
GemRBAC-DSL: a High-level Specification Language for
Role-based Access Control Policies

Ameni Ben Fadhel, Domenico Bianculli, Lionel Briand
University of Luxembourg, Luxembourg, Luxembourg

{ameni.benfadhel,domenico.bianculli,lionel.briand}@uni.lu

ABSTRACT
A role-based access control (RBAC) policy restricts a user
to perform operations based on her role within an organiza-
tion. Several RBAC models have been proposed to represent
different types of RBAC policies. However, the expressive-
ness of these models has not been matched by specification
languages for RBAC policies. Indeed, existing policy spec-
ification languages do not support all the types of RBAC
policies defined in the literature.

In this paper we aim to bridge the gap between highly-
expressive RBAC models and policy specification languages,
by presenting GemRBAC-DSL, a new specification language
designed on top of an existing, generalized conceptual model
for RBAC. The language sports a syntax close to natural lan-
guage, to encourage its adoption among practitioners. We
also define semantic checks to detect conflicts and incon-
sistencies among the policies written in a GemRBAC-DSL
specification. We show how the semantics of GemRBAC-
DSL can be expressed in terms of an existing formaliza-
tion of RBAC policies as OCL (Object Constraint Lan-
guage) constraints on the corresponding RBAC conceptual
model. This formalization paves the way to define a model-
driven approach for the enforcement of policies written in
GemRBAC-DSL.

1. INTRODUCTION
In a role-based access control (RBAC) system, a user’s

request to access a resource or perform an operation is al-
lowed or denied based on access control policies (also called
authorization constraints) that take into account the role
of the requester. Various types of RBAC policies have been
proposed in the literature; in this paper, we refer to the poli-
cies classified in the taxonomy recently proposed in [7]. This
taxonomy identifies eight types of RBAC policies: prerequi-
site [4, 23], cardinality [2], precedence and dependency [24],
role hierarchy [23], separation of duty (SoD) [3,25], binding
of duty (BoD) [27], delegation and revocation [13, 28], and
contextual (both temporal and spatial) [10,19].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’16, June 5–8, 2016, Shanghai, China.
c© 2016 ACM. ISBN 978-1-4503-3802-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2914642.2914656

Several RBAC models have been proposed to characterize
the conceptual entities that are needed to represent these
policies. The original, standardized RBAC96 model [23]
supports only prerequisite, cardinality, role hierarchy, and
simple SoD policies. Various extensions of this model have
been defined to support additional policies. For example,
support for delegation policies have been added in the mod-
els proposed in [13, 26, 28, 29]; the models introduced in [5,
9, 10, 19, 22] have added support for contextual policies. In
our previous work [7] we proposed the GemRBAC model,
designed with the goal of integrating, in a coherent and com-
prehensive model, all the conceptual entities required to ex-
press the various types of RBAC polices proposed in the
literature. We have also proposed the GemRBAC+CTX
model [8], which is an extension of the GemRBAC model
that adds support for richer and more expressive contextual
policies.

On a par with the definition of complex and more expres-
sive RBAC models, there is the problem of defining policy
specification languages that are at least as expressive as the
policies supported by the existing models. While RBAC
models provide the fundamental concepts needed to formal-
ize various types of RBAC policies, policy specification lan-
guages represent a means to express RBAC policies that
can be used (for both policy definition and enforcement) in
practice. One group of proposals to define such languages
revolves around XACML [21], the OASIS standard for defin-
ing access control policy languages. Since XACML does not
support RBAC models natively, it has been extended with
profiles specific to RBAC [1,6]. Other types of RBAC policy
languages are ontology-based [15,16] or logic-based [3,12,17]
languages. The main problem of existing RBAC specifica-
tion languages is that they do not support all the types of
RBAC policies defined in the literature. For example, a sim-
ple delegation transfer policy like “any user with role r1 can
transfer her role to any user assigned to role r2” cannot be
expressed in any of the existing languages. Moreover, the
semantics of some of these languages is not executable for
the purpose of enforcing the policies specified with them.
Furthermore, many of them are not designed to be used by
practitioners.

These problems have practical implications, since the lack
of expressive policy specification languages limits the adop-
tion, among practitioners, of the more expressive RBAC
models proposed in the literature. In turn, this situation
makes practitioners use simple(r) RBAC models, resulting
in systems underspecified from the point of view of access
control. For example, the industrial partner for the research

project in which this work has been carried out, is a provider
of situational-aware information systems for emergency sce-
narios; given the criticality of such scenarios, highly-detailed
role access control policies are an essential need for them.
However, although our partner is aware of state-of-the-art
proposals for expressive RBAC models, it could not adopt
them in practice, because of the lack of a policy specification
language as expressive as them. Besides the expressiveness,
another requirement on the specification language stated by
our partner is the possibility of interpreting the policies writ-
ten in the language, with the purpose of automatically gen-
erating policy enforcement mechanisms.

In this paper we aim to bridge the gap between highly-
expressive RBAC models and policy specification languages,
by presenting GemRBAC-DSL, a new specification language
for RBAC policies. The language has been designed to cover
the various types of RBAC policies captured by the Gem-
RBAC+CTX model. Being based on this model, the lan-
guage is quite expressive (see Section 3 for a detailed com-
parison with the state-of-the-art). Moreover, GemRBAC-
DSL sports a syntax close to natural language, to encourage
its adoption among practitioners. Furthermore, we define se-
mantic checks that can be run on a GemRBAC-DSL policy
specification, to detect conflicting and inconsistent policy
definitions (e.g., a conflict between two policies, one defin-
ing an SoD policy and another one defining a BoD policy for
the same set of permissions). We have built an editor for
the language based on the XText framework and the Eclipse
platform, and integrated the semantics checks in it.

The GemRBAC+CTX model and its ancestor GemR-
BAC, which have inspired the design of GemRBAC-DSL,
come with an operationalization of the semantics of the poli-
cies they support. This operationalization is defined fol-
lowing a model-driven approach, in which the semantics of
each RBAC policy is expressed as an OCL (Object Con-
straint Language) constraint on the RBAC model. Since
the expressiveness of GemRBAC-DSL is the same as that
of the GemRBAC+CTX model, we define the semantics of
GemRBAC-DSL by mapping the constructs of the language
to the corresponding OCL constraints defined for the Gem-
RBAC+CTX model in [7, 8]. This mapping allows users
of GemRBAC-DSL to benefit from the model-driven ap-
proach for policy enforcement proposed in [7, 8]. Indeed, a
policy written in GemRBAC-DSL can be enforced by eval-
uating the corresponding OCL constraint (as defined in the
mapping) on an instance of the GemRBAC+CTX model
obtained from the system in which the policy is being en-
forced. This model-driven approach for policy enforcement
can be used both at design time and at run time and relies on
standardized technologies, supported by industry-strength
tools (such as Eclipse OCL [14]).

Summing up, the main contributions of the paper are:
(a) the definition of the GemRBAC-DSL specification lan-
guage for RBAC policies; (b) the definition of the seman-
tic checks for a GemRBAC-DSL policy specification; (c) a
publicly-available implementation of an editor to write poli-
cies in GemRBAC-DSL and check for potential conflicts
and inconsistencies among them.

The rest of the paper is organized as follows. Section 2
illustrates a motivating example for this work. Section 3
discusses the state of the art. Section 4 presents the lan-
guage, illustrating the syntax and providing examples for
each type of policy. Section 5 defines the semantic checks

for policies expressed in GemRBAC-DSL. Section 6 pro-
vides a brief overview of the semantics of the language. Sec-
tion 7 discusses the design trade-offs and the limitations of
GemRBAC-DSL, as well as its adoption by our industrial
partner. Section 8 concludes the paper and provides direc-
tions for future work.

2. MOTIVATING EXAMPLE
In this section we illustrate an example of RBAC policy

specifications that motivates our work. The example repre-
sents a subset of a real-world case study, defined in collabo-
ration with our industrial partner, a provider of situational-
aware information systems for emergency scenarios. The
case study deals with the specification of the RBAC poli-
cies for a Web application that provides information related
to humanitarian missions, ranging from satellite images to
highly-confidential data about refugees and casualties. For
space and confidentiality reasons we consider a small, sani-
tized subset of the system, but provide a representative list
of policies that covers exhaustively all the types of RBAC
policies used in the policy specifications of the case study.

We consider a humanitarian mission taking place from
February 12, 2016 to June 8, 2016 in a geographical area
symbolically known as “Zone1”, delimited by four segments
with coordinates (longitude and latitude in decimal degrees,
elevation in meters): (15:24:200)–(20:27:200), (20:27:200)–
(17:27:200), (17:27:200)–(15:27:200), (15:27:200)–(15:24:200).
The mission defines four roles (admin, assistant, trainee, par-
ticipant), four permissions (add casualty, modify casualty,
delete casualty, save satellitePhoto), four operations (create,
read, update, delete). The access control policies for this mis-
sion are:
PL1: To acquire role trainee, a user must be assigned to

role participant.
PL2: Role assistant cannot be assigned to more than three

users.
PL3: Role trainee is enabled only if role admin is active.

The latter cannot be deactivated if the role trainee is
still active.

