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could be a novel therapeutic approach to reduc-
ing CHD risk in the general population.
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CHEMICAL PHYSICS

Wavelike charge density
fluctuations and van der Waals
interactions at the nanoscale

Alberto Ambrosetti,"> Nicola Ferri," Robert A. DiStasio Jr.,>* Alexandre Tkatchenko™**

Recent experiments on noncovalent interactions at the nanoscale have challenged the basic
assumptions of commonly used particle- or fragment-based models for describing van der
Waals (vdW) or dispersion forces. We demonstrate that a qualitatively correct description of
the vdW interactions between polarizable nanostructures over a wide range of finite distances
can only be attained by accounting for the wavelike nature of charge density fluctuations.
By considering a diverse set of materials and biological systems with markedly different
dimensionalities, topologies, and polarizabilities, we find a visible enhancement in the
nonlocality of the charge density response in the range of 10 to 20 nanometers. These
collective wavelike fluctuations are responsible for the emergence of nontrivial modifications
of the power laws that govern noncovalent interactions at the nanoscale.

he assembly of complex nanostructures

and biological systems from simpler build-

ing blocks is often driven by noncovalent

van der Waals (vdW) or dispersion interac-

tions that arise from electrodynamic corre-
lations between instantaneous charge fluctuations
in matter (Z, 2). The influence of vdW forces ex-
tends well beyond binding energies and encom-
passes the structural (3, 4), mechanical (5, 6),
spectroscopic (7), and even electronic (8) signa-
tures of condensed matter. A common way to
characterize vdW interactions is by power laws in
the distance D between two or more objects (e.g.,
atoms, molecules, nanostructures, surfaces, or
solids); the most familiar is arguably the Lennard-
Jones potential, which is characterized by a short-
range repulsive wall with a D™ dependence and
along-range attractive tail with a D ® dependence.
Even a slight variation in these power laws can
have a profound impact on observed properties
and therefore demands an accurate, physically
sound theoretical description.

Thus far, both our conceptual understanding
of vdW interactions and the quantitative models
widely used for describing these quantum mechan-
ical phenomena are primarily rooted in low-order
intermolecular perturbation theory (IPT), wherein
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vdW binding originates from the interactions
between transient local multipoles (9), and mac-
roscopic Lifshitz theory (10). Although IPT-based
approaches have had enormous success in describ-
ing vdW binding in (small) gas-phase molecular
systems (11, 12), recent advanced experimental
techniques have produced several findings that
are challenging the basic assumptions of IPT and
macroscopic approaches for nanostructured ma-
terials, and are strongly indicative that even our
qualitative understanding of these interactions is
incomplete and needs to be substantially revised
(13). Examples of such experimental observations
include (i) ultra-long-range vdW interactions ex-
tending up to tens of nanometers into heteroge-
neous dielectric interfaces (14, 15), (ii) complete
screening of the vdW interaction between an
atomic force microscope (AFM) tip and a SiO,
surface by the presence of one or more layers of
graphene adsorbed on the surface (16), (iii) super-
linear sticking power laws for the self-assembly
of metallic clusters on carbon nanotubes with in-
creasing surface area (17), and (iv) nonlinear in-
creases in the vdW attraction between homologous
molecules and an Au(111) surface as a function of
molecular size (18). Satisfactory theoretical expla-
nations for these experimental findings either
require ad hoc modifications to IPT [(iii) and
(iv)] or are inherently outside the domain of ap-
plicability of IPT [(i) and (ii)].

To address these issues, we note that the spa-
tial extent of the instantaneous charge density
fluctuations responsible for vdW interactions de-
pends rather sensitively on the nature and char-
acter of the occupied-to-virtual transitions of the
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valence electrons in a given molecule or material.
In this regard, the inherent delocalization char-
acteristic of low-dimensional metallic systems
leads to a remarkably slow decay in the interac-
tion energies between metallic chains and layers
as a function of their separation (19-21), which
represents a substantial modification of the “con-
ventional” asymptotic behavior of the vdW inter-
action energy that dominates the binding at very
large distances (e.g., beyond 10 to 20 nm in bi-
layer graphene) (22). Moreover, Misquitta et al.
(23, 24) demonstrated that upon closure of the
band gap, semiconducting nanowires may also
exhibit unconventional power laws as a function
of the interwire distance D, namely ~D? at in-
termediate separations, followed by asymptotic
convergence to the pairwise-additive D limit
for large interwire separations.

