (e = wi )
djr () = Typ() (1 = £,())f (e = wi ) (23)

for jj’ = 34 and 43 where the energy-dependent rate constants I (¢) are given by

4 112
Lu(e) = -2 0| TH[ 6 = @)d(e — wim — e, (24)
ﬁ kk/
4T 2
= |T,+(5, €— w+,)| p5(€) e — wi), (25)
4 12
L(e) = —5 5| T8 — wio = ol — aw), (26)
kK’
4 2
= ﬁ—Z | 7. (e = wiy )] pyle = wiHpyte) 27)

in terms of the energy resolved tunneling amplitudes T,y (¢, €’). Interestingly, the transition rates (23) are
written as a product of Fermi functions in both QPC reservoirs and as such, cannot be written as a sum of
individual reservoir contributions. These transition terms are responsible for Coulomb drag effects between the
DQD and the QPC. By providing energy to the electrons tunneling through the QPC, the DQD may induce
electron transfers against the applied bias and vice versa. The current converter considered in section 5.2 is
precisely driven by such processes.

The tunneling events between the DQD and the reservoirs j = 1 and 2 contribute to the rate matrix through
the matrix elements

[W(E-, )\j)]so = > ajse(ff“’fﬁ’\f), (28)

j=1,2

[w(gj, Aj)]m = Y be(§uotd), (29)

j=1,2




I0OP Publishing New J. Phys. 17 (2015) 095005 G B Cuetara and M Esposito

{6E;} = {0,0, £¢, Fe}
{6N;} = {0,0,+1, F1}

Figure 3. [llustration of the tunneling processes in the QPC that do note induce transitions in the DQD.

where the counting parameters §; and \; keep track of the net fluxes of energy +wy and particles +1 flowing out
of reservoir j at each such transition.

The contribution from the QPC transfers can be separated into two categories, depending on whether or not
the electrons tunneling between reservoirs 3 and 4 exchange energy with the DQD. In the first case, tunneling
events in the QPC contribute to the rate matrix through the components

[W(ﬁ», )\j)L_ = Zfde c]j/(6)e(fff’ff’(f””‘**)*’\f"\f'), (30)
i’

[W(g M)] | =5 [dedyerelsessesmm) G
i’

where the sum in these last two equalities runs over jj’ = 34 and 43. Each transition involves a net transfer of
one electron from reservoir j to reservoir j’ of the QPC or vice versa. If the energy of the outgoing electron
coming fromjis ¢, it enters reservoir j/ with energy € + w, _ depending on whether it emits or absorbs energy
from the DQD.

Finally, the contributions from the electrons tunneling in the QPC without exchanging energy with the
DQD appear along the diagonal elements of the rate matrix

[W(5M)], = - weon + G (g »). (32)

The first term in the right-hand side of this equation ensures the conservation of the probability for the
occupation probabilities in the DQD when the counting parameters are set to zero while the second one accounts
for the tunneling of electrons through the QPC without interaction with the DQD (see figure 3). As a matter of
fact, G, (&, Aj)is the GF of the energy and particle transfer in the QPC given that the DQD is in state |s), i.e.

G ) = [ dento| (1~ @) (1 - dber(-s))
+hi(1-£@)(1- e*(%*M)e*(fm))]. (33)

It turns out that this is the Levitov—Lesovik formula [40-44] to second order in the tunneling amplitude T; (¢), or
equivalently, to first order in

Va(©)| ps(epie), (34)

(€)= 27

which results from the fact that we treated the interaction (8) perturbatively. In contrast to many previous work
on transfer through quantum dots (such as [58]), where each microscopic process is associated to an actual
transition in the QD, the present circuit provides a nice example of an open quantum system in which the
microscopic processes do not necessarily affect the system (DQD) populations while contributing to the energy
and particle flows out of the reservoirs. The modified quantum master equation formalism is thus essential in
order to keep track of these processes.
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The Fourier transform of the diagonal matrix elements (20)
00 d . 2w d)\ L4
p(AE, AN, 1) = [ T] & [T 2 [e i (gammaan)
—oo| 7 27 |Jo i 2T
x g(—ig; —iN;, t) (35)
ives the joint probability distribution | p(AE;, AN, t) | = p.(AE;, AN, t) of observing the system in state |s
g jomtp y ' N ] j 8 Y
attime tand the changes in energies AE; and particle numbers AN; in each reservoir.

