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Abstract

Multi-frame super-resolution is the process of recovering a high resolution image or video from a set of captured low resolution
images. Super-resolution approaches have been largely explored in 2-D imaging. However, their extension to depth videos is not
straightforward due to the textureless nature of depth data, and to their high frequency contents coupled with fast motion artifacts.
Recently, few attempts have been introduced where only the super-resolution of static depth scenes has been addressed. In this
work, we propose to enhance the resolution of dynamic depth videos with non-rigidly moving objects. The proposed approach
is based on a new data model that uses densely upsampled, and cumulatively registered versions of the observed low resolution
depth frames. We show the impact of upsampling in increasing the sub-pixel accuracy and reducing the rounding error of the
motion vectors. Furthermore, with the proposed cumulative motion estimation, a high registration accuracy is achieved between
non-successive upsampled frames with relative large motions. A statistical performance analysis is derived in terms of mean square
error explaining the effect of the number of observed frames and the effect of the super-resolution factor at a given noise level.
We evaluate the accuracy of the proposed algorithm theoretically and experimentally as function of the SR factor, and the level of
contaminations with noise. Experimental results on both real and synthetic data show the effectiveness of the proposed algorithm
on dynamic depth videos as compared to state-of-art methods.
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1. Introduction

Interactive computer vision applications using depth data
have literally exploded in recent years thanks to the develop-
ment of new depth sensors that are currently accessible to ev-
eryone. Most of these applications deal with dynamic scenes
containing one or multiple moving objects. Depth sensors, such
as time-of-flight (ToF) cameras are, however, still limited by
their high contamination with noise and their low pixel resolu-
tions. Moreover, such cameras can be highly sensitive to fast
motions leading to motion artifacts; hence, affecting the relia-
bility of depth measurements [1]. Some examples of such cam-
eras are the MLI by IEE S.A. [2] of resolution (56 × 61) pixels,
and the PMD CamBoard nano [3] of resolution (120×165) pix-
els.

Most of the works proposed to enhance the resolution and
quality of depth images have been based on fusion with a high
resolution (HR) image acquired with a second camera, e.g., a
2-D camera [4, 5], a stereo camera [6], or both 2-D and stereo
cameras [7]. These multi-modality methods suffer from draw-
backs such as undesired texture copying, and blurring artifacts.
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In addition, the performance of these systems depends on pa-
rameter tuning, and may encounter difficulties related to data
mapping and synchronization.

The multi-frame super-resolution (MFSR) framework offers
an alternative solution where an HR image is to be recovered
from a set or a sequence of low resolution (LR) images cap-
tured with the same camera [8]. The observed LR images are
subject to deviations from the reference image due to relative
motion and to aliasing errors caused by the acquisition system.
MFSR can be formulated as an inverse problem where the de-
viations on LR frames are explored to estimate the reference
HR image. Super-resolution (SR) techniques have been largely
explored in 2-D imaging. However, their extension to depth
data is not straightforward as presented in [9, 10, 11] where
only the SR of a static object has been addressed. The diffi-
culty of applying SR to depth videos is further illustrated in the
context of single image SR (SISR) in [12] where a dedicated
preprocessing followed by a heavy training were proposed. In-
deed, depth data is characterized by its textureless nature with
high frequency contents. Moreover, fast motions and surface
reflectivity of objects in the scene create invalid pixels and the
so-called flying pixels [1]; thus, making most existent 2-D SR
algorithms fail when directly applied on dynamic depth videos.

In this paper, we propose an MFSR algorithm for dynamic
depth scenes. The proposed solution can handle scenes con-
taining one or more moving objects even non-rigidly without
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prior assumptions on their shape, and without training. Our
algorithm referred to as Upsampling for Precise Super Resolu-
tion (UP-SR) builds on our work in [13, 14, 15]. We herein give
a unified framework and provide additional details and proofs,
and a more extensive experimental part, where we evaluate the
accuracy of the proposed algorithm theoretically and experi-
mentally as function of the SR factor, and the level of contami-
nations with noise.
UP-SR is based on a new data model that uses densely upsam-
pled, and cumulatively registered versions of the observed LR
frames. It is these two key components, together, that constitute
the working principle of UP-SR as detailed below:
1) Upsampling: Most SR algorithms are directly related to a
registration based on a too coarse pixel correspondence as com-
pared to the scale of details in the scene. This leads to failure
in handling local deformations of moving objects. It is there-
fore necessary to call upon a very accurate sub-pixel correspon-
dence. In what follows, we argue that this accuracy is signif-
icantly increased after upsampling the observed sequence as
supported by [16]. Moreover, we prove that the upsampling
process reduces the errors caused by rounding the motion vec-
tors.
2) Cumulative motion estimation: In order to achieve a
high registration accuracy between non-successive upsampled
frames with relative large motions, we propose a new cumula-
tive motion estimation process. The proposed method is based
on using the temporal information provided by the intermediate
frames between the reference frame and the frame under con-
sideration.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews state-of-the-art SR techniques in the context of
their extension to depth data, and to dynamic scenes. Section 3
introduces the problem formulation for the classical MFSR. We
prove the improvements in accuracy and robustness due to es-
timating motion from densely upsampled depth images in Sec-
tion 4. The proposed data model is presented in Section 5 along
with the proposed cumulative motion estimation, leading to the
UP-SR algorithm for dynamic depth scenes with moving ob-
jects. Then, a statistical performance analysis is given in Sec-
tion 6. Section 7 reports a thorough experimental evaluation
of the UP-SR approach and its comparison with state-of-the-
art methods. Discussions and conclusion are provided in Sec-
tion 8.

2. Related Work

MFSR is the process of recovering an HR image from a set of
captured LR frames. It is based on using the deviation between
these frames and a reference frame as provided by relative mo-
tion, where the ratio between HR and LR defines the SR factor.
Depending on the type of motion, two categories of scenes may
be distinguished, and accordingly two categories of SR algo-
rithms; SR for static scenes and SR for dynamic scenes. In the
static case, the motion is global where frames could be seen as
slightly different perspectives of the same scene. The scene is
said to be dynamic if there is at least one moving object with
non-rigid deformations; thus, the estimation of a local motion

becomes necessary. In order to understand the challenges re-
lated to applying SR to depth data, we review state-of-art ap-
proaches for both static and dynamic scenes.