Here, we revise and extend these seminal
asymptotic results to the finite distance regime
between nanostructures, because interactions at
such distances (as opposed to asymptotic separa-
tions) determine the structural, mechanical, spec-
troscopic, and (opto)electronic properties at
the nanoscale. By considering a series of relevant
zero-, one-, and two-dimensional systems that
include proteins, carbyne-like wires, nanotubes,
graphenic layers, and MoS,, we show that a quali-
tatively correct description of vdW interactions
between nonmetallic nanostructures can only be
attained by accounting for the wavelike nature
of charge density fluctuations in such systems.
In doing so, our analysis extends well beyond the
low-order particle- or fragment-based IPT para-
digm and provides further insight into the roles
played by dimensionality, topology, and polariz-
ability in determining the magnitude of these
fundamental forces at the nanoscale.

The many-body dispersion approach

In systems where electrons are well described by
a localized representation of the occupied space
(e.g., systems with finite band gaps), collective
charge density fluctuations stem from the dynam-
ically correlated motions of local dipolar excita-
tions. Accordingly, we project the valence electronic
response in a given nucleo-electronic system onto
a set of N interacting atomic response functions,
as outlined by the many-body dispersion (MBD)
approach (25). This scheme has been applied with
great success to the computation of polarizabil-
ities (26) and dispersion interactions in weakly
bound systems (27, 28), and has recently been ex-
tended to arbitrary nonmetallic molecules, solids,
and nanostructures through the use of spatially
distributed polarizabilities (25, 29). The advan-
tage of the MBD method resides in an efficient
and accurate quantum mechanical parameter-
ization of the valence electronic response in terms
of coupled atomic dipolar fluctuations (30, 31),
allowing for a chemically accurate treatment of
molecules and extended systems when used in con-
junction with state-of-the-art exchange-correlation
(XC) functionals in density functional theory
(3, 4, 7, 29, 32-35).

Within the MBD framework, the long-range
correlation energy ELX is computed via the ad-
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iabatic connection fluctuation-dissipation theo-
rem (30, 36) as

® 1
1
B = - Jaolan ey -0 (1)

in which g, is the bare response function for a
system of noninteracting atoms and y; is the
interacting response function “dressed” by the
rescaled and range-separated (25, 29) Coulomb
interaction, Av. [We adopt the atomic units con-
vention of m, = i = e = 1/(4ney) = 1, where m, is
the mass of the electron, 7 is the Planck constant
divided by 2mr, ¢ is the elementary charge, and €,
is the permittivity of free space.] Within the dipole
approximation, the energy expression in Eq. 1 can
be computed exactly and is equivalent to diagonal-
ization of the coupled dipolar Hamiltonian (30),

. 1& 1&
Hyw = =35> Va, +52_ apdy+
p=1 p=1

N
Z Wp Wy ag“gdepqdq (2)
p>q

in which each atom p is characterized by a static
dipole polarizability af, and a characteristic ex-
citation frequency o,, and d,, represents the
mass-weighted displacement of atom p from its
equilibrium position R,,. The first two terms in
this Hamiltonian correspond to the single-particle
kinetic and potential energies, respectively; the
last term describes the coupling between atoms
p and g via the dipole-dipole interaction tensor
Tpq = Vr, @ Vr,0(Rpq), Where v(R,g) is the
Coulomb interaction at the interatomic distance
Rye = IR, - R| (30). ELX, is then computed as the
energetic difference between the eigenfrequen-
cies of the collective modes of the fully interact-
ing system, ®;, and the characteristic excitation
frequencies of the isolated atoms, w,.