By applying a Fourier transform to the modified rate equation (19), we get a master equation describing the
dynamics of the DQD as well as the exchange processes with the reservoirs

op(AE;, AN, 1) =TT [ [doE; > W(oE; oN)
j oN,
-p(AE; — 6E;, AN; — 6N, 1), (36)
where the rate matrix W (OEj, ON;) is obtained as the Fourier transform of the modified rate matrix

W(0E; 8N;) = f,o:o [1:[ E] foﬂ [1:[ ﬂ]eizj(gjéEiHj&M)w(_i@’ —ix). (37)

2 2

The Fourier transform of the modified rate matrix is easily taken by using the relations

27 o0
f %ei"” = 6a0 and f d—xeim =6() (38)
0 —_

2T 0o 2T

in terms of the Kronecker delta symbol 6, o and the Dirac delta distribution 6 («). Accordingly, the rate matrix
w (OEj, ON;) is obtained by making the following substitutions

et&o — 6(61:"]- == ozj) and e*N — by 1 (39)

in the modified rate matrix elements (28)—(32).

By integrating equation (36) over the energy and particle fluctuations AEj and AN;, or equivalently by
setting the counting parameters to zero in the modified rate equation (19), we obtain a stochastic master
equation for the occupation probabilities in the DQD

p(H) =W - p(®) (40)
with rate matrix given by
— A~y — A — Ay by + byy bi_ + by
W= a4+ ayy —biy — by —dyy—dgs G4+ €43 ) (41)
M-+ ax- dss + dg3 — 34— Ci3— b — by
and where
cjir = fde cjir(€) and dj = fdfdjj/(f). (42)

Now, by formally solving the rate equation (19), the GF of the energy and matter currents can be expressed as
G(& A1) =1 MG p, (43)

where 1 denotes the line vector (1, 1, 1) while p; is the initial occupation probability of the DQD states. All the
moments of the currents can be obtained by taking multiple derivatives of the GF with respect to the counting
parameters.

At steady state, the statistics of the currents is captured by the cumulant generating function (CGF)

g(& Aj) = —lim

t—00

% In G (& A ). (44)

Using expression (43) for the GF, one sees that the CGF is obtained as the dominant eigenvalue of the rate matrix
W (&, );), independently of the initial condition on the system p,,.

7
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4. Nonequilibrium thermodynamics

4.1.LDB and FT
The charging and discharging rates (21) depicted on figures 2(a) and (b) satisfy the LDB condition [39]
In 2 = = (wa — 1) (43)
75
in terms of the inverse temperature (3; and chemical potential 1 of the reservoir involved in the transition. This
property is a direct consequence of the Kubo—Martin—Schwinger condition which is satisfied by the equilibrium
correlation functions of the reservoirs [37].
Regarding the QPC induced transitions on the DQD, it has previously been noted [30, 38] that the
corresponding total rates do not satisfy a LDB, unless the QPC is assumed to be at equilibrium (6; = (§, and
5 = [t,). However, we showed in the previous section that in the weak coupling limit, one can identify the pairs
of microscopic processes related by time reversal (see figures 2(c) and (d)), and write the total rates as a sum of
contributions from such elementary processes, see equations (30) and (31) together with (23). Each of these
contributions satisfies the LDB condition
In cClJJ/((Z)) = —ﬁj(e — uj) + ﬁj/(e —wy_ — uj,), (46)
i
where cji (¢) is the rate at which electrons with energy € tunnel from reservoir j to j/ in the QPC while releasing an
amount of energy w; _ to the DQD, and d;i(¢) is the rate of the associated time-reversed process.
We note that the right-hand sides of expressions (45) and (46) is nothing but the entropy flowing from the
reservoirs during these processes

ASS/S(C‘iEj, 6Nj) — _Zﬂij, with Qj = —6E; + 11;6N; (47)
]

and where the components of the vectors
{6Ej} - {6E1, SE,, 6E;, 5E4} and {5Nj} - {6N1, 5Ny, 6N, 6N4} (48)

denote the changes in energy and particle number in the reservoirs associated to each microscopic transition, as
given in figure 2. Relations (45) and (46) can then both be rewritten in terms of the rate matrix (37) as

[W(eE; 5Nj)]55/ B
[W(—éEj,—éNj)] = AS(6E;, oN;), (49)

where the transition rate [W(— OEj, —6N; )] . corresponds to the time-reversed process of the one associated to
S'S

