
Access Control Enforcement Testing
Donia El Kateb1,2, Yehia ElRakaiby1, Tejeddine Mouelhi1, Yves Le Traon1,2

1Security, Reliability and Trust
Interdisciplinary Research Center, SnT

2Laboratory of Advanced Software SYstems (LASSY)
University of Luxembourg

Luxembourg
{donia.elkateb, yehia.elrakaiby, tejeddine.mouelhi, yves.letraon}@uni.lu

Abstract—A policy-based access control architecture com-
prises Policy Enforcement Points (PEPs), which are modules
that intercept subjects access requests and enforce the access
decision reached by a Policy Decision Point (PDP), the module
implementing the access decision logic. In applications, PEPs are
generally implemented manually, which can introduce errors in
policy enforcement and lead to security vulnerabilities. In this
paper, we propose an approach to systematically test and validate
the correct enforcement of access control policies in a given
target application. More specifically, we rely on a two folded
approach where a static analysis of the target application is first
made to identify the sensitive accesses that could be regulated
by the policy. The dynamic analysis of the application is then
conducted using mutation to verify for every sensitive access
whether the policy is correctly enforced. The dynamic analysis
of the application also gives the exact location of the PEP to
enable fixing enforcement errors detected by the analysis. The
approach has been validated using a case study implementing an
access control policy.

Index Terms—Access Control Policies, PEP, PDP, Security Test
Cases.

I. INTRODUCTION

In policy-based software systems, access to services is reg-
ulated by an access policy specifying controls over subjects’
access to services. Several access control models such as
RBAC, MAC, DAC and OrBAC [11], [4], [7], [8] may be
used to specify access control policies. To make access con-
trols reconfigurable, the recommended standard architecture is
based on the separation of the policy decision point (PDP), the
security component where access decisions are taken, and the
policy enforcement points (PEPs), the security mechanisms
inside the business logic where access is controlled. More
precisely, after an access request, a PEP queries the PDP. The
PDP decides whether this access should be allowed or not.
The PEP then enforces the decision taken by the PDP. This
separation enables update and evolution of the policy since
changes made to the policy in the PDP are directly reflected
in policy enforcement at the PEP level. In practice, the PEPs
are scattered in several places inside the code, the modules
and the components of the system.

In such systems, debugging policy enforcement errors be-
comes a tedious task since PEPs are often manually imple-
mented, specially in legacy systems. In this context, Policy

enforcement errors may consist in a non-alignment between
what has been specified in the policy and the security mech-
anisms enforcing the policy rules at the application level.
For instance, a mis-configured PEP may lead to granting
access while it should be denied according to the policy.
Such unauthorized accesses resulting from incorrect policy
enforcement might produce a heavy impact on an organization
security. Thus having mechanisms that enable the detection
and the correction of policy enforcement errors, is a crucial
issue for the secure design of software systems.

In this paper, we propose an approach that automates testing
and validation of policy enforcement in policy-based software
systems. Our approach includes two steps. First, we use static
code analysis in order to identify accesses which can be made
from within the application. In particular, we consider the
analysis of the application class diagram to determine the
different accesses which may need to be regulated by the
access control policy rules. This analysis also allows us to
detect and remove non relevant rules at the policy level. In this
analysis, we have proposed transformation rules that derive,
from UML class diagram, the accesses that are relevant to the
policy in an application.

The second step aims at helping fixing policy enforcement
errors and at establishing a mapping between PEPs in the
application and the rules at the policy level. For this purpose,
we consider the use of dynamic analysis. In particular, we
combine the execution of test cases exercising each selected
access control rule with mutation of policy rules. This allows
the detection of several policy enforcement problems. For ex-
ample, it may reveal the absence of access control mechanisms
or the incorrect enforcement of a policy rule. Our dynamic
analysis also enables the localization of the PEP enforcing a
policy rule inside of the application, simplifying the correction
of policy enforcement when problems are detected.

The remainder of this paper is organized as follows: Sec-
tion II introduces the context of this work. Section III presents
the overall approach. Section IV presents the main results.
Section V discusses related work and Section VI concludes
the paper.