Dipole waves in one-dimensional
carbyne wires

We begin our investigation into the nature of
vdW interactions at the nanoscale with a detailed
analysis of the collective charge density fluctua-
tions sustained in a linear one-dimensional (1D)
carbyne-like atomic wire comprising 2000 atoms
(and subject to periodic boundary conditions).
From Fig. 1A, we first note that such finite atomic
wires are characterized by a set of very-low-energy
collective eigenmodes (albeit with nonzero ener-
gy eigenvalues). In this regard, the minimum
energy (gap) observed in these modes approaches
the independent atom value of wc = 0.43 Ha
(Hartree units) at large C-C distances d¢.c, but
decreases to approximately 1/20th of this value
at de.c = 1.2 A, the C-C bond length in acetylene.
Because of charge conservation, the quantity
al®; (where 6 and ®; denote the static dipole
polarizability and resonant frequency of the ith
eigenmode, respectively) must be equivalent for
every MBD eigenmode, as initially set by the
independent atomic value of adw%. Hence, the
lowest-energy eigenmode can be characterized
by a substantially increased polarizability (i.e., up
to ~400 times that of a single C atom), which is
strongly indicative of a marked delocalization of

the charge density fluctuations over the entire
wire. In this case, the low dimensionality and
particular topology of this nanostructure is cru-
cial for sustaining coherent delocalized fluctua-
tions along the length of the wire. As depicted in
Fig. 1, B and C, these fluctuations result from
strongly enhanced (head-to-tail) dipole-dipole
coupling along the longitudinal axis of the atomic
wire, which leads to substantial anisotropy in the
associated polarizability tensor (37).

To further expand on these observations, we
analyzed the low-energy spectrum of the collec-
tive MBD eigenmodes in this low-dimensional
nanostructure. As illustrated in Fig. 1, B and C,
these modes correspond to coherent dipolar fluc-
tuations aligned along the entire wire with negli-
gible components orthogonal to the longitudinal
axis. Consistent with a normal mode analysis of
a dipolar-coupled system with this underlying
topology, the higher-energy modes correspond
to polarization waves with an increasing number
of nodes. At the highest energies (i.e., beyond the
shoulder in the spectrum of Fig. 1A), these eigen-
modes have sizable transverse components and
therefore make a negligible contribution to the
coherent dipolar fluctuations along the wire.

Upon compression of the carbyne wire (i.e., by
varying dc.c from 3.0 to 1.2 A), the gap in the
eigenvalue spectrum becomes visibly reduced and
is accompanied by a corresponding increase in
the slope of the dispersion curves (Fig. 1A). A
gapless metallic dispersion (27) is thus approached,
but never reached, in the MBD model—a fact
that we attribute to the intrinsic charge confine-
ment of the valence atomic responses. A flat dis-
persion (approached only in the limit do.c — ®)
would indicate a localization of the system re-
sponse; with every eigenmode degenerate in en-
ergy, single-atom dipolar fluctuations would occur
along the wire and result in a decorrelation of
the atomic susceptibilities. Conversely, we observe
from Fig. 1A that intrawire interactions can also
induce nontrivial dispersion in the eigenvalue
spectrum despite the absence of explicitly de-
localized electrons, implying a marked nonlocality
in the collective dipolar response within the MBD
model. This collective behavior stems from a
subtle interplay between the kinetic and poten-
tial energy operators in the MBD Hamiltonian
(see. Eq. 2). Upon compression of the carbyne wire,
the kinetic energy term increases relative to the
potential energy terms, leading to large-amplitude
oscillatory motions induced by the presence of
many-body Kkinetic energy contributions. In addi-
tion, an analysis of the exact two-atom MBD so-
lution reveals an underlying dependence of ELL,
on the quantity acdg?c; as such, the effect of
varying the interatomic distance is expected to
be qualitatively equivalent to an inversely propor-
tional modification of the polarizability.

