Automates, mots et décision

Bruno Teheux

University of Luxembourg

What is the common point among. . .

What is the common point among. . .

What is the common point among. . .

sort()

What is the common point among. . .

Notation

$$
n \text {-tuples } x \text { in } X^{n} \equiv n \text {-strings over } X
$$

0 -string: ε,
1-strings: x, y, z, \ldots
n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots$

$$
\begin{gathered}
|\mathbf{x}|=\text { length of } \mathbf{x} \\
X^{*}:=\bigcup_{n \geq 0} X^{n}
\end{gathered}
$$

We endow X^{*} with concatenation

Notation

Any $F: X^{*} \rightarrow Y$ is called a variadic function, and we set

$$
F_{n}:=\left.F\right|_{X^{n}} .
$$

Any $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is a variadic operation.
We assume

$$
F(x)=\varepsilon \quad \Longleftrightarrow \quad x=\varepsilon
$$

Associativity for string functions

Definition. $F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Associativity for string functions

Definition. $F: X^{*} \rightarrow X^{*}$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Examples.

- sorting in alphabetical order
- letter removing, duplicate removing

Associativity entails 'distributivity'

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Example. $F=\operatorname{sort}()$
InPut: xzu \cdots in blocks of unknown length given at unknown time intervals.

Output: sort(xzu...)

Associativity entails 'distributivity'

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Example. $F=\operatorname{sort}()$
InPut: xzu \cdots in blocks of unknown length given at unknown time intervals.

Output: sort(xzu...)

Associativity entails 'distributivity'

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Example. $F=\operatorname{sort}()$
InPut: xzu \cdots in blocks of unknown length given at unknown time intervals.

Output: sort(xzu...)

Associativity entails 'distributivity'

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Example. $F=\operatorname{sort}()$
InPut: xzu \cdots in blocks of unknown length given at unknown time intervals.

Output: sort(xzu...)

"Highly" distributed algorithms

Associativity for variadic functions?

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Quest: a notion of 'associativity' for variadic $F: X^{*} \rightarrow Y$

Associativity for variadic functions?

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathrm{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Quest: a notion of 'associativity' for variadic $F: X^{*} \rightarrow Y$
Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathbf{x y z})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Associativity for variadic functions?

$$
F(\mathrm{xyz})=F(x F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Quest: a notion of 'associativity' for variadic $F: X^{*} \rightarrow Y$
Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathrm{xyz})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Examples. $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

$$
F_{n}(\mathbf{x})=|\mathbf{x}| \quad(X \text { arbitrary, } Y=\mathbb{N})
$$

Associativity and preassociativity

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathrm{xyz})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Proposition. Let $F: X^{*} \rightarrow X^{*}$.
F is associative

$$
F \text { is preassociative } \quad \text { and } \quad F \circ F=F \text {. }
$$

Slogan. Preassociativity is a composition-free version of associativity.

Semiautomata

A semiautomaton over X :

$$
\mathcal{A}=\left(Q, q_{0}, \delta\right)
$$

where $q_{0} \in Q$ is the initial state and

$$
\delta: Q \times X \rightarrow Q
$$

is the transition function.

The map δ is extended to $Q \times X^{*}$ by

$$
\begin{gathered}
\delta(q, \varepsilon):=q \\
\delta(q, \mathbf{x y}):=\delta(\delta(q, \mathbf{x}), y)
\end{gathered}
$$

Semiautomata

A semiautomaton over X :

$$
\mathcal{A}=\left(Q, q_{0}, \delta\right)
$$

where $q_{0} \in Q$ is the initial state and

$$
\delta: Q \times X \rightarrow Q
$$

is the transition function.