PL4: If a user acquires role assistant, she will also acquire
all its junior roles.

PL5: A user can acquire either role assistant or trainee.
PL6: A user can activate roles assistant and admin at the

same time, as long as she does not perform all the
operations (create, read, update, delete) on the same
object (of type “casualty record”).

PL7: The operations allowed by permissions add casualty,
modify casualty, and delete casualty should be per-
formed by users having the same role.

PL8: In case a user assigned to role admin is on leave, she
has to delegate all the permissions associated with
her role to another user that is assigned to role assis-
tant. The delegation lasts for two weeks; during this
period the delegator is still allowed to execute the per-
missions associated with the role she has delegated.
Moreover, the delegated role can be further delegated
(by a delegate), with a maximum delegation depth of
2.

PL9: The delegation regulated by policy PL8 can be re-
voked by any user assigned to role admin. The revo-
cation will not affect the (further) delegations of role
admin possibly performed by delegated users. More-
over, the revocation will only remove the affected

Table 1: Support of policies in RBAC languages

Prq RH Card Prec SoD BoD Context Deleg Rev

S D Obj Op His T L

RCL2000 [3] - + + - + + - - - - - - - -
FORBAC [12] + - - - - - - - - - + + - -
Tower [17] + + + + + + + + + - - - +/- +/-
XACML [1,6] + + + - + + - - - - + + GT -
X-RBAC [18] + + + - + + + - - - + + - -
X-GTRBAC [11] + + + - + + + - - - - + - -
ROWLBAC [16] + + + - + + + - - - - - GT -
XACML+OWL [15] + + + + + + + + + - - - - -
RBAC-DSL [26] + + + + + + + + + - - - GT +

Legend. Prq: Prerequisite; RH: Role Hierarchy; Card: Cardinality; Prec: Precedence and Dependency; S: Static SoD; D:
Dynamic SoD; Obj: Object-based DSoD; Op: Operational-based DSoD, His: History-based DSoD, Deleg: Delegation.

users from the delegated role admin, and will not im-
pact the other roles possibly acquired through a role
hierarchy (of the delegated role).

PL10: Role participant is enabled for the entire duration of
the mission.

PL11: Role admin is enabled only in zone Zone1.
PL12: Role trainee is enabled at 100 meters from the bound-

ary inside Zone1.
The policies above show that defining the access control

requirements of our example requires to deal with several
types of policies (see taxonomy in [7]): prerequisite (PL1),
cardinality (PL2), precedence (PL3), role hierarchy (PL4),
SoD (PL5, PL6), BoD (PL7), delegation (PL8), revocation
(PL9), contextual (PL10–PL12). To express these policies
security engineers need a policy specification language ex-
pressive enough to support all of them. In the next section
we review existing RBAC specification languages in terms
of the policy types they support.

3. STATE OF THE ART
One of the first policy languages proposed for RBAC is

RCL2000 [3], which is a formal language based on first-order
predicate logic and defined on top of the RBAC96 model.
The language supports only role hierarchy and separation of
duty policies. FORBAC [12] is also an extension of RBAC
based on first-order logic. It adds support for attributes in
policies and numeric constraints; both features enable the
definition of more complex policies, like those containing
contextual constraints. However, FORBAC does not sup-
port role hierarchy, delegation, cardinality, and separation
of duty. Furthermore, a limitation shared both by RCL2000
and FORBAC is the difficulty of use by practitioners, since
both languages require a strong mathematical background.
Tower [17] is a high-level specification language for access
control policies; it supports delegation and history-based
SoD policies. However, delegation and revocation policies
are defined only as administrative operations for role-to-user
assignment, i.e., in terms of adding/removing a role to/from
a user.

Another research stream considers XML-based languages,
starting from the definition of XACML (eXtensible Access
Control Markup Language) [21]. XACML is a language for
access control, standardized by the OASIS community. The
XACML standard provides not only the specification lan-
guage for access control policies but also a reference enforce-
ment architecture. XACML is a general-purpose language
for expressing various types of access control models and

policies; being general-purpose, it does not support RBAC
natively (e.g., sessions are not supported). RBAC support
can be added to XACML by means of profiles. The OASIS
RBAC profile for XACML [6] supports only role hierarchy
and static separation of duty policies. Another RBAC pro-
file of XACML [1] supports separation of duty, delegation,
and context-based policies. X-RBAC [18] is an XML-based
specification language for RBAC policies in multi-domain
environments where authorization policies are distributed
over several domains. X-RBAC supports context-based, role
hierarchy, cardinality and separation of duty policies. X-
GTRBAC [11] is a language defined on top of the GTRBAC
model [19] for specifying RBAC policies for heterogeneous
and distributed enterprise resources. X-GTRBAC adds the
concept of user’s credentials to the GTRBAC model: users
are grouped according to their credentials. X-GTRBAC sup-
ports cardinality, separation of duty, role hierarchy, and tem-
poral policies.

Another language, conceptually similar to XACML, is
xfACL (eXtensible Functional Language for Access Con-
trol) [20]. xFACL is a general-purpose access control lan-
guage, which tries to combine the benefits of XACML and
RBAC. It is based on the specification of attributes for en-
tities involved in decisions (e.g., users, operations) and sup-
ports auxiliary policies to extend its expressiveness. The
latter is also its main drawback, since support for each type
of policy has to be manually added by means of an auxiliary
function.

Other languages deal with the integration of ontologies
to provide a semantic interpretation of access control poli-
cies across different, heterogenous organizations, and to sup-
port advanced access control policies. For instance, ROWL-
BAC [16] is an ontology-based language that combines OWL
(Web Ontology Language) and RBAC properties. The lan-
guage supports the specification of prerequisite, role hier-
archy, SoD, and delegation policies. The XACML+OWL
framework [15] combines OWL and XACML. Role hierar-
chy and separation of duty policies are specified using OWL,
while the XACML engine is used to make decisions for user
access requests. The interactions between the XACML en-
gine and the OWL ontology are defined through semantic
functions.

RBAC DSL [26] is a domain-specific language for RBAC
based on UML diagrams and OCL constraints. The corre-
sponding meta-model includes two levels: the policy level
and the user Access Level. The first level defines the basic
RBAC concepts: roles, resources, permissions and opera-
tions. At this level, SoD, cardinality, and role hierarchy

policies are represented as UML attributes and associations.
The second level defines the concepts of user, session, re-
source access, and snapshot (i.e., an instance of an RBAC
model at a specific time point). A predecessor/ successor
relation is defined for the concept of user, session and ac-
cess to identify the individual users, sessions and accesses
over time. At this level, authorization policies are defined
as OCL constraints based on the information available in
the policy level. RBAC DSL supports also delegation and
revocation policies. However, as acknowledged also in [8],
defining RBAC policies as OCL constraints can be difficult,
since it requires a high level of knowledge and expertise with
OCL, especially in our case in which OCL constraints tend
to be rather complex to express RBAC policies.

Table 1 summarizes the support for the various types
of RBAC policies in the policy specification languages dis-
cussed above. The types of policies used for the comparison
have been taken from the taxonomy in [7] and reflect the
ones we have observed in our industrial case study. We re-
mark that the specification of some type of policies, such
as context-based and delegation, depends not only on the
language but also on the underlying model.

One can see that none of these languages is expressive
enough to express all the policies presented in Section 2, re-
lated to our industrial case study. Moreover, the analysis
has also shown that the majority of existing policy speci-
fication languages is based on some formalism (either first-
order logic fragments, including OCL, or ontology languages
based on description logic) that require a strong theoretical
and mathematical background, which is rarely found among
practitioners. Hence, we contend that there is a need for
an expressive specification language for RBAC policies that
can also be used by practitioners.

4. THE GEMRBAC-DSL LANGUAGE
The GemRBAC-DSL policy specification language has

been designed as a domain-specific language built on top of
the GemRBAC+CTX model. The choice of the underly-
ing model for the language has been dictated by the need
to support a large variety of RBAC policies, like the ones
used for the specification of our industrial case study (see
Section 2). Hence, the language inherits the expressiveness
of the GemRBAC+CTX model (see [7, 8]).

The main goal during the design of the language has been
to encourage its use among practitioners. Indeed, the lan-
guage captures the main RBAC concepts that security an-
alysts are familiar with and allows for their specification
using a syntax close to natural language. Furthermore, the
language design process has incorporated the feedback pro-
vided by the security analysts of our industrial partner, who
have commented on the expressiveness and the clarity of the
language. At the time of writing, the language is being intro-
duced into the security development lifecycle of our partner,
to support the top-down definition of access control policies
and enforcement mechanisms.