vdW interactions between carbyne wires

The analysis presented above already provides
strong evidence of the importance of wavelike
charge density fluctuations in accounting for vdWw
interactions in low-dimensional nonmetallic nano-
structures. To investigate this aspect further, we
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Fig. 1. Charge density fluctuations in carbyne wires. (A) Energy eigenvalue
spectrum corresponding to the 3N collective eigenmodes of the many-body
dispersion (MBD) model (25, 29) plotted in ascending order for 1D carbyne-
like atomic wires comprising N = 2000 C atoms (subject to periodic bound-
ary conditions) and values of the interatomic C-C distance d¢.c ranging from
1.2 A (the C-C bond length in acetylene) to 3.0 A.
dependent atom value of wc = 0.43 Ha is denoted by the dotted line. The
inset shows a more detailed view of the low-energy portion of the spectrum,

with the same units. (B) Schematic illustration of
low-energy (I), transverse (t), and high-energy (h)

L L
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now consider the case of two mutually interact-
ing parallel carbyne-like wires. In Fig. 2, the re-
sulting vdW power-law exponents are plotted as
a function of the interwire separation D (for
several values of dc.c); they exhibit strong de-
viations from the asymptotic D™° behavior pre-
dicted by widely used vdW approaches based on
pairwise additivity. This macroscopic effect goes
beyond a simple renormalization of Hamaker
constants and results from a theoretical account
of both intra- and interwire many-body vdW in-
teractions on an equal footing. As seen in Fig. 2,
these modifications to the vdW interaction energy

SCIENCE sciencemag.org

Interwire separation (D/nm)

power laws become even more pronounced upon
compression of the carbyne wire, reaching ~D >
for interwire separations between 1 and 3 nm
(with dc.c = 1.2 A), but still not converging to
the pairwise-additive asymptote at interwire se-
parations exceeding 20 nm.

Such power-law modifications are particularly
relevant at the nanoscale and can be understood
as resulting from long-range electrodynamic cou-
pling between the collective longitudinal modes
(dipole waves) delocalized along the entirety of
each carbyne-like wire. These wavelike charge den-
sity fluctuations are simply absent in localized

I
200

I
150

L
~ 100
Wire coordinate (D/nm)

50

modes, as indicated in (A). The colored spheres represent dipole displace-
ments with respect to the equilibrium atomic positions (depicted in gray).
(C) Longitudinal dipole displacements of several low-energy collective MBD
eigenmodes (in arbitrary units) with respect to the wire coordinate for dc.c =
1.2 A. Because of the inversion symmetry of this system, every eigenmode is
doubly degenerate except for the lowest-energy longitudinal mode (de-
picted in red). Consistent with a normal mode analysis of a dipolar-coupled
system with this underlying topology, the number of nodes present in a
given MBD eigenmode is directly correlated with its relative location in the
energy eigenvalue spectrum.

particle- or fragment-based models for vdW in-
teractions, despite being crucial for an accurate
theoretical description of these fundamental in-
teractions in low-dimensional nonmetallic nano-
structures. These findings resemble the results
obtained with approximate many-body models
of metallic chains that explicitly account for the
delocalized wavelike nature of metallic electrons
(5, 21, 23, 38), which implies that a collective di-
polar response with markedly nonlocal character
can also be used to predict the emergence of
wavelike dynamical electron correlation in non-
metallic systems.

To better understand the influence of these
fluctuations on the vdW interaction between car-
byne wires, we now consider an analytical model
for this interaction in more detail. At sufficiently
large D, the interwire Coulomb interaction in
the continuum approximation is given by w;, =
2Ko(gD), where K, is a modified (or hyperbolic)
Bessel function of the second kind and ¢ is the
magnitude of the wave vector parallel to the
longitudinal wire axis (21). Within the random-
phase approximation, one can account for the
effects of the interwire coupling on y;, the re-
sponse function of a single wire, via 2w?, =1,
which predicts a splitting of ®(g) into eigen-
frequencies that correspond to coupled dipolar
fluctuations that are either aligned (© ) or anti-
aligned (®_) with respect to the two parallel wires
[ie, ®:(q) = ®(¢)\/1 £ @°(¢)T(q), wherein T(g)
is the interwire dipole-dipole interaction derived
from w;,]. Neglecting the higher-energy transverse
eigenmodes that provide smaller contributions
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to the interwire interaction, the interaction ener-
gy between carbyne-like wires of length L can then
be computed in the nonretarded regime as