[W (OEj, 6N; )] - Relation (49) implies that the modified transition rates (28)—(32) satisfy
[W(ﬁ-, )\j)]ss/ = [W(ﬁj =& — Bin — )\j)]s/s- (50)

These relations also hold for the diagonal elements of the rate matrix, given in equation (32),
G(&p N) = G(Bj — & — By — Aj)-

They ensure the invariance of the characteristic polynomial of the matrix W(, A;) under the
transformations

In

s's

§—0-§ and N G- A (5D

Since the CGF is obtained as the largest eigenvalue of the modified rate matrix W (¢;, A;), this invariance
property leads to the symmetry

9(& ) =9(8 — & — By — ) (52)
We further note that the CGF only depends on the differences
§—8p & —8p & — &y and A= A Az — Ay (53)

This can be directly shown by verifying that the characteristic polynomial of the rate matrix W(§;, A;) only
depends on the differences (53). It is a direct consequence of the conservation of the total energy and particle
number. In addition, the particle numbers in each sub-channel is also conserved since electrons cannot tunnel
between the DQD and the QPC. Accordingly, we introduce the CGF

8
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G(fp A )\3) = g(f-) )\j)‘
where I = 1, 2, 3. The CGF (54) satisfies the steady state current FT symmetry [59, 60]
G(& M As) = G(AE — & ALY — A AY = \) (55)

in terms of the thermodynamic forces applied to the system:

. 54
£=Xa=As=0 (>4)

AL=0,— 3  for 1=1,2,3, (56)
Ay =By — Bopy,  and AR = Bapiy — Bapyy. (57)

More explicitly, this FT can be expressed in terms of the joint probability distribution
B(lb s B t) = [t [ [arp(ih i t) (58)

as

P(JL, I s t 3

1 E> JN> N

_ (l : 3) =Y ApJE + AN + AR TR (59)
=0t P(—Jp —Jhy —Ret) i

which makes explicit reference to the steady-state entropy production (right-hand side) generated by the fluxes
against the thermodynamic affinities (56), (57).

In the isothermal setups, one obtains a bivariate FT for the joint distribution of particle currents through
each channel

P(Jas T t
tlirglo % In ﬁ = 5(#1 - Nz)]}\f + /B(Ma - /~L4)]I%h (60)

thus extending previous result obtained in [30], where the statistics of the current in the QPC was not assessed.
4.2. Mean currents and entropy production

Using (44) together with (43), we can formally write the steady-state mean energy and particle currents out of
reservoir j as

() = —tlirgo<ATEj> =1-0¢W(0,0) - P (61)
=2

where P = lim,_, 'V - p, denotes the vector of steady-state occupation probabilities P, = [P], on the DQD.
The steady-state probabilities are directly obtained by solving the equation W - P = 0.

Using the rate matrix of the present model W given by (41), we find for outgoing currents of particles and
energy from reservoirs j = 1 and 2 that

<]IJ\7> = Z (ajspo - bjsPs)> <]i:> = Z wso(ajsPo — b]-SPS), (63)

The particle currents for reservoirs 3 and 4 can be expressed as the sum of two contributions

<1§>V:fdg<]N(e)>y, for v=d,i, (64)

in terms of the energy resolved currents
(In@) . =@ (f© - f), (65)
(In@)) = (e4(6) = e ()P + (dus(e) — dag(e)) . (66)

The current (Jy); is conveyed by electrons which tunnel between the QPC reservoirs without affecting the DQD
while (Jy)q is the current of electrons that induce transitions between states | + ) = |—)inthe DQD through
the exchange of an amount +w, _ of energy with the DQD. The energy currents out of the reservoirs 3 and 4 are
in turn given by

(1) = [ace((w@),+ (@) ) + wi(coP — duP) (67)
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() = = [aee((w@) ,+ (@) ) + wi (P — dsiPy). (68)
From these expressions, one readily verifies the conservation laws
SO =0 () =—(&) wnd (R)=(R),+ (&), = -{t). ©
=1

The entropy flow from the environment reads
4 . .
(5.) = =8 () — w (1)) (70)
=1
while the rate of entropy production S; in the whole setup can be expressed as

$i=0S+ (Js), (71)

where § = 7251)5 In p, denotes the Shannon entropy of the system whose time derivative vanishes at steady
state. As a result, the steady-state rate of entropy production can be linked to the energy and matter currents by

