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Notation

n-tuples x in X" = n-strings over X

0-string: ¢,
1-strings: x,y,z,...
n-strings: x,y,z,...

|x| = length of x

X* ::UX"

n>0

We endow X™* with concatenation



Notation

Any F : X* — Y is called a variadic function, and we set

Fn = F‘Xn

Any F : X* — X U{e} is a variadic operation.

We assume




Associativity for string functions

Definition. F: X* — X* is associative if

F(xyz) = F(xF(y)z) V xyz € X*



Associativity for string functions

Definition. F: X* — X* is associative if

F(xyz) = F(xF(y)z) V xyz € X*

Examples.
- sorting in alphabetical order

- letter removing, duplicate removing



Associativity entails ‘distributivity’

F(xyz) = F(xF(y)z) Y xyz € X*

Example. F = sort()
INPUT: xzu--- in blocks of unknown length given at unknown

time intervals.
OUTPUT: sort(xzu---)
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Associativity entails ‘distributivity’

F(xyz) = F(xF(y)z) Y xyz € X*

Example. F = sort()
INPUT: xzu--- in blocks of unknown length given at unknown
time intervals.
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Associativity entails ‘distributivity’

F(xyz) = F(xF(y)z) V xyz € X*

Example. F = sort()
INPUT: xzu--- in blocks of unknown length given at unknown
time intervals.

OuTPUT: sort(xzu---)

F(x) F(z) F(u) .
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“Highly” distributed algorithms
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Associativity for variadic functions?

F(xyz) = F(xF(y)z) Y xyz € X*

Quest: a notion of ‘associativity’ for variadic F;: X* = Y
Yy

Definition. We say that F: X* — Y is preassociative if

Fly) = F(y)) = F(xyz) = F(xy'z)

Examples. F,(x) =x? +---+x2 (X=Y =R)
Fo(x) = |x| (X arbitrary, Y =N)



Associativity and preassociativity

Fly) = F(y)) = F(xyz) = F(xy'z)

Proposition. Let F: X* — X*.

F is associative
e

F is preassociative and FoF=F.

Slogan. Preassociativity is a composition-free version of
associativity.



Semiautomata

A semiautomaton over X:
A=(Q,q,9)

where qg € Q is the initial state and
0: @xX—=>Q

is the transition function.

The map 0 is extended to @ x X* by

5(q75) =4q,
6(q,xy) :=d(5(q,x),y)



Semiautomata

A semiautomaton over X:

p A A=(Q,qo,9)
H @ where qg € Q is the initial state and
b 0: QxX—=>Q
@ is the transition function.
b The map 0 is extended to @ x X* by

6(q,¢) := q,
6(q,xy) :=d(5(q,x),y)
Definition. F4: X* — Q is defined by

FA(x) := d(qo,x)




Preassociativity and semiautomata

FA(x) := (qo,x)

Fact. If A is a semiautomaton,

- F 4 is “half”-preassociative:

Faly) = Faly)) = Fa(y'z) = Fa(y'2)
- F4 may not be preassociative:

b a



Preassociativity and semiautomata

Definition. A semiautomaton is preassociative if it satisfies

6(q0,x) = 6(q0,y) == 0(qo, zx) = (qo, 2y)

%iﬁjﬁi@ — iﬁ:ﬁiO
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A preassociative <=  F4 preassociative



Preassociativity and semiautomata

Definition. A semiautomaton is preassociative if it satisfies

6(q0,x) = 6(q0,y) == 0(qo, zx) = (qo, 2y)

X X
—@_ 10O = —w@—C_ 10O
y y
Lemma.

A preassociative <=  F4 preassociative

Example. X ={0,1}

0 1 0
w Fa(x) =e < #{i| x; =1} is even,
GQ Fa(x) =0 <= #{i|x =1} is odd.



Preassociativity and semiautomata
X, Q finite.

Definition. For an onto F: X* — Q, set

qo -= F(E),
(q,2) == {F(xz) | g = F(x)},

AF = (Q, q0,9) I

Generally, Af is a non-deterministic semiautomaton.




Preassociativity and semiautomata
X, Q finite.

Definition. For an onto F: X* — Q, set

qo -= F(E),
(q,2) == {F(xz) | g = F(x)},

AF = (Q, q0,9) I

Generally, Af is a non-deterministic semiautomaton.

