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ABSTRACT 

The application of mathematical programming methodologies to biochemical systems is 
demonstrated with the presentation of a linear programming (LP) algorithm for calculating minimal 
pathway distances in biochemical networks. Minimal pathway distances are identified as the 
smallest number of steps separating two nodes in the network. Two case studies are examined: 1) 
the minimal distances for Escherichia coli Small Molecule Metabolism (SMM) enzymes are 
calculated and their correlations with genome distance and enzyme function are considered; 2) a 
study of the p53 cell cycle and apoptosis control network is performed in order to assess the 
survivability of the network to both random node failures and a directed assault, by studying the 
modification of the network’s diameter for successive protein knockouts. The results verify the 
applicability of the algorithm to problems of biochemical nature.  
 
Keywords: linear programming; shortest path algorithm; pathway distance; metabolic pathways; 
genome distance; p53 cell cycle and apoptosis control network; network robustness, tumour 
inducing viruses 
 
 

1. INTRODUCTION 

The methodologies of mathematical programming and optimisation, developed and matured 

successfully within the Process Systems Engineering community, have not yet been transferred 

extensively to studies of biochemical nature. Biological information can form the basis for the 

development of quantitative computer-aided methods that will address problems of biology. 

Mathematical programming techniques have been used in the past in diverse biological studies, e.g. 

studies on metabolic networks (Regan et al., 1993; Pramanik and Keasling, 1997; Edwards and 

Palsson, 2000; Burgard and Maranas, 2001), microarray analysis (Wolkenhauer, 2002) or protein 

structure (Backofen and Will, 2003; Klepeis and Floudas, 2003). 
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Here, we demonstrate the application of linear programming (LP) to biological systems, with the 

presentation of an LP algorithm for calculating minimal distances in biochemical networks 

(Simeonidis et al., 2003). Minimal distances are identified as the smallest number of steps 

separating two nodes in the network. Graph-oriented approaches have been employed before for the 

study of biological networks, such as metabolic pathways (Arita, 2000; Jeong et al., 2000; Fell and 

Wagner, 2000). The applicability of the studied algorithm is demonstrated with two case studies: 

• To facilitate studies of evolution, the minimal distances for Escherichia coli Small Molecule 

Metabolism (SMM) enzymes are calculated and their correlations with genome distance 

(distance separating two genes on a chromosome) and enzyme function (as characterised by 

their Enzyme Commission (EC) number) are considered.  

• Furthermore, a study of the p53 cell cycle and apoptosis control network is performed, 

which assesses the survivability of the network to both random node failures and a directed 

assault, by studying the alteration of the network’s diameter (defined as the average of all 

pathway distances among all pairs of nodes in the network) for successive protein 

knockouts.  

The rest of the paper is structured as follows: the mathematical programming formulation of an 

algorithm designed to calculate minimal pathway distances based on Linear Programming (LP) 

techniques is described. Then the model is applied to two case studies: first, the minimal pathway 

distances for the E. coli metabolism are calculated, and their correlations with genome distance and 

enzyme function are investigated. Second, the robustness of the p53 protein interaction network is 

studied. Finally, we discuss our conclusions for the LP method, and the biological implications of 

the results. 

 

2. ALGORITHM 

The shortest path problem consists of the identification of the shortest possible path from a source 

node of a network, to some other node in the network. Here, an LP model (Simeonidis et al., 2003) 

applied to biological networks is suggested, capable of finding in a single pass the minimal 

distances (shortest path lengths) of all nodes in a network that are reachable from a source node (i*). 

First, the notation used in the mathematical model is given: 

Indices 

i, j = nodes 

Parameters  

Lij = 1 if there is an edge (link) from i to j; 0 otherwise 
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Positive continuous variables 

Di = distance from the i* source node to node i  

For each source node (i*) in the network, the algorithm finds the minimal distances to all other 

nodes by solving the following LP optimisation model: 

maximise ∑
i

iD  (1) 

 subject to 

11 =∀+≤ ijij (i,j):L        DD  (2) 

0=i*D  (3) 

0≥iD  (4) 

Constraints (2) incorporate network information related to connectivity, circularity and 

directionality, facilitated by the use of parameter Lij (for two-way connections Lij = Lji = 1, however 

for one-way connections Lij = 1 and Lji = 0). Constraint (3) assigns the initial value of zero to node i* 

to denote it as the source node, while constraints (4) require all Di variables take positive values. 