By = - Jaalo (@) +0-(@) - 20(a)) ()

which in turn can be expanded to second order
in the interaction at large D, yielding

0‘C‘DC
2
4Ande

L[58 q(l; )"4

A g-space decomposition of the integrand in
Eq. 4 is provided in Fig. 3 and illustrates that
the power law governing the interwire interac-
tion energy has a nontrivial dependence on D
that originates from a summation over individ-
ual reciprocal-space contributions, each of which
corresponds to a normal mode of the system with
a different characteristic decay rate. This obser-
vation is in stark contrast to the determination of
the interwire interaction energy from approximate
particle- or fragment-based pairwise approaches,
in which each contribution has the same D™°
power-law decay. As such, this analysis is also
strongly indicative that the complex power-law
exponents displayed in Fig. 2 can only be correctly
described by models that allow for delocalized
wavelike fluctuations of the charge density. In
this regard, even state-of-the-art nonlocal XC
functionals (39, 40), which describe long-range
electron correlation effects in a pairwise-additive
fashion, would completely miss the interaction
energy profiles in Fig. 2.

To gain a more detailed understanding of the
power-law exponents displayed in Fig. 2, we note
that the asymptotic behavior of the interwire in-
teraction energy is largely influenced by ®(g), the
single-wire dispersion appearing in the integrand
of Eq. 4. In fact, a first estimate of the decay
rate of E{}y, can be obtained by fitting the
dispersion law with a single exponent—that is,
as ®(g) < g —which directly leads to the finding
that ELR, |, o< D~*"3% upon variable substitution of
¢ = g/D. Physically speaking, the quantity Ko(gD)
governs the interwire interaction by introducing
a momentum cutoff at ¢ ~ 1/D, and the resultant
integration over the infinitesimal contributions
¢*/®*(q) up to this momentum cutoff controls
the scaling of Ebé‘wn with respect to D. In par-
ticular, a linear plasmon dispersion leads (up to
logarithmic corrections) to a D2 decay (2I) in
metallic wires, whereas the slightly sublinear dis-
persion observed here for dec = 1.2 A (see the
inset in Fig. 1A after the initial energetic gap)
is consistent with a ~D~>® power law and is in
qualitative agreement with the numerical evi-
dence provided by the MBD model in Fig. 2. De-
spite this initial deviation from D%, the power
law at large distances again tends toward the
pairwise-additive asymptote, although deviations
still persist at interwire separations greater than
20 nm. A direct account of this phenomenon fol-
lows from Fig. 3: Because of the decay of Ky(gD)
with respect to the quantity gD, only very small
values of g will contribute to the interwire in-
teraction energy at large D (see Eq. 4). In fact, only

)

LR ~
E vdw,12 =
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those wave vectors near the gap [in which w(g) =
constant] will be of relevance in recovering the
asymptotic D® limit. Hence, the pairwise-additive
limit can only be approached in the presence of
a flat dispersion, wherein the localization of the
system response to single-atom dipolar fluctua-
tions occurring along the individual wires would
actually validate the fundamental particle- or
fragment-based assumption that the vdW inter-
action energy can be described as a summation
over induced atomic dipole contributions.