2.1. SR for Static Scenes

The SR estimation is solved numerically using iterative
methods starting from an initial image. This image may be ob-
tained by interpolation [17], which is not suitable in the case of
textureless depth data, as interpolating depth data would induce
erroneous values and flying pixels that are difficult to attenu-
ate. Another approach is known as Shift & Add (S&A) [18, 19]
which includes a filling procedure based on the global relative
motion of the considered LR images. Schuon et al. have applied
in [9] the S&A method of [19] to depth images acquired with
a ToF camera. In [10], the same authors proposed to replace
the regularization term in [19] by a new term tailored for depth
data, specifically, ToF data, leading to a new depth-dedicated
SR method referred to as LidarBoost. The aim of LidarBoost
is to preserve areas with a smooth geometry by using a regu-
larization term that is a function of spatial gradients approxi-
mated with finite differences. The original LidarBoost uses an
L2-norm of weighted depth gradients. In order to better accom-
modate the needs of detailed 3-D object scanning, Cui et al.
proposed a new version of LidarBoost where the regularization
term is set to be an anisotropic non-linear function of gradi-
ents [11]. In both cases, however, the initial HR is obtained
by means of averaging, which is not appropriate for sensing
cluttered scenes. This adaptation of SR to static depth data is
quite promising but remains restricted to static scanning where
the method assumes a perfectly controlled setup with a turning
table-like procedure implying a large motion diversity by con-
struction, but not handling non-rigid motions.

2.2. SR for Dynamic Scenes

Dynamic scenes are challenging scenarios for MFSR as
they require the local motion of moving objects to be com-
puted accurately. They, hence, may face the problem of self-
occlusions especially in the case of non-rigidly moving ob-
jects. This difficulty arises in depth videos, but also for 2-D
sequences [21, 22, 23, 24]. Most of the methods in the liter-
ature are limited due to strong assumptions on the shape and
number of moving objects. For this reason, the enhancement of
the resolution of dynamic depth scenes has been so far mostly
based on fusion with higher resolution 2-D data that has to be
simultaneously captured [4, 5]; thus, requiring a perfect align-
ment, synchronization, and mapping of the 2-D and depth im-
ages, and assuming the correspondence of edges on the two
modalities. These methods may be computationally efficient,
but unfortunately they frequently suffer from artifacts caused
by the heuristic nature of the enforced statistical model, mainly
copying the intensity texture of 2-D images to depth images.

In this paper, we propose a new MFSR algorithm for dy-
namic depth scenes with moving objects. Our algorithm is
largely independent of surface texture and does not suffer from
the texture copying problem since it only deals with LR depth
frames as inputs without fusion with any other type of sensors.
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In what follows, in Section 3, we formulate the problem of dy-
namic MFSR.

3. Problem Formulation

The aim of dynamic MFSR algorithms is to estimate a se-
quence of HR images {xt0 } of size (

√
n ×
√

n) from observed
LR sequences. The dynamic SR problem can be simplified by
reconstructing one HR image at a time, xt0 , for t0 ∈ N using an
LR sequence {yt}

t0
t0−N+1 of length N, where each LR image yt is

of size (
√

m×
√

m) pixels, with
√

n = r ·
√

m, where r is the SR
factor, such that r ≥ 1. Note that for the sake of simplicity, and
without loss of generality, we assume squared images. Every
image yt may be viewed as an LR noisy and deformed realiza-
tion of xt0 at the acquisition time t, with t ≤ t0. Rearranging all
images in lexicographic order, i.e., column vectors of lengths n
for xt, and m for yt, we consider the following data model:

yt = DHMt
t0 xt0 + nt, t ≤ t0, (1)

where D is a matrix of dimension (m × n) that represents the
downsampling operator, and which we assume to be known
and constant over time. The system blur is represented by the
time and space invariant matrix H. The vector nt is an additive
Laplacian noise at time t, as justified in [18, 19]. The matrices
Mt

t0 are (n × n) matrices corresponding to the geometric motion
between the considered HR image xt0 and the observed LR im-
age yt prior to its downsampling.
Based on the data model in (1), and using an L1−norm between
the observations and the model, the Maximum Likelihood (ML)
estimate of xt0 is obtained as follows:

x̂t0 = arg min
xt0

t0∑
t=t0−N+1

‖DHMt
t0 xt0 − yt‖1. (2)

Using the same approach as in [19, 27], we consider that H and
Mt

t0 are block circulant matrices. Therefore: HMt
t0 = Mt

t0 H.
The minimization in (2) can then be decomposed into two steps;
initialization by estimating the blurred HR image zt0 = Hxt0 ,
followed by a deblurring step to recover x̂t0 . In what fol-
lows, we assume that yt is simply the noisy and decimated
version of zt without any geometric warp. We may thus write
Mt

t = In,∀t, In being the identity matrix of size (n × n), hence,
Mt

t0 zt0 = zt = Hxt. This operation can be assimilated to regis-
tering zt0 to zt. We draw attention to the fact that in the case of
static MFSR, instead of a sequence, a set of observed LR im-
ages is considered, i.e., there is no order between frames. Such
an order becomes crucial in dynamic SR because the estima-
tion of motion, based on the optical flow paradigm, happens
between consecutive frames only. An accurate dynamic SR es-
timation is consequently highly dependent on the accuracy of
estimating the registration matrices between consecutive frames
Mt−1

t , as well as the motion between non-consecutive frames
Mt

t0 with t < t0 − 1.
In Section 4, we discuss the higher accuracy of estimating con-
secutive motion matrices Mt−1

t using upsampled images, and

leading to an enhanced pyramidal motion estimation. In Sec-
tion 5, we present our strategy for a cumulative estimation of
the non-consecutive motion matrices Mt

t0 , leading to the final
proposed UP-SR algorithm.

4. Enhanced Pyramidal Motion

In the UP-SR approach, a highly accurate motion estimation
with a ± 1

2 sub-pixel accuracy at the HR level is desired. This
corresponds to a sub-pixel accuracy of ± 1

2r at the LR level. To
reach this objective, two ways may be considered: 1) tuning
the parameters of the chosen optical flow algorithm until the
desired accuracy is reached, then multiplying the LR motion
vectors by the SR factor r; 2) upsampling the LR frames prior
to estimating motion. The main disadvantage of the former so-
lution is that full knowledge of the used optical flow algorithm
and its parameters is needed. In addition, modifying the pa-
rameters in order to increase the accuracy requires increasing
the number of iterations in the optical flow related optimization
process. On the other hand, the latter solution could be seen as
a more systematic option. The choice between these two solu-
tions is totally based on the targeted application. Either ways,
the registration has to be done at the upsampled level in order
to attenuate the rounding error of motion vectors.