4.1 Syntax
The syntax of GemRBAC-DSL is shown in Fig. 1, using

the Backus-Naur Form (BNF) notation: non-terminal sym-
bols are enclosed in angle brackets; terminal symbols are en-
closed in single quotes; (derivation) rules are denoted with
the ::= symbol; alternatives within a rule are indicated us-
ing a vertical bar; a star stands for zero or more occurrences

〈RBAC-definition〉 ::= 〈preamble〉 〈policies〉
〈preamble〉 ::= 〈users〉 〈roles〉 〈permissions〉 〈operations〉
〈role-hierarchy〉 〈permission-hierarchy〉 〈geofences〉

〈users〉 ::= ‘users:’ 〈user〉 (‘,’ 〈user〉)* ‘;’

〈roles〉 ::= ‘roles:’ 〈role〉 (‘,’ 〈role〉)* ‘;’

〈permissions〉 ::= ‘permissions:’
〈permission〉 (‘,’ 〈permission〉)* ‘;’

〈operations〉 ::= ‘operations:’
〈operation〉 (‘,’ 〈operation〉)* ‘;’

〈id〉 ::= (‘a’-‘z’ | ‘A’-‘Z’ | ‘0’-‘9’)+

〈user〉 ::= 〈id〉
〈role〉 ::= 〈id〉
〈permission〉 ::= 〈id〉
〈operation〉 ::= 〈id〉
〈role-hierarchy〉 ::= ‘role-hierarchy:’

(〈rHierarchy〉 (‘,’ 〈rHierarchy〉)* | ‘none’) ‘;’

〈permission-hierarchy〉 ::= ‘permission-hierarchy:’
(〈pHierarchy〉 (‘,’ 〈pHierarchy〉)* | ‘none’) ‘;’

〈rHierarchy〉 ::= 〈role〉 ‘: {’ 〈role〉 (‘,’ 〈role〉)* ‘}’

〈pHierarchy〉 ::= 〈permission〉
‘: {’ 〈permission〉 (‘,’ 〈permission〉)* ‘}’

〈geofence〉 ::= ‘geofences:’ (〈geofence〉 (‘,’ 〈geofence〉)*
| ‘none’) ‘;’

〈geofence〉 ::= 〈id〉
〈policies〉 ::= ‘policies:’ (〈policy〉‘;’)+

〈policy〉 ::= 〈id〉 ‘:’ (〈Prerequisite〉 | 〈Cardinality〉
| 〈PrecEnabling〉 | 〈Hierarchy〉 | 〈SSoD〉 | 〈DSoD〉
| 〈BoD〉 | 〈Delegation〉 | 〈Revocation〉 | 〈ContextPolicy〉)

Figure 1: Grammar of GemRBAC-DSL

of an element; a plus stands for one or more occurrences of
an element; square brackets denote optional elements.

A GemRBAC-DSL policy specification (captured by the
start symbol 〈RBAC-definition〉) contains a 〈preamble〉 and
a list of 〈policies〉. The 〈preamble〉 contains the declara-
tion of the main entities that will be used in the rest of
the specification1: the list of users 〈users〉, the list of roles
〈roles〉, the list of permissions 〈permissions〉, and the list
of operations 〈operations〉. The 〈preamble〉 contains also
the list 〈role-hierarchy〉 of role hierarchy relations, and the
list 〈permission-hierarchy〉 of permission hierarchy relations.
Within these lists, each hierarchy relation (〈rHierarchy〉 for
role hierarchy and 〈pHierarchy〉 for permission hierarchy)
declares the parent (role or permission) followed by the list
of its junior (roles or permissions, respectively). The ab-
sence of role (or permission) hierarchies is explicitly denoted
with the keyword ‘none’. The 〈preamble〉 ends with the list
〈geofences〉 of logical locations, i.e., symbolic abstractions
that refer to real physical locations [8]. All the lists used in
the 〈preamble〉 are comma-separated and contain alphanu-

1Notice that the assignments of users to roles, of permissions
to roles, and of operations to permissions are not specified
with GemRBAC-DSL. We assume that these assignments
are defined in the RBAC system on which the policies are
going to be enforced.

meric identifiers. Finally, the list of policies 〈policies〉 con-
tains the actual policy specifications, where each policy is
composed by an identifier and by its body.

The following subsections illustrate each type of policy
supported by GemRBAC-DSL; for each policy, we include a
short definition, the syntax, its explanation, and an example
of specification based on the policies defined in Section 2.

4.2 Prerequisite policy
A prerequisite policy defines a precondition on a role or a

permission assignment: to acquire a role (or a permission),
a user must have been already assigned to another role (or
permission) [4, 23]. The syntax for this policy is:

(1)〈Prerequisite〉 := 〈PrereqRole〉 | 〈PrereqPermission〉
(2)〈PrereqRole〉 ::= ‘assign-role’ 〈role1 〉 ‘prerequisite’

〈role2 〉
(3)〈PrereqPermission〉 ::= ‘assign-permission’

〈permission1 〉 ‘prerequisite’ 〈permission2 〉

The syntax uses keywords for defining a prerequisite policy
either at the role (keyword ‘assign-role’ in rule 2) or at per-
mission level (keyword ‘assign-permission’ in rule 3). In
rule 2, 〈role2 〉 corresponds to the precondition for the assign-
ment of 〈role1 〉. Similarly, in rule 3, 〈permission2 〉 corre-
sponds to the precondition for the assignment of 〈permission1 〉.
For example, the prerequisite policy on role assignment PL1
is expressed in GemRBAC-DSL as:

PL1: assign-role trainee prerequisite
participant;

4.3 Cardinality policy
A cardinality policy defines a bound on the cardinality of

role activation and assignment relations [2]. Its syntax is:

(1)〈Cardinality〉 ::= 〈CardActivation〉 | 〈CardUser〉
| 〈CardPermission〉 | 〈CardRoleToUser〉
| 〈CardRoleToPermission〉

(2)〈CardActivation〉 ::= ‘maxActiveRoles =’ 〈integer〉
(3)〈CardUser〉 ::= ‘maxUsers =’ 〈integer〉

[‘only-for-role’ 〈role〉]
(4)〈CardPermission〉 ::= ‘maxPermissions =’ 〈integer〉

[‘only-for-role’ 〈role〉]
(5)〈CardRoleToUser〉 ::= ‘maxRoles-User =’ 〈integer〉

[‘only-for-user’ 〈user〉]
(6)〈CardRoleToPermission〉 ::= ‘maxRoles-Permission =’

〈integer〉 [‘only-for-permission’ 〈Permission〉]

GemRBAC-DSL supports five types of cardinality policies:
maximum number of active roles within a session (rule 2),
maximum number of users assigned to a role (rule 3), max-
imum number of permissions assigned to a role (rule 4),
maximum number of roles assigned to a user (rule 5), max-
imum number of roles assigned to a permission (rule 6). In
rules 2–6, 〈integer〉 represents the cardinality bound. In
rules 3–6, if the optional element is omitted, it means that
the bound will apply, respectively, to all roles (rules 3–4), all
users (rule 5), all permissions (rule 6). For example, the car-
dinality policy on user-to-role assignment PL2 is expressed
in GemRBAC-DSL as:

PL2: maxUsers = 3 only-for-role assistant;

4.4 Precedence and dependency policies
A precedence policy establishes a precedence relationship

between the enabling of a role and the activation of another
one. A dependency policy restricts the deactivation of a role
if another one is already active [24]. The syntax is:

(1)〈PrecEnabling〉 ::= ‘enable’ 〈role1 〉 ‘ if active’
〈role2 〉 [‘,’ 〈timeShift〉] [‘deactivation-dependency’]

(2)〈timeShift〉 := ‘after’ 〈integer〉 〈timeUnit〉
(3)〈timeUnit〉 ::= ‘second’ | ‘minute’ | ‘hour’ |

‘day’ | ‘week’ | ‘month’ | ‘year’

In rule 1, 〈role2 〉 denotes the role whose activation has to
precede the enabling of the role denoted by 〈role1 〉. An
optional 〈timeShift〉 can be specified to define the amount
of time that has to pass between the role enabling and the
role activation events (rules 2–3). The optional keyword
‘deactivation-dependency’ is used to express a dependency
policy. For example, the precedence and dependency policy
PL3 is expressed in GemRBAC-DSL as:

PL3: enable trainee if active admin
deactivation-dependency;

4.5 Role hierarchy policy
A hierarchy policy states that assigning a role r (respec-

tively, a permission p) to a user u (respectively, a role s)
implies assigning to u (respectively, s) also all the junior
roles of r (respectively, the sub-permissions of p) [23]. Its
syntax is defined as:

(1)〈Hierarchy〉 ::= ‘trigger-’ (〈RoleHierarchy〉
|〈PermissionHierarchy〉)

(2)〈RoleHierarchy〉 ::= ‘role-hierarchy’ 〈role〉
(3)〈PermissionHierarchy〉 ::= ‘permission-hierarchy’

〈permission〉

The syntax uses two different keywords for distinguishing
between role hierarchy (rule 2) and permission hierarchy
(rule 3). Notice that while the preamble of a GemRBAC-
DSL specification declares the role and permission hierarchy
relations for the system, a security analyst has to explicitly
define a role hierarchy policy (for a role or permission) to
put the hierarchy relation(s) into effect. For example, the
role hierarchy policy PL4 can be expressed as:

PL4: trigger-role-hierarchy assistant;

4.6 Separation of duty policy
A separation of duty (SoD) policy defines a mutual exclu-

sion relation between users, roles, or permissions; mutually-
exclusive entities involved in a SoD relation are called con-
flicting. SoD can be static or dynamic.

