An extension of the concept of distance to functions of several variables

Gergely Kiss，Jean－Luc Marichal，Bruno Teheux

Mathematics Research Unit，University of Luxembourg
Luxembourg，Luxembourg

36th Linz Seminar on Fuzzy Set Theory，Linz，Austria 2－6．February 2016.

A pair (X, d) is called a metric space, if X is a nonempty set and d is a distance on X, that is a function $d: X^{2} \rightarrow \mathbb{R}_{+}$such that:
(i) $d\left(x_{1}, x_{2}\right)=0$ if and only if $x_{1}=x_{2}$,
(ii) $d\left(x_{1}, x_{2}\right)=d\left(x_{2}, x_{1}\right)$ for all $x_{1}, x_{2} \in X$,
(iii) $d\left(x_{1}, x_{2}\right) \leqslant d\left(x_{1}, z\right)+d\left(z, x_{2}\right)$ for all $x_{1}, x_{2}, z \in X$.

A pair (X, d) is called a metric space, if X is a nonempty set and d is a distance on X, that is a function $d: X^{2} \rightarrow \mathbb{R}_{+}$such that:
(i) $d\left(x_{1}, x_{2}\right)=0$ if and only if $x_{1}=x_{2}$,
(ii) $d\left(x_{1}, x_{2}\right)=d\left(x_{2}, x_{1}\right)$ for all $x_{1}, x_{2} \in X$,
(iii) $d\left(x_{1}, x_{2}\right) \leqslant d\left(x_{1}, z\right)+d\left(z, x_{2}\right)$ for all $x_{1}, x_{2}, z \in X$.

Multidistance: A generalization of a distance by Martín and Mayor.

A pair (X, d) is called a metric space, if X is a nonempty set and d is a distance on X, that is a function $d: X^{2} \rightarrow \mathbb{R}_{+}$such that:
(i) $d\left(x_{1}, x_{2}\right)=0$ if and only if $x_{1}=x_{2}$,
(ii) $d\left(x_{1}, x_{2}\right)=d\left(x_{2}, x_{1}\right)$ for all $x_{1}, x_{2} \in X$,
(iii) $d\left(x_{1}, x_{2}\right) \leqslant d\left(x_{1}, z\right)+d\left(z, x_{2}\right)$ for all $x_{1}, x_{2}, z \in X$.

Multidistance: A generalization of a distance by Martín and Mayor.
We say that $d: \cup_{n \geqslant 1} X^{n} \rightarrow \mathbb{R}_{+}$is a multidistance if:
(i) $d\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\cdots=x_{n}$,
(ii) $d\left(x_{1}, \ldots, x_{n}\right)=d\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in X$ and all $\pi \in S_{n}$,
(iii) $d\left(x_{1}, \ldots, x_{n}\right) \leqslant \sum_{i=1}^{n} d\left(x_{i}, z\right)$ for all $x_{1}, \ldots, x_{n}, z \in X$.

n-distance

Definition

We say that $d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if:

n-distance

Definition

We say that $d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if:
(i) $d\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\cdots=x_{n}$,

n-distance

Definition

We say that $d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if:
(i) $d\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\cdots=x_{n}$,
(ii) $d\left(x_{1}, \ldots, x_{n}\right)=d\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in X$ and all $\pi \in S_{n}$,

n-distance

Definition

We say that $d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if:
(i) $d\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\cdots=x_{n}$,
(ii) $d\left(x_{1}, \ldots, x_{n}\right)=d\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in X$ and all $\pi \in S_{n}$,
(iii) There is a $0 \leqslant K \leqslant 1$ such that $d\left(x_{1}, \ldots, x_{n}\right) \leqslant\left. K \sum_{i=1}^{n} d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=z}$ for all $x_{1}, \ldots, x_{n}, z \in X$.

n-distance

Definition

We say that $d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if:
(i) $d\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\cdots=x_{n}$,
(ii) $d\left(x_{1}, \ldots, x_{n}\right)=d\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in X$ and all $\pi \in S_{n}$,
(iii) There is a $0 \leqslant K \leqslant 1$ such that $d\left(x_{1}, \ldots, x_{n}\right) \leqslant\left. K \sum_{i=1}^{n} d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=z}$ for all $x_{1}, \ldots, x_{n}, z \in X$.
We denote by K^{*} the smallest constant K for which (iii) holds.
For $n=2$, we assume that $K^{*}=1$.