In this work, we propose to follow the second option, and
to upsample the observed LR images even before registering
them. We further detail the advantages of this approach in the
context of pyramidal motion estimation (PyrME) [25, 26]. In-
deed, PyrME is the principle followed by most optical flow al-
gorithms used in the SR framework. PyrME uses the pyramidal
strategy to increase sub-pixel accuracy and robustness to large
motions as compared to estimating motions directly from ob-
served frames. In what follows, we describe PyrME as it is
currently used. Then, we present how we further improve its
performance in the context of the SR problem. Let wt = (ut, vt)
be the motion vector between a frame yt and the reference frame
yt0 at a given target point p. This motion vector is estimated by
minimizing the following error:

ξ(wt) =

p+µ∑
q=p−µ

‖yt0 (q) − yt(q + wt)‖22. (3)

This error is calculated within an integration disc of radius µ,
which corresponds to the largest motion that can be detected
within this framework. The center of this disc is represented by
the target pixel position p. A small value of µ increases the sub-
pixel motion accuracy while a large value is preferable in order
to increase robustness to large motions. PyrME was proposed
as a trade-off solution for these conflicting characteristics. The
main idea is to follow a coarse to fine strategy that progressively
downsamples the images yt and yt0 starting from the bottom
of the pyramid. These images are downsampled by a factor
2` in the dyadic case, where ` indicates the pyramidal level,
` = 0, · · · , L. Considering two consecutive levels ` and ` − 1,
the downsampling process may be defined as follows:

y`t (p) = y`−1
t (2p) s.t. y0

t = yt, ∀t. (4)
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In fact, the number of the pyramidal levels L is directly related
to the considered minimum size of the downsampled image at
the highest level of the pyramid. Let us define this minimum
size as (d×d) pixels. Then, we may define the maximal number
of pyramidal levels as:

√
m

2L = d ⇒ L = log2

(√
m
)
− log2 (d) . (5)

Starting from the top of the pyramid, the motion is first esti-
mated from the images of lowest resolution, i.e. at the highest
level ` = L, before progressively going back down to the im-
ages of highest resolution, i.e., at the initial level ` = 0. At
each level `, the motion w`

t between the two images y`t and y`t0
consists of an initial estimate ω`t and a residual motion φ`t . The
initial estimate ω`t is obtained from the preceding level (` + 1)
such that ω`t = 2 · w(`+1)

t , and initially set to zero at the level
` = L. The two images y`t and y`t0 are then pre-registered using
the initial motion vector. This pre-registration step reduces the
process of finding the optimal motion w`

t to finding the optimal
residual motion. The estimation of the optimal residual motion
is then defined by the following minimization:

φ`t = argmin
ν

p+µ∑
q=p−µ

‖y`t0 (q) − y`t (q + ω`t + ν)‖22. (6)

The optimal motion at level ` is then defined as w`
t = ω`t + φ`t .

In order to have a high sub-pixel resolution accuracy, a small
neighbourhood disc of radius µ is considered in the refinement
operation defined in (6). By repeating the operation in (6) for
all the levels of the pyramid, the finest motion vector is obtained
at ` = 0 defining wt as:

wt := w0
t = ω0

t + φ0
t . (7)

We may also express this motion using the refined residuals at
all levels as follows:

wt =

L∑
`=0

2`φ`t . (8)

The maximal pixel motion vector that can be detected at any
level ` is restricted by the initial motion vector from the pre-
ceding level and the radius of the neighbourhood disc µ in (6).
By considering all the refined residuals as in (8), the maximal
overall pixel motion that can be detected at the level ` = 0 by
PyrME is within a maximum radius of:

µmax = G (L) × µ with G (L) = 2(L+1) − 1. (9)

From (9), we see that the maximal motion is controlled by the
gain G (L) and the radius of the neighbourhood disc µ. The gain
G (L) is a function of the height L of the pyramid. By consider-
ing a small µ while increasing the number of pyramidal levels,
PyrME may estimate large motions up to µmax; hence, verifying
the robustness property in addition to the accuracy one.
In the context of the SR problem, our target is to increase the
resolution of the LR images up to the resolution of the final HR

images with size (
√

n ×
√

n) pixels. By increasing the reso-
lution, we thus increase the number of pyramidal levels. This
gives us a natural way to further improve the performance of
PyrME by upsampling the LR frames up to the SR factor r
prior to any motion estimation. This upsampling step directly
impacts the two properties of PyrME :
1) Robustness:
The upsampling step leads to changing the size of the pyramid
base and hence changing the starting point in PyrME. These
changes result, in turn, to an increased pyramidal height L ↑r

by log2 (r) which results in a new and higher gain G (L ↑r):

G (L ↑r) = r · G (L) + (r − 1), with r > 1. (10)

The result in (10) shows that, in the SR context, the robustness
to large motions for PyrME, may further be enhanced with a
new larger gain G (L ↑r).
2) Accuracy:
By increasing the resolution with a factor r, the initial mo-
tion vector at the new level can be estimated from w0

t in (7)
as ω− log2(r)

t = r · w0
t . Hence, the optimal refined final motion

can be further defined as:

wt := w− log2(r)
t = ω

− log2(r)
t + φ

− log2(r)
t

= r · (ω0
t + φ0

t ) + φ
− log2(r)
t .

(11)

By back projecting the newly refined motion in (11) to the orig-
inal resolution at the level ` = 0, we have:

w0
t = ω0

t + φ0
t +

φ
− log2(r)
t

r
. (12)

Comparing (7) and (12), we find an increase in accuracy of

δwt(r) =
φ
− log2(r)
t

r . This confirms the result in [16] which shows
that higher image resolutions help in increasing the accuracy
of motion estimation. We note that the advantage of upsam-
pling for PyrME saturates when a certain accuracy increase
is reached, i.e., limr→∞ δwt(r) = 0. For the example in Sec-
tion 7.1, we observed a saturation at r = 23, as illustrated in
Table 2.

