Automates, mots et décision

$\mathsf{Bruno}\ \mathrm{Teheux}$

University of Luxembourg

sort()

Notation

n-tuples **x** in
$$X^n \equiv n$$
-strings over X

0-string: *ε*, 1-strings: *x*, *y*, *z*, ... *n*-strings: **x**, **y**, *z*, ...

 $|\mathbf{x}|~=~\text{length of }\mathbf{x}$

$$X^* := \bigcup_{n \ge 0} X^n$$

We endow X^* with concatenation

Notation

Any $F: X^* \to Y$ is called a *variadic function*, and we set

$$F_n := F|_{X^n}.$$

Any $F: X^* \to X \cup \{\varepsilon\}$ is a variadic operation.

We assume

$$F(\mathbf{x}) = \varepsilon \iff \mathbf{x} = \varepsilon$$

Associativity for string functions

Definition. $F: X^* \to X^*$ is *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \mathbf{xyz} \in X^*$$

Associativity for string functions

Definition. $F: X^* \to X^*$ is *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \ \mathbf{xyz} \in X^*$$

Examples.

- sorting in alphabetical order
- · letter removing, duplicate removing

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \ \mathbf{xyz} \in X^*$$

Example. F = sort()INPUT: **xzu**... in blocks of unknown length given at unknown time intervals.

OUTPUT: sort(xzu···)

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \mathbf{xyz} \in X^*$$

Example. F = sort()INPUT: **xzu** ··· in blocks of unknown length given at unknown

time intervals.

OUTPUT: sort(xzu···)

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \mathbf{xyz} \in X^*$$

Example. F = sort()INPUT: **xzu**... in blocks of unknown length given at unknown time intervals.

OUTPUT: $sort(xzu \cdots)$

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \mathbf{xyz} \in X^*$$

Example. F = sort()INPUT: **xzu**... in blocks of unknown length given at unknown time intervals.

OUTPUT: sort(xzu···)

"Highly" distributed algorithms

Associativity for variadic functions?

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \ \mathbf{xyz} \in X^*$$

Quest: a notion of 'associativity' for variadic $F: X^* \to Y$

Associativity for variadic functions?

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \ \mathbf{xyz} \in X^*$$

Quest: a notion of 'associativity' for variadic $F: X^* \to Y$

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Associativity for variadic functions?

$$F(xyz) = F(xF(y)z) \quad \forall xyz \in X^*$$

Quest: a notion of 'associativity' for variadic $F: X^* \to Y$

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Examples.
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$
 $F_n(\mathbf{x}) = |\mathbf{x}|$ $(X \text{ arbitrary}, Y = \mathbb{N})$

Associativity and preassociativity

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Proposition. Let $F: X^* \to X^*$.

F is associative

Slogan. Preassociativity is a *composition-free* version of associativity.

Semiautomata

A *semiautomaton* over *X*:

 $\mathcal{A} = (Q, q_0, \delta)$

where $q_0 \in Q$ is the *initial state* and

 $\delta\colon Q\times X\to Q$

is the transition function.

The map δ is extended to $Q\times X^*$ by

$$\delta(q, arepsilon) := q, \ \delta(q, \mathbf{x}y) := \delta(\delta(q, \mathbf{x}), y)$$

Semiautomata

A *semiautomaton* over *X*:

 $\mathcal{A} = (Q, q_0, \delta)$

 $\delta\colon Q\times X\to Q$

is the transition function.