Example (Drastic n-distance)

The function $d: X^{n} \rightarrow \mathbb{R}_{+}$defined by $d\left(x_{1}, \ldots, x_{n}\right)=0$, if $x_{1}=\cdots=x_{n}$, and $d\left(x_{1}, \ldots, x_{n}\right)=1$, otherwise.

Example (Drastic n-distance)

The function $d: X^{n} \rightarrow \mathbb{R}_{+}$defined by $d\left(x_{1}, \ldots, x_{n}\right)=0$, if $x_{1}=\cdots=x_{n}$, and $d\left(x_{1}, \ldots, x_{n}\right)=1$, otherwise. $K^{*}=\frac{1}{n-1}$ for every $n \geqslant 2$.

Example (Drastic n-distance)

The function $d: X^{n} \rightarrow \mathbb{R}_{+}$defined by $d\left(x_{1}, \ldots, x_{n}\right)=0$, if $x_{1}=\cdots=x_{n}$, and $d\left(x_{1}, \ldots, x_{n}\right)=1$, otherwise. $K^{*}=\frac{1}{n-1}$ for every $n \geqslant 2$.

Proposition
Let d and d^{\prime} be n-distances on X and let $\lambda>0$. The following assertions hold.
(1) $d+d^{\prime}$ and λd are n-distance on X.
(2) $\frac{d}{1+d}$ is an n-distance on X, with value in $[0,1]$.

Example (Drastic n-distance)

The function $d: X^{n} \rightarrow \mathbb{R}_{+}$defined by $d\left(x_{1}, \ldots, x_{n}\right)=0$, if $x_{1}=\cdots=x_{n}$, and $d\left(x_{1}, \ldots, x_{n}\right)=1$, otherwise.
$K^{*}=\frac{1}{n-1}$ for every $n \geqslant 2$.
Proposition
Let d and d^{\prime} be n-distances on X and let $\lambda>0$. The following assertions hold.
(1) $d+d^{\prime}$ and λd are n-distance on X.
(2) $\frac{d}{1+d}$ is an n-distance on X, with value in $[0,1]$.

Lemma

Let a, a_{1}, \ldots, a_{n} be nonnegative real numbers such that
$\sum_{i=1}^{n} a_{i} \geq a$. Then

$$
\frac{a}{1+a} \leq \frac{a_{1}}{1+a_{1}}+\cdots+\frac{a_{n}}{1+a_{n}}
$$

A generalization of n-distance

Condition (iii) in Definition 1 can be generalized as follows.
Definition
Let $g: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a symmetric function. We say that a function $d: X^{n} \rightarrow \mathbb{R}^{+}$is a g-distance if it satisfies conditions (i), (ii) and

$$
d\left(x_{1}, \ldots, x_{n}\right) \leqslant g\left(\left.d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{1}=z}, \ldots,\left.d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{n}=z}\right)
$$

for all $x_{1}, \ldots, x_{n}, z \in X$.

A generalization of n-distance

Condition (iii) in Definition 1 can be generalized as follows.
Definition
Let $g: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a symmetric function. We say that a function $d: X^{n} \rightarrow \mathbb{R}^{+}$is a g-distance if it satisfies conditions (i), (ii) and

$$
d\left(x_{1}, \ldots, x_{n}\right) \leqslant g\left(\left.d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{1}=z}, \ldots,\left.d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{n}=z}\right)
$$

for all $x_{1}, \ldots, x_{n}, z \in X$.
It is natural to ask that $d+d^{\prime}, \lambda d$, and $\frac{d}{1+d}$ be g-distances whenever so are d and d^{\prime}.

Proposition

Let $g: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a (symmetric) function, d and d^{\prime} be g-distances. The following assertions hold.
(1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r})=\lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_{+}^{n}$ and all $\lambda>0$, then for every $\lambda>0, \lambda d$ is a g-distance.

Proposition

Let $g: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a (symmetric) function, d and d^{\prime} be g-distances. The following assertions hold.
(1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r})=\lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_{+}^{n}$ and all $\lambda>0$, then for every $\lambda>0, \lambda d$ is a g-distance.
(2) If g is superadditive, i.e., $g(\mathbf{r}+\mathbf{s}) \geqslant g(\mathbf{r})+g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_{+}^{n}$, then $d+d^{\prime}$ is a g-distance.