5. Novel Reduced SR Data Model

Following the result in Section 4, we use the enhanced
PyrME and follow an upsampling strategy as a starting point for
a new improved SR algorithm. We thus introduce the concept of
Upsampling for Precise Super Resolution (UP-SR). As shown
in Section 4, upsampling the observed LR images yt prior to
any operation should lead to a more accurate and robust mo-
tion estimation, which enhances the registration of frames. We
define the resulting r-times upsampled image as yt ↑= U · yt,
where U is an (n × m) upsampling matrix.

5.1. Dense Upsampling
Due to the specific properties of depth data, classical

interpolation-based methods, such as bicubic interpolation,
cannot be used as they lead to flying pixels and to blurring
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effects especially for boundary pixels. Thus, the upsampling
U has to be dense, which is also known as nearest neighbour
upsampling. For our problem, it is defined by the following
matrix:

U =


Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q

 , (13)

where 0 is a zero matrix, and Q represents the blocks of U of
size (

√
nr ×

√
m). The dense upsampling implies that

Q =

PT , · · · ,PT︸       ︷︷       ︸
r times


T

, (14)

where T denotes the matrix transpose, and P is a matrix of size
(
√

n ×
√

m) such that:

P =


1r 0 · · · 0
0 1r · · · 0
...

...
. . .

...
0 0 · · · 1r

 with 1r = [1, · · · , 1︸   ︷︷   ︸
r times

]T . (15)

We assume in what follows that the upsampling matrix U is
the transpose of the downsampling matrix D. Their product
UD = A gives another block circulant matrix A that defines
a new blurring matrix B = AH. The matrix A is actually a
block diagonal matrix with the square matrix QQT repeated
√

m times on its diagonal. Considering that B and Mt
t0 are block

circulant matrices, we have BMt
t0 = Mt

t0 B. As a result, the ini-
tialization described in Section 3 gets modified where a new
blurred HR image zt0 = Bxt0 is to be estimated first.

5.2. Cumulative Motion Estimation

Most of optical flow approaches, including the proposed en-
hanced PyrME, work under the assumption of small motions.
Thus, by considering the frames which are far from the refer-
ence frame at t0, high registration errors are introduced as com-
pared to the errors introduced by frames that are closer to t0.
Further frames are therefore considered as outliers. To tackle
this problem, we propose a new registration method. This
method is based on a cumulative motion estimation where we
use the temporal information provided by intermediary frames
between the reference frame and the frame under consideration.
Each two consecutive upsampled frames yt ↑ and yt+1 ↑ in the
sequence are related as follows:

yt+1 ↑= Mt+1
t yt ↑ +vt+1, (16)

where vt+1 represents the innovation which is assumed to be
negligible. We apply the enhanced PyrME strategy described
in Section 4 to estimate the local motion Mt+1

t for all the pixel
positions p. By so doing we obtain a dense optical flow.

M̂t+1
t = arg min

M
Ψ (yt+1 ↑, yt ↑,M) , (17)

where Ψ is a dense optical flow-related cost function, in the
simplest case based on local mean squared errors as in (3). The
motion from yt ↑ to yt+1 ↑ is computed in a similar way; thus,
leading to the registration of yt ↑ to yt+1 ↑ as follows:

yt+1
t ↑= M̂t+1

t yt ↑ . (18)

The main target is to define yt0
t ↑, which represents the regis-

tered version of yt ↑ to the reference yt0 ↑ by using all the reg-
istered upsampled images yt+1

t ↑, as defined in (18), for t < t0,
see Figure 1. This approach is similar to the concept proposed
in [28], with an additional improvement where we further re-
duce the cumulated motion error by recomputing M̂t+1

t using
the already registered frame yt

t−1 ↑ as follows:

M̂t+1
t = arg min

M
Ψ

(
yt+1 ↑, yt

t−1 ↑,M
)
. (19)

We prove by induction (see Appendix A) the following regis-
tration equation for non-consecutive frames:

yt0
t ↑= M̂t0

t yt ↑= M̂t0
t0−1 · · · M̂

t+1
t︸           ︷︷           ︸

(t0 − t) times

·yt ↑, (20)

where
M̂t0

t = M̂t0
t0−1 · · · M̂

t+1
t . (21)

Note that due to the high noise level in depth raw data, we
apply a preprocessing step with a bilateral filter before motion
estimation. The bilateral filter is only used in the preprocessing
step while the original depth data is mapped in the registration
step and further used in the fusion process.

5.3. Proposed UP-SR Algorithm
The classical data model for a dynamic scene is given in (1).

The additive noise nt follows a white multivariate Laplace dis-
tribution as it has been shown to better fit the SR problem as
compared to a Gaussian noise model [18, 19]. This distribution
is defined as follows:

p(nt) =

m∏
i=1

√
2

2σ
exp

− √2|nt(i)|
σ

 , (22)

where σ
√

2
is a positive Laplace scale factor leading to the di-

agonal covariance matrix Σ = σ2Im, with Im being the identity
matrix of size (m × m).
Considering the reference frame xt0 , and by left multiplying (1)
by U, we find:

yt ↑= Mt
t0 Bxt0 + Unt, t < t0. (23)

In addition, similarly to [29], for analytical convenience, we
assume that all pixels in yt ↑ originate from pixels in xt0 in a
one to one mapping. Therefore, each row in Mt

t0 contains 1 for
each position corresponding to the address of the source pixel
in xt0 . This bijective property implies that the matrix Mt

t0 is an
invertible permutation, [M̂t

t0 ]−1 = M̂t0
t . Following the result in

Section 4, and using the cumulative motion proposed in Sec-
tion 5.2, the motion matrix M̂t

t0 is obtained from upsampled LR
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Figure 1: UP-SR Cumulative Motion Estimation: All intermediate registered upsampled depth frames are used to register the pixel pt in frame yt ↑ to its corre-
sponding pixel at the position pt0 from the reference frame yt0 ↑ where yt ↑ and yt0 ↑ are non-consecutive upsampled frames.

frames yt ↑, t = t0 − N + 1, · · · , t0, as in (21). Thus, the corre-
sponding registrations to the reference yt0 ↑ are performed as

yt ↑= M̂t
t0 yt0

t ↑ . (24)

Given (24), and by left multiplying (23) by [M̂t
t0 ]−1, we find

yt0
t ↑= Bxt0 + νt, t < t0. (25)

This finally leads to a new simplified SR data model which is
analogous to a classical image denoising problem from multiple
observations, specifically

yt0
t ↑= zt0 + νt, t < t0, (26)

where νt = M̂t0
t U · nt is an additive Laplacian noise vector of

length n with mean zero and covariance Σ̃ = M̂t0
t UΣDM̂t

t0 .
Given the data model in (26), the two steps of initialization and
deblurring are described below.