The map δ is extended to $Q imes X^*$ by

$$\delta(\boldsymbol{q},arepsilon) := \boldsymbol{q}, \ \delta(\boldsymbol{q}, \mathbf{x} \boldsymbol{y}) := \delta(\delta(\boldsymbol{q}, \mathbf{x}), \boldsymbol{y})$$

Definition. $F_{\mathcal{A}} \colon X^* \to Q$ is defined by

 $F_{\mathcal{A}}(\mathbf{x}) := \delta(q_0, \mathbf{x})$

$$F_{\mathcal{A}}(\mathbf{x}) := \delta(q_0, \mathbf{x})$$

Fact. If \mathcal{A} is a semiautomaton,

· $F_{\mathcal{A}}$ is "half"-preassociative:

$$F_{\mathcal{A}}(\mathbf{y}) = F_{\mathcal{A}}(\mathbf{y}') \implies F_{\mathcal{A}}(\mathbf{y}'\mathbf{z}) = F_{\mathcal{A}}(\mathbf{y}'\mathbf{z})$$

·
$$F_{\mathcal{A}}$$
 may not be preassociative:

$$egin{array}{rll} {F_{\mathcal{A}}(b)} &= q_1 &= {F_{\mathcal{A}}(ba)} \ {F_{\mathcal{A}}(bb)} &= q_2 \,
eq q_0 &= {F_{\mathcal{A}}(bba)} \end{array}$$

Definition. A semiautomaton is preassociative if it satisfies

$$\delta(q_0, \mathbf{x}) = \delta(q_0, \mathbf{y}) \implies \delta(q_0, z\mathbf{x}) = \delta(q_0, z\mathbf{y})$$

Definition. A semiautomaton is preassociative if it satisfies

$$\delta(q_0, \mathbf{x}) = \delta(q_0, \mathbf{y}) \implies \delta(q_0, z\mathbf{x}) = \delta(q_0, z\mathbf{y})$$

Lemma.

 \mathcal{A} preassociative \iff $F_{\mathcal{A}}$ preassociative

Definition. A semiautomaton is preassociative if it satisfies

$$\delta(q_0, \mathbf{x}) = \delta(q_0, \mathbf{y}) \implies \delta(q_0, z\mathbf{x}) = \delta(q_0, z\mathbf{y})$$

Lemma.

 \mathcal{A} preassociative \iff $F_{\mathcal{A}}$ preassociative

Example. $X = \{0, 1\}$

$$\begin{split} F_{\mathcal{A}}(\mathbf{x}) &= e \iff \#\{i \mid x_i = 1\} \text{ is even,} \\ F_{\mathcal{A}}(\mathbf{x}) &= o \iff \#\{i \mid x_i = 1\} \text{ is odd.} \end{split}$$

X, Q finite.

Definition. For an onto $F: X^* \to Q$, set

$$egin{aligned} q_0 &:= F(arepsilon), \ \delta(q,z) &:= \{F(\mathbf{x}z) \mid q = F(\mathbf{x})\}, \ \mathcal{A}^F &:= (Q,q_0,\delta) \end{aligned}$$

Generally, $\mathcal{A}^{\textit{F}}$ is a non-deterministic semiautomaton.

X, Q finite.

Definition. For an onto $F: X^* \to Q$, set

$$egin{aligned} q_0 &:= F(arepsilon), \ \delta(q,z) &:= \{F(\mathbf{x}z) \mid q = F(\mathbf{x})\}, \ \mathcal{A}^F &:= (Q,q_0,\delta) \end{aligned}$$

Generally, $\mathcal{A}^{\mathcal{F}}$ is a non-deterministic semiautomaton.

Lemma.

F is preassociative $\iff \mathcal{A}^F$ is deterministic and preassociative

A criterion for preassociativity

F is preassociative $\iff \mathcal{A}^F$ is deterministic and preassociative

For any state q of $\mathcal{A} = (Q, q_0, \delta)$, any $L \subseteq 2^{X^*}$ and $z \in X$, set $L^{\mathcal{A}}(q) := \{ \mathbf{x} \in X^* \mid \delta(q_0, \mathbf{x}) = q \}$ $z.L := \{ z\mathbf{x} \mid \mathbf{x} \in L \}$

A criterion for preassociativity

F is preassociative $\iff \mathcal{A}^F$ is deterministic and preassociative

For any state q of $\mathcal{A} = (Q, q_0, \delta)$, any $L \subseteq 2^{X^*}$ and $z \in X$, set $L^{\mathcal{A}}(q) := \{ \mathbf{x} \in X^* \mid \delta(q_0, \mathbf{x}) = q \}$ $z.L := \{ z\mathbf{x} \mid \mathbf{x} \in L \}$

Proposition. Let $\mathcal{A} = (Q, q_0, \delta)$ be a semiautomaton. The following conditions are equivalent.