Proposition

Let $g: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a (symmetric) function, d and d^{\prime} be g-distances. The following assertions hold.
(1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r})=\lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_{+}^{n}$ and all $\lambda>0$, then for every $\lambda>0, \lambda d$ is a g-distance.
(2) If g is superadditive, i.e., $g(\mathbf{r}+\mathbf{s}) \geqslant g(\mathbf{r})+g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_{+}^{n}$, then $d+d^{\prime}$ is a g-distance.
(3) If g is both positively homogeneous and superadditive, then it is concave.

Proposition

Let $g: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be a (symmetric) function, d and d^{\prime} be g-distances. The following assertions hold.
(1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r})=\lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}_{+}^{n}$ and all $\lambda>0$, then for every $\lambda>0, \lambda d$ is a g-distance.
(2) If g is superadditive, i.e., $g(\mathbf{r}+\mathbf{s}) \geqslant g(\mathbf{r})+g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_{+}^{n}$, then $d+d^{\prime}$ is a g-distance.
(3) If g is both positively homogeneous and superadditive, then it is concave.
(4) If g is bounded below (at least on a measurable set) and additive, that is, $g(\mathbf{r}+\mathbf{s})=g(\mathbf{r})+g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}_{+}^{n}$, then and only then there exist $\lambda_{1}, \ldots, \lambda_{n} \geqslant 0$ such that

$$
\begin{equation*}
g(\mathbf{r})=\sum_{i=1}^{n} \lambda_{i} r_{i} \tag{1}
\end{equation*}
$$

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_{+}^{n}, then $g(\mathbf{r})=\lambda \sum_{i=1}^{n} r_{i}$, which gives the 'original' definition of n-distance.

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_{+}^{n}, then $g(\mathbf{r})=\lambda \sum_{i=1}^{n} r_{i}$, which gives the 'original' definition of n-distance.
$d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if satisfies (i), (ii) and
(iii) There is a $0 \leqslant K \leqslant 1$ such that

$$
\begin{aligned}
& d\left(x_{1}, \ldots, x_{n}\right) \leqslant\left. K \sum_{i=1}^{n} d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=z} \text { for all } \\
& x_{1}, \ldots, x_{n}, z \in X .
\end{aligned}
$$

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}_{+}^{n}, then $g(\mathbf{r})=\lambda \sum_{i=1}^{n} r_{i}$, which gives the 'original' definition of n-distance.
$d: X^{n} \rightarrow \mathbb{R}_{+}(n \geq 2)$ is an n-distance if satisfies (i), (ii) and
(iii) There is a $0 \leqslant K \leqslant 1$ such that

$$
\begin{aligned}
& d\left(x_{1}, \ldots, x_{n}\right) \leqslant\left. K \sum_{i=1}^{n} d\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=z} \text { for all } \\
& x_{1}, \ldots, x_{n}, z \in X .
\end{aligned}
$$

We denote by K^{*} the smallest constant K for which (iii) holds.

Example I.

What would be K^{*} ?

Example I.

What would be K^{*} ?

Example (Basic examples)

Given a metric space (X, d) and $n \geqslant 2$, the maps $d_{\text {max }}: X^{n} \rightarrow \mathbb{R}_{+}$ and $d_{\Sigma}: X^{n} \rightarrow \mathbb{R}_{+}$defined by

$$
\begin{aligned}
d_{\max }\left(x_{1}, \ldots, x_{n}\right) & =\max _{1 \leqslant i<j \leqslant n} d\left(x_{i}, x_{j}\right) \\
d_{\Sigma}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{1 \leqslant i<j \leqslant n} d\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Example I.

What would be K^{*} ?

Example (Basic examples)

Given a metric space (X, d) and $n \geqslant 2$, the maps $d_{\text {max }}: X^{n} \rightarrow \mathbb{R}_{+}$ and $d_{\Sigma}: X^{n} \rightarrow \mathbb{R}_{+}$defined by

$$
\begin{aligned}
d_{\max }\left(x_{1}, \ldots, x_{n}\right) & =\max _{1 \leqslant i<j \leqslant n} d\left(x_{i}, x_{j}\right) \\
d_{\Sigma}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{1 \leqslant i<j \leqslant n} d\left(x_{i}, x_{j}\right)
\end{aligned}
$$

are n-distances for which the best constants are given by $K^{*}=\frac{1}{n-1}$.