Step 1: Initialization
The log-likelihood function associated with (26) becomes

ln p(yt0
t0−N+1 ↑, · · · , y

t0
t0 ↑ | zt0 ) =

= ln

 t0∏
t=t0−N+1

√
2

2σ
exp

− √2‖yt0
t ↑ −zt0‖1

σ




= −N ln
σ
√

2
−

√
2
σ

t0∑
t=t0−N+1

‖zt0 − yt0
t ↑ ‖1.

(27)

Maximizing (27) with respect to zt0 , we obtain

ẑt0 = arg min
zt0

t0∑
t=t0−N+1

‖zt0−yt0
t ↑ ‖1 ⇒ ẑt0 = medt{yt0

t ↑}
t0
t=t0−N+1.

(28)
In fact, the equations in (28) represents a temporal pixel-wise
median filter medt, which constitutes the fusion step in the UP-
SR algorithm. Taking the median filter as a temporal filter
solves the problem of invalid pixels caused by depth sensors [1],
and guarantees that no flying pixels are generated, such erro-
neous pixels are caused, in classical SR methods [10, 11], by
averaging background and foreground pixels.

Step 2: Deblurring

In this work, we adopt Maximum A Posteriori (MAP) es-
timation using the robust bilateral total variation (BTV) as a
regularization term as defined in [19]. This choice is motivated
by the fact that the properties of a bilateral filter, namely, noise
reduction while preserving edges, is now established as an ap-
propriate method for depth data processing [12, 32, 33]. The
BTV regularization is defined as follows:

ΓBTV (xt0 ) =

i=l∑
i=−l

j=l∑
j=−l

α|i|+| j| ‖ xt0 − Si
xS j

yxt0 ‖1 . (29)

The matrices Si
x and S j

y are shifting matrices that shift xt0 by
i, and j pixels in the horizontal and vertical directions, respec-
tively. The scalar α ∈]0, 1] is the base of the exponential kernel
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UP-SR: Upsampling for Precise Super-Resolution

for t0,
1. Choose the reference frame yt0 .
for t, s.t., t0 − N + 1 ≤ t ≤ t0,
do
2. Compute yt ↑ using (13).
3. Estimate the registration matrices M̂t0

t using (21).
4. Compute yt0

t ↑ using (20).
end do
end for
5. Find ẑt0 by applying a temporal median estimator (28).
6. Estimate x̂t0 by deblurring using (30).
end for

Table 1: Proposed UP-SR Algorithm

which controls the speed of decay [20].
The final solution is:

x̂t0 = argmin
xt0

(
‖Bxt0 − zt0‖1 + λΓBTV (xt0 )

)
, (30)

where λ is the regularization parameter. The UP-SR algorithm
is summarized in Table 1.

Because of the complexity of dynamic scenes with moving
objects, the choice of the order of the reference frame yt0 with
respect to the frames used to super-resolve it plays a major role.
Since we use a temporal median filter in fusing the registered
depth frames, taking yt0 to be in the middle is a natural choice
to estimate the corresponding HR depth image xt0 .

6. Statistical Performance Analysis

In this section we derive the performance of the UP-SR al-
gorithm in terms of mean square error (MSE) for a fixed noise
level. This derivation helps in better understanding the effect
of the number of frames N and the effect of the SR factor r
on the performance of the UP-SR algorithm. In [34, 35], there
have been some attempts to derive the asymptotic limits of SR.
However, these attempts do not take into account the bias of
an SR estimator, which is always part of an image reconstruc-
tion process [36]. Moreover, a Gaussian noise model is usu-
ally assumed while UP-SR exploits an additive Laplacian noise
model [18]. Taking into account the considered problem, we
propose to adapt the affine bias model of [37] based on a repre-
sentation with patches, which leads to an approximation of the
UP-SR bias. This bias is related to two main factors, namely,
the error due to gradient-based motion estimation [36], and to
the SR factor r. Few assumptions are introduced for simplicity
of analysis but we will show that they hold in the experimental
evaluation, both quantitatively and qualitatively.
Thanks to the new data model proposed in (26), we look into
the performance of the median estimator ẑt0 as defined in (28) in
terms of MSE. Let us define tr(·) and cov(·) to be the trace and
the covariance functions, respectively. Then, the MSE may be
decomposed into two parts; the bias(·), and the variance var(·),

defined for a given vector z as var(z) = tr (cov(z)). By consid-
ering a known ground truth xt0 , we may then express the MSE
as follows:

MSE
(
ẑt0 , xt0

)
= var(ẑt0 ) + ‖bias

(
ẑt0

)
‖2. (31)

6.1. Bias Computation

Chatterjee and Milanfar have proposed in [37] an affine bias
model for image denoising. The processing is done on patches,
thus making the model in [37] local. We have shown in Sec-
tion 5 how the SR problem can be formulated as a denoising
problem (26). We may therefore apply the model in [37] after
some modifications to fit the estimation in (28).
We decompose the ground truth image xt0 into n patches
{qt0 (i), i = 1, · · · , n} where each patch qt0 (i) is of size (r × r)
pixels and centered at the pixel xt0 (i). Similarly, the frames yt0

t ↑

are decomposed into n overlapping patches {pt(i), i = 1, · · · , n}.
In fact, the estimation in (28) corresponds to the process of lo-
cally selecting the element with the highest ranking among the
N patches at the same position {pt(i), t = t0 − N + 1, · · · , t0}.
Let E(·) be the expectation operator, and Ir the identity matrix
of size (r × r). By considering two frames at different times t
and t′, we may calculate the local bias per patch as explained
in [15] as follows:

bias
(
q̂t0 (i)

)
= Siqt0 (i) + ui, (32)

with

Si =
(
E

(
Wt′

t0 (i)
)
− Ir

)
qt0 (i),

and

ui = E
(
Wt′

t0 (i)ηt0 (i) + wt′
t0 (i)