4.6.1 Static Separation of duty (SSoD)
An SSoD policy restricts the assignment of mutually ex-

clusive roles, users, or permissions [2, 3]. Its syntax is:

(1)〈SSoD〉 ::= 〈SSoDCR〉 | 〈SSoDCU 〉 | 〈SSoDCP〉
(2)〈SSoDCR〉 ::= ‘conflicting-roles-assignment’ 〈role〉

(‘,’ 〈role〉)+ [‘on permission’ 〈permission〉]
(3)〈SSoDCU 〉 ::= ‘conflicting-users-assignment’ 〈user〉

(‘,’ 〈user〉)+ [‘on role’ 〈role〉]

(4)〈SSoDCP〉 ::= ‘conflicting-roles-assignment’
〈permission〉 (‘,’ 〈permission〉)+ [‘on role’ 〈role〉]

SSoD policies can define conflicting roles (rule 2), con-
flicting users (rule 3), and conflicting permissions (rule 4).
Rules 2–4 have an optional block that indicates that the
SSoD policy is applied only when the roles are assigned to
a specific permission (rule 2) and when the users (rule 3)
or the permissions (rule 4) are assigned to a specific role.
For example, the SSoD policy on conflicting roles PL5 is
expressed in GemRBAC-DSL as:

PL5: conflicting-roles-assignment assistant ,
trainee;

4.6.2 Dynamic Separation of duty (DSoD)
A DSoD policy allows the assignment of conflicting roles

but forbids their activation in the same session [25]. GemRBAC-
DSL supports the specification of four types of DSoD: sim-
ple, object-based, operational-based, and history-based DSoD.
We refer the reader to [7, 25] for more details about these
types of policies. The syntax for DSoD policies is similar to
the one for SSoD policies but uses different keywords:

(1)〈DSoD〉 ::= 〈DSoDCU 〉 | 〈DSoDCP〉 | 〈DSoDCR〉

(2)〈DSoDCU 〉 ::= ‘conflicting-users-activation’
〈user〉 (‘,’ 〈user〉)+ [‘on role’ 〈role〉]

(3)〈DSoDCP〉 ::= ‘conflicting-permissions-activation’
〈permission〉 (‘,’ 〈permission〉)+ [‘on role’ 〈role〉]

(4)〈DSoDCR〉 ::= ‘conflicting-roles-activation’ 〈role〉
(‘,’ 〈role〉)+ [‘depending-on-business-task-list’
〈operation〉 (‘,’ 〈operation〉)+] [‘on-same-object’]

The optional keyword ‘on-same-object’ in rule 4 is used to
express an object-based DSoD policy. Similarly, the keyword
‘depending-on-business-task-list’ followed by a list of
〈operation〉s is used to specify an operational-based DSoD.
A history-based DSoD is defined by combining these two
keywords. For example, the history-based DSoD policy PL6
is expressed in GemRBAC-DSL as:

PL6: conflicting-roles-activation assistant ,
admin depending-on-business-task-list
create ,read ,update ,delete on-same-object;

4.7 Binding of duty policy
A binding of duty (BoD) policy states that the operations

of bounded permissions should be performed by the same
role or subject [27]. Its syntax is:

〈BoD〉 ::= ‘bounded-permissions’ 〈permission〉
(‘,’ 〈permission〉)+ (‘role-BoD’ | ‘subject-BoD’)

The syntax distinguishes between a role- or a subject-based
policy with the two keywords ‘role-BoD’ and ‘subject-BoD’.
The bounded permissions are specified as a list of 〈permission〉s.
For instance, the role-based BoD policy PL7 is expressed in
GemRBAC-DSL as:

PL7: bounded-permissions add_casualty ,
modify_casualty , delete_casualty role-BoD;

4.8 Delegation policy
A delegation policy allows a delegator (a user or any user

assigned to a specific role) to delegate her role to delegates
(the users or roles receiving the delegation). GemRBAC-
DSL adopts the concepts of delegation presented in [13, 28]
and integrated into the GemRBAC model [7], in which a
delegation can be single or multi-step, total or partial, of
type grant or transfer. A delegation of type transfer can be
either strong or weak. Moreover, a weak transfer delegation
can be of type static or dynamic. The syntax of a delegation
policy is defined below:

(1)〈Delegation〉 ::= (‘user ’〈user〉 | ‘role ’〈role〉)
‘can-delegate’ 〈role〉 (‘to users’ 〈user〉 (‘,’ 〈user〉)*
| ‘to roles’〈role〉 (‘,’ 〈role〉)*) ‘as’
(‘total’ | ‘partial with permissions (’
〈delegated-permissions〉‘)’) ‘,’
(‘grant’ [〈duration〉] (‘single’ | ‘multi-step’ 〈integer〉)
|‘transfer’ (‘strong’|‘weak-static’|‘weak-dynamic’))

(2)〈delegated-permissions〉 ::= 〈permission〉
(‘,’ 〈permission〉)*

(3)〈duration〉 ::= ‘for’ 〈integer〉 〈timeUnit〉

In the syntax, keywords ‘user’ and ‘role’ are used to de-
note the delegator. The keyword ‘can-delegate’ denotes
the 〈role〉 being delegated. The list of delegate 〈user〉s is
denoted by the keyword ‘to users’; similarly, the keyword
‘to roles’ denotes the list of delegate 〈role〉s. If the dele-
gation is partial, the keyword ‘partial-with-permissions’
denotes the list of 〈permission〉s being delegated. In the
case of a multi-step delegation, the syntax requires to indi-
cate the 〈integer〉 corresponding to the maximum number of
delegation steps allowed. If the delegation is of type grant, a
duration (denoted with the keyword ‘for’, rule 3) can be op-
tionally specified to indicate the amount of time after which
the delegation is automatically revoked. For example, the
delegation policy PL8 defines a delegation that is multi-step
(with a maximum delegation depth of 2), total (because all
the permissions of the delegated role have to be delegated),
of type grant (because the delegator is still allowed to ex-
ecute the permissions associated with the delegated role),
with a duration of at most two weeks. This policy is ex-
pressed in GemRBAC-DSL as:

PL8: role admin can-delegate admin to roles
assistant as total , grant for 2 week ,
multistep 2;

4.9 Revocation policy
A revocation policy allows a user or a role to revoke a

delegation. GemRBAC-DSL supports the concept of revo-
cation presented in [28] and integrated into the GemRBAC
model [7], in which a revocation can be grant-dependent or
grant-independent, strong or weak and, cascading or non-
cascading. Its syntax is defined as:

〈Revocation〉 ::= (‘user’ 〈user〉 | ‘role’ 〈role〉 | ‘delegator’)
‘can-revoke-delegation’ 〈id〉
(‘from users’ 〈user〉 (‘,’ 〈user〉)* | ‘from roles’ 〈role〉
(‘,’ 〈role〉)*)) ‘as’ (‘strong’ | ‘weak’) ‘,’
(‘nonCascading’ | ‘cascading’)

The syntax allows for specifying who can revoke a certain
delegation; the keywords ‘user’ and ‘role’ denote, respec-
tively, an explicit user or role, while the keyword ‘delegator’

implicitly refers to the user or role that originally performed
the delegation. The delegation that is being revoked is
referenced through its identifier, preceded by the keyword
‘can-revoke-delegation’. The keyword ‘from users’ de-
notes the list of 〈users〉 from which the delegation is re-
voked; similarly, the keyword ‘from roles’ denotes the list
of 〈roles〉 from which the delegation will be revoked. The
additional keywords that come after the keyword ‘as’ indi-
cate the type of revocation. For example, the revocation
policy PL9 is defined as weak (because it will not impact
the other roles possibly acquired through a role hierarchy)
and as non-cascading (because it will not affect the further
delegations performed along a delegation chain). This policy
is expressed in GemRBAC-DSL as:

PL9: role admin can-revoke-delegation PL8 from
roles assistant as weak , nonCascading;

4.10 Contextual policy
A contextual policy allows (or disallows) a user to be a

member of a role or to perform an operation according to
her context, i.e., depending on the current time [19] and/or
location [10]. The syntax for this policy is defined as follows:

(1)〈ContextPolicy〉 ::= 〈RoleContextPolicy〉
| 〈PermContextPolicy〉

(2)〈RoleContextPolicy〉 ::= ‘role-context’
((‘enable’ | ‘disable’) 〈role〉
| ((‘assign’ | ‘unassign’) 〈role〉 [‘to user’ 〈user〉]))
[‘only’] ‘@’ 〈context〉

(3)〈PermContextPolicy〉 ::= ‘permission-context’
((‘enable’ | ‘disable’) 〈permission〉
| ((‘assign’ | ‘unassign’) 〈permission〉
[‘to role’ 〈role〉])) [‘only’] ‘@’ 〈context〉

(4)〈context〉 ::= 〈temporal〉 | 〈spatial〉
| 〈spatioTemporal〉 (‘&&’ 〈spatioTemporal〉)*

A contextual policy can be defined either at the role (rule 2)
or at the permission level (rule 3). In rule 2 a security ana-
lyst can specify if a role should be enabled/disabled or if role
should be assigned/unassigned (possibly to a specific user,
as denoted by the optional keyword ‘to user’) in a specific
〈context〉. Rule 3 has a similar structure but it is used for
specifying the enabling/disabling/assignment/unassignment
of permissions. In both rules the optional keyword ‘only’
is used to specify that the role (or permission) referred in
the policy should be enable/disabled/assigned/unassigned
in any context different from the specified one. The con-
text specification is preceded by the ‘@’ symbol. As shown
in rule 4, GemRBAC-DSL supports temporal, spatial and
spatio-temporal context specifications. Temporal and spa-
tial policies will be illustrated in the next subsections, us-
ing the concepts of the GemRBAC+CTX model introduced
in [8]. Since spatio-temporal specifications can be seen as the
conjunction of a temporal policy and a spatial one, we will
omit their description for space reasons.