978-1-4673-6161-3/13/$31.00 c© 2013 IEEE AST 2013, San Francisco, CA, USA64

Callee

 PDP: Policy Decision Point PEP: Policy Enforcement Point

PEP

CallerCaller

PEP

CallerCaller

PEP

CallerCaller

PEP

CallerCaller

CallerCaller Callee

 PDP

CallerCaller

1

4

1

4

1

4

2

3

1

2

1

1

2

2

3

3

3
4

4

4

3
4
3
4

2

1
 Service Request

44

 Access Request

 Access Response

2

Configuration A Configuration B

 PDP

 Service Response3 4

1 Access Request 2

3 4

 Access Response

 Service Request Service Response

Fig. 1. Possible PEPs Configurations

II. CONTEXT

In this work, we assume that the evaluation of access control
follows the standard access control PEP-PDP architecture. In
this architecture, the PDP evaluates accesses and the PEPs
enforce decisions taken by the PDP. A PEP-PDP architec-
ture centralizes the location where the policy is evaluated.
Therefore, it simplifies policy update and management. In the
context of a Java application, a PEP often corresponds to a
method Mp that is encapsulated in the business logic. Every
Mp is generally associated with a set of services. Once a given
service is requested, Mp is first triggered and the PDP is called.
The PDP evaluates the current access control policy and allows
or denies access accordingly. The decision taken by the PDP is
enforced by the PEP. PEPs are typically organized according
to two typical configurations. These configurations are shown
in Figure 1 and may be described as follows.

• Access is enforced by a PEP on the callee’s (the service)
side: In this case, the PEP is encapsulated in the service
implementation. Access control is more centralized since
enforcement mechanisms reside inside the implementa-
tion code of the service itself. Configuration A in Figure
1 illustrates this scenario.

• Access is enforced by a PEP on the caller’s (the client)
side like shown in Configuration B of Figure 1: In such
configuration, controls are more decentralized since the
PEP is located at the application level of the client side.

Within an application, PEPs are typically organized according
to one of the configurations above or using a mix of the
two configurations depending on the security requirements.
Testing access control correct enforcement can therefore be
problematic since some PEPs are mis-implemented or missing.

III. APPROACH DESCRIPTION

The overview of our approach is described in Figure 2.
The approach is two-fold: First, a static analysis of the
application code is made in order to examine relationships

between the application classes that are policy-relevant and
to determine the set of sensitive method calls that can be
made from within the target application. This set corresponds
to accesses that might be regulated by the access control
policy. The identification of this set therefore enables to detect
misspecified security rules or errors in the implementation of
the application security mechanisms. After the removal of the
non relevant rules, access control tests are generated.

In the second step, a dynamic analysis of the target appli-
cation is preformed using the tests produced from the first
step. In particular, for every sensitive access, a permission
is specified in the policy. The security policy mutation tool
(MutaX) [2] is then used to generate a mutant of this security
rule such that the access is no longer authorized. In our
experiments, a simple mutation operator was considered where
the rule type is changed, namely a permission is changed
into a permission and vice versa. The test corresponding to
this particular access is then run twice, one time when the
original rule is included in the policy and another time when
the original rule is replaced by its mutant.

When the policy is correctly enforced, i.e. the security
mechanisms are correctly implemented, the traces generated
from the runs of the tests differ at exactly the point where the
PEP is located and the trace where access is denied shows
the procedure executed after access denial, e.g. a security
exception is thrown. Every other case reveals a problem in the
enforcement of the policy. For example, two identical traces
may mean that there is no policy enforcement mechanism or
that the PDP is not queried correctly by the PEP. A trace where
access denial procedure is executed when access is authorized
or the non-execution of the denial procedure when access
should be denied indicates the incorrect implementation of the
PEP. To locate the implemented security mechanisms in these
two latter cases, the execution trace is captured in the form
of a structured tree of method calls and a trace comparison is
made to locate the PEP in the target application. Consequently,
the correction of the security mechanisms is simplified.