)
,

where Wt′
t0 (i) and wt′

t0 (i) are the sub-block of M̂t′
t0 centered at po-

sition i, and the local innovation directly related to cumulated
innovations defined in (16), respectively. The vector ηt0 (i) rep-
resents the patch measurement error due to noise and to blur.
The final bias is then defined as:

‖bias
(
ẑt0

)
‖2 =

n∑
i=1

‖bias
(
q̂t0 (i)

)
‖2. (33)

In the simple case where the average motion per patch and its
innovation wt′

t0 (i) are close or equal to zero, the per-patch bias
term becomes E

(
ηt(i)

)
. This bias is in fact due to the effects

of the per-patch blur and to noise. The statistical properties of
the noise are the same as those of νt. The blur effect is due to
the (r2 − 1) pixels per patch generated by the upsampling step.
Assuming that they induce a fixed mean error ρ, the total bias
may be simplified as follows:

‖bias
(
ẑt0

)
‖2 =

n∑
i=1

‖E
(
ηt(i)

)
‖2 = n · (r2 − 1)ρ2. (34)

We can see in (34) that, for r = 1, the estimation becomes un-
biased. This is due to the fact that there is no blur caused by the
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upsampling process. Generally, the bias term is data dependent
because of qt0 (i) in (32). It also depends on the SR factor r, and
the local motions and noise. From (34), we conclude that the
bias is proportional to the squared SR factor r2 and to the image
size n.

6.2. Variance Computation
Assuming that the noise νt follows an i.i.d. n-multivariate

Laplace distribution, we may write: var(ẑt0 ) = tr
(
cov(ẑt0 )

)
= n ·

var
(
ẑt0 (i)

)
, i = 1, · · · , n. Therefore, we may define the variance

as [38]
var

(
ẑt0 (i)

)
= 2σ2 f (N), i = 1, · · · , n, (35)

where for N even,

f (N) =
4N!((

N−1
2

)
!
)2

(
1
2

) N+1
2

N−1
2∑

k=0

( N−1
2
k

) (
− 1

2

)k

(N + 1 + 2k)3 , (36)

and for N odd,

f (N) =
N!(

N
2

)
!
(

N
2 − 1

)
!

(
1
2

) N
2 ( 1

N3

(
1
2

) N
2

+

N
2 −1∑
k=0

(N−1
2

k

) (
−

1
2

)k 7N2 + 8N(k + 1) + 4(k + 1)2

N2(N + 2k + 2)3

)
. (37)

Our model assumes that the effect of overlapping patches is ex-
pressed in the bias term. Thus, the variance is independent of r,
which corresponds to the simple denoising operation where no
SR is involved and r = 1. It is proportional to the noise vari-
ance σ2 and to the number of measurements N. The Cramèr
Rao bound corresponding to the variance in (35) is equal to σ2

2N .
Thus, for a very long sequence, where N tends to ∞, the vari-
ance var(ẑt0 ) tends to 0.

7. Experimental Results

In order to evaluate the performance of the UP-SR algorithm,
we start by separately looking at the impact of the two key com-
ponents, upsampling and cumulative motion estimation, de-
signed to handle the motion of freely moving and deforming
objects in depth LR videos. Then, we provide a quantitative
evaluation comparing with state-of-the-art approaches by test-
ing on synthetic data with ground truth. We give qualitative
examples using the same synthetic data in addition to real data
acquired in a laboratory environment. Finally, for different SR
factors and varying noise levels, we compare the obtained re-
sults to the theoretical analysis given in Section 6.

7.1. Upsampling and Motion Estimation
To demonstrate the effect of the upsampling step on the

motion estimation process, we conduct the following experi-
ment. We consider the “Art” depth image from the Middlebury
dataset [39]. We shift it with one pixel in both x and y direc-
tions at the resolution r = 1. As a result, the corresponding
motion vector at a given scale r = R is wL↑R

= (R,R) pixels,

which represents the ground truth motion. In this experiment,
we take R = 8. Next, we estimate motion vectors for different
SR factors, i.e., r varying from 1 to R. These vectors are fur-
ther upscaled with the factor R

r in order to be compared with the
motion ground truth wL↑R

. The error of the estimated motion is
calculated as follows: εr = ‖R

r · w
L↑r
− wL↑R

‖2. The obtained
results are shown in Table 2. They clearly support our claim
where the error decreases by a factor of 1

r by increasing the SR
factor r. We can see that estimating motion from upsampled
images with the factor r = R is more accurate than upscaling
the estimated motion from the lowest level with r = 1.

r=1 r=2 r=4 r=6 r=8
εr (pixels) 0.51 0.25 0.13 0.08 0.06

Gain in accuracy (%) 0% 50% 75% 84% 88%

Table 2: Errors εr between estimated motions upscaled with a factor of ( R
r ) with

r = 1, ...,R, and estimated motions from upsampled frames with a resolution
factor R = 8.

7.2. Cumulative Registration

To illustrate the effectiveness of the cumulative registration
proposed in Section 5.2, we consider a challenging case of four
persons moving with a large motion in different directions. The
used setup is an LR ToF camera, the 3-D MLI [2], mounted in
the ceiling and looking at the scene from the top. One of the
LR frames is shown in Figure 2 (a). We apply the UP-SR al-
gorithm on this sequence using three different registration tech-
niques, namely, non-cumulative registration, cumulative regis-
tration using the upscaled motion vectors estimated from LR
frames, and the proposed cumulative registration using the es-
timated motion from upsampled LR frames. The correspond-
ing results are shown in Figure 2 (b), (c), and (d), respectively.
They show the superiority of the third technique over the first
two techniques, which confirms the advantage of using the pro-
posed cumultative motion estimation.

7.3. Qualitative Comparison

We use the “Samba” dataset available in [40], which pro-
vides a real sequence of a 3-D dynamic scene with HR ground
truth, Figure 3 (e). We downsample a sub-sequence of 9 LR
frames with a scale factor r = 4. The obtained LR sequence
is of resolution (256 × 147) pixels. This sequence is degraded
with additive Laplacian noise with σ varying from 0 to 100 mm.
The created LR noisy depth sequence is then super-resolved. In
order to visually evaluate the performance of UP-SR, we plot
in 3-D the super-resolved results of the “Samba”-generated se-
quence for the noise level of σ = 30 mm. As expected, the UP-
SR algorithm provides a better result by keeping the fine details
as compared to the bicubic interpolation and to the patch-based
SISR methods. By zooming on the face part and plotting the
3-D error map, it is clear that UP-SR gives the closest result as
compared to the ground truth, see Figure 3 for more details.