Generalization

Let X be a set.

Generalization

Let X be a set.Associate a full, (weighted) graph K_{n} to the points $x_{1}, \ldots, x_{n} \in X$.

Generalization

Let X be a set.Associate a full, (weighted) graph K_{n} to the points $x_{1}, \ldots, x_{n} \in X$. For a subgraph G of K_{n} we denote $E(G)$ the edge set of a graph G.

Generalization

Let X be a set.Associate a full, (weighted) graph K_{n} to the points $x_{1}, \ldots, x_{n} \in X$. For a subgraph G of K_{n} we denote $E(G)$ the edge set of a graph G.
Let \mathcal{P} be a class of graphs over x_{1}, \ldots, x_{n}.

Generalization

Let X be a set.Associate a full, (weighted) graph K_{n} to the points $x_{1}, \ldots, x_{n} \in X$. For a subgraph G of K_{n} we denote $E(G)$ the edge set of a graph G.
Let \mathcal{P} be a class of graphs over x_{1}, \ldots, x_{n}.
Theorem
Let (X, d) be a metric space and $n \geqslant 2$. Then for any nonempty class \mathcal{P} the map $d_{G r}: X^{n} \rightarrow \mathbb{R}_{+}$defined by

$$
d_{G r}\left(x_{1}, \ldots, x_{n}\right)=\max _{G \in \mathcal{P}} \sum_{\left(x_{i}, x_{j}\right) \in E(G)} d\left(x_{i}, x_{j}\right)
$$

are n-distances for which the best constants are given by $K^{*}=\frac{1}{n-1}$.

Example

1. If $\mathcal{P}=\left\{G \simeq K_{2}\right\}$, then $d_{G r}=d_{\max }\left(x_{1}, \ldots, x_{n}\right)$.

Example

1. If $\mathcal{P}=\left\{G \simeq K_{2}\right\}$, then $d_{G r}=d_{\max }\left(x_{1}, \ldots, x_{n}\right)$.
2. If $\mathcal{P}=\left\{G \simeq K_{n}\right\}$, then $d_{G r}=d_{\Sigma}\left(x_{1}, \ldots, x_{n}\right)$.

Example

1. If $\mathcal{P}=\left\{G \simeq K_{2}\right\}$, then $d_{G r}=d_{\max }\left(x_{1}, \ldots, x_{n}\right)$.
2. If $\mathcal{P}=\left\{G \simeq K_{n}\right\}$, then $d_{G r}=d_{\Sigma}\left(x_{1}, \ldots, x_{n}\right)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P}=\left\{G \simeq K_{s}\right\}$. Then

$$
d_{K_{s}}\left(x_{1}, \ldots, x_{n}\right)=\max _{G \in \mathcal{P}} \sum_{\left(x_{i}, x_{j}\right) \in E(G)} d\left(x_{i}, x_{j}\right)
$$

is an n-metric with $K^{*}=\frac{1}{n-1}$.

Example

1. If $\mathcal{P}=\left\{G \simeq K_{2}\right\}$, then $d_{G r}=d_{\max }\left(x_{1}, \ldots, x_{n}\right)$.
2. If $\mathcal{P}=\left\{G \simeq K_{n}\right\}$, then $d_{G r}=d_{\Sigma}\left(x_{1}, \ldots, x_{n}\right)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P}=\left\{G \simeq K_{s}\right\}$. Then

$$
d_{K_{s}}\left(x_{1}, \ldots, x_{n}\right)=\max _{G \in \mathcal{P}} \sum_{\left(x_{i}, x_{j}\right) \in E(G)} d\left(x_{i}, x_{j}\right)
$$

is an n-metric with $K^{*}=\frac{1}{n-1}$.
4. If \mathcal{P} is the class of Hamiltonian cycles of K_{n}. Then

$$
d_{H a m}\left(x_{1}, \ldots, x_{n}\right)=\max _{H \in \mathcal{P}} \sum_{\left(x_{i}, x_{j}\right) \in E(H)} d\left(x_{i}, x_{j}\right)
$$

is an n-metric with $K^{*}=\frac{1}{n-1}$.