$i=(Js) = —é@((lﬁi) — (1)) (72)

Using the conservation laws (69), this equation can be rewritten as a sum of terms that can be interpreted as
the dissipation generated by each current against its thermodynamic affinity

Si= AL () + AL () + A% (1) (73)
=1

This expression takes the same form as the left-hand side of equation (59), which can be used to prove that it is
always non-negative, i.e. S; > 0. The entropy production (73) plays a central role for the thermodynamic
analysis of our device driven out of equilibrium by thermal and chemical potential gradients. It is essential in
order to define proper notions of efficiency when the device is set to work as a thermodynamic machine. In the
next section, we make use of our analysis in order to characterize the performance of our device when operating
as a thermoelectric and an isothermal electric converter.

5. Device operating as a thermodynamic machine

5.1. Regime of thermoelectric conversion

We consider a regime in which the QPC is the hot reservoir with inverse temperature 3, = 33 = (, whereas the
DQD reservoirs j = 1 and 2 constitute the cold reservoir with inverse temperature 3, = 3, = (3,. A fraction of
the heat flow from the QPC

Q=L +1Ti (74)

may then be converted by the DQD into electro-chemical work against abias Ay = p1; — p, applied between
the reservoirs 1 and 2

W = —Aply. (75)
We assume a vanishing bias in the QPC so that the working regime of our heat engine is
Bn < Bes fsy = [y and Ap < 0. (76)
The irreversible entropy production (73) reduces to
Si=—B.(W) + (8. - 3)(©) >0, (77)

where (W) is the average output power and ( Q) the average heat flow from the QPC. One observes that a positive
output power always contributes as a negative term to the entropy production, which is compensated by the heat
term (8. — (By)(Q) so as to satisfy the second law inequality (77).

The efficiency 1 of the heat to work conversion process described above is defined by the ratio

(W) —au(n)

R e

where 1 = 1 — (/0. is the Carnot efficiency of the machine and the inequality is a direct consequence of the
positivity of the entropy production (77). The Carnot efficiency may only be reached for a heat engine working
reversibly, i.e. satisfying S; = 0. However, such machines work infinitely slowly so that the extracted power
vanishes in the limit of a reversible machine. This issue has motivated the study of the efficiency at maximum

(78)
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Figure 4. Illustration of the different processes involving a transtion from state | —) to state |+) in the DQD.

output power in thermal engines [15, 61-66]. In particular, the Curzon—Ahlborn efficiency

Nea = 1 — % (79)

has been shown to provide a universal upper bound on the efficiency at maximum power in machines working
in the linear regime [62], as well as a good reference in the nonlinear regime [65]. Reaching maximal output
power and optimal conversion efficiency requires a fine tuning of the device parameters. For fixed Ay, the DQD
spectrum and its coupling to the reservoirs via the tunneling amplitudes need to be adjusted. In particular,
highest efficiencies are attained in the so-called regime of tight-coupling where the input and output power
become proportional to each other [65, 66].

This can be understood in the present context by comparing the rates of the second order processes depicted
in figure 4. In presence of the temperature gradient (76), the QPC will preferentially give energy to the DQD by
inducing transitions from state | — ) to state |[+). The microscopic process leading to a net flow of charge against
the bias Ay and involving such transitions is depicted in figure 4 (a). Without optimization, this process is not
more likely to happen than the other processes depicted in figure 4, which do not involve a charge transfer in the
desired direction thus lowering the output power as well as the efficiency of the heat to work conversion.
However, provided the tunneling rates satisfy

Fl+a ]-—‘27 < ]-—‘17) F2+) (80)

the process depicted in 4(a) becomes the dominant one, leading to a highly efficient conversion of the heat flow
into electric output power.

In the tight-coupling limit, i.e. for [, [ — 0, the matter current through the DQD and the energy
current from the QPC are totally correlated, their average being thus proportional to each other

(1) + (J) = we(Jh) (81)

asis verified by using the explicit expressions for the currents given in section 4.2. Consequently, the efficiency
takes the simple form

A
n=_2K (82)
Wy

This last relation shows that in the tight coupling regime, our device only works as a heat engine producing a
positive output power in the range 0 < —Ap < w, _. The similarity of expression (82) and the one obtained for
the efficiency of the machine considered in [16] stems from the quantized character of the amount of energy
exchanged between the reservoirs and the work converter in both models. In the present case, the QPC
exchanges energy with the DQD in the form of quantas whose energy is given by w, _.