A. Static Analysis: Identification of Possible Accesses

An access control policy regulates accesses made by system
users (subjects) to protected resources (targets). Subjects and
resources correspond to class instances at the application
level and policy roles correspond to classes. For the sake
of simplicity, in what follows, we consider instances of a
class are assigned a single role. Note that it is straightforward
to generalize our approach to the case where instances of a
class may be assigned multiple roles. In this context, possible
accesses are interactions between classes representing system
users and classes representing application services.

To clarify the approach, we consider a library management
system comprising users such as professors, secretaries, etc.
Protected resources in the system are personal accounts, books,
etc. This application’s model in the form of a class diagram,
has been automatically generated using JaMoPP eclipse plug-
in [1] and is shown in Figure 3.

65

Application

Static Analysis
Possible accesses

Policy to Test Mutated Policy

Traces Comparison and PEP localization

PEP

Test cases Execution and traces
capture

Step1. Static Analysis

Step2. Dynamic Analysis

Trace for rule i

Trace for mutated
rule i

Fig. 2. The Overall Approach

Note that there are implicit security rules that are inher-
ent to the implementation of the application. For example,
through the UML design, a class Secretary cannot directly
call borrowBook since the program does not have any direct
reference from the class Secretary to Books. In other words,
a call of borrowBook by an instance of the class Secretary
will inevitably fail regardless of whether the specified access
policy stipulates that this call is allowed or not.

This partially motivates the static analysis of the target
application since it allows identification of method calls (ac-
cesses) which are executable given the application’s model.
The motivation behind using static analysis at the class dia-
gram level is to allow generic verifications and analysis of the
security constraints at the model level. This analysis can be
easily be mapped to the implementation level. This is further
discussed in Section III-B.

To identify accesses which can be made by users (subjects)
to protected resources (targets), we analyze the application’s
class diagram. This class diagram is inferred from the appli-
cation code and, thus, it shows the different associations and
operations of the different application’s classes. To identify
possible accesses, interactions between the classes which
represent subjects (ClS) and those which represent targets
or resources (ClR) are analyzed at the application level.
Particularly, we consider two types of relationships between
subject and target classes, namely association and dependency
relationships.

An association describes a discrete connection among
classes objects or instances. A dependency is a weaker form
of relationship indicating that one class depends on another

because one of its method requires the use of the other class.
More concretely, when a class R1 is associated with a class
T1, R1 would have an attribute which is an instance of T1.
On the other hand, when a class R1 depends on T1, then T1

appears as parameter variable or a local variable in one of the
methods of R1.

We formalize our analysis of class diagrams using First-
Order Logic as a representation language as follows. To
represent the different elements of a UML class diagram,
we consider the use of predicates class(ClassName) to rep-
resent classes of the application and sclass(ClassName) and
rclass(ClassName) to denote classes which represent system
subjects and resources respectively. For example, the classes
Professor and Book are represented as follows.

class(professor) class(book)
sclass(professor) rclass(book)

We represent the public operations supported by classes and
their parameters using respectively class operation and oper-
ation parameter. For instance, the following facts specify that
the class Book supports the public operation borrow which has
a parameter of type Professor.

class operation(book, borrow)
operation parameter(book, borrow, profesor)

The associations between classes1 are represented using as-
sociation end(Classe1, Association Label, Classe2). For in-
stance, we represent the association between Personnel and
PersonalAccount as follows.

association end(personnel, account, personal account)
association end(personal account, owner, personnel)

To take into account dependency relationships between classes,
we consider that a class S depends on another class R through
an operation Op if one of the operations of S has a parameter
of type R. We specify this as follows2.

dependency(S,Op,R)←
class(S), class(R), class operation(S,Op),

operation parameter(S,Op,R)

We consider that instances of a subject class S can directly
execute public operations of a resource class R if an associa-
tion exists between the subject and resource classes.

can execute(S,Op,R)← sclass(S), rclass(R),
association end(S, ,R), class operation(R,Op)

The instances of S can also indirectly execute public oper-
ations of R if there exists an association path from the S
to R. To identify this relation type, we specify the following
rules which give the transitive closure of the relation associa-
tion end.

ind association(S,R)← association end(S, , I)
ind association(S,R)←

association end(S, , I), ind association(I, , R)

1Note that aggregations and compositions are particular types of associa-
tions.