4.10.1 Policies with temporal context
The syntax for defining a temporal context is:

〈temporal〉 ::= ‘time’ (〈absoluteTime〉 | 〈relativeTime〉
| (〈compositeTime〉 (‘&’ 〈compositeTime〉)*)

〈compositeTime〉 ::= 〈absoluteTime〉 〈relativeTime〉

The type of temporal context supported by GemRBAC-
DSL corresponds to the one defined in [8], which distin-
guishes between absolute and relative time expressions. An
absolute time expression refers to a concrete point or in-
terval in the timeline; conversely, a relative time expression
cannot be mapped directly to a concrete point or interval
in the timeline. Furthermore, absolute time and relative
expressions can also be composed. For space reasons, in
this subsection we illustrate only the part of GemRBAC-
DSL that defines absolute time expressions; relative time
expressions are illustrated in Appendix A. The syntax of an
absolute time expression is:

(1)〈absoluteTime〉 ::=
((〈date〉 [‘at’ 〈hour〉] | ‘(’ 〈date〉 (‘,’〈date〉)+‘)’)
|(‘starting from’ 〈date〉 [‘at’ 〈hour〉]
| ‘[’〈date〉‘,’〈date〉‘]’
| ‘(’ ‘[’〈date〉‘,’〈date〉‘]’ (‘, [’〈date〉‘,’〈date〉‘]’)+‘)’)
[〈periodicTime〉])

(2)〈periodicTime〉 ::= ‘every’ [〈integer〉] 〈timeUnit〉
(3)〈date〉 ::= 〈sDayOfMonth〉(‘1’-‘9’)(‘0’-‘9’)(‘0’-‘9’)(‘0’-‘9’)

(4)〈sDayOfMonth〉 ::= 〈integer〉 〈sMonth〉
(5)〈sMonth〉 ::= ‘Jan’ | ‘Feb’ | ‘Mar’ | ‘Apr’ | ‘May’

| ‘June’ | ‘July’ | ‘Aug’ | ‘Sept’ | ‘Oct’ | ‘Nov’ | ‘Dec’

(6)〈hour〉 ::= ((‘0’-‘1’)(‘0’-‘9’) | (‘2’)(‘0’-‘3’)) ‘:’
(‘0’-‘5’) (‘0’-‘9’) ‘:’ (‘0’-‘5’) (‘0’-‘9’)

An absolute time expression can have different forms. The
simplest form is captured by 〈date〉, which is composed of a
day of the month 〈sDayOfMonth〉 and a year (rule 4). An
〈sDayOfMonth〉 denotes a day, represented as an 〈integer〉,
and a month, represented as an 〈sMonth〉. The latter corre-
sponds to the abbreviation for a specific month (rule 6). A
〈date〉 can be optionally followed by the ‘at’ keyword and an
〈hour〉, to represent a specific hour during a day2. An abso-
lute time expression can also correspond to a list of 〈date〉s
enclosed in round brackets. Another type of absolute time
expression is represented by intervals. An unbounded time
interval is specified with a 〈date〉 prefixed by the keyword
‘starting from’. A bounded time interval is represented as
two 〈date〉s enclosed in square brackets. Lists of bounded
intervals are enclosed in round brackets. Unbounded and
bounded time intervals as well as lists of bounded time in-
tervals can be followed by a periodicity expression (denoted
with the keyword ‘every’, see rule 2), which specifies how
often, during the selected interval(s), the action determined
by the policy (e.g., enabling a role) should be in effect. For
example, the role enabling policy PL10 can be expressed as:

PL10: role-context enable participant @time
[12 Feb 2016, 8 Jun 2016];

4.10.2 Policies with spatial context
The syntax for defining a spatial context is:

(1)〈spatial〉 ::= ‘location’ 〈location〉 (‘,’ 〈location〉)*
(2)〈location〉 ::= [relativeLocation] (‘physical’

〈physicalLocation〉 | ‘geofence’ 〈geofence〉)

2The current version of GemRBAC-DSL does not support
the concept of time zone.

(3)〈physicalLocation〉 ::= 〈point〉 | 〈polygon〉 | 〈circle〉
| 〈userPos〉

(4)〈point〉 ::= ‘(lat’ 〈float〉‘: long’ 〈float〉‘: alt’ 〈float〉‘)’

(5)〈userPos〉 ::= ‘position’ 〈user〉
(6)〈circle〉 ::= ‘center’ 〈point〉 ‘radius’ 〈float〉 〈locUnit〉
(7)〈polygon〉 ::= 〈polyline〉 〈polyline〉 (‘,’ 〈polyline〉)+
(8)〈polyline〉 ::= ‘line {’ 〈point〉 ‘,’ 〈point〉 ‘}’

(9)〈relativeLocation〉 ::= [〈integer〉 〈locUnit〉] 〈direction〉
(10)〈locUnit〉 ::= ‘miles’ | ‘meters’ | ‘kilometers’

(11)〈direction〉 ::= 〈cardinalDir〉 | 〈qualitativeDir〉
(12)〈cardinalDirection〉 ::= (‘N’ | ‘E’ | ‘S’ | ‘W’ | ‘NE’ | ‘SE’

| ‘SW’ |‘NW’) | ‘degree’ 〈integer〉
(13)〈qualitativeDirection〉 ::= ‘inside’ |‘outside’ |‘around’

The spatial context in GemRBAC-DSL is represented as a
set of locations. The concept of location is taken from [8]:
it is a bounded area or a point in space. Reference [8] fur-
ther classifies locations as physical (a precise position in a
geometric space) and logical (a symbolic abstraction of one
or many physical locations). Physical locations are denoted
in GemRBAC-DSL with the keyword ‘physical’, while the
keyword ‘geofence’ denotes logical locations. Notice that
the identifiers that can be used as logical locations are those
declared in the preamble under the rule 〈geofences〉.

The simplest type of physical location is a 〈point〉, i.e.,
a set of geographic coordinates denoted with the keywords
‘lat’, ‘long’, and ‘alt’, corresponding to latitude, longitude,
and altitude (rule 4). Each coordinate is expressed as a
floating-point number. The keyword ‘position’ followed by
a user id (rule 5) is used to define a location in terms of
the coordinates of a user. Bounded physical locations can
have the shape of a circle or of a polygon. A 〈circle〉 is
denoted with a ‘center’ and a ‘radius’; the latter is specified
using units of length (see rules 6 and 10). A polygon is
defined in terms of polylines, which are denoted with the
keyword ‘line’ and a start and an end 〈point〉 (rules 7–
8). For example, the location-based policy on role enabling
PL11 is expressed in GemRBAC-DSL as:

PL11: role-context enable admin
@location physical

line {(lat 15 : long 24 : alt 200),
(lat 20 : long 27 : alt 200)},

line {(lat 20 : long 27 : alt 200),
(lat 17 : long 27 : alt 200)},

line {(lat 17 : long 27 : alt 200),
(lat 15 : long 27 : alt 200)},

line {(lat 15 : long 27 : alt 200),
(lat 15 : long 24 : alt 200)};

As shown in rule 2, both physical and logical locations
can be optionally prefixed by 〈relativeLocation〉, which rep-
resents a location defined with respect to another one. A
〈relativeLocation〉 is expressed with a 〈direction〉 and an op-
tional distance expressed with a unit of length (rule 9). A
direction of type 〈cardinalDirection〉 is denoted with symbols
corresponding to cardinal and ordinal directions or with the
degrees of rotation (denoted with the ‘degree’ keyword fol-
lowed by an integer) on a compass (rule 12). A direction
of type 〈qualitativeDirection〉 represents a relative proxim-
ity to a location and is defined using the keywords ‘inside’,
‘outside’, or ‘around’ (rule 13). For example, the contextual

policy PL12, which contains a relative location, is expressed
in GemRBAC-DSL as:

PL12: role-context enable trainee @location
100 meters inside geofence Zone1;

5. SEMANTIC CHECKS
A security analyst can erroneously write policies that are

inconsistent or conflicting. In the following paragraphs we
describe all the possible conflicts that can be found in a
GemRBAC-DSL specification. We mainly focus on inter-
policy conflicts, i.e., global conflicts between different poli-
cies. The Eclipse-based editor for GemRBAC-DSL includes
semantic checks for these conflicts, which are then reported
to the user as errors or warnings.