In figure 5 (a), the average output power is plotted against the rescaled efficiency 1/7, for different values of
the ratio
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Figure 5. (a) Average output power as a function of the rescaled efficiency 1)/ for different values of the asymmetry parameter 6
defined in (83). The Carnot efficiency was taken as 7 = 0.6. (b) Efficiency at maximum power as a function of Carnot efficiency. The
continuous red line is for Carnot efficiency while the dotted one follows the Curzon—Ahlborn efficiency (79). Remaining parameters
were chosen forbothplotsas 8, = 1, Eg = 0, V; = V, = 0, (i, + p,)/2 = 0.7,134 = I[}3 = 0.01,;_ =I5, = 0.1. The
energies E and E_ of the single-occupied states of the DQD, as well as the bias A in the case of the right plot, were numerically
adjusted in order to reach a maximal output power.

= e = 12— (83)
Lo Dy

0

which measures the distance from the tight coupling regime (80). For each curve, the Carnot efficiency was held
at the fixed value 1 = 0.6, whereas the DQD spectrum was numerically adjusted to maximize the output power
at fixed Ay Only values in the range where the device works as a heat engine are shown. As can be seen, the
range over which a positive output power can be produced as well as its magnitude decrease as one moves away
from the tight coupling regime, i.e. as 6 increases.

Figure 5(b), shows curves of the efficiency where the DQD spectrum as well as the bias Ay were adjusted to
reach the regime of maximum output power. As  increases, the efficiency is lowered due to the increasing
contributions of the undesired processes described in figure 4. In the tight coupling regime, the thermodynamic
efficiency attains values close to 1,.

Up to this point we have considered the average properties of the output power and the so-called
macroscopic efficiency, i.e. the efficiency defined as the ratio of the average output power over the average input
power. In small devices displaying strong fluctuations, a more accurate characterization is provided by
considering their statistical properties. Several works have recently shown that the so-called stochastic efficiency,
defined along a single stochastic realization of a thermal engine as

= (84)
exhibits universal properties [45, 46, 67-70]. We now briefly show that the FCS of the currents developed in
section 3 can be used in order to study these fluctuations.

The probability distribution of a stochastic variable x = Ax/t is characterized in the long time limit by its
large deviation function (LDF) Z(x), thatis, p (Ax) ~ exp{—Z(x)t} for t — oo.Itisshown in [46] that the
LDFs for the output power and stochastic efficiency LDFs can respectively be obtained as

I(W) = max(gw,q(a, 0) — aW), (85)
I(n) = fnhin Gwg(am, a), (86)

where the heat and work GF G, 4(av,,, ) is obtained by setting §; = &, = a4, Ay = —Apav, and the other
counting parameters to 0 in the current CGF (54).

The LDFs of the fluctuating output power and efficiency are both illustrated on figures 6(a) and (b)
respectively, for different values of the asymmetry parameter chosen as in figure 5 and with the Carnot efficiency
setto 7 = 0.6. Both output power and efficiency LDFs were evaluated in the regimes of maximal average
output power. They thus characterize, respectively, the work fluctuations around the maxima’s of the curves
depicted on figure 5(a), and the efficiency fluctuations at the intersection points between the curves and the
dashed vertical line in figure 5(b). The minimum of the output power LDF, corresponding to the most probable
output power in the long time limit, corresponds to the average value of the output power which increases as one
gets closer to tight coupling, i.e. as § decreases. Similarly, the most likely value of efficiency in the long time limit,
which lies at the minimum of Z(r),), corresponds the macroscopic efficiency (78) evaluated in figure 5(b).
Furthermore, one observes that its maximum (along the dashed vertical line) lies at the Carnot efficiency
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Figure 6. (a) Output power LDF. (b) Stochastic efficiency LDF. Parameters are chosen as in figure 5(b) and the Carnot efficiency is set
to 1) = 0.6 in both figures. These LDFs thus characterize the output power and efficiency fluctuations at the intersection points
between the dashed vertical line and the curves illustrated in figure 5. As explained in the text, the Carnot efficiency corresponds to the
maximum of the LDF (dashed vertical line) and is thus the least likely to be observed in a single run experiment.