2In the following, we use a notation similar to that of Prolog for the
specification of derivation rules.

66

Fig. 3. Application Class Diagram

Thus the can execute operation can be specified as follows.

can execute(S,Op,R)←
sclass(S), rclass(R), ind association(S,R),

class operation(R,Op)

We also consider that S can execute the operation Op on R
if there exists a dependency between S and R through an
operation Op as follows.

can execute(S,Op,R)← dependency(S,Op,R)
can execute(S,Op,R)← dependency(R,Op, S)

The first rule above considers operations which access re-
sources on the subject’s side while the second rule considers
operations on the resource’s side. We also consider the gen-
eralization relation. Therefore, we specify that a class P is
a generalization of another class C using generalization(P,C).
A class can execute operations of its general class. This is
specified as follows.

can execute(C,Op,R)←
generalization(P,C), can execute(P,Op,R)

There are other forms of dependency such as instantiation and
creation. The formalization of these forms of dependencies
has not been presented in this paper for the sake of space
limitation. The support of such dependencies is straightfor-
ward since they appear clearly in the abstract syntax tree
of the application’s model. Using the rules described above,
we derive the set of possible access operations shown in
Figure III-B below that are derived from the class diagram
in Figure 3. Figure III-B shows possible accesses which can
be made from within the application-code when the subject
classes are Secretary and Professor and the target classes are
PersonalAccount and Book. Note that we consider operations
on both the client side and the resource side. For instance,
the operations borrowBook of Professor and borrow of Book
correspond to the same operation performed on both: the client
side and on the resource side respectively. We consider the
identification of both operations since access controls may be
enforced either on the client side or on the resource side or
on both.

B. Policy Specification Constraints
The identification of the set of relevant accesses at the

level of the application code enables us to identify policy
specification constraints. For example, it may allow to filter
some rules from the security policy specified by security

officers or/and detect some ill-specified rules. To provide
an illustrative example, we assume that users accesses are
regulated, for instance, by an OrBAC access control policy
[8]. A permission rule in OrBAC is specified using a predicate
Perm(Name,Role,Activity,View, Context). This predicate stipu-
lates that a permission whose identifier is Name authorizes
Role (denotes a user in the application) to perform Activity
(correspond to a method execution) on View (represent a
protected resource) when the context is Context. Prohibitions
are similarly defined. A security policy is a set of permission
and prohibition rules. For instance, consider the following
security policy.

Perm(rule1, secretary, updateAccount, personal account,
working days)

Perm(rule2, professor, updateAccount, personal account,
working days)

Perm(rule3, professor, borrow, book,
working days)

Proh(rule4, secretary, borrow, book, working days)
Perm(rule5, secretary, read, book, working days)

The policy above is composed of five access con-
trol rules. These rules are identified by the rule names
rule 1,rule 2,rule 3,rule 4,rule 5. The policy specifies that
both secretary and professor are allowed to update account
when the context working days is true. A professor is allowed
to borrow book when the context working days is true but
a secretary can not. A secretary may delete a book if it is
working days. Using the possible accesses derived from the
application’s model, we are thus able to analyze the policy.
For instance, we can detect that rule 4 is redundant since the
operation forbidden by this rule can not be executed. This
condition can be formalized as follows.

redundant rule(Rule ID)←
Proh(Rule ID, S,Op,R,Ctx),¬can execute(S,Op,R)

We may also detect several misspecified policy rules. For
instance, the permission rule 5 grants an access which is not
relevant with regard to the application design. This is specified
as follows.

impossible rule(Rule ID)←
Perm(Rule ID, S,Op,R,Ctx),¬can execute(S,Op,R)

The detection of this latter category of rules is particularly
important since it reveals a mismatch between the application
model and the application structure expected by security
officers. In this case, the identification of such problems and
their resolution is necessary to ensure the proper functioning
of the system. These problems may be resolved either by
removing the security rule from the policy or by modifying the
application to, for example, enable a secretary to read books.