Note that the results of the above analysis are
quite general and are not simply intrinsic prop-
erties of the MBD coupled dipolar Hamiltonian
(Eq. 2). The same conclusions are observed when
the qualitatively different tight binding (TB) mod-
el (23) is used for the single wire response. Within
this approach, the individual atomic wires are de-
scribed by a two-site nearest-neighbor interaction
that can be tuned (by manipulating the 3, and B,
free-parameter space) to reproduce both the me-
tallic (symmetric interactions via Bo/B; = 1) and
insulating (asymmetric/single-sided interactions
via B,/B; = 0) limits. A second-order perturbative
treatment of the interwire interaction energy leads

Fig. 3. Analytical model for
interwire vdW interactions. A
reciprocal-space decomposition
analysis of the integrand
K2(qD)q* /@3 (q), which is required
for computing the second-order
interwire interaction energy in Eq. 4.
Assuming linear dispersion, the
decay rate of the integrand with
respect to D exhibits a nontrivial
dependence on the momentum g
(in nm™), which is responsible for
the observed power laws. At large D,
only small g contributions substan-

Wave vector (q

0.3
0.2
0.1
e 0.0

to power-law exponents that describe these two
respective limits—that is, ~D 2 for metallic nano-
wires and ~D® for insulating nanowires with flat
energy bands—as depicted in Fig. 4. By analogy
to the MBD model, the TB response becomes
markedly nonlocal in the metallic limit, the re-
gime in which the largest deviations from the
pairwise-additive ~D° power law are expected.
Conversely, a substantial localization of the re-
sponse is recovered in the insulating limit, in
which the pairwise-additive approximation becomes
asymptotically valid. Comparisons between the
power-law exponents provided in Figs. 2 and 4
demonstrate semiquantitative agreement between
the qualitatively different MBD and TB models,
which is strongly indicative of the universality of the
influence of wavelike charge density fluctuations
on vdW interactions between nanostructures.

vdW interactions between
complex nanostructures

Although the results above were obtained for
model 1D carbyne-like wires, our calculations sug-
gest that collective charge density fluctuations will
also strongly influence the behavior of strained

1 2 3 4
Interwire separation (D/nm)

tially influence EX},, 1. so that D effectively determines the scale of relevant momenta. In this plot, the in-

tegrand has been rescaled by the constant 6(0)3 and the corresponding color scale is provided in atomic units.

Fig. 4. The tight- - T T T T T T T ]
binding model for P (S ¥ e e ¥ ID
interwire vdW interac- & o 0-00 VIV |
tions. Interwire interac- % e @ ---—-—- [
tion energy power-law o L |
exponents (46) are % - AA Bz / B1 =0
shown for two parallel 1D 3 .\‘l\ oo [32 / [51 =0.96
carbyne-llke atomic eres g B-__ = oY) [52 / [31 =1

as a function of the inter- 8. L Te-al o |
wire separation D com- » Te-al =

puted using the g 4 T
tight-binding (TB) model

(23, 46). With do.c = % I 0V vV ID |
20 A the two limiting 3 Ay @09 09 09

cases of insulating % ] "’* A e Y TPy W
(Bo/B1 = 0) and metallic > , | . | . | . | .

(B2/B1 = 1) nanowires P
were considered, along
with an intermediate

4 6
Interwire separation (D/nm)

case (Bo/B1 = 0.96). As previously observed with the qualitatively different MBD model (see Fig. 2), there are
strong deviations from the asymptotic D™ power law (denoted by the dotted line) over a wide range of

relevant nanoscale distances.
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hydrocarbon polymers and inorganic wires made
from polarizable elements such as phosphorus,
silicon, or germanium. To further elucidate the
roles of dimensionality, topology, and polariz-
ability on determining vdW interaction power
laws across distances relevant at the nanoscale,
we carried out a study of layered two-dimensional
(2D) materials, including graphenic sheets of
varying polarizability as well as bilayer MoS,.
Although a smaller reduction in the power-law
exponent is expected in bilayer graphene because
of its higher dimensionality, a D™>° decay was
found for interlayer distances of 0.6 to 3.0 nm, with

convergence to the conventional D™ power law
only achieved for interlayer distances well beyond
10 nm (Fig. 5). In general, the interlayer inter-
action power-law exponents for bilayer graphene
were intermediate between D and the pairwise-
additive D™* asymptote, which are induced by
gapless 7 states and are expected to be valid in
the case of finite-gap doped graphene (41, 42).
Increasing the polarization response of the
graphenic sheets to effectively model highly po-
larizable 2D materials leads to substantial de-
localization in the system response; for o = 50 bohr?,
the power law exhibited an extended plateau