Example

1. If $\mathcal{P}=\left\{G \simeq K_{2}\right\}$, then $d_{G r}=d_{\max }\left(x_{1}, \ldots, x_{n}\right)$.
2. If $\mathcal{P}=\left\{G \simeq K_{n}\right\}$, then $d_{G r}=d_{\Sigma}\left(x_{1}, \ldots, x_{n}\right)$.
3. For any $1 \leq s \leq n$ let $\mathcal{P}=\left\{G \simeq K_{s}\right\}$. Then

$$
d_{K_{s}}\left(x_{1}, \ldots, x_{n}\right)=\max _{G \in \mathcal{P}} \sum_{\left(x_{i}, x_{j}\right) \in E(G)} d\left(x_{i}, x_{j}\right)
$$

is an n-metric with $K^{*}=\frac{1}{n-1}$.
4. If \mathcal{P} is the class of Hamiltonian cycles of K_{n}. Then

$$
d_{H a m}\left(x_{1}, \ldots, x_{n}\right)=\max _{H \in \mathcal{P}} \sum_{\left(x_{i}, x_{j}\right) \in E(H)} d\left(x_{i}, x_{j}\right)
$$

is an n-metric with $K^{*}=\frac{1}{n-1}$.
5. \mathcal{P} is a class of circles of given size, or the class of spanning trees, etc.

Examples II.

Example (Geometric constructions)

Let x_{1}, \ldots, x_{n} be $n \geqslant 2$ arbitrary points in $\mathbb{R}^{k}(k \geqslant 2)$ and denote by $B\left(x_{1}, \ldots, x_{n}\right)$ the smallest closed ball containing x_{1}, \ldots, x_{n}. It can be shown that this ball always exist, is unique, and can be determined in linear time.

Examples II.

Example (Geometric constructions)

Let x_{1}, \ldots, x_{n} be $n \geqslant 2$ arbitrary points in $\mathbb{R}^{k}(k \geqslant 2)$ and denote by $B\left(x_{1}, \ldots, x_{n}\right)$ the smallest closed ball containing x_{1}, \ldots, x_{n}. It can be shown that this ball always exist, is unique, and can be determined in linear time.
(1) The radius of $B\left(x_{1}, \ldots, x_{n}\right)$ is an n-distance whose best constant $K^{*}=\frac{1}{n-1}$.

Examples II.

Example (Geometric constructions)

Let x_{1}, \ldots, x_{n} be $n \geqslant 2$ arbitrary points in $\mathbb{R}^{k}(k \geqslant 2)$ and denote by $B\left(x_{1}, \ldots, x_{n}\right)$ the smallest closed ball containing x_{1}, \ldots, x_{n}. It can be shown that this ball always exist, is unique, and can be determined in linear time.
(1) The radius of $B\left(x_{1}, \ldots, x_{n}\right)$ is an n-distance whose best constant $K^{*}=\frac{1}{n-1}$.
(2) If $k=2$, then the area of $B\left(x_{1}, \ldots, x_{n}\right)$ is an n-distance whose best constant $K^{*}=\frac{1}{n-3 / 2}$.

Examples II.

Example (Geometric constructions)

Let x_{1}, \ldots, x_{n} be $n \geqslant 2$ arbitrary points in $\mathbb{R}^{k}(k \geqslant 2)$ and denote by $B\left(x_{1}, \ldots, x_{n}\right)$ the smallest closed ball containing x_{1}, \ldots, x_{n}. It can be shown that this ball always exist, is unique, and can be determined in linear time.
(1) The radius of $B\left(x_{1}, \ldots, x_{n}\right)$ is an n-distance whose best constant $K^{*}=\frac{1}{n-1}$.
(2) If $k=2$, then the area of $B\left(x_{1}, \ldots, x_{n}\right)$ is an n-distance whose best constant $K^{*}=\frac{1}{n-3 / 2}$.
(3) The k-dimensional volume of $B\left(x_{1}, \ldots, x_{n}\right)$ is an n-distance and we conjecture that the best constant K^{*} is given by $K^{*}=\frac{1}{n-2+(1 / 2)^{k-1}}$. This is correct for $k=1$ or 2 .

Examples III.

Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer $n \geq 2$, the Fermat set F_{Y} of any element subset $Y=\left\{x_{1}, \ldots, x_{n}\right\}$ of X, is defined as

$$
F_{Y}=\left\{x \in X: \sum_{i=1}^{n} d\left(x_{i}, x\right) \leq \sum_{i=1}^{n} d\left(x_{i}, z\right) \text { for all } z \in X\right\}
$$

Examples III.

Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer $n \geq 2$, the Fermat set F_{Y} of any element subset $Y=\left\{x_{1}, \ldots, x_{n}\right\}$ of X, is defined as

$$
F_{Y}=\left\{x \in X: \sum_{i=1}^{n} d\left(x_{i}, x\right) \leq \sum_{i=1}^{n} d\left(x_{i}, z\right) \text { for all } z \in X\right\}
$$

Since $h(x)=\sum_{i=1}^{n} d\left(x_{i}, x\right)$ is continuous and bounded from below by $0, F_{Y}$ is non-empty but usually not a singleton.

Examples III.

Example (Fermat point based n-distances)

Given a metric space (X, d), and an integer $n \geq 2$, the Fermat set F_{Y} of any element subset $Y=\left\{x_{1}, \ldots, x_{n}\right\}$ of X, is defined as

$$
F_{Y}=\left\{x \in X: \sum_{i=1}^{n} d\left(x_{i}, x\right) \leq \sum_{i=1}^{n} d\left(x_{i}, z\right) \text { for all } z \in X\right\}
$$

Since $h(x)=\sum_{i=1}^{n} d\left(x_{i}, x\right)$ is continuous and bounded from below by $0, F_{Y}$ is non-empty but usually not a singleton.
We can define $d_{F}: X^{n} \rightarrow \mathbb{R}_{+}$by

$$
d_{F}\left(x_{1}, \ldots, x_{n}\right)=\min \left\{\sum_{i=1}^{n} d\left(x_{i}, x\right): x \in X\right\}
$$

Proposition

d_{F} is an n-distance and $K^{*} \leq \frac{1}{\left\lceil\frac{n-1}{2}\right\rceil}$.

Median graphs

Let $G=(V, E)$ be an undirected graph.

Median graphs

Let $G=(V, E)$ be an undirected graph.
G is called median graph if for every $u, v, w \in V$ there is a unique $z:=m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.

Median graphs

Let $G=(V, E)$ be an undirected graph.
G is called median graph if for every $u, v, w \in V$ there is a unique $z:=m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.

Median graphs

Let $G=(V, E)$ be an undirected graph.
G is called median graph if for every $u, v, w \in V$ there is a unique $z:=m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.
Examples: Hypercubes and trees.

Median graphs

Let $G=(V, E)$ be an undirected graph.
G is called median graph if for every $u, v, w \in V$ there is a unique $z:=m(u, v, w)$ such that z is in the intersection of shortest paths between any two elements among u, v, w.
Examples: Hypercubes and trees.
We can define $d_{m}: V^{3} \rightarrow \mathbb{R}_{+}$by

$$
d_{m}(u, v, w)=\min _{s \in V}\{d(u, s)+d(v, s)+d(w, s)\}
$$

Proposition

d_{m} is a 3-distance, $d_{m}(u, v, w)$ is realized by $s=m(u, v, w)$ and $K^{*}=\frac{1}{2}$.

Every median graph can be embedded into a hypercube $H_{m}=\{0,1\}^{m}$ for some m (with respect to the Hamming-distance).

Every median graph can be embedded into a hypercube $H_{m}=\{0,1\}^{m}$ for some m (with respect to the Hamming-distance). For a given m, we can define $d_{g m}$ by

$$
d_{g m}\left(x_{1}, \ldots, x_{n}\right)=\min _{z \in V\left(H_{m}\right)} \sum_{i=1}^{n} d\left(z, x_{i}\right)
$$

Every median graph can be embedded into a hypercube $H_{m}=\{0,1\}^{m}$ for some m (with respect to the Hamming-distance). For a given m, we can define $d_{g m}$ by

$$
d_{g m}\left(x_{1}, \ldots, x_{n}\right)=\min _{z \in V\left(H_{m}\right)} \sum_{i=1}^{n} d\left(z, x_{i}\right)
$$

Let $m=\operatorname{Maj}\left(x_{1}, \ldots, x_{n}\right)$ denote the majority of $x_{1}, \ldots, x_{n} .{ }^{*}$