C. Dynamic Analysis

The static part of our approach enables us to identify
accesses that are not handled by the security policy and
to remove the rules in the policies that are not taken into
consideration at the application level. This step allows to
narrow the scope of the enforcement mechanisms that have to
be tested at the application level and also permits to generate

67

Subject Operation Target

Secretary updateAccount PersonalAccount

Secretary updatePersonalAccount PersonalAccount

Secretary consultAccount PersonalAccount

Secretary consultPersonalAccount PersonalAccount

Professor updateAccount PersonalAccount

Professor updatePersonalAccount PersonalAccount

Professor consultAccount PersonalAccount

Professor consultPersonalAccount PersonalAccount

Professor borrow Book

Professor borrowbook Book

Access on the resource side Access on the client side

Fig. 4. Possible Accesses

security tests. In this section, we detail our dynamic approach
and explain how we use mutation applied to access control
policies [13][15] to facilitate detecting policy enforcement
errors.

We establish a traceability link between access control rules
in the policy and the PEPs in the application code through a
mapping between every access rule and the PEP that evaluates
it. This mapping is quite important for the verification of
access control implementation when the policy evolves. In
[15], we have presented different mutation operators that have
been applied to access control policies. In this paper, we
only use two mutation operators, namely PRP (Prohibition to
Permission) and PPR (Permission to Prohibition). A concrete
example of a mutation applied to an access control rule is
shown below:

Perm(R1, administrator,manageAccess,
personnelAccount, default)

Proh(mutated R1, administrator,manageAccess,
personnelAccount, default)

This example presents the mutation of the rule R1 into the rule
mutated R1 by applying the operator Permission to Prohibi-
tion. The context default represents a context that is always
true, i.e. the permission and prohibition are unconditional.
Note that our mutation operators do not generate equivalent
mutants since injected changes produce a mutant policy that
is always different from the initial one. Figure 5 presents
the generated access control test case for the rule Proh(rule,
borrower, return book, book, maintenanceDay). This security
test case verifies the correct enforcement of the policy.

D. PEPs Localization for Access Control Enforcement Testing

The relevance of the rules in the policy and the access
control mechanisms is identified using the techniques pre-
sented in section III-A. For instance, if we consider the
application in Figure 3, the policy will include the uncondi-
tional permission Perm(professor:borrow:book,professor, bor-
row,book,default) since this permission corresponds to one of
the application’s possible accesses specified as follows:

Perm(S:Op:R,S,Op,R, default)← can execute(S,Op,R)

// test data initialization
// log in a student
std1 = userService.logUser("login1", "pwd1");
// create a book
book1 = new Book(“book title”);
// book needs to be borrowed before returned
borrowBookForStudent(std1,book1);
// context
contextManager.setTemporalContext(maintenanceDay);
// run test
try { returnBookForStudent(std1,book1);
// security oracle
// SecurityPolicyViolationException is expected because an
access control rule was not applied - test failure
 fail(“ SecurityPolicyViolationException expected,
returnBookForStudent with student = “ + std1 + “ and book = “ +
book1); }
catch(SecurityPolicyViolationException e) {
 // ok security test succeeded log info
 log.info(“test success for rule :
prohibition(borrower,return_book,maintenanceDay)”);

Fig. 5. Security Test Case Example

This last rule specifies that a permission with identifier S :
Op : R allowing S to execute the operation Op on R
should be derived if S can execute Op on R. In the dynamic
step, the application is tested by a test suite that tests the
permissions and the prohibitions. These tests are executed and
execution traces are generated for an application that interacts,
respectively with the original policy and with the mutated one.
For the mutated policy, there is a single rule that is inverted
from permission to prohibition. The execution traces produced
are then compared: when the PEP correctly enforces the policy,
the execution trace of the original policy and the mutated one
differ at exactly the location of the PEP in the code. One of
the execution traces also shows the procedure executed after
access denial. On the other hand, when the two traces are
identical, this may mean either that there is no implemented
policy enforcement mechanism or that security mechanisms
fail to correctly query the PDP. Also, a trace where access
denial procedure is executed when access is authorized or the
non-execution of the denial procedure when access should
be denied indicates an error in the implementation of the
enforcement mechanisms. To simplify the correction of the
security mechanism implementation in these two latter cases,
the execution trace is captured in the form of a structured tree
of method calls and a trace comparison is made to locate the
PEP in the target application. Thus, the application debugger
can find the location in the application where the security
mechanisms are implemented.

