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We study fluctuations in diffusion-limited reaction systems driven out of their stationary state. Using a
numerically exact method, we investigate fluctuation ratios in various systems which differ by their level of
violation of microscopic time reversibility. Studying a quantity that for an equilibrium system is related to the
work done to the system, we observe that under certain conditions oscillations appear on top of an exponential
behavior of transient fluctuation ratios. We argue that these oscillations encode properties of the probability
currents in state space.
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In recent years the study of fluctuations in nonequilibrium
small systems has evolved into a very active field of re-
search, see, e.g., Refs. �1–18�. Various fluctuation and work
theorems have been formulated and their applicability has
been verified in recent experiments �12–18�, demonstrating
their usefulness for characterizing out-of-equilibrium sys-
tems. It is remarkable that these fluctuation relations yield
very generic statements valid for large classes of nonequilib-
rium systems.

Diffusion-limited systems with irreversible reactions form
an important class of systems that have not been studied
thoroughly in the context of fluctuation relations. In the past
all discussed extensions of fluctuation theorems to nonequi-
librium systems with chemical reactions �19–25� focused on
reversible reactions and reaction networks. Effectively, how-
ever, irreversible reactions can be encountered if the products
of the reactions are evacuated rapidly enough. What makes
irreversible reactions so interesting is that there is a major
qualitative difference with reversible reactions: whereas in
the latter case microscopic time reversibility holds, in irre-
versible reaction-diffusion systems microscopic time revers-
ibility is usually broken. As we show in this Rapid Commu-
nication the absence of microscopic reversibility leads to
unexpected and nontrivial modifications of the properties of
transient fluctuations.

Systems with broken microscopic time reversibility are
readily found in granular matter. It has been claimed �26�
that fluctuations in fluidized granular medium are in accord
with the Gallavotti and Cohen fluctuation theorem. As the
fluctuation theorem requires microscopic reversibility, this
interpretation of the experimental data is problematic and has
been criticized �27�. However, in �28� it has been proposed
that under certain assumptions and for a specific time scale a
fluctuation relation should be recovered in granular materi-
als. In our study we will not be able to contribute directly to
this controversy, but the results presented in this Rapid Com-
munication clearly show the interesting and nontrivial char-
acter of fluctuations in systems in which microscopic revers-
ibility is absent.

In diffusion-limited reaction systems the stationary states
can be true nonequilibrium states. Due to their relative sim-
plicity, in conjunction with a highly nontrivial physical be-
havior, reaction-diffusion systems are considered to be para-
digmatic examples of nonequilibrium many-body systems.
Thus our current understanding of nonequilibrium phase

transitions �29� and of aging phenomena in absence of de-
tailed balance �30� has mainly emerged through numerous
studies of the out-of-equilibrium behavior of these systems.

We consider here one-dimensional lattices of N sites with
periodic boundary conditions. Forbidding multiple occu-
pancy of a given lattice site, particles A jump to unoccupied
nearest-neighbor sites with a diffusion rate D and undergo
various reactions. We discuss in the following three different
reaction schemes, see Table I, and we denote with model 1,
2, and 3 the three models that result from these reaction
schemes. Obviously, the reactions change the number of par-
ticles in the system, whereas the diffusion keeps the particle
number constant.

For fixed values of the reaction and diffusion rates, model
1 is in �chemical� equilibrium. This is different for the other
two models where microscopic reversibility is partly or fully
broken. By breaking microscopic reversibility we mean that
if ��C→C�� is the transition probability from configuration
C to configuration C�, we can have the situation that
��C→C��=0 even though ��C�→C��0. For model 2 we
observe that some reactions are reversible whereas others are
not. For example, whereas we can create a new particle in
the middle of two empty sites, 000→0A0 with rate h, it is
not possible to directly go back to the configuration with
three empty sites by destroying this isolated A particle, as we
need to have two neighboring A particles for particle annihi-
lation. This is different for 00A→0AA, as here a direct path
back to the initial configuration exists. Finally, in model 3
microscopic reversibility is broken for all reactions.