Finally, unbounded solutions can be avoided by adding: 

iTDi ∀≤          (5) 

where T is an appropriately large number. It should be noted that if Di equals T at the final solution 

then it can be concluded that there is no path connecting the i* source node with node i in the 

network under consideration. This feature of the algorithm is particularly useful to identify cases 

where the connectivity of part of the network is missing. 

The algorithm was implemented within the General Algebraic Modeling System (GAMS) software 

(Brooke et al., 1998), using the CPLEX 6.5 LP solver. All the computational experiments were 

performed on an IBM RS6000 workstation. 

 
3. ILLUSTRATIVE EXAMPLES AND DISCUSSION 

3.1. E. coli metabolism 

In this work metabolism is considered as a single network.  The SMM network used was obtained 

from the EcoCyc database (Karp et al., 2002). A protein-centric representation was adapted, i.e. the 

enzymes are considered as the nodes of the graph, and the substrates are the edges (Gerrard et al., 

2001). Genes encoding the investigated SMM enzymes were assigned a chromosomal location by 

consulting the Gene Table for E. coli (Blattner et al., 1997). These were used to derive genome 

distances for gene pairs. Pairs were sorted into bins containing genes separated by less than 100bp, 

101-1,000bp, 1,001-10,000bp, 10,001-100,000bp, 100,001-1,000,000 and more than 1,000,000bp. 
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Enzymes in the dataset were also assigned an EC number by reference to the GenProtEC database 

(Riley, 1998). EC numbers classify reactions within a hierarchical 4-level scheme (Enzyme 

Nomenclature, 1992). The number of matching EC levels (none, 1, 2, 3 or 4) is used as the 

functional similarity metric. The SMM dataset was composed of 599 enzyme pairs and 391 distinct 

metabolites. For 540 distinct enzymes a chromosomal localisation was identified, and 507 enzymes 

were assigned an EC number.  

The objective of this case study is to draw evidence for the evolution of metabolism. Two main 

evolutionary models have been proposed: the patchwork model and the retrograde model (Rison 

and Thornton, 2002). The patchwork model proposes that metabolic pathways evolve by ad hoc 

recruitment of broad-specificity enzymes; this suggest that metabolically-close enzymes are no 

more likely to be functionally and evolutionarily similar than distant ones (Jensen, 1976). The 

retrograde model proposes that enzymes are recruited in a direction reverse to the metabolic “flow” 

from the preceding enzyme in the pathway; this suggests that nearby enzymes are likely to be 

evolutionarily related, and share some functionality (Horowitz, 1945). 

3.1.1. Pathway distance and genome distance 

First, the minimal pathway distances for all gene pairs in the SMM network were calculated. For the 

established pairs, the base pair separation of the genes encoding the enzymes in the E. coli genome 

was determined. The percentages of gene pairs were plotted against pathway distance in Figure 1.  
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Figure 1: Pathway distance and genome distance. At each pathway distance (x-axis), the percentage of 
enzyme pairs within various genome distance bins is plotted. 
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The correlation between pathway distance and genome distance is clear. For the first three distance 

bins, as pathway distance increases, the percentage of genes separated by short genome distances 

drops. For distances of 10,001 to 100,000 base pairs there is no clear trend observed (the same is 

true for 100,001bp-1,000,000bp and 1,000,001bp and above, but these bins are not plotted in Figure 

1). Figure 1 indicates that SMM genes are metabolically clustered on the genome. The relatively 

high percentage of metabolic-gene pairs found within 100bp, which is a very short distance in a 

4.6Mbp long chromosome, suggests that this clustering is the consequence of prokaryotic operon 

structures in which co-regulated genes are rarely separated by longer distances (Salgado et al., 

2000). This observation has been made before (Tamames et al., 1997; Overbeek et al., 1999; Rison 

et al., 2002). Here, we show that it holds true using co-participation in a metabolic pathway as an 

indication of shared function and measuring this relationship with our pathway distance metrics.  