The map δ is extended to $Q \times X^{*}$ by

$$
\begin{gathered}
\delta(q, \varepsilon):=q \\
\delta(q, \mathbf{x y}):=\delta(\delta(q, \mathbf{x}), y)
\end{gathered}
$$

Definition. $F_{\mathcal{A}}: X^{*} \rightarrow Q$ is defined by

$$
F_{\mathcal{A}}(\mathbf{x}):=\delta\left(q_{0}, \mathbf{x}\right)
$$

Preassociativity and semiautomata

$$
F_{\mathcal{A}}(\mathbf{x}):=\delta\left(q_{0}, \mathbf{x}\right)
$$

Fact. If \mathcal{A} is a semiautomaton,

- $F_{\mathcal{A}}$ is "half"-preassociative:

$$
F_{\mathcal{A}}(\mathbf{y})=F_{\mathcal{A}}\left(\mathbf{y}^{\prime}\right) \quad \Longrightarrow F_{\mathcal{A}}\left(\mathbf{y}^{\prime} \mathbf{z}\right)=F_{\mathcal{A}}\left(\mathbf{y}^{\prime} \mathbf{z}\right)
$$

- $F_{\mathcal{A}}$ may not be preassociative:

$$
\begin{gathered}
F_{\mathcal{A}}(b)=q_{1}=F_{\mathcal{A}}(b a) \\
F_{\mathcal{A}}(b b)=q_{2} \neq q_{0}=F_{\mathcal{A}}(b b a)
\end{gathered}
$$

Preassociativity and semiautomata

Definition. A semiautomaton is preassociative if it satisfies

$$
\delta\left(q_{0}, \mathbf{x}\right)=\delta\left(q_{0}, \mathbf{y}\right) \quad \Longrightarrow \quad \delta\left(q_{0}, \mathbf{z x}\right)=\delta\left(q_{0}, z \mathbf{y}\right)
$$

Preassociativity and semiautomata

Definition. A semiautomaton is preassociative if it satisfies

$$
\delta\left(q_{0}, \mathbf{x}\right)=\delta\left(q_{0}, \mathbf{y}\right) \quad \Longrightarrow \quad \delta\left(q_{0}, z \mathbf{x}\right)=\delta\left(q_{0}, z \mathbf{y}\right)
$$

Lemma.
\mathcal{A} preassociative $\Longleftrightarrow F_{\mathcal{A}}$ preassociative

Preassociativity and semiautomata

Definition. A semiautomaton is preassociative if it satisfies

$$
\delta\left(q_{0}, \mathbf{x}\right)=\delta\left(q_{0}, \mathbf{y}\right) \quad \Longrightarrow \quad \delta\left(q_{0}, \mathbf{z x}\right)=\delta\left(q_{0}, z \mathbf{y}\right)
$$

Lemma.
\mathcal{A} preassociative $\Longleftrightarrow F_{\mathcal{A}}$ preassociative

Example. $X=\{0,1\}$

$$
\begin{aligned}
F_{\mathcal{A}}(\mathbf{x}) & =e \Longleftrightarrow \#\left\{i \mid x_{i}=1\right\} \text { is even } \\
F_{\mathcal{A}}(\mathbf{x}) & =0 \Longleftrightarrow \#\left\{i \mid x_{i}=1\right\} \text { is odd. }
\end{aligned}
$$

Preassociativity and semiautomata

X, Q finite.
Definition. For an onto $F: X^{*} \rightarrow Q$, set

$$
\begin{gathered}
q_{0}:=F(\varepsilon), \\
\delta(q, z):=\{F(\mathbf{x} z) \mid q=F(\mathbf{x})\}, \\
\mathcal{A}^{F}:=\left(Q, q_{0}, \delta\right)
\end{gathered}
$$

Generally, \mathcal{A}^{F} is a non-deterministic semiautomaton.

Preassociativity and semiautomata

X, Q finite.
Definition. For an onto $F: X^{*} \rightarrow Q$, set

$$
\begin{gathered}
q_{0}:=F(\varepsilon), \\
\delta(q, z):=\{F(\mathbf{x z}) \mid q=F(\mathbf{x})\}, \\
\mathcal{A}^{F}:=\left(Q, q_{0}, \delta\right)
\end{gathered}
$$

Generally, \mathcal{A}^{F} is a non-deterministic semiautomaton.

Lemma.