We can readily access the stationary probability distribu-
tions, i.e., the probabilities Ps�Ci� to encounter the micro-
scopic configuration Ci in a given stationary state. This is
done in the usual way by rewriting the master equations in

TABLE I. The three reaction schemes discussed in this Rapid
Communication. A new particle can only be created at an empty
lattice site.

Model 1 Model 2 Model 3

A+A ——→
�

0+A A+A ——→
�

0+A A+A ——→
�

0+0

A+0 ——→
h

A+A 0 ——→
h

A 0 ——→
h

A
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matrix form involving the Liouvillian and by noticing that
the stationary probabilities form the unique eigenvector of
this operator to the eigenvalue 0. With N sites we have 2N

configurations as there is at most one particle on each lattice
site. The null eigenvector of the resulting 2N�2N matrix is
obtained using standard algorithms. Figure 1 shows the sta-
tionary probability distributions for three different cases.
Configurations with the same number of particles are
grouped, with the empty configuration to the left and the
fully occupied lattice to the right. When the creation of new
particles takes place with a small rate, see Figs. 1�a� and
1�b�, the most probable configurations are those with few
occupied sites, whereas the configurations with more occu-
pied sites have an increasing weight for increasing creation
rates. Similar changes are observed when changing the rate
�. Obviously, a change of reaction rates has a large impact
on the stationary probability distributions. This is different
for the diffusion constant D which only changes the distri-
butions quantitatively and not qualitatively, as shown in Fig.
1�c�. We remark that even though there are visible differ-
ences in the stationary probability distributions, it is far from
obvious how one should infer from these distributions the
equilibrium �model 1� or strongly nonequilibrium �model 3�
nature of the system.

In order to obtain a better understanding of our systems
we look at the transient behavior when we drive the system
from one stationary state to another by changing a reaction
rate. Experimentally, a change of rates in chemical reactions
can be achieved by changing the temperature. In our protocol
we change one of the rates r from an initial value r0 to a final
value rM in M equidistant steps of length �r, yielding the
values ri=r0+ i�r with i=0, . . . ,M. We compute the observ-
able �9�

�� = �
i=0

M−1

�ln Ps�Ci,ri+1� − ln Ps�Ci,ri�� , �1�

where Ps�Ci ,ri� is the probability to find the configuration Ci
in the stationary state corresponding to the value ri of the
reaction rate r. For a system in thermal equilibrium the quan-
tity �� is given by ��=	�W−�F�, where 	 is the inverse
temperature, W is the work done to the system, and �F is the
difference between the free energies of the initial and final
states. It is important to note that the quantity �1� is still well
defined in absence of microscopic reversibility. This is not

the case for many of the quantities that have been studied
recently in the context of fluctuation relations.

Hatano and Sasa �9� proved for Langevin systems with
continuous dynamics that the quantity �1� fulfills in the limit
M→
 the following simple fluctuation relation:

�e−��� = 1, �2�

where the average is the average over all possible histories
relating the initial and final steady states. For an equilibrium
system the relation �2� reduces to the well-known Jarzynski
relation �4�. Even though not explicitly stated in �9�, the
property �2� of �� can be shown in a straightforward way to
also hold in systems with discrete dynamics, and this inde-
pendently on whether microscopic reversibility prevails or
not. The verification of the relation �2� is therefore a very
good benchmark in order to validate our numerical approach.

Changing the rate r from the initial value r0 to the final
value rM in M steps, we can easily compute the exact sta-
tionary probability distributions for any value ri with
i=0, . . . ,M. In order to verify Eq. �2� we need to generate all
possible sequences of configurations �paths in configuration
space� C0→C1→¯→CM−1→CM, determine the weights
�i=0

M−1PS�C0 ,r0���Ci→Ci+1 ,ri+1� and the values of �� along
the different paths, and average over all these possibilities.
Here ��Ci→Ci+1 ,ri+1� is the transition probability from con-
figuration Ci to configuration Ci+1 at the value ri+1 of our
reaction rate. With this numerical exact calculation we verify
for all studied cases the validity of the integral fluctuation
relation �2� with deviations less than 10−7.