= ) h +)
! o 02 - o B
\ J— \; J J . —
e S —
3 ] a -
-~/ - J —
a) ~ Ty b) ~Ty3

Figure 7. [llustration of the processes involving a transfer of a single electron from reservoir 3 to 4 and the corresponding transition in
the DQD system.

(nc = 0.6) in agreement with previous results [45, 46, 67-69]. The Carnot efficiency is thus the least likely to be
observed in the long time limit.

5.2. Regime of isothermal electric current conversion

We now consider an isothermal regime 3 = (3; V j, in which the current in the electrically biased QPCis
converted into work done against the electrical bias applied to the DQD. The DQD and QPC channels are
subject to the chemical potential biases

Ap=p—py, <0 and 0< Auq = sy — fy (87)
respectively. The irreversible entropy production in the system at steady state is then given by (see equation (73))
Sz:ﬁ(_<wout> +<W1>)>0 (88)

in terms of the input WV,,) = Ap ( J%)and output W,y) = —Ap (Ji;) power.
The efficiency of the conversion process can be written in terms of the input and output powers as
< Wout)
-—F < L
(W)

0<n (89)

A strong asymmetry in the tunneling amplitudes of the DQD channel was needed in order to achieve high
power and efficiency in the regime of thermoelectric conversion. In the present case, a similar asymmetry in the
tunneling amplitudes of the QPC is also mandatory as a consequence of the directional nature of the driving
processes in the QPC. To understand this point, it is useful to consider the low temperature limit of the machine.
In this limit, energy is transferred from the QPC to the DQD only if A Hy > Wi The several transfer processes
involving a single electron transfer from reservoir 3 to 4 of the QPC, with associated transition in the DQD are
depicted in figure 7. By considering the rate constants involved in these two processes, we see that positive energy
flow from the QPC to the DQD is enhanced provided
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Figure 8. Efficiency of the current converter as a function of the input bias and for increasing bare tunneling parameter . From top to
bottom line we chose v = 1071, 5 x 1072,107%,5 x 1073,1073,5 x 107%,107%, 5 x 107> and 10~°. The energies E| and E_ and
the bias Ay in the DQD were optimized to reach maximum output power. The remaining parameters were chosenas 5 = 1,

(Vl + V2)/2 = 15, E() == 0, F2+ = Fl, = F34 = 0.1.

IVER G R (90)

so that the process depicted in figure 7 (a) becomes the dominant one.

On top of this, processes without net transfer of charge across the DQD like those depicted in figures 4(b)
and (c) are also undesirable since they waist energy. We thus assume both (90) and (80) to hold in order for our
machine to work in optimal conditions.

We further note that the DQD current and the contribution to the QPC current from electrons interacting
with the DQD are tightly coupled in the regime where (80) and (90) are satisfied, that is (J5) oc (Jx);. However,
due to the presence of bare tunneling events in the QPC, the DQD current and the total QPC current are not
necessarily tightly coupled. Only in the case v (¢) = 0 does the bare current in the QPC vanish, (J3); = 0, and
the DQD current and the total current through the QPC become tightly coupled, i.e. (Ji;) o< (Ja)a = (Ju).

This remark has important consequences on the properties of efficiency at maximum power, and illustrates
well the crucial role played by the FCS formalism in determining all the thermodynamically relevant processes
when analysing thermodynamic machines. The efficiency is illustrated in figure 8 for different values of the bare
tunneling amplitude taken in the wide band limit, v (¢) = 7. We observe a significant difference in the
qualitative behavior of efficiency depending on the value of the bare tunneling amplitude ~. In particular, we
observe that 7 — lor 7 — 0 in the far from equilibrium regime, i.e. Ay, — 0o, depending on whether v = 0
or v = 0 respectively.

The behavior of efficiency is best understood by writing it as

—Ap
{m),

Auq[l + <]}V>']’

in terms of the bare current of electrons through the QPC (J i,), and where we assume both (80) and (90).
For v = 0, the bare current vanishes and the efficiency at maximum power in the equilibrium limit
Ay, — 0 converges to the value 7 = 1/2, as predicted within linear response theory for systems working in the

n= oD

tight coupling regime [62]. In the large bias Ay, — 00, efficiency reaches the maximal value ny = 1. This is
easily understood in the low temperature limit, i.e. 3 — 0. In this limit, the output power is non-zero provided
that

Ap < wio < Apy. (92)
When the bias Ay, applied to the QPCis large, the values of Apand w, _ can be optimized to reach
BH (93)
Ap,

q

For = 0, a fraction of the electrons tunneling through the QPC dissipates entropy without exchanging
energy with the DQD thus lowering the efficiency as suggested by (91). Close to equilibrium, the efficiency
converges to values below n < 1/2.