We describe our approach more formally as follows: we
consider that a Java application that is regulated by an access
control policy is a system S. This system consists of a set of
methods M and is governed by a policy P = {Ri}i=1..n

where every Ri is a security rule which corresponds to a
possible access and n is a natural number. A mutated policy
rule Rm

i is a non-equivalent mutated version of the access

68

control rule Ri in P after the application of a mutation
operator on Ri. A test suite is composed of a set of test cases
which cover the original rules Ri in the policy P and their
mutated version Rm

i . For every test case, we generate an exe-
cution trace. An execution trace is a sequence of method calls
< m1, ...,ml > where every mi is a method of M . We denote
by Tr(R) the execution trace of the test case of the rule R. To
document the PEP, we consider Map ⊆ ClS×M×ClR×M .
A map(sclass, op, rclass, pep) means that the PEP which
enforces the execution of the operation op by instances of the
class sclass on instances of the class rclass is the method pep.
Our map is initially empty at the beginning of the dynamic
analysis, i.e. Map = ∅. The execution of a test case typically
produces a trace which takes one of the following two forms.

• When R is a policy rule Ri, we get an execution trace of
the form < a1, ..., am,Mp, b1, ...bn > where Mp is the
PEP enforcing the policy. In this trace, access is allowed
and no security exception is triggered since every R in
P is an unconditional permission.

• When R is a mutated rule Rm
i , we get an execution

trace < a1, ..., am,Mp, Mex, c1, ...cj > where Mex is
the method denoting the triggering of a security ex-
ception. Note that the traces of a policy rule Tr(Ri)
and of its mutated version Tr(Rm

i) generally differ at
the exact location of the PEP. Therefore, we document
the PEP by adding the access (sclass, op, rclass) which
corresponds to the rule R to our PEP-access map, i.e.
MAP = MAP ∪ (sclass, op, rclass,Mp).

It may occur that the two traces produced by the test cases of
a policy rule Ri and its mutated version Rm

i are identical. This
generally means that either the PEP is wrongly implemented
or that there is no PEP to control this access. In this case, we
add the entry (sclass, op, rclass,) to the map to indicate that
there is no PEP associated with the access (sclass, op, rclass).
Note that these accesses can not be regulated by the access
control policy. It may also happen that the trace Tr(Ri) of
the original policy shows the access denial procedure or that
Tr(Rm

i) does not show the denial procedure, in this case the
entry (sclass, op, rclass,Mp) shows the location Mp where
the security mechanisms querying the PDP are implemented.

E. PEPs Localisation: Trace Analysis

We implement our dynamic approach through the tracking
of the execution of test cases using a technique based on
Aspect-Oriented Programming (AOP) [3]. AOP is a program-
ming paradigm that aims at separating cross-cutting concerns
to improve modularity. We use AspectJ, a widely used de-
facto standard for AOP [9], to implement a logging concern
to track and log the execution of test cases. We define a logging
advice that is run when the program executes the test cases.
This advice logs all successive routine calls once a given trace
is executed. The code in Figure 6 shows our TracingTests
aspect. The TraceTestsMethods() pointcut logs the execution
of all Test Cases using the regular expressions *Test. After
the execution of each Test Case method, the code in the after

advice is executed and logs all method calls after the execution
of Test Cases.