(i) A is preassociative,
(ii) for all z ∈ X and q ∈ Q,
z.L^A(q) ⊆ L^A(q'), for some q' ∈ Q.

$$z.L^{\mathcal{A}}(q)\subseteq L^{\mathcal{A}}(q'), \qquad ext{ for some } q'\in Q.$$

Example. $X = \{0, 1\}$

 $L^{\mathcal{A}}(e) = \{ \mathbf{x} \mid \mathbf{x} \text{ contains an even number of } 1 \}$ $L^{\mathcal{A}}(o) = \{ \mathbf{x} \mid \mathbf{x} \text{ contains an odd number of } 1 \}$

$$\begin{array}{ll} 0.L^{\mathcal{A}}(o)\subseteq L^{\mathcal{A}}(o) & 0.L^{\mathcal{A}}(e)\subseteq L^{\mathcal{A}}(e) \\ 1.L^{\mathcal{A}}(o)\subseteq L^{\mathcal{A}}(e) & 1.L^{\mathcal{A}}(e)\subseteq L^{\mathcal{A}}(o) \end{array}$$

An example of characterization

Definition. $F: X^* \to X^*$ is *length-based* if

$$F = \phi \circ |\cdot|$$
 for some $\phi \colon \mathbb{N} \to X^*$.

An example of characterization

Definition. $F: X^* \to X^*$ is *length-based* if

$$F = \phi \circ |\cdot|$$
 for some $\phi \colon \mathbb{N} \to X^*$.

Proposition. Let $F: X^* \to X^*$ be a length-based function. The following conditions are equivalent.

(i) F is associative(ii)

$$|F(\mathbf{x})| = \alpha(|\mathbf{x}|)$$

where $\alpha \colon \mathbb{N} \to \mathbb{N}$ satisfies

$$\alpha(n+k) = \alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}$$

$$\widehat{\mathbf{E}} \underbrace{\mathbf{C}}_{\mathbf{0}} \underbrace{\mathbf{C}}_{\mathbf{1}} \underbrace{\mathbf{C}}_{\mathbf{0}} \underbrace{\mathbf{C}}_{\mathbf{1}} \underbrace{\mathbf{C}} \underbrace{\mathbf{C}} \underbrace{\mathbf{C}} \underbrace{\mathbf{C}} \underbrace{\mathbf{C}} \underbrace{\mathbf{C}} \underbrace{\mathbf{C}}$$

п

$$\widehat{(0, + k)} = \alpha(\alpha(n) + k), \quad \forall n, k \in \mathbb{N}$$

п

Relaxing the associativity property

$$\begin{aligned} X &:= \mathbb{L} \cup \mathbb{N} \text{ where } \mathbb{L} = \{a, b, c, \dots, z\} \\ |\mathbf{x}|_{\mathbb{L}} &= \text{number of letters of } \mathbf{x} \text{ that are in } \mathbb{L}. \end{aligned}$$

The functions F, G defined by

$$F(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } |\mathbf{x}| < m \\ x_1 \cdots x_{m-1} |\mathbf{x}|, & \text{if } |\mathbf{x}| \ge m \end{cases}$$

$$G(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } |\mathbf{x}| < m \\ x_1 \cdots x_m |\mathbf{x}|_{\mathbb{L}}, & \text{if } |\mathbf{x}| \ge m \end{cases}$$

are not associative,

Relaxing the associativity property

$$X := \mathbb{L} \cup \mathbb{N} \text{ where } \mathbb{L} = \{a, b, c, \dots, z\}$$
$$|\mathbf{x}|_{\mathbb{L}} = \text{number of letters of } \mathbf{x} \text{ that are in } \mathbb{L}.$$