Lemma.

F is preassociative <= A’ is deterministic and preassociative I




A criterion for preassociativity

F is preassociative <= A’ is deterministic and preassociative I

For any state q of A = (Q, go,d), any L € 2%X" and z € X, set

L(q) = {x € X* | 6(q0,x) = q}
z.L:={zx|x e L}




A criterion for preassociativity

F is preassociative <= A’ is deterministic and preassociative I

For any state q of A = (Q, go,d), any L € 2%X" and z € X, set

L(q) = {x € X* | 6(q0,x) = q}
z.L:={zx|x e L}

Proposition. Let A = (Q, go, ) be a semiautomaton. The
following conditions are equivalent.

(i) Ais preassociative,
(ii) forall ze€ X and g € Q,

z.14(q) C LA(q), for some ¢’ € Q.



z.L4(q) C LA(q), for some ¢’ € Q.

Example. X = {0,1}

0o 1 o0
poSliBo
1

L“(e) = {x | x contains an even number of 1}

LA(0) = {x | x contains an odd number of 1}

0.L4(0) C LA(0) 0.LA(e) C LA(e)
1.L4(0) C LA(e) 1.L4(e) € L (o)



An example of characterization

Definition. F: X* — X* is length-based if

F = ¢ol-| for some ¢: N — X*.



An example of characterization

Definition. F: X* — X* is length-based if

F = ¢ol-| for some ¢: N — X*.

Proposition. Let F: X* — X* be a length-based function. The
following conditions are equivalent.

(i) F is associative
(i)
[FO)| = a(lx])

where o: N — N satisfies

a(n+ k) = ala(n) + k), Vn, ke N
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a(n+ k) = ala(n)+ k), Vn, k € N
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Relaxing the associativity property

X :=LUN where L ={a, b,c,...,z}
|x|r, = number of letters of x that are in L.

The functions F, G defined by

[ x, if x| <m
F(X)_{xl--.xm_1]x|, if x| >m

[ x if x| <m
G(x) = { s xmlXle, if x| > m

are not associative,



Relaxing the associativity property

X :=LUN where L ={a, b,c,...,z}
|x|r, = number of letters of x that are in L.
The functions F, G defined by
[ x, if x| <m
F(x) = { X1 Xme1|X|,  if x| >m
| x, if x| <m
G(x) = { s xmlXle, if x| > m
are not associative, but they satisfy

F(xyz) = F(xF(y)z) V xz € X* such that ly| < m



The origin of the terminology

f: X xX — X is associative if

f(x,f(y,z)) = f(f(x,y), z)

Associativity enables us to define expressions like

f(x,y,z,t) = f(f(f(x,y),2), 1)
f(Xv f(f(Y7Z)7 t)) =

Define F: X* — X U{e} by

F(e)=e, F(x)=x, F(x)="f(x,...

Then F is an associative variadic operation.

, Xn)
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Let
- H: X* — X* be associative and length preserving
- fp: ran(H,) — X be one-to-one for every n > 1

Set
Fn,=f,oH, n>1
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Set
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If F(F(Y)M) = F(y) for all y € X*, then

F(XF(y)MZ) = F(xyz)7 Xyz € X*



Let
- H: X* — X* be associative and length preserving
- fp: ran(H,) — X be one-to-one for every n > 1

Set
Fn,=f,oH, n>1

If F(F(Y)M) = F(y) for all y € X*, then

F(XF(y)MZ) = F(xyz)7 Xyz € X*

This property is called barycentric associativity and is satisfied by a
wide class of means.
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Conclusion

The ubiquity of the associativity property
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And now for something
completely different



An invitation
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The first
International Symposium on Aggregation and
Structures

Luxembourg, July 5 — 8, 2016
http://math.uni.lu/isas/



An invitation

The first
International Symposium on Aggregation and
Structures

Scientific Committee:

Miguel Couceiro,

Bernard De Baets, Radko Mesiar.
Invited speakers:

Marek Gagolewski, Carlos Lopez-Molina,
Michel Grabisch, Gabriella Pigozzi.

Luxembourg, July 5 — 8, 2016
http://math.uni.lu/isas/