public aspect TracingTests {
TracingTests(){}
Logger logger1=Logger.getLogger("trace");

pointcut TraceTestsMethods(): cflow (execution(* test*(..))) & within(test.security.ChatServiceSecTest)
 || within(test.security.MeetingServiceSecTest)
 || within(test.security.PersonnelAccountServiceSecTest)
 || within(test.security.UserAccountServiceSecTest);
…..
after(): TraceTestsMethods() {
 System.out.println("----------------------------" + " Mutant is number: " +
TestOracle.mutantNumber);
 Signature sig = thisJoinPoint.getSignature();
 String infoformat="entering [" + sig.getDeclaringType().getName()+ "." +sig.getName()+"]";
 logger1.info(infoformat);
 printtofile(infoformat+"\n");

Fig. 6. Tracing Test Execution Aspect

IV. EVALUATION RESULTS

We applied the dynamic part of our approach to Virtual
Meeting Management System (VMMS, a Java system that
interacts with an access control policy [16], [10]. It contains
6077 lines of code, 134 classes and 581 methods. VMMS
offers web conference services. It allows the organization
of work meetings on a distributed platform. Once connected
to the virtual meeting service, the user can join a meeting,
intervene in a speech, or plan new meetings. Every meeting has
a manager who is responsible for planning the meetings and
setting the meeting parameters (name, agenda, duration,...).
Every meeting may also have a moderator, designated by the
meeting manager. The moderator gives the floor to participants
wishing to participate in the meeting. The security policy P
inferred from the application code specifies 87 permission
rules. These rules correspond to possible accesses in the
application. We execute test cases of every rule in the policy
as well as its mutated version. Using the aspect presented in
the previous section, we collect the resulting execution traces
in output files.

To locate the PEPs based on execution traces, we compare
the execution traces of the original rule and of its mutated
version as previously explained in Section III. Figure 7 shows
two execution traces extracted from 2 trace output files. The
first trace represents a trace execution corresponding to a rule
policy R1: Permission(rule, Personnel, SetMeetingAgenda,
Meeting, Default) and the second denotes a trace execution
corresponding to the mutated version of the rule R2: Prohi-
bition(mutated rule, Personnel, SetMeetingAgenda, Meeting,
Default).

An analysis of the two traces shows that once
the policy is mutated, a call to the function ser-
vice.UserService.disconnectUserFromMeeting produces a se-
curity exception. By comparing the two traces, we detect
access control enforcement errors and we automate the lo-
calization and the mapping of all the PEPs which enforce a
possible access in the system. The table 1 shows some of the
PEPs distribution that we have identified per each class and
the number of rules that are relevant for those PEPs.

69

 [MeetingServiceSecTest.testIllegalScenarios]
 …..........................
 [UserService.disconnectUserFromMeeting]
 [SecurityPolicyService.nbRulesTestedProhibit]
 [SecurityPolicyService.checkSecurityPolicy]
 [Authorization.authType]
 [Authorization.getAuthType]
 [Service.ServiceUtils.getUserChannel]
 [Service.ServiceBO.server]

 Execution Trace with an original policy Execution Trace with a mutated policy

[MeetingServiceSecTest.testIllegalScenarios]
…..........................

[UserService.disconnectUserFromMeeting]
 [SecuritPolicyViolationException]

1 2

Security exception raised

 once the PEP is called

PEP

Fig. 7. PEPs localization through Trace analysis

TABLE I
PEPS DISTRIBUTION

PEPs by Class Rules Number

ChatService 24

speakInMeeting 10

handOver 2

askTo Speak 10

PersonnelAccountService 7

deletePersonnelAccount 2

updatePersonnelAccount 1

MeetingService 32

putMeetingTitle 8

closeMeeting 4

putMeetingModerator 8

V. RELATED WORK

Some research contributions have tackled the research di-
rection of security policy testing in the last few decades. In
[5], Devanbu et al. have highlighted that the update of a
system policy often raises the question of whether the security
mechanisms are able to correctly enforce an evolving security
policy. In [17], Ray et al. have proposed an approach to locate
access control concerns as separate aspects that can be reusable
as patterns. The separation of access control concerns at the
system design level enables to ease the process of testing
access control mechanisms. The difference between their work
and our work is that, in our work, we focus on applications
that do not take the problem of cross cutting concerns into
consideration since the access control mechanisms that we
consider are scattered across our policy-based application. In
[12], the authors have used Nomad language to formalize the
policy independently of the underlying application and then
they have analyzed the application execution traces to analyze
the conformance of the system to its security policy.