3.1.2. Pathway distance and function similarity 

The EC numbers assigned to each enzyme were compared, and the level of EC number 

conservation was determined. The results are plotted in Figure 2. 
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FIG. 2: Pathway distance and function similarity. At each pathway distance, the percentage of enzyme pairs 
with all (L1+L2+L3+L4), 3 or more (L1+L2+L3), 2 or more (L1+L2) or 1 or more (Level1) matching EC 
levels is plotted. The L1+L2+L3+L4 is a subset of the L1+L2+L3 set (which in turn is a subset of L1+L2, etc.). 
 
No obvious correlation between EC number and pathway distance can be observed. Furthermore, 

the data suggests that conservation of EC number is relatively rare at all distances, as the percentage 

of enzyme pairs with at least two EC levels is always under 8%. Even at short pathway distances, 

enzyme pairs only catalyse the same type of reaction approximately once out of 4 cases. This 

percentage remains relatively constant over most distances, suggesting no particular bias for EC 
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number conservation at shorter distances. It is known that the relationship between EC numbers and 

pathways is complex, with pathways requiring a number of enzyme types to perform their task 

(Tsoka and Ouzounis, 2001). These data would suggest that enzymatic chemistries are varied along 

the substrate conversion routes. 

 

3.2. Robustness of the p53 protein interaction network 

In multicellular organisms (metazoans) cellular proliferation is tightly regulated. Cells proliferate 

and accumulate in a co-ordinated way during growth or repair, and undergo programmed cell death 

(apoptosis) when genetically-damaged, virally-infected or the developmental program requires it.  

In response to stress a metazoan cell must decide between continued (or resumed) progression 

through the cell cycle or initiation of apoptosis.  This decision is mediated by a protein-interaction 

network, at the centre of which lies the p53 protein.  p53 is found only in metazoan cells, and 

combines protein interaction domains, regulatory domains and a sequence specific DNA 

recognition domain that allow the integration of intra- and intercellular signals with gene 

transcription (Kohn, 1999). Failure of the apoptotic control system, leading to either unregulated 

proliferation or unnecessary apoptosis, is causative of both tumorigenesis and developmental 

diseases. The importance of the p53 response network in the prevention of cancer is striking, and 

mutations reducing p53 activity are present in over 50% of human tumours (Haupt et al., 2003). 

3.2.1. Model of the p53 network 

Data relating to the interconnections of the known component proteins of the p53 network (and 

some non-peptide molecules such as dsDNA) were extracted from the molecular interaction map 

presented in Kohn (1999), in order to create a computer model of the network containing 104 nodes 

and 226 bidirectional connections. A log plot of the connectivity (total number of a node’s 

connections) against the distribution shows a power-law relationship - the defining feature of a 

'scale-free' network architecture (Barabási et al., 2004). The network has no characteristic degree of 

connectivity: the vast majority of nodes have only a few connections, but there are several hubs that 

are very highly connected. In recent years, a great number of organic networks have been shown to 

be scale-free, including the Internet (Hawoong et al., 1999), social interactions (Albert et al., 2000), 

neural networks (Strogatz, 2001), ecological food webs (Strogatz, 2001), metabolism (Jeong et al., 

2000), protein-protein interactions (Jeong et al., 2001), and gene transcription regulation networks 

(Barabási et al., 2004).  

The LP algorithm presented in section 2 was used to calculate the average path length (APL) of 

each protein - that is, the mean of the shortest paths to all other nodes. The APL provides an 

informative metric of a node's centrality within the network and has been calculated for substrates 
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in E. coli core metabolism (Fell and Wagner, 2000). The ten most central proteins - the hubs - in the 

p53 network were calculated as: p53 (APL=1.92), CDK2 (2.09), Cyclin A (2.20), CDK1 (2.29), 

MDM2 (2.29), DP (2.34), pRb (2.35), PCNA (2.36), and RPA (2.38), with the least crucial protein 

being DNA ligase III (4.55). The diameter of a network is defined as the mean of all path lengths, 

and this measure of navigability is used as a proxy for the functional health of the network (Albert 

et al., 1999).   

3.2.2. Network model robustness 

Network robustness is analysed by cumulatively knocking out nodes (i.e. removing all their 

connections) and studying the increase in diameter as the network degenerates. Nodes can be 

knocked out in one of two attack modes: randomly, or in a directed attack by preferentially 

targeting the hubs. It has been shown that a scale-free network is relatively immune to random node 

failure, but extremely vulnerable to a targeted onslaught (Barabási et al., 2004). 