To understand the properties of efficiency in the large bias limit Ay, — co we consider the behavior of the
two contributions to the QPC current (J3,)g and (J3,); in figure 9. We have assumed the tunneling amplitude
v (€), to be a stepwise function equal to yon the interval [—a /2, a/2]and 0 elsewhere. In the wide band limit,
i.e.a — oo, we see that the current (J3,); is linearly growing and diverges as A 1, — o0 as can be seen from its
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Figure 9. Curves of the current contributions in the QPC which do (left plot) and do not (right plot) induce transitions in the DQD, for
different values of the band width a (see text). Parameters have been chosenas 3 =1,V = V, = 1.5, E, = 0, E;, = 0.5, E_ = 0.1,
Ly=hL_ =hLy=vy=0.1,

definition (64), (65). This is in contrast to the current (J3 )4, which remains bounded ¥V A Iy since it is ultimately
constrained by the DQD splitting w, _ as can be inferred from (64), (66) and the expressions for the rates (23)
and (42).

These remarks together with expression (91) for the efficiency and the fact that (J3;) remains bounded ¥ A Iy
explains why the efficiency decreases at least as fast as ~A ,uq’l in the large bias limit A py — coassoonasy = 0.

We have thus shown that the bare tunneling events in the QPC can highly reduce the machine efficiency. The
FCS formalism is here crucial in order to keep track of thermodynamically relevant processes which are
otherwise missing in a stochastic description of the DQD populations. Let us finally mention that such processes
did not affect the performance of the thermal engine considered in the present section due to the fact that the
matter current in the QPC does not contribute to the entropy production since its corresponding affinity was set
tozero,i.e. [ty = [i.

6. Conclusion

We fully characterized the nonequilibrium thermodynamics of a circuit composed of a DQD and QPC channels
within the framework of stochastic thermodynamics.

By using the modified quantum master equation formalism, we identified and provided a detailed
description of all the microscopic processes contributing to the entropy changes in the system and the
environment. We showed that the transition rates of processes related by time reversal satisfy the LDB condition.
This condition holds for the rates of electron transfers between the DQD and its reservoirs as well as for the rates
of energy exchange processes with the out-of-equilibrium QPC. We also established a steady-state FT for the
heat and matter currents across both channels, which reduces to a bivariate FT for the matter currents across
each channel in an isothermal circuit.

Based on this analysis, we considered two regimes where the circuit operates as a thermoelectric or electric
converter. We identified the optimal working condition in both cases and evaluated the statistics of output
power and efficiency at steady state.

Our study illustrates very well how stochastic thermodynamics enables one to structure the analysis of the
transport properties of non-trivial mesoscopic devices such as the DQD-QPC circuit and to discriminate the
universal (i.e. thermodynamic) features from the system specific ones. This theory has become an essential tool
for quantum transport in the weak coupling regime.
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Appendix. Diagonalization of the DQD Hamiltonian

Diagonalization of the DQD Hamiltonian (3) can be performed analytically. We first introduce the basis of single
dot occupation states as
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‘1AOB> = Cj\ ‘OAOB>, (94)
|0AlB> = Cg |0AOB>J (95)
where |0405) denotes the empty state of the DQD. The eigenstates of the DQD Hamiltonian (3) are then given by
|0) = ‘OAOB>> (96)

s @ 0
|+>—C055‘1A0B> +SIHE‘OAIB>> (97)

_an @ ¢
| =) =sin 2 |1405) —cos |0415) (98)

in terms of the mixing angle defined by
2T
tanp = ——. (99)
€A — €B

The corresponding energies are given in terms of the localized basis parameters by

PRV
E,h = 0 Ei:mi\/(u) + T2, (100)
2 2
Other parameters of the Hamiltonian in the single and manybody basis are related by
le+ = t{i\ cos %, (101)
TF = ¢}, sin % (102)
TY, = tig sin ? (103)
Tzk, = —tsz cos %, (104)
and
| W Y L ke
TS, = E(tA + tg ) + E(tA tg )cos ?, (105)
T = T8 = L ¥ Ysin g, (106)
2
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