The work that we propose in this paper extends our previous
work on access control testing. In [14], PEPs are implemented
using AOP and security tests are assessed by mutation analysis
applied to access control policies. In [10], we have proposed
a test-based approach to detect hidden access control mecha-
nisms that consists in analyzing system response to incoming
access control requests. In [6], we have defined mutation
operators to test the enforcement of obligation policies. In
comparison with our previous work, the current contribu-
tion does not make any assumptions regarding the visibility
of PEPs. Moreover, in the current approach, we propose
techniques that allow to map every possible access in the
application to the PEP in the application code which controls

it (if this PEP exists). Our technique also provides valuable
information for the analysis of the security policy specified by
the security officers since it permits to detect inconsistencies
between the policy explicitly specified by security officers and
the application code.

VI. CONCLUSION

In this work, we have proposed an approach to help fix-
ing policy enforcement errors. The approach relies on two
steps: The static step generates the relevant accesses for an
application through its class diagram using inference rules.
It also removes non relevant rules in the policy and detects
inconsistencies between what is specified at the policy level
and the enforcement mechanisms at the application level. The
dynamic part of our approach checks the errors of policy
enforcement through a trace analysis applied to an original
policy and a mutated one. As future work, we plan to consider
other possible dependency relationships between classes and
to study their impact on our approach.

REFERENCES

[1] http://www.jamopp.org/index.php/jamopp.
[2] Mutax: https://sites.google.com/site/servalteam/tools/mutax.
[3] M. Aksit. Principles of aspect-oriented programming languages, design

dimensions and the composition filters approach. page 15, 2004.
[4] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified

exposition and Multics interpretation. Technical report, 1975.
[5] P. T. Devanbu and S. Stubblebine. Software engineering for security: a

roadmap. In Proceedings of the Conference on The Future of Software
Engineering, pages 227–239, 2000.

[6] Y. Elrakaiby, T. Mouelhi, and Y. Le Traon. Testing obligation policy
enforcement using mutation analysis. In ICST, pages 673–680, 2012.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli. Proposed nist standard for role-based access control. 2001.

[8] A. A. E. Kalam, S. Benferhat, A. Miège, R. E. Baida, F. Cuppens,
C. Saurel, P. Balbiani, Y. Deswarte, and G. Trouessin. Organization
based access control. In POLICY, 2003.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj. pages 327–353, 2001.

[10] Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry. Test-driven
assessment of access control in legacy applications. In Proc. the
2008 International Conference on Software Testing, Verification, and
Validation, pages 238–247, 2008.

[11] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J.
Turner, and J. F. Farrell. The inevitability of failure: The flawed assump-
tion of security in modern computing environments. In In Proceedings
of the 21st National Information Systems Security Conference, pages
303–314, 1998.

[12] W. Mallouli, F. Bessayah, A. R. Cavalli, and A. Benameur. Security rules
specification and analysis based on passive testing. In GLOBECOM,
pages 2078–2083, 2008.

[13] T. Mouelhi, F. Fleurey, and B. Baudry. A generic metamodel for security
policies mutation. In ICST Workshops, pages 278–286, 2008.

[14] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon. A model-based
framework for security policy specification, deployment and testing. In
MoDELS, pages 537–552, 2008.

[15] T. Mouelhi, Y. Le Traon, and B. Baudry. Mutation analysis for security
tests qualification. In Mutation’07 : third workshop on mutation analysis
in conjuction with TAIC-Part, September 10-11, pages 171–180, 2007.

[16] T. Mouelhi, Y. Le Traon, and B. Baudry. Transforming and selecting
functional test cases for security policy testing. In ICST, pages 171–180,
2009.

[17] I. Ray, R. B. France, N. Li, and G. Georg. An aspect-based approach to
modeling access control concerns. Information & Software Technology,
pages 575–587, 2004.

70