Using the same setup of the LR ToF camera mounted in the
ceiling at a 2.5m height, we captured an LR depth video of two
persons sitting on chairs sliding in two different directions. A
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(a) (b) (c) (d)

Figure 2: UP-SR results with r = 4 using different registration techniques of a dynamic scene with four persons moving in different directions. The sequence
consists of 9 LR (56 × 61) depth images. (a) Last frame in the LR sequence. (b) UP-SR without cumulative motion. (c) UP-SR with cumulative motion upscaled
from LR frames. (d) UP-SR with the proposed cumulative motion from upsampled frames. The largest measured depth in this scene is 2.5 m.

Figure 3: 3-D results of different SR methods applied on the “Samba” sequence [40]. (a) LR noisy input. (b) Bicubic interpolation. (c) Patch-based SISR [12]. (d)
UP-SR, initial estimate. (e) Ground truth. (f) Deblurred bicubic. (g) Deblurred patch-based SISR. (h) Deblurred UP-SR. Third row represents the 3-D error maps
for: (i) Bicubic. (j) Patch-based SISR. (l) Proposed UP-SR. We can see that the obtained error using the the proposed UP-SR (l) is quite small as compared to other
methods where the bicubic interpolation leads to noisy depth measurements in addition to the flying pixels represented by the yellow and orange collors in the 3D
error map in (i). The obtained results using the patch-based SISR is quite smooth and lead to removing fine details, and hence, resulting in large 3-D reconstruction
errors, see blue patches in (j). The depth is measured in mm.

sequence of 9 LR depth images, of size (56×61) pixels, was
super-resolved with an SR factor r = 5 using bicubic interpo-

lation, 2-D/depth fusion [5], dynamic S&A [41], patch-based
SISR [12], and the proposed UP-SR. Visual results for one
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(a) (b) (c)

(d) (e) (f)

Figure 4: Moving chairs sequence: comparison of the results for different SR methods with SR factor of r = 5: (a) Last frame of 9 LR (56 × 61) depth images. (b)
Bicubic interpolation of the last depth frame in the sequence. (c) 2-D/depth fusion [5]. (d) Dynamic S&A [41]. (e) SISR S&A [12]. (f) Proposed UP-SR.

(a) (b) (c) (d)

Figure 5: Comparison of the results for different SR methods with SR factor of r = 4. These methods are applied on a dynamic sequence of four persons with fast
motion in different directions. (a) Last frame of LR (56 × 61) depth images. (b) Bicubic interpolation of the last depth frame in the sequence. (c) SISR [12]. (d)
Proposed UP-SR.

frame are given in Figure 4 (b), (c), (d), (e), and (f), respec-
tively. Obtained results show that bicubic interpolation and dy-
namic S&A fail on depth data mainly on boundary pixels, while
the result of the 2-D/depth fusion suffers from strong 2-D tex-
ture copying on the final super-resolved depth frame as shown
in Figure 4 (c). We can see the results of SISR in Figure 4 (e),
where the inaccuracies are also observed especially on objects’
boundaries. We show in Figure 4 (f) the result of the UP-SR
algorithm where we obtained clear sharp edges in addition to
an efficient removal of noisy pixel values. This is mostly due to
the proposed sub-pixel motion estimation combined with an ac-
curate cumulative registration leading to a successful temporal
fusion of the sequence. Similar results are observed in Figure 5
by testing the different methods on the challenging case of the
sequence of four moving persons.

7.4. Quantitative Comparison

We provide a quantitative evaluation of the proposed UP-SR
algorithm as compared to two methods, namely, the conven-
tional bicubic interpolation and the patch-based single image
SR (SISR) given in [12]. We start with the ”Samba” dataset,
where the previously created LR noisy depth sequences are
super-resolved using these methods and the proposed method.
We compare the obtained results at two levels, initial and de-
blurred using the deblurring step proposed in Section 5. For
the deblurring step we use an exhaustive search to find the best
optimization parameters corresponding to the smallest 3-D re-
construction error. The quantitative results are reported in Fig-
ure 6. As expected, by applying the conventional bicubic inter-
polation method directly on depth images, a large error in the
reconstructed HR depth image is obtained. This error is mainly
due to flying pixels around object’s boundaries, Figure 3 (b).
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Thus, for a fair comparison we run another round of experi-

Figure 6: MSE at different noise levels for different SR methods applied to an
LR depth sequence created from the “Samba” dynamic data [40], with r = 4
and N = 9.

ments using a modified bicubic interpolation, where we remove
all flying pixels by defining a fixed threshold. Yet, the 3-D re-
construction error remains relatively high. This is due to the
fact that bicubic interpolation does not profit from the temporal
information provided by the sequence. Only in the case of one
moving object and a very low noise level (less than 10 mm) the
modified bicubic interpolation may be considered as shown by
the red solid line in Figure 6. The performances of SISR, orig-
inal and deblurred, are given in green lines, solid, and dashed,
respectively. SISR can be seen to be robust to noise as its per-
formance is stable even for high noise levels. The addition of
the deblurring step of UP-SR improves the MSE of the original
SISR algorithm. The result of the proposed UP-SR algorithm
is shown with a blue dashed line. Its MSE is the lowest among
all the tested methods, and is also shown to be robust across all
noise levels. This result can be explained by the fact that SISR
is a patch-based method where no temporal information is used
in recovering the fine details even after applying a deblurring
step. In contrast, the good quality of the UP-SR results is ob-
tained thanks to the temporal fusion using the pixel-wise me-
dian filtering after a cumulative registration. This fusion plays
a major role in attenuating the temporal noise and represents an
appropriate process to deal with the problem of flying pixels.
Moreover, the spatial deblurring step leads to further adding a
smoothing effect while keeping sharp edges, hence, recovering
fine details.