Prerequisite role and SSoD on conflicting roles policies.
Let PR be the set of roles involved in a prerequisite role
policy, and SCR be the set of conflicting roles in a SSoDCR
policy. If PR ⊆ SCR, the two policies are in conflict. The
reason is that, while the prerequisite role policy requires
the assignment of two roles to the same user (in a certain
order), the SSoDCR policy prohibits this assignment. This
situation can be avoided by not specifying prerequisite role
policies and SSoDCR policies for the same subset of roles.
This conflict is reported as an error. The conflict between
the prerequisite permission policy and the SSoDCP one is
defined in a similar way.

Prerequisite role and Role hierarchy policies. Let PR be
the set of roles in a prerequisite role policy, and RH be the
set {r}∪juniors(r) in a role hierarchy policy, where junior()
is a function that returns the junior roles of its argument. If
PR ⊆ RH , the prerequisite role and the role hierarchy poli-
cies will require the assignment of the same subset of roles.
Hence there is no need to define a prerequisite policy be-
tween a role and its parent role. This conflict is reported as
a warning. The conflict between the prerequisite permission
policy and the permission hierarchy one is defined similarly.

Cardinality (role-to-user assignment) and Role hierarchy
policies. Let n be the number of juniors of role r in a role
hierarchy policy, and maxRoles be the maximum number
of roles that can be assigned to a user, as specified by a
cardinality policy. If n ≥ maxRoles, the cardinality policy
will be violated. This situation can be avoided by having
maxRoles greater than the number of juniors of any role.
This conflict is reported as an error. The conflict between
the cardinality (role-to-permission assignment) policy and
the permission hierarchy one is defined similarly.

Cardinality (permission-to-role assignment) and Binding
of duty policies. Let n be the number of bounded permis-
sions in BoD policy, and maxPerm be the maximum number
of permissions that can be assigned to a role, as specified by
a cardinality policy. If n > maxPerm, the cardinality policy
will be violated, because the BoD policy will require a role
to be assigned to more than maxPerm permissions. This
situation can be avoided by having maxPerm be equal or
greater than the number of bounded permissions in a BoD
policy. This conflict is reported as an error.

Role hierarchy and SSoD on conflicting roles policies. Let
RH be the set {r} ∪ juniors(r) in a role hierarchy policy,
where junior() is a function that returns the junior roles of
its argument; let SCR be the set of conflicting roles in an
SSoDCR policy. If |RH ∩ SCR| > 1 the two policies are in
conflict. Indeed, while the role hierarchy policy requires the

assignment of a set of roles, the SSoDCR policy prohibits
this assignment. To avoid this situation an SSoDCR policy
should not contain a role and its junior(s) or, similarly, two
juniors of the same role. This conflict is reported as an
error. The conflict between the permission hierarchy policy
and the SSoDCP one is defined similarly.

Role hierarchy and Context (role unassignment) policies.
Let JRH be the set containing the juniors of role r. If a
context policy on role un-assignment is specified for any role
s ∈ JRH , the role hierarchy policy will be violated. Indeed,
while the role hierarchy requires the assignment of a junior
of role r, the role context policy can prohibit this assign-
ment. This conflict is reported as an error. The conflict
between the permission hierarchy and context-based (per-
mission assignment) policies is defined similarly.

SSoD and DSoD on conflicting roles policies. Let SCR
and DCR be the sets of, respectively, conflicting roles in an
SSoDCR policy and a DSoDCR one. If |SCR ∩ DCR| > 1,
the assignment of at least two conflicting roles will be al-
lowed by the DSoDCR policy but forbidden by the SSoDCR
policy, generating an inconsistency in the system. This con-
flict is reported as a warning. The conflict between the
SSoD and DSoD on conflicting users (or permission) poli-
cies is defined similarly. Notice that an SSoDCU policy and
a DSoDCU one with the same list of users on different roles
are not conflicting.

SSoD on conflicting permissions and Binding of duty poli-
cies. Let SCP be the set of conflicting permissions in an
SSoDCP policy and let PBoD be the set of bounded per-
missions in a BoD policy. If |SCP ∩ PBoD | > 1, the two
policies are in conflict. Indeed, while the SSoDCP restricts
the assignment of at least two conflicting permissions, the
BoD policy requires this assignment. To avoid this situation,
an SSoDCP policy should not contain permissions that are
used in a BoD policy. This conflict is reported as an error.

Delegation and SSoD on conflicting roles policies. Let
SCR be the set of conflicting roles in an SSoDCR policy, r be
the role being delegated, and RECR be the set of roles that
will receive the delegation in a delegation policy. If ({r} ∪
RECR) ⊆ SCR, the two policies are in conflict. The reason
is that, while the delegation policy allows the assignment of
a set of roles to the same user, the SSoDCR policy prohibits
this assignment. This conflict is reported as an error.

Additional checks. The editor also detects overlapping
intervals in policies with temporal context, and circular de-
pendencies for role hierarchy and precedence policies.

6. SEMANTICS
The GemRBAC+CTX model (as well as its non-contextual

ancestor GemRBAC), which is the conceptual RBAC model
on top of which GemRBAC-DSL has been designed, comes
with an operationalization of the semantics of the policies
it supports. The operationalization follows a model-driven
approach, by which the semantics of each RBAC policy
is expressed as an OCL constraint on the RBAC model.
Since the GemRBAC+CTX model and GemRBAC-DSL
have the same expressiveness, we can define the semantics
of GemRBAC-DSL by mapping its constructs to the corre-
sponding OCL constraints defined for the GemRBAC+CTX
model. In the rest of this section we sketch this mapping;
we refer the reader to [7, 8] for the details on the structure
of the GemRBAC+CTX model.

Each entity in the 〈preamble〉 of a GemRBAC-DSL spec-

employee:Role scEmployee:SpatialContext

LLEmployee:LogicalLocation

RoleContext
Enabling

rloc1: RelativeLocation

inside:QualitativeDirection
-direction: inside -label: Office

Figure 2: A fragment of an instance of the GemR-
BAC+CTX model

ification corresponds to an instance of a UML class in the
GemRBAC+CTX model: users, roles, permissions, oper-
ations, and logical locations (〈geofences〉) are mapped to
instances of the homonymous classes in GemRBAC+CTX.
Similarly, role and permission hierarchies correspond to the
homonymous associations in the GemRBAC+CTX model.

Each type of RBAC policy is mapped to the corresponding
OCL constraint template defined in the GemRBAC+CTX
model; in each template the symbolic parameters are re-
placed with the actual entities used in the specification. For
instance, the semantics of the object-based DSoD policy

objDSoD: conflicting-roles-activation author ,
reviewer on-same-object;

can be defined by the OCL invariant DSoD of the class Ses-

sion (see [7], §7.5.2), by replacing the parameters r1 and r2

with roles author and reviewer.
Regarding contextual policies, the context to be assigned/en-

abled (as prescribed by the policy) is represented in the
GemRBAC+CTX model, as an association with the corre-
sponding role/permission. For example, consider the policy

loc: role-context enable employee only
@location inside office;

which enables role employee only inside the logical location
denoted by the label “office”. Figure 2 depicts an excerpt
of an instance of the GemRBAC+CTX model in which
role employee is associated to a SpatialContext object that
contains the object LLEmployee of type LogicalLocation,
which denotes the location “office”. This object is associ-
ated with object rloc1 of type RelativeLocation, which
contains a QualitativeDirection. The policy loc can be
mapped to the OCL invariant relativeLocationRoleEn-

abling of class Session (see [8], §4.2), parametrized with
role employee. A table describing the complete mapping
of the GemRBAC-DSL constructs to OCL constraints is
available in Appendix B.

Expressing the semantics of GemRBAC-DSL policies as
OCL constraints on the GemRBAC+CTX model enables
the users of the language to benefit from the model-driven
policy enforcement mechanisms described in [7, 8]. Briefly,
making an access decision for a policy can be reduced to
checking the corresponding OCL constraint on a instance of
the GemRBAC+CTX model, which represents a snapshot
of the system at a certain time.

7. DISCUSSION
Policy specification languages vs RBAC models.

GemRBAC-DSL is a domain-specific specification language,
built on top of the GemRBAC+CTX model, with the goal
of providing a high-level specification language for the poli-
cies that can be defined using GemRBAC+CTX. The con-
structs included in the language have been derived from

the corresponding concepts defined in GemRBAC+CTX.
In this sense, GemRBAC-DSL does not define new con-
cepts related to RBAC; instead, it provides a practical way
to express RBAC policies using the concepts provided by an
expressive model like GemRBAC+CTX. Although in our
previous work [8] we reported on the use of OCL for the spec-
ification of RBAC policies based on GemRBAC+CTX, we
also mentioned the impracticality of such an approach and
expressed the need for a higher-level specification language.

Adoption. GemRBAC-DSL has been used by our in-
dustrial partner for the specification of the RBAC policies
of a production-grade Web application. The adoption of
GemRBAC-DSL has allowed its engineers to easily specify
all the policies for their system, including 19 new types of
contextual policies. Despite the fact that some constructs of
the language are non-trivial, the engineers were able to use
GemRBAC-DSL confidently after three half-day training
sessions.

Tool Support. The GemRBAC-DSL editor has been
implemented as an Eclipse plugin. We used Xtext 2.8 to de-
fine the textual syntax and the semantic checks (illustrated
in section 5) for the language. The editor is publicly avail-
able at https://github.com/AmeniBF/GemRBAC-DSL.git.