Fig. 5. Power laws for ' I '
interlayer vdW inter-
actions. Interlayer
interaction energy
power-law exponents
(46) for two parallel
2D graphenic layers
and MoS; as a

i vuvMOS2

@
function of the inter- ,v-—-V“"*""V""'““‘V“-——_
layer separation D .__,(:x’
computed using the , ‘.~-~.____._h
MBD model. To inves- 4-a N Biamininl = T - S

tigate the behavior of
these power laws in
highly polarizable

2D materials, we Nl

van der Waals power law exponent
)
= T
~ N

| A-Agraphene (o =12 bohr’)
I @ graphenic (=20 bohr”)
@ @ graphenic (0,,=50 bohr’)

Co--@ O --@-—--@ @]
o ®

T T T T T T T T T T T

considered several 2 4 6 8

values of o2 for the
graphenic layers, rang-

Interlayer separation (D/nm)

ing from 12 bohr® (the static atomic dipole polarizability of a C atom) to 50 bohr®. As found above for
the case of interacting parallel 1D nanowires over a range of relevant nanoscale distances, there are
substantial deviations from the asymptotic D™ power law predicted by pairwise-additive vdW approaches

(denoted by the dotted line).

Fig. 6. Power laws for
vdW interactions

Wire - protein separation (D/nm)

7 9

between complex
nanostructures.
Interaction energy
power-law exponents
(46) computed using
the MBD model for
two parallel (3,3) car-
bon nanotubes and a
wire-protein nano-
structure (depicted in
insets) as a function of
the respective center-
of-mass separations
D. As observed above
for interacting 1D
nanowires and 2D E

van der Waals power law exponent

A A nanotube - nanotube
@ @ wire - protein

I ; I

layered materials, we 2
report substantial
deviations in the decay

4 6 8
Nanotube separation (D/nm)

rate of the MBD interaction energy in such nanostructures when compared against the pairwise-additive

asymptote of D™ (denoted by the dotted line). The

AEbEW/AEtgx) are provided for select values of D;

ratio of the MBD and pairwise (12) interaction energies
the growth of this ratio with D is another indication

of the nontrivial coupling between delocalized charge density fluctuations sustained across these

nanostructures.
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between D>® and D™ at interlayer separations
from 1.5 nm to well beyond 10 nm—distances
that are again quite relevant to interactions at
the nanoscale.

As a final set of examples, we extend our ob-
servations regarding the crucial importance of
many-body vdW interactions (43) to the descrip-
tion of complex nanostructures such as carbon
nanotubes and biological systems. As Fig. 6 dem-
onstrates, the decay rate of the MBD interaction
energy between a nanowire and the 1IMC5 pro-
tein (human glutathione-dependent formaldehyde
dehydrogenase) is much slower than the predic-
tion of the pairwise-additive approximation. In
addition, the ratio between the MBD and pair-
wise interaction energies, AE&?W / AE{,]?&,2 >, is quite
large and grows as a function of the wire-protein
separation, demonstrating a nontrivial coupling
between delocalized charge density fluctuations
sustained across the protein and along the wire.