7.5. Evaluation for Varying SR Factors

In order to evaluate the performance of the proposed UP-SR
algorithm for different SR factors and varying noise levels, as
compared to the statistical performance analysis of Section 6,
we setup the following experiment. We use the publicly
available toolbox V-REP [42] to create synthetic data with
fully known ground truth of a laterally moving person with
less complex motions as compared to the “Samba” dataset.
Three depth cameras with the same field of view are fixed at
the same position. These cameras are of different resolutions,
namely, 5122, 2562, and 1282 pixels. They are used to capture
three sequences of the moving person. These sequences are

further degraded with additive Laplacian noise with a standard
deviation σ varying from 0 mm to 60 mm. Each sequence
is super-resolved using UP-SR by considering 9 successive
frames. The corresponding MSE performance of the first
fusion step and the second deblurring step of UP-SR are
reported in Figure 7 in solid and dashed lines, respectively.
In the simple case where r = 1, the SR resolution problem is
merely a denoising one where the ground truth is estimated
from 9 noisy measurements. In other words, the objective
is not to increase resolution, and hence there is no blur due
to upsampling. Since consecutive motions between frames
are small, they led to an approximately unbiased median
estimation, which validates (34). Indeed, as seen in Figure 7,

Figure 7: MSE versus noise variance for the V-REP simulated dynamic scene.

starting from σ ≈ 30 mm, the solid red line overlaps with the
dashed-dotted black line which corresponds to the theoretical
variance obtained using (37). A non-zero bias is found for
r = 2 and r = 4 where the corresponding blue and green
solid lines are above the theoretical variance. This suggests a
correlation between motion and upsampling blur as expressed
by the vector ui in (32). We note an increased bias for a larger
SR factor r. This is justified by a larger blur effect due to the
dense upsampling and to local motions. Finally, the dashed
lines in Figure 7 confirm the performance enhancement after
applying the optimization in (30); thus, ensuring an effective
deblurring.
These quantitative results can be appreciated visually in Fig-
ure 8 where the noise level is fixed at σ = 35 mm. First, second
and third columns correspond respectively to r = 1, r = 2, and
r = 4 where (a), (b) and (c) are the noisy LR observations; (g),
(h), and (i) are the result of UP-SR. The corresponding error
maps as compared with the ground truth are given in (j), (k),
and (l). The effective resolution enhancement, with a factor of
4, and the denoising power of UP-SR for a moving object on
depth data is seen in 3-D in Figure 8 (i). The average root MSE
in 3-D as shown in Figure 8 (l) is about 9 mm.

8. Discussion and Conclusions

A new multi-frame super-resolution algorithm for dynamic
depth scenes has been proposed. It has been shown to be effec-
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Figure 8: UP-SR qualitative results for the V-REP simulated moving person
with different SR factors r. First, second and third columns correspond respec-
tively to r = 1, r = 2, and r = 4 where (a), (b) and (c) are the noisy LR observa-
tions; (d), (e), and (f) are the result of the initialization step of UP-SR; (g), (h),
and (i) are the result of the deblurring step of UP-SR. The corresponding error
maps as compared to the ground truth are given in (j), (k), and (l)

tive in enhancing the resolution of dynamic scenes with one or
multiple non-rigidly moving objects. The proposed algorithm
relies on two main components; first, an enhanced motion es-
timation based on a prior upsampling of the observed low res-
olution depth frames up to the super-resolution factor. Second,
it uses a cumulative motion estimation accurately relating non-
consecutive frames in the considered depth sequence, even for
relatively large motions. In addition, the multi-frame super-
resolution problem has been reformulated defining a simplified
data model which is analogous to a classical image denoising
problem with additive Laplacian noise, and using multiple ob-
servations. This has led to a median initial estimate, further re-
fined by a deblurring operation using a bilateral total variation
as the regularization term. For a thorough understanding of the
impact of the different parameters, namely, number of observed
frames N and the super-resolution factor r, a statistical model
for the proposed approach in terms of MSE has been derived.
One important conclusion is that the blur effect is due to both
upsampling, motion and occlusions. Extensive evaluations us-
ing synthetic and real data have been carried out, showing the
consistent good performance of the proposed approach in full
correspondence with the derived theoretical statistical model.
We note, nevertheless, interesting limitations in the case, for
example, of intersecting or touching objects, as can be seen
within the bounding boxes in Figure 2 (d) and Figure 5 (d).
This is due to the textureless nature of depth images which may
cause two objects to be allocated to the same depth value, and
hence makes them wrongly appear as one object. In the future,

we will consider a full 3-D motion for a more accurate registra-
tion that should solve such ambiguous cases. Furthermore, we
plan to investigate recursive approaches for a real time dynamic
depth super-resolution. The results of this work are very novel
as compared to state-of-art multi-frame super-resolution tech-
niques applied to depth data. They are expected to have a sig-
nificant impact in increasing the deployment of cost-effective
low resolution depth cameras in many applications, such as,
robotics, gaming, and security.

Appendix A. Proof of the Cumulative Motion Estimation

We prove by induction the following ζ(n) statement:{
Mt0

t0−nyt0−n ↑ = yt0
t0−n ↑,

s.t. Mt0
t0−n = Mt0

t0−1Mt0−1
t0−2...M

t0−n+1
t0−n

· · · ζ(n).

Proof. Let us consider that ζ(n − 1) is true, i.e. Mt0
t0−(n−1)yt0−(n−1) ↑ = yt0

t0−(n−1) ↑,

s.t. Mt0
t0−(n−1) = Mt0

t0−1Mt0−1
t0−2...M

t0−(n−1)+1
t0−(n−1)

(A.1)

From (A.1) we have:

Mt0
t0−(n−1)M

t0−(n−1)
t0−n = Mt0

t0−n (A.2)

Base case: When n = 1 we have

Mt0
t0 yt0 ↑= yt0

t0 ↑, (A.3)

and

Mt0
t0 Mt0−1

t0 = Mt0−1
t0 . (A.4)

Both (A.3) and (A.4) are verified because Mt0
t0 = In. Then,

Induction step: We need to show that ζ(n − 1)⇒ ζ(n).
Given two consecutive frames: yt0−n and yt0−(n−1), we have:

Mt0−(n−1)
t0−n yt0−n ↑= yt0−(n−1)

t0−n ↑, (A.5)

where

M̂t0−(n−1)
t0−n = arg min

M
Ψ

(
yt0−(n−1) ↑, yt0−n ↑,M

)
. (A.6)

Multiplying (A.5) by Mt0
t0−(n−1) we find

Mt0
t0−(n−1)M

t0−(n−1)
t0−n yt0−n ↑= Mt0

t0−(n−1)y
t0−(n−1)
t0−n ↑ . (A.7)

From (A.2) and (A.7) we have

Mt0
t0−nyt0−n ↑= yt0

t0−n ↑ .
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