Here, the survivability of the p53 network in the face of both a directed and random attack against 

its nodes is examined.  Proteins are progressively knocked-out in a specified order, either random 

permutation or rank order of APL, with the diameter recalculated with the LP algorithm at each 

step. The random attack is repeated 100 times, and the diameter at each step averaged across all 

runs. If a knockout isolates a node from the rest of the network the path lengths are set equal to the 

arbitrarily large number T, given the value of 100 in this study. Figure 3 shows the plot of network 

diameter over the first 30 knockouts.  
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FIG. 3: Degeneration of p53 network diameter when nodes are knocked out in either a random pattern, or in 
a directed attack against the hubs. 
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Diameter deteriorates very slowly under a random attack - the architecture of the p53 network 

provides an inherent robustness against such a scheme. Hub nodes are uncommon so they are rarely 

hit and most of the protein knockouts have negligible impact on the global integrity of the network. 

This reliance on highly-connected nodes, however, renders the network vulnerable to a directed 

attack. Network communication fails rapidly under the onslaught (loss of only p53 results in a five-

fold increase in diameter, from 3.1 to 16.1). A similar result was obtained on simulated attacks on 

the Internet, which was found to be robust to random server failures, but vulnerable to the activities 

of hackers deliberately targeting the hubs so as to wreak maximal havoc (Albert et al., 2000).  

3.2.3. Biological Hackers 

Mutational damage to biological networks is essentially random, but in fact there exists a targeted 

threat against the p53 network, operating not at a genetic level but against the translated proteins. 

DNA tumour-inducing viruses (TIVs) increase their replication rate and survival with an armoury 

of proteins that suppress the normal apoptotic infection response and short-circuit the cell cycle into 

continually synthesizing viral DNA. TIVs, including adenovirus, human cytomegalovirus, human 

papillomavirus, and simian virus 40, all selectively inhibit similar proteins in the infected host cell 

(Levine, 1992; Burgert et al., 2002; Banks et al., 2003), causing an average diameter increase to 

about 23. It is no coincidence that the most common targets, pRb and p53, are also two of the most 

central hubs. The TIV directed strikes are very effective at disrupting communication within the 

p53 network, but do not increase the diameter so much that the network shatters and function fails 

completely. The tumour inducing viruses thus behave like biological hackers – targeting their attack 

against some of the p53 network hubs and so exploiting the inherent weakness of its architecture.  

 

4. CONCLUDING REMARKS 

The applicability of mathematical programming techniques in the analysis of biochemical networks 

has been demonstrated with the presentation of a fast and effective LP algorithm characterised by 

its ability to deal efficiently with network circularity and bidirectionality. Despite its simplicity, the 

LP algorithm exhibits a first step towards building optimisation-based tools for studying biological 

networks, which are characterised by their complex and dynamic nature. 

The algorithm has been applied in the study of the correlations between minimal pathway distances 

of the E. coli SMM enzymes and genome distance, and between E. coli minimal pathway distances 

and enzyme function. As expected, genes encoding enzymes involved in nearby metabolic reactions 

were more likely to be in close proximity on the genome. However, pathway distances did not 

correlate with enzyme function (as described by assigning EC numbers to SMM enzymes). These 

data, in conjunction with the result of previous analyses incorporating work concerning sequence 
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and structural similarity of SMM enzymes (Teichmann et al., 2001; Rison et al. 2002), suggest a 

patchwork model of pathway evolution: the lack of obvious correlation between pathway distance 

and EC numbers is consistent with the ad hoc recruitment of enzymes where required within the 

metabolism of an organism. 

The robustness of the p53 protein interaction network has also been investigated. A non-weighted, 

bidirectional model was used, which represents a first step towards building a biologically realistic 

representation of the p53 network. The network is proven robust to random knockouts of its 

proteins, which signifies resilience against mutational perturbation. However, the reliance on 

highly-connected nodes makes the network vulnerable to the loss of its hubs. Evolution has 

produced organisms that exploit this very weakness in order to disrupt the p53 network for their 

own ends: tumour inducing viruses target specific proteins, and this study has identified these same 

proteins as the network hubs.  
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