Outlook

Our analysis demonstrates the possibilities for
engineering the vdW interaction energy power
laws in low-dimensional nanostructures by mod-
ifying their underlying dimensionality, topology,
and response properties. Moreover, our findings
suggest that complex power laws could also play
an important role in numerous low-dimensional
biologically relevant systems, including phospho-
lipid aggregates and bilayers (44) or even the
subnanometer spatula-shaped structures that
determine the peculiar pedal adhesion in the
gecko (45). Our study provides strong evidence
that the ubiquitous vdW forces between polar-
izable nonmetallic nanostructures can be more
completely understood in terms of collective in-
teractions between wavelike charge density fluc-
tuations, rather than simply a summation over
pairwise interactions between instantaneous
particle- or fragment-like dipolar fluctuations.
In a manner analogous to metallic systems,
the marked nonlocality of the valence electronic
response in low-dimensional polarizable nano-
structures is reflected in the emergence of col-
lective modes that span the entire system. It is
these delocalized wavelike charge density fluc-
tuations that are responsible for the nontrivial
interaction energy power laws observed herein
that substantially deviate from the predictions of
standard pairwise-additive vdW approximations.
As such, these wavelike fluctuations govern the
magnitude of vdW interactions at large, but fi-
nite, distances of relevance at the nanoscale. Our
findings reveal a smooth transition from a sys-
tem consisting of independent atoms to the col-
lective fully interacting limit, thereby providing a
potential pathway for tuning the fundamental
noncovalent vdW interactions responsible for the
assembly of complex polarizable nanostructures.
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QUANTUM OPTICS

Generation of multiphoton entangled
quantum states by means of
integrated frequency combs

Christian Reimer,'* Michael Kues,'*t Piotr Roztocki, Benjamin Wetzel,">
Fabio Grazioso,' Brent E. Little,® Sai T. Chu,* Tudor Johnston,' Yaron Bromberg,’t
Lucia Caspani,®§ David J. Moss,’|| Roberto Morandotti-5+

Complex optical photon states with entanglement shared among several modes are
critical to improving our fundamental understanding of quantum mechanics and have
applications for quantum information processing, imaging, and microscopy. We
demonstrate that optical integrated Kerr frequency combs can be used to generate
several bi- and multiphoton entangled qubits, with direct applications for quantum
communication and computation. Our method is compatible with contemporary fiber
and quantum memory infrastructures and with chip-scale semiconductor technology,
enabling compact, low-cost, and scalable implementations. The exploitation of
integrated Kerr frequency combs, with their ability to generate multiple, customizable,
and complex quantum states, can provide a scalable, practical, and compact platform

for quantum technologies.

ulti-entangled states of light hold an-
swers to fundamental questions in quan-
tum physics and are the cornerstone of a
range of applications, including quantum
communications (Z), computation (2-4),
and sensing and imaging with a resolution be-
yond the classical limit (5). Thus, the controllable
realization of multiple quantum states in a com-
pact platform would enable a practical and pow-
erful implementation of quantum technologies.
Although applications of frequency combs have
been mostly classical thus far, their distinctive
architecture, based on multiple interacting modes
and the phase characteristics of the underlying
nonlinear processes, has the potential to offer
new and powerful ways to achieve the gener-
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ation of multiple, customizable, and complex
states of nonclassical light. The quantum pro-
perties of frequency combs have recently begun
to be investigated, revealing their potential for
the generation of large quantum states (6-8).
However, the continuous-variable nonclassical
states (squeezed vacuum) that have been dem-
onstrated with this approach have not yet achieved
the quality (amount of squeezing) required for
optical quantum computation (9). For the gen-
eration of single photons and continuous- and
discrete-variable quantum states (qubits), a wide
variety of second- and third-order nonlinear
sources, optical fibers, and gases, as well as single
quantum emitters, have been exploited (10, II).
Recent progress has focused on transferring both
classical frequency combs (72) and quantum
sources (13) to integrated optical platforms. Such
integrated approaches provide the advantages
of compact, scalable, mass-producible, and low-
cost devices (14). Demonstrated integrated de-
vices include sources of heralded single photons
(15-17) and entangled photon pairs (I8), in prin-
ciple allowing implementations of quantum al-
gorithms (19, 20). Here we show the parallel
generation of bi- and multiphoton entangled
states in a compact, integrated quantum fre-
quency comb source.

Our quantum frequency comb is generated in a
CMOS (complementary metal-oxide semiconductor)-
compatible, high-refractive-index glass in a four-
port microring resonator architecture [details
on device fabrication and characteristics are
presented in (21)]. The weak and anomalous
dispersion of our device enables broadband phase
matching for spontaneous four-wave mixing
(SFWM), thereby generating a broad frequency
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