The functions F, G defined by

$$F(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } |\mathbf{x}| < m \\ x_1 \cdots x_{m-1} |\mathbf{x}|, & \text{if } |\mathbf{x}| \ge m \end{cases}$$

$$G(\mathbf{x}) = \left\{egin{array}{cc} \mathbf{x}, & ext{if } |\mathbf{x}| < m \ x_1 \cdots x_m |\mathbf{x}|_{\mathbb{L}}, & ext{if } |\mathbf{x}| \geq m \end{array}
ight.$$

are not associative, but they satisfy

$$m{F}(\mathbf{xyz}) \;=\; m{F}(\mathbf{x}m{F}(\mathbf{y})\mathbf{z}) \qquad orall \; \mathbf{xz} \in X^* \; ext{such that} \; |\mathbf{y}| \leq m$$

The origin of the terminology

 $f: X \times X \to X$ is *associative* if

$$f(x, f(y, z)) = f(f(x, y), z)$$

Associativity enables us to define expressions like

$$f(x, y, z, t) = f(f(f(x, y), z), t)$$

= f(x, f(f(y, z), t)) = ...

Define $F: X^* \to X \cup \{\varepsilon\}$ by

$$F(\varepsilon) = \varepsilon$$
, $F(\mathbf{x}) = x$, $F(\mathbf{x}) = f(x_1, \dots, x_n)$

Then F is an associative variadic operation.

What about...

What about...

Let

- · $H: X^* \to X^*$ be associative and length preserving
- $f_n \colon \operatorname{ran}(H_n) \to X$ be one-to-one for every $n \ge 1$

Set

$$F_n = f_n \circ H_n, \quad n \ge 1$$

Let

- · $H \colon X^* \to X^*$ be associative and length preserving
- f_n : ran $(H_n) \to X$ be one-to-one for every $n \ge 1$

Set

$$F_n = f_n \circ H_n, \quad n \ge 1$$

If $F(F(\mathbf{y})^{|\mathbf{y}|}) = F(\mathbf{y})$ for all $\mathbf{y} \in X^*$, then

$$F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = F(\mathbf{x}\mathbf{y}\mathbf{z}), \qquad \mathbf{x}\mathbf{y}\mathbf{z} \in X^*$$

Let

- \cdot $H: X^* \rightarrow X^*$ be associative and length preserving
- $f_n: \operatorname{ran}(H_n) \to X$ be one-to-one for every $n \ge 1$

Set

$$F_n = f_n \circ H_n, \quad n \ge 1$$

If
$$F(F(\mathbf{y})^{|\mathbf{y}|}) = F(\mathbf{y})$$
 for all $\mathbf{y} \in X^*$, then

$$F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = F(\mathbf{x}\mathbf{y}\mathbf{z}), \qquad \mathbf{x}\mathbf{y}\mathbf{z} \in X^*$$

This property is called *barycentric associativity* and is satisfied by a wide class of means.

The ubiquity of the associativity property

http://math.uni.lu/~teheux

And now for something completely different

An invitation

An invitation

The first International Symposium on Aggregation and Structures

Luxembourg, July 5 – 8, 2016 http://math.uni.lu/isas/

An invitation

The first International Symposium on Aggregation and Structures

Scientific Committee:

Miguel Couceiro, Bernard De Baets,

Radko Mesiar.

Invited speakers:

Marek Gagolewski, Michel Grabisch, Carlos Lopez-Molina, Gabriella Pigozzi.

Luxembourg, July 5 – 8, 2016 http://math.uni.lu/isas/