As in our numerically exact approach we generate all
paths recursively, the CPU time needed for the generation of
all trajectories grows exponentially with the lattice size N
and the number of steps M, and only rather small system
sizes �with N�10� can be accessed in this way. For example,
for N=8 we generate 2.6�108 different trajectories for
M =6, whereas 2.7�1010 trajectories are generated for
M =8. We also studied larger systems through Monte Carlo
simulations and checked that these results are consistent with
the numerical exact results obtained for the small systems.
For this reason we focus in the following on the numerically
exact results and defer a discussion of the Monte Carlo simu-
lations to later �31�.

Before discussing the detailed fluctuation relation, let us
first look at the probability distribution PF���� of the quan-
tity �� for the forward process where the rate r is changed
from r0 to rM as well as at the probability distribution
PR���� for the reversed process where r is changed from rM
to r0. In the reversed process the rate r takes on the same
values as in the forward process but in the reversed order. We
show in Fig. 2 the resulting probability distributions for the
three models with N=8 sites where we change the creation
rates from h0=0.2 to hM =1.4 in M =8 equidistant steps. In-
terestingly, the probability distributions are skewed distribu-
tions that exhibit additional intriguing peaks. Increasing the
diffusion rate D leads to a sharpening of these peaks, as is
shown in Fig. 3 for model 3 with M =6 and different values
of D. We checked that the main contributions to these peaks
comes from those trajectories in configuration space where
diffusion steps abound, whereas reactions, which change the
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FIG. 1. �Color online� Stationary probability distributions for �a�
model 1 with �=1 and D=1, �b� model 3 with �=1 and D=1, and
�c� model 2 with �=1 and h=1.4. Shown are the distributions for
two values of the creation rate h, respectively, of the diffusion con-
stant D, for systems with N=8 lattice sites. The configurations are
grouped by number of particles.
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number of particles in the system, only take place rarely. It
should be noted that for very large values of D the peaks also
appear for the equilibrium model 1 and are therefore not
characteristic of broken microscopic time reversibility.

In Fig. 4 we discuss the fluctuation ratio PF���� / PR�−���
for the observable �1�. For a system that fulfills detailed bal-
ance for all values of the rate r we expect that

PF����/PR�− ��� = exp���� . �3�

Indeed, it is straightforward to show that for a system ini-
tially in thermal equilibrium relation �3� together with the
definition �1� of the quantity �� yields the Crooks relation

PF�W�/PR�− W� = exp�	�W − �F�� . �4�

In order to highlight any deviations from the exponential
behavior, we plot in the lower panels of Fig. 4 the quantity
e−��PF���� / PR�−���. Looking at Figs. 4�a� and 4�d�, we
observe that for the equilibrium model 1 the ratio of the two
probability distributions indeed displays a perfect exponen-
tial behavior. As the probability distributions themselves are
skewed distributions, see Fig. 2, this is a nontrivial result that
nicely demonstrates the importance of the Crooks relation.

As already discussed, microscopic reversibility is partly
broken for model 2: whereas many trajectories in configura-
tion space are fully reversible, this does not hold true for all
of them. We observe that the probability distribution ratio
still displays an exponential behavior on average, see Fig.

4�b�, but the data do not fall any more exactly on the expo-
nential curve but instead are scattered around that curve �Fig.
4�e��.

For model 3, where microscopic reversibility is absent, a
remarkable change takes place and systematic deviations
from the exponential behavior are observed, see Figs. 4�c�
and 4�f�. These deviations take the form of oscillations. As
we argue in the following, these deviations reveal properties
of the probability currents in state space.