F is preassociative $\Longleftrightarrow \mathcal{A}^{F}$ is deterministic and preassociative

A criterion for preassociativity

F is preassociative $\Longleftrightarrow \mathcal{A}^{F}$ is deterministic and preassociative

For any state q of $\mathcal{A}=\left(Q, q_{0}, \delta\right)$, any $L \subseteq 2^{X^{*}}$ and $z \in X$, set

$$
\begin{aligned}
L^{\mathcal{A}}(q) & :=\left\{\mathbf{x} \in X^{*} \mid \delta\left(q_{0}, \mathbf{x}\right)=q\right\} \\
& z . L:=\{z \mathbf{x} \mid \mathbf{x} \in L\}
\end{aligned}
$$

A criterion for preassociativity

F is preassociative $\Longleftrightarrow \mathcal{A}^{F}$ is deterministic and preassociative
For any state q of $\mathcal{A}=\left(Q, q_{0}, \delta\right)$, any $L \subseteq 2^{X^{*}}$ and $z \in X$, set

$$
\begin{aligned}
L^{\mathcal{A}}(q) & :=\left\{\mathbf{x} \in X^{*} \mid \delta\left(q_{0}, \mathbf{x}\right)=q\right\} \\
& z . L:=\{z \mathbf{x} \mid \mathbf{x} \in L\}
\end{aligned}
$$

Proposition. Let $\mathcal{A}=\left(Q, q_{0}, \delta\right)$ be a semiautomaton. The following conditions are equivalent.
(i) \mathcal{A} is preassociative,
(ii) for all $z \in X$ and $q \in Q$,

$$
z \cdot L^{\mathcal{A}}(q) \subseteq L^{\mathcal{A}}\left(q^{\prime}\right), \quad \text { for some } q^{\prime} \in Q .
$$

$$
z . L^{\mathcal{A}}(q) \subseteq L^{\mathcal{A}}\left(q^{\prime}\right), \quad \text { for some } q^{\prime} \in Q
$$

Example. $X=\{0,1\}$

$L^{\mathcal{A}}(e)=\{\mathbf{x} \mid \mathbf{x}$ contains an even number of 1$\}$
$L^{\mathcal{A}}(o)=\{\mathbf{x} \mid \mathbf{x}$ contains an odd number of 1$\}$

$$
\begin{array}{ll}
0 . L^{\mathcal{A}}(o) \subseteq L^{\mathcal{A}}(o) & 0 . L^{\mathcal{A}}(e) \subseteq L^{\mathcal{A}}(e) \\
1 . L^{\mathcal{A}}(o) \subseteq L^{\mathcal{A}}(e) & 1 . L^{\mathcal{A}}(e) \subseteq L^{\mathcal{A}}(o)
\end{array}
$$

An example of characterization

Definition. $F: X^{*} \rightarrow X^{*}$ is length-based if

$$
F=\phi \circ|\cdot| \quad \text { for some } \phi: \mathbb{N} \rightarrow X^{*} .
$$

An example of characterization

Definition. $F: X^{*} \rightarrow X^{*}$ is length-based if

$$
F=\phi \circ|\cdot| \quad \text { for some } \phi: \mathbb{N} \rightarrow X^{*} .
$$

Proposition. Let $F: X^{*} \rightarrow X^{*}$ be a length-based function. The following conditions are equivalent.
(i) F is associative
(ii)

$$
|F(\mathbf{x})|=\alpha(|\mathbf{x}|)
$$

where $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ satisfies

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

$$
\alpha(n+k)=\alpha(\alpha(n)+k), \quad \forall n, k \in \mathbb{N}
$$

Relaxing the associativity property

$X:=\mathbb{L} \cup \mathbb{N}$ where $\mathbb{L}=\{a, b, c, \ldots, z\}$
$|\mathbf{x}|_{\mathbb{L}}=$ number of letters of \mathbf{x} that are in \mathbb{L}.
The functions F, G defined by

$$
\begin{aligned}
& F(\mathbf{x})= \begin{cases}\mathbf{x}, & \text { if }|\mathbf{x}|<m \\
x_{1} \cdots x_{m-1}|\mathbf{x}|, & \text { if }|\mathbf{x}| \geq m\end{cases} \\
& G(\mathbf{x})= \begin{cases}\mathbf{x}, & \text { if }|\mathbf{x}|<m \\
x_{1} \cdots x_{m}|\mathbf{x}|_{\mathbb{L}}, & \text { if }|\mathbf{x}| \geq m\end{cases}
\end{aligned}
$$

