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Notation

n-tuples x in X n ≡ n-strings over X

0-string: ε,
1-strings: x , y , z , . . .
n-strings: x, y, z, . . .

|x| = length of x

X ∗ :=
⋃
n≥0

X n

We endow X ∗ with concatenation



Notation

Any F : X ∗ → Y is called a variadic function, and we set

Fn := F |X n .

Any F : X ∗ → X ∪ {ε} is a variadic operation.

We assume
F (x) = ε ⇐⇒ x = ε



Associativity for string functions

Definition. F : X ∗ → X ∗ is associative if

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Examples.

· sorting in alphabetical order

· letter removing, duplicate removing
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Associativity entails ‘distributivity’

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Example. F = sort()
Input: xzu · · · in blocks of unknown length given at unknown
time intervals.

Output: sort(xzu · · · )
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“Highly” distributed algorithms
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Associativity for variadic functions?

F (xyz) = F (xF (y)z) ∀ xyz ∈ X ∗

Quest: a notion of ‘associativity’ for variadic F : X ∗ → Y

Definition. We say that F : X ∗ → Y is preassociative if

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Examples. Fn(x) = x21 + · · ·+ x2n (X = Y = R)
Fn(x) = |x| (X arbitrary, Y = N)
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Associativity and preassociativity

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Proposition. Let F : X ∗ → X ∗.

F is associative

⇐⇒
F is preassociative and F ◦ F = F .

Slogan. Preassociativity is a composition-free version of
associativity.



Semiautomata
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A semiautomaton over X :

A = (Q, q0, δ)

where q0 ∈ Q is the initial state and

δ : Q × X → Q

is the transition function.

The map δ is extended to Q × X ∗ by

δ(q, ε) := q,

δ(q, xy) := δ(δ(q, x), y)

Definition. FA : X ∗ → Q is defined by

FA(x) := δ(q0, x)
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Preassociativity and semiautomata

FA(x) := δ(q0, x)

Fact. If A is a semiautomaton,

· FA is “half”-preassociative:

FA(y) = FA(y′) =⇒ FA(y′z) = FA(y′z)

· FA may not be preassociative:

q0 q1

q2

a

b a

b

b

FA(b) = q1 = FA(ba)

FA(bb) = q2 6= q0 = FA(bba)



Preassociativity and semiautomata

Definition. A semiautomaton is preassociative if it satisfies

δ(q0, x) = δ(q0, y) =⇒ δ(q0, zx) = δ(q0, zy)
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y

=⇒ q0
z
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y

Lemma.

A preassociative ⇐⇒ FA preassociative

Example. X = {0, 1}
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FA(x) = e ⇐⇒ #{i | xi = 1} is even,

FA(x) = o ⇐⇒ #{i | xi = 1} is odd.
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Preassociativity and semiautomata

X ,Q finite.

Definition. For an onto F : X ∗ → Q, set

q0 := F (ε),

δ(q, z) := {F (xz) | q = F (x)},

AF := (Q, q0, δ)

Generally, AF is a non-deterministic semiautomaton.

Lemma.

F is preassociative ⇐⇒ AF is deterministic and preassociative
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A criterion for preassociativity

F is preassociative ⇐⇒ AF is deterministic and preassociative

For any state q of A = (Q, q0, δ), any L ⊆ 2X
∗

and z ∈ X , set

LA(q) := {x ∈ X ∗ | δ(q0, x) = q}
z .L := {zx | x ∈ L}

Proposition. Let A = (Q, q0, δ) be a semiautomaton. The
following conditions are equivalent.

(i) A is preassociative,

(ii) for all z ∈ X and q ∈ Q,

z .LA(q) ⊆ LA(q′), for some q′ ∈ Q.
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z .LA(q) ⊆ LA(q′), for some q′ ∈ Q.

Example. X = {0, 1}

e o

1 0

1

0

LA(e) = {x | x contains an even number of 1}
LA(o) = {x | x contains an odd number of 1}

0.LA(o) ⊆ LA(o)

1.LA(o) ⊆ LA(e)

0.LA(e) ⊆ LA(e)

1.LA(e) ⊆ LA(o)



An example of characterization

Definition. F : X ∗ → X ∗ is length-based if

F = φ ◦ | · | for some φ : N→ X ∗.

Proposition. Let F : X ∗ → X ∗ be a length-based function. The
following conditions are equivalent.

(i) F is associative

(ii)
|F (x)| = α(|x|)

where α : N→ N satisfies

α(n + k) = α(α(n) + k), ∀n, k ∈ N
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Relaxing the associativity property

X := L ∪ N where L = {a, b, c , . . . , z}
|x|L = number of letters of x that are in L.

The functions F ,G defined by

F (x) =

{
x, if |x| < m
x1 · · · xm−1|x|, if |x| ≥ m

G (x) =

{
x, if |x| < m
x1 · · · xm|x|L, if |x| ≥ m

are not associative,

but they satisfy

F (xyz) = F (xF (y)z) ∀ xz ∈ X ∗ such that |y| ≤ m
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The origin of the terminology

f : X × X → X is associative if

f (x , f (y , z)) = f (f (x , y), z)

Associativity enables us to define expressions like

f (x , y , z , t) = f (f (f (x , y), z), t)

= f (x , f (f (y , z), t)) = · · ·

Define F : X ∗ → X ∪ {ε} by

F (ε) = ε, F (x) = x , F (x) = f (x1, . . . , xn)

Then F is an associative variadic operation.
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Let

· H : X ∗ → X ∗ be associative and length preserving

· fn : ran(Hn)→ X be one-to-one for every n ≥ 1

Set
Fn = fn ◦ Hn, n ≥ 1

If F (F (y)|y|) = F (y) for all y ∈ X ∗, then

F (xF (y)|y|z) = F (xyz), xyz ∈ X ∗

This property is called barycentric associativity and is satisfied by a
wide class of means.
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Conclusion

The ubiquity of the associativity property
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And now for something
completely different
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Scientific Committee:
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Bernard De Baets,
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