In order to develop a better understanding for the origin of
these oscillations, we studied systematically the dependence
of this feature on the reaction and diffusion rates as well as
on the system size and the number M of elementary steps
�31�. In fact, the oscillations are very robust and are encoun-
tered for all studied values of the system parameters. We also
observe that a change of the positions of the peaks is directly
related to a qualitative change of the stationary probability
distributions, as the position of the peaks strongly shifts
when the reaction rates are changed, but do only change
slightly when the diffusion constant is modified. Changing
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FIG. 2. �Color online� Probability distributions PF and PR as a function of �� for the forward and reversed processes: �a� model 1, �b�
model 2, �c� model 3, with �=1, D=1, and N=8. In all cases the rate of particle creation was changed from h0=0.2 to hM =1.4 in M =8 steps.
The scattering in the data is not due to poor statistics, as we are using a numerical exact method for the computation of the probability
distributions.
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FIG. 3. �Color online� Probability distributions PF �a� and PR

�b� as a function of �� for model 3 with �=1, N=8, and h changing
from h0=0.2 to hM =1.4 in M =6 steps. The peaks are more pro-
nounced for larger values of D.
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model 3, with �=1, D=1, N=8, and M =8, whereas h is changed
from h0=0.2 to hM =1.4. In the lower panels we plot
e−��PF���� / PR�−��� in order to highlight deviations from the
equilibrium behavior �3�. The dashed lines indicate the expected
behavior �3� for a system in equilibrium before and after the change
of parameter.

FLUCTUATION RATIOS IN THE ABSENCE OF… PHYSICAL REVIEW E 79, 030102�R� �2009�

RAPID COMMUNICATIONS

030102-3



the diffusion constant, however, greatly enhances the peak
height.

At this stage one might think that the peaks observed in
the probabilities PF and PR, see Figs. 2 and 3, are the origin
of the peaks in the probability ratio. On the one hand, there is
of course an intimate relation between the peaks in PF and
PR and those encountered when taking the ratio of these two
probabilities. On the other hand, however, peaks also appear
in PF and PR for models 2 and 1, even though no peaks are
observed for the corresponding ratio. The appearance of
peaks in the probabilities PF and PR is therefore a necessary
condition, but it alone cannot explain our observations.

It is important to note that model 3 differs qualitatively
from models 1 and 2. For all the models the configuration
space is divided into different subspaces, characterized by a
constant number of particles in the system, which are invari-
ant under the action of diffusion. A passage from one sub-
space to the other only takes place when the number of par-
ticles is changed by a reaction. In models 1 and 2 every
reaction changes the number of particles by one, thus con-
necting different subspaces pairwise. One of the conse-
quences of this is that the peaks in the distributions PF and
PR compensate each other when computing the ratio
PF���� / PR�−���. This compensation is only approximate
for model 2 due to the fact that some trajectories can not be
traveled in the reversed direction when reversing the proto-
col. The situation is different for model 3 as here we have an
asymmetry in the change of particle numbers: whereas the

number of particles is enhanced by one in the creation pro-
cess, two particles are always destroyed in the annihilation
process. Consequently, the trajectories in configuration space
for the forward and backward processes are completely dif-
ferent, as they connect the different subspaces with fixed
number of particles in a different way. It follows that prob-
ability currents for the forward and backward process are
also very different. This yields probability distributions PF

and PR whose peaks do not compensate each other when the
ratio is formed, thus giving place to the observed systematic
deviations. It is clear from this discussion that we expect this
mechanism, and therefore the observed systematic devia-
tions, to be common in systems where the absence of micro-
scopic reversibility is accompanied by an asymmetry in the
probability currents in configuration space.

In summary, we have studied reaction-diffusion systems
and showed that the absence of microscopic reversibility can
lead for transient fluctuation ratios for the observable �� to
systematic deviations from the exponential behavior encoun-
tered in systems with equilibrium steady states. These devia-
tions take the form of oscillations, and we argue that this
intriguing feature reveals properties of the probability cur-
rents in state space.

It is a pleasure to thank Chris Jarzynski, Uwe Täuber,
Frédéric van Wijland, and Royce Zia for interesting and
helpful discussions.
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