Limitations and Design Trade-offs. GemRBAC-DSL
can express all and only the types of policies supported
by its underlying model, GemRBAC+CTX. Since GemR-
BAC+CTX is quite an expressive model, GemRBAC-DSL
includes many constructs that could have increased its level
of complexity, hindering its adoption. Designing a simpler
language would have implied providing limited support in
terms of policy types, leading to partial fulfillment of our ex-
pressiveness requirements and a limited advance in terms of
the state of the art. Hence, at the language design stage, we
decided to pursue our expressiveness requirements, and to
provide a syntax close to natural language to favor the adop-
tion among practitioners and compensate (also by means of
a rich editor) for the complexity of the language.

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented GemRBAC-DSL, a domain-

specific language that facilitates the specification and consis-
tency checking of policies based on highly-expressive RBAC
models. GemRBAC-DSL supports all types of policies cap-
tured by the GemRBAC+CTX model, a comprehensive
model encompassing all proposed types of policies. We have
shown how the language can be used to specify the RBAC
policies of an industrial application with complex, context-
aware policies. The semantics of GemRBAC-DSL has been
defined with a mapping to an existing OCL formalization of
the RBAC policies supported by GemRBAC+CTX. This
mapping paves the way for automating the enforcement of
policies specifications written in GemRBAC-DSL, using a
model-driven approach.

As part of future work, we plan to extend GemRBAC-
DSL to support richer contextual policies, as well as admin-
istrative policies. We also plan to assess the usability of the
language through user studies with practitioners.

9. ACKNOWLEDGMENTS
The authors wish to thank Benjamin Hourte and his team

from HITEC Luxembourg, as well as the anonymous refer-
ees for their valuable feedback. This work has been sup-

ported by the National Research Fund, Luxembourg (FN-
R/P10/03) and by a grant by HITEC Luxembourg. Ameni
Ben Fadhel is also supported by the Faculty of Science,
Technology and Communication of the University of Lux-
embourg.

10. REFERENCES
[1] D. Abi Haidar, N. Cuppens-Boulahia, F. Cuppens, and

H. Debar. An Extended RBAC Profile of XACML. In
Proc. of SWS 2006, pages 13–22. ACM, 2006.

[2] G.-J. Ahn. Specification and Cassification of
Role-based Authorization Policies. In Proc. of
WETICE 2003, pages 202–207. IEEE, 2003.

[3] G.-J. Ahn and R. Sandhu. Role-based Authorization
Constraints Specification. ACM Trans. Inf. Syst.
Secur., 3(4):207–226, Nov. 2000.

[4] G.-J. Ahn and M. Shin. Role-based authorization
constraints specification using Object Constraint
Language). In Proc. of WETICE 2001, pages 157–162.
IEEE, 2001.

[5] S. Aich, S. Sural, and A. Majumdar. STARBAC:
Spatiotemporal Role Based Access Control. In Proc.
of the OTM Conferences 2007, volume 4804 of LNCS,
pages 1567–1582. Springer, 2007.

[6] A. Anderson. XACML profile for role based access
control (RBAC). OASIS Access Control TC committee
draft, 1:13, 2004.

[7] A. Ben Fadhel, D. Bianculli, and L. Briand. A
Comprehensive Modeling Framework for Role-based
Access Control Policies. Journal of Systems and
Software, 107:110–126, September 2015.

[8] A. Ben Fadhel, D. Bianculli, L. Briand, and
B. Hourte. A Model-driven Approach to Representing
and Checking RBAC Contextual Policies. In Proc. of
CODASPY2016, pages 243–253. ACM, 2016.

[9] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A
Temporal Role-based Access Control Model. ACM
Trans. Inf. Syst. Secur., 4(3):191–233, Aug. 2001.

[10] E. Bertino, B. Catania, M. L. Damiani, and
P. Perlasca. GEO-RBAC: A Spatially Aware RBAC.
In Proc. of SACMAT 2005, pages 29–37. ACM, 2005.

[11] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi.
X-GTRBAC: An XML-based Policy Specification
Framework and Architecture for Enterprise-wide
Access Control. ACM Trans. Inf. Syst. Secur.,
8(2):187–227, May 2005.

[12] C. Cotrini, T. Weghorn, D. Basin, and M. Clavel.
Analyzing first-order role based access control. In
Proc. of CSF2015, pages 3–17. IEEE, July 2015.

[13] J. Crampton and H. Khambhammettu. Delegation in
Role-based Access Control. Int. J. Inf. Secur.,
7(2):123–136, 2008.

[14] Eclipse. Eclipse OCL tools. http:
//www.eclipse.org/modeling/mdt/?project=ocl.

[15] R. Ferrini and E. Bertino. Supporting RBAC with
XACML+OWL. In Proc. of SACMAT 2009, pages
145–154. ACM, 2009.

[16] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu,
W. Winsborough, and B. Thuraisingham. ROWLBAC:
Representing Role Based Access Control in OWL. In
Proc. of SACMAT 2008, pages 73–82. ACM, 2008.

[17] M. Hitchens and V. Varadharajan. Tower: A
Language for Role Based Access Control. In Proc. of
POLICY 2001, volume 1995 of LNCS, pages 88–106.
Springer, 2001.

[18] J. Joshi. Access-control language for multidomain
environments. Internet Computing, IEEE, 8(6):40–50,
Nov 2004.

[19] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor.
A Generalized Temporal Role-based Access Control
Model. IEEE Trans. Knowl. Data Eng., 17(1):4–23,
January 2005.

[20] Q. Ni and E. Bertino. xfACL: An Extensible
Functional Language for Access Control. In Proc. of
SACMAT 2011, pages 61–72. ACM, 2011.

[21] OASIS. eXtensible Access Control Markup Language
(XACML) Version 2.0, 2005.

[22] I. Ray and M. Toahchoodee. A Spatio-temporal
Role-Based Access Control Model. In Proc. of DBSec
2007, volume 4602 of LNCS, pages 211–226. Springer,
2007.

[23] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based Access Control Models.
Computer, 29(2):38–47, 1996.

[24] B. Shafiq, A. Masood, J. Joshi, and A. Ghafoor. A
Role-based Access Control Policy Verification
Framework for Real-time Systems. In Proc. of
WORDS 2005, pages 13–20. IEEE, February 2005.

[25] R. T. Simon and M. E. Zurko. Separation of Duty in
Role-based Environments. In Proc. of CSFW 1997,
pages 183–194. IEEE, 1997.

[26] K. Sohr, M. Kuhlmann, M. Gogolla, H. Hu, and G.-J.
Ahn. Comprehensive two-level analysis of role-based
delegation and revocation policies with UML and
OCL. Inf. Softw. Technol., 54(12):1396 – 1417, 2012.

[27] M. Strembeck and J. Mendling. Modeling
Process-related RBAC Models with Extended UML
Activity Models. Inf. Softw. Technol., 53(5):456–483,
May 2011.

[28] L. Zhang, G.-J. Ahn, and B.-T. Chu. A Rule-based
Framework for Role-based Delegation and Revocation.
ACM Trans. Inf. Syst. Secur., 6(3):404–441, 2003.

[29] Z. Zhang, J. Xiao, H. Li, and Y. Geng. An Extended
Permission-based Delegation Authorization Model. In
Proc. of CSSE 2008, volume 3, pages 696–699,
December 2008.

APPENDIX
A. RELATIVE TIME EXPRESSION

A relative time expression is a time expression that cannot
be mapped directly to a concrete point or interval in the
timeline. The syntax of a relative time expression is:

〈relativeTime〉 ::= ((〈iHour〉 (‘,’ 〈iHour〉)*)
| (〈dayOfMonthH 〉 (‘and @ time’ 〈dayOfMonthH 〉)*)
| (〈dayOfWeekH 〉 (‘and @ time’ 〈dayOfWeekH 〉)*)
| (〈monthDayOfWeekH 〉
(‘and @ time’ 〈monthDayOfWeekH 〉)*))

A relative time expression can have different forms. The
first form is as a list of hour intervals, which are intervals
whose start and end points are hours; the syntax is:

(1)〈iHour〉 ::= ‘from’ 〈hour〉‘to’ 〈hour〉
[(‘excluding (’ 〈exHour〉 (‘,’ 〈exHour〉)* ‘)’]

(2)〈exHour〉 ::= ‘from’ 〈hour〉‘to’ 〈hour〉
Within the definition of an 〈iHour〉, one can also specify
a list of hour intervals to be excluded, denoted with the
keyword ‘excluding’ (rule 2).