are not associative,

Relaxing the associativity property

$X:=\mathbb{L} \cup \mathbb{N}$ where $\mathbb{L}=\{a, b, c, \ldots, z\}$
$|\mathbf{x}|_{\mathbb{L}}=$ number of letters of \mathbf{x} that are in \mathbb{L}.
The functions F, G defined by

$$
\begin{aligned}
& F(\mathbf{x})= \begin{cases}\mathbf{x}, & \text { if }|\mathbf{x}|<m \\
x_{1} \cdots x_{m-1}|\mathbf{x}|, & \text { if }|\mathbf{x}| \geq m\end{cases} \\
& G(\mathbf{x})= \begin{cases}\mathbf{x}, & \text { if }|\mathbf{x}|<m \\
x_{1} \cdots x_{m}|\mathbf{x}|_{\mathbb{L}}, & \text { if }|\mathbf{x}| \geq m\end{cases}
\end{aligned}
$$

are not associative, but they satisfy

$$
F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z}) \quad \forall \mathbf{x z} \in X^{*} \text { such that }|\mathbf{y}| \leq m
$$

The origin of the terminology

$f: X \times X \rightarrow X$ is associative if

$$
f(x, f(y, z))=f(f(x, y), z)
$$

Associativity enables us to define expressions like

$$
\begin{aligned}
f(x, y, z, t) & =f(f(f(x, y), z), t) \\
& =f(x, f(f(y, z), t))=\cdots
\end{aligned}
$$

Define $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ by

$$
F(\varepsilon)=\varepsilon, \quad F(x)=x, \quad F(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)
$$

Then F is an associative variadic operation.

What about. . .

What about. . .

Let

- $H: X^{*} \rightarrow X^{*}$ be associative and length preserving
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow X$ be one-to-one for every $n \geq 1$

Set

$$
F_{n}=f_{n} \circ H_{n}, \quad n \geq 1
$$

Let

- $H: X^{*} \rightarrow X^{*}$ be associative and length preserving
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow X$ be one-to-one for every $n \geq 1$

Set

$$
F_{n}=f_{n} \circ H_{n}, \quad n \geq 1
$$

If $F\left(F(\mathbf{y})^{|\mathbf{y}|}\right)=F(\mathbf{y})$ for all $\mathbf{y} \in X^{*}$, then

$$
F\left(x F(y)^{|y|} \mathbf{z}\right)=F(x y z), \quad x y z \in X^{*}
$$

Let

- $H: X^{*} \rightarrow X^{*}$ be associative and length preserving
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow X$ be one-to-one for every $n \geq 1$

Set

$$
F_{n}=f_{n} \circ H_{n}, \quad n \geq 1
$$

If $F\left(F(\mathbf{y})^{|\mathbf{y}|}\right)=F(\mathbf{y})$ for all $\mathbf{y} \in X^{*}$, then

$$
F\left(x F(\mathbf{y})^{|y|} \mathbf{z}\right)=F(x y z), \quad x y z \in X^{*}
$$

This property is called barycentric associativity and is satisfied by a wide class of means.

Conclusion

Conclusion

The ubiquity of the associativity property

http://math.uni.lu/~teheux

And now for something completely different

An invitation

An invitation

The first
International Symposium on Aggregation and Structures

Luxembourg, July 5 -8, 2016 http://math.uni.lu/isas/

An invitation

The first
 International Symposium on Aggregation and Structures

Scientific Committee:

Miguel Couceiro, Bernard De Baets,

Radko Mesiar.

Invited speakers:

Marek Gagolewski, Michel Grabisch,

Carlos Lopez-Molina, Gabriella Pigozzi.

$$
\begin{gathered}
\text { Luxembourg, July } 5-8,2016 \\
\text { http://math.uni.lu/isas/ }
\end{gathered}
$$