A relative time expression can be also defined as a list of
expressions starting with a day of month (〈dayOfMonthH 〉s).
This expression corresponds to a day of month (〈dayOfMonth〉)
that optionally overlays an hour interval; its syntax is:

(1)〈dayOfMonthH 〉 ::= 〈dayOfMonth〉(‘,’〈dayOfMonth〉)*
[(〈iHour〉 (‘,’ 〈iHour〉)*)]

(2)〈dayOfMonth〉 ::= 〈sDayOfMonth〉 | 〈iDayOfMonth〉
(3)〈iDayOfMonth〉 ::= ‘from’ 〈sDayOfMonth〉 ‘to’

〈sDayOfMonth〉 [‘excluding (’ 〈exDayOfMonth〉
(‘,’ 〈exDayOfMonth〉)* ‘)’]

(4)〈exDayOfMonth〉 ::= 〈sDayOfMonth〉|〈exIDayOfMonth〉
(5)〈exIDayOfMonth〉 ::= ‘from’ 〈sDayOfMonth〉 ‘to’

〈sDayOfMonth〉
A day of month can correspond to a single day (〈sDayOfMonth〉,
see page 5) or an interval of days of month (〈iDayOfMonth〉)
(rule 2). The latter can also be defined to exclude a single
day of month or an interval of days of month 〈exIDayOfMonth〉;
notice that exclusion is not recursive.

A relative time expression can also have the form of a
list of 〈dayOfWeekH 〉s. The latter is a day of week that
optionally overlays an hour interval; its syntax is:

(1)〈dayOfWeekH 〉 ::= 〈dayOfWeek〉 (‘,’ 〈dayOfWeek〉)*
[〈iHour〉 (‘,’ 〈iHour〉)*]

(2)〈dayOfWeek〉 ::= 〈sDayOfWeek〉 | 〈iDayOfWeek〉
(3)〈sDayOfWeek〉 ::= [[‘on’] ‘the’ 〈integer〉] (‘Monday’

| ‘Tuesday’ | ‘Wednesday’ | ‘Thursday’ | ‘Friday’ |
‘Saturday’ | ‘Sunday’)

(4)〈iDayOfWeek〉 ::= ‘from’ 〈sDayOfWeek〉 ‘to’
〈sDayOfWeek〉 [‘excluding (’ 〈exDayOfWeek〉
(‘,’ 〈exDayOfWeek〉)* ‘)’]

(5)〈exDayOfWeek〉 ::= 〈sDayOfWeek〉 | 〈exIDayOfWeek〉
(6)〈exIDayOfWeek〉 ::= ‘from’ 〈sDayOfWeek〉 ‘to’

〈sDayOfWeek〉
This syntax follows a pattern similar to the ones seen above.

A relative time expression can be also defined as a set of
〈monthDayOfWeekH 〉s. The latter is a list of 〈month〉s that
optionally overlays a 〈dayOfMonthH 〉 or an 〈iHour〉. The
syntax of 〈monthDayOfWeekH 〉 is:

(1)〈monthDayOfWeekH 〉 ::= 〈month〉 (‘,’ 〈month〉)*
[(‘#’ 〈dayOfWeekH 〉)+
|(〈iHour〉 (‘,’ 〈iHour〉)*)]

(2)〈month〉 ::= 〈sMonth〉 | 〈iMonth〉
(3)〈iMonth〉 ::= ‘from’ 〈sMonth〉 ‘to’ 〈sMonth〉

[‘excluding (’ 〈exMonth〉 (‘,’ 〈exMonth〉)* ‘)’]

(4)〈exMonth〉 ::= 〈sMonth〉 | 〈exIMonth〉
(5)〈exIMonth〉 ::= ‘from’ 〈sMonth〉 ‘to’ 〈sMonth〉

Also this syntax follows the same structure of the previous
definitions. Notice that in this case, the list of 〈month〉s can
overlay either a list of 〈iHour〉s or a list of 〈dayOfWeekH 〉s.
An 〈sDayOfWeek〉 can contain an index (represented as an
〈integer〉), which refers to a specific occurrence of a day, as
in “on the first Monday” (of a month).

B. MAPPING TO OCL CONSTRAINTS
Table 2 describes the mapping of each RBAC policy sup-
ported by GemRBAC-DSL to its corresponding OCL con-
straint(s) defined on the GemRBAC+CTX model. The
first column indicates the type of policy and the cor-
responding grammar rule. The second column denotes
the corresponding OCL constraints, whose full definition

can be found in the reference indicated in the third col-
umn. The reference “web1” and “web2” are the websites
https://github.com/AmeniBF/GemRBAC-model and
urlhttps://github.com/AmeniBF/GemRBAC-CTX-
model.git, respectively.

Table 2: Mapping of GemRBAC-DSL constructs to OCL constraints on the GemRBAC+CTX model
Type of policy OCL constraint ref
〈PrereqRole〉 context User :: assignRole(r:Role): pre PreqRole [7]
〈PrereqPermission〉 context Role :: assignPermission(p:Permission): pre PreqPermisssion [7]
〈CardActivation〉 context Session inv Cardinality [7]
〈CardUser〉 context User inv Cardinality [7]
〈CardPermission〉 This policy is expressed in a similar way as the previous one by replacing the context of User with

the context of Permission.
[7]

〈CardRoletoUser〉 context Role inv Cardinality [7]
〈CardRoletoPermission〉 This policy is expressed in a similar way as the previous one by replacing the instances of users

with instances of permissions.
[7]

〈PrecEnabling〉 context Session :: enableRole(r:Role): pre RoleEnablingPrecedence [7]
Dependency 〈PrecEnabling〉 context Session :: deactivateRole(r:Role): pre RoleActivationDependency [7]
〈RoleHierarchy〉 context User :: assignRole(r:Role): post RoleHierarchy [7]
〈PermissionHierarchy〉 context Role :: assignPermission (p:Permission): post RoleHierarchy [7]
〈SSoDCU 〉 context Role inv SSoDCU [7]
〈SSoDCR〉 context User inv SSoDCR

context Role inv SSoDCP2
[7]

〈SSoDCR〉 context User inv SSoDCR
context Role inv SSoDCP2

[7]

〈SSoDCP〉 context Role inv SSoDCP1 [7]
〈DSoDCR〉 context Session inv DSoD [7]
〈DSoDCU 〉 context Role inv DSoDCU web1
〈DSoDCP〉 context Role inv DSoDCP web1
〈DSoDCR〉 context Session :: performOperation(op:Operation, p:Permission, r:Role): pre ObjectDSOD [7]
〈DSoDCR〉 context Session inv OperationalDSoD [7]
〈DSoDCR〉 context Session :: performOperation(op:Operation, p:Permission, r:Role): pre HistoryDSOD [7]
Role-based 〈BoD〉 context Session :: performOperation(op:Operation, p:Permission, r:Role) pre RoleBoD [7]
Subject-based 〈BoD〉 context Session :: performOperation(op:Operation, p:Permission, r:Role) pre SubjectBoD [7]
〈Delegation〉 context Delegation inv TotalDelegation

context Delegation inv MultiStepDelegation
context delegation inv PartialDelegation
context Delegation inv StrongTransfer
context Delegation inv StaticWeakTransfer
context Delegation inv DynamicWeakTransfer
context Delegation inv AutomaticRevocation

[7]

〈Revocation〉 context Delegation :: revoke() pre RevacationDependency
context Delegation :: revoke() post StrongRevocation
context Delegation :: revoke() post CascadingRevocation

[7]

TPA with 〈absoluteTime〉 context Session inv AbsoluteBTIRoleEnab
context Permission inv AbsoluteBTIPermAssign
context Role inv AbsoluteTPRoleAssign
context Role inv AbsoluteUBIRoleAssign

[8]
web2

TPA with 〈periodicTime〉 context Role inv periodicUnboundTIRoleAssign [8]
TPA with 〈activeDuration〉 context Session inv DurationAbsoluteBTIRoleEnab [8]
TPRInd 〈sDayOfWeek〉 context Role inv indexRoleAssign [8]
TPRH <iHour> context Role inv RelativeHoursRoleAssign web2
TPRDM 〈dayOfMonthH 〉 context Role inv DayOfMonthHoursRoleAssign

context Permission inv DayOfMonthHoursPermAssign
web2

TPRDW 〈dayOfWeekH 〉 context Permission inv DayOfWeekHourPermAssign [8]
TPRMD 〈monthDayOfWeekH 〉 context Role inv MonthDayOfWeekHourRoleAssign web2
TPCT 〈compositeTime〉 This policy can be checked by a logical conjunction of two temporal policies: one with absolute

time and one with relative time.
[8]

SPP 〈physicalLocation〉 context Role inv physicalLocationRoleAssign [8]
SPL 〈geofence〉 This policy can be checked in a similar way as the previous one by replacing the instances of

PhysicalLocation with instances of LogicalLocation.
[8]

SPR 〈relativeLocation〉 context Session inv relativeLocationRoleEnabling [8]
SPT〈SpatioTemporal〉 This policy can be checked by a logical conjunction of the spatial and temporal policies. [8]

Legend. TP: temporal policy; TPA: TP with absolute time; TPR: TP with relative time; TPRInd: TPR containing an index;
TPRH: TPR of type hour interval; TPRDM: temporal policy with a relative time of type day of month that optionally overlays
hours; TPRDW: TPR of type day of week that optionally overlays hours; TPRMD: TPR of type day of month that optionally
overlays days of week (the days of week may optionally overlay hours); TPCT: TP with composite time; SP: spatial policy; SPP:
SP with a physical location; SPL: SP with a logical location; SPR: SP with a relative location; SPT: spatio-temporal policy.