Every median graph can be embedded into a hypercube $H_{m}=\{0,1\}^{m}$ for some m (with respect to the Hamming-distance). For a given m, we can define $d_{g m}$ by

$$
d_{g m}\left(x_{1}, \ldots, x_{n}\right)=\min _{z \in V\left(H_{m}\right)} \sum_{i=1}^{n} d\left(z, x_{i}\right)
$$

Let $m=\operatorname{Maj}\left(x_{1}, \ldots, x_{n}\right)$ denote the majority of x_{1}, \ldots, x_{n}.
Theorem
$d_{g m}$ is a n-distance, $d_{g m}\left(x_{1}, \ldots, x_{n}\right)$ is realized by (any) $m=\operatorname{Maj}\left(x_{1}, \ldots, x_{n}\right)$ and $K^{*}=\frac{1}{n-1}$.

$K^{*}=1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^{*} \leq \frac{1}{n-2}$ (when we know the exact value).

Question
Are there any n-distance d such that the $K^{*}=1$ for any n ?

$K^{*}=1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^{*} \leq \frac{1}{n-2}$ (when we know the exact value).

Question
Are there any n-distance d such that the $K^{*}=1$ for any n ?
Yes.

$K^{*}=1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^{*} \leq \frac{1}{n-2}$ (when we know the exact value).
Question
Are there any n-distance d such that the $K^{*}=1$ for any n ?
Yes. In \mathbb{R} we can define

$$
A_{n}(\mathbf{x})=\frac{x_{1}+\cdots+x_{n}}{n}, \quad \min _{n}(\mathbf{x})=\min \left\{x_{1}, \ldots, x_{n}\right\}
$$

and $d_{n}(\mathbf{x})=A_{n}(\mathbf{x})-\min _{n}(\mathbf{x})$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

$K^{*}=1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^{*} \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^{*}=1$ for any n ?
Yes. In \mathbb{R} we can define

$$
A_{n}(\mathbf{x})=\frac{x_{1}+\cdots+x_{n}}{n}, \quad \min _{n}(\mathbf{x})=\min \left\{x_{1}, \ldots, x_{n}\right\}
$$

and $d_{n}(\mathbf{x})=A_{n}(\mathbf{x})-\min _{n}(\mathbf{x})$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
Proposition
d_{n} is an n-distance for every $n \geq 2$ and $K^{*}=1$.

$K^{*}=1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^{*} \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^{*}=1$ for any n ?
Yes. In \mathbb{R} we can define

$$
A_{n}(\mathbf{x})=\frac{x_{1}+\cdots+x_{n}}{n}, \quad \min _{n}(\mathbf{x})=\min \left\{x_{1}, \ldots, x_{n}\right\}
$$

and $d_{n}(\mathbf{x})=A_{n}(\mathbf{x})-\min _{n}(\mathbf{x})$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
Proposition
d_{n} is an n-distance for every $n \geq 2$ and $K^{*}=1$.
But it is not realized.

$K^{*}=1$, Example IV.

For all of the previous examples $\frac{1}{n-1} \leq K^{*} \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^{*}=1$ for any n ?
Yes. In \mathbb{R} we can define

$$
A_{n}(\mathbf{x})=\frac{x_{1}+\cdots+x_{n}}{n}, \quad \min _{n}(\mathbf{x})=\min \left\{x_{1}, \ldots, x_{n}\right\}
$$

and $d_{n}(\mathbf{x})=A_{n}(\mathbf{x})-\min _{n}(\mathbf{x})$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
Proposition
d_{n} is an n-distance for every $n \geq 2$ and $K^{*}=1$.
But it is not realized. (For every $\varepsilon>0$ it can be shown that $K^{*}>1-\varepsilon$.)

Summary

Table: Critical values

n-distance	space X	$\mathrm{K} *$	nb . of var.
$d_{\text {Gr }}, d_{\text {max }}, d_{\sum}$	arbitrary metric	$\frac{1}{n-1}$	$n>1$
$d_{\text {diameter }}$	$\mathbb{R}^{m}(m \geq 1)$	$\frac{1}{n-1}$	$n>1$
$d_{\text {area }}$	$\mathbb{R}^{m}(m \geq 2)$	$\frac{1}{n-3 / 2}$	$n>1$
$d_{\text {volume }(k)}$	$\mathbb{R}^{m}(m \geq k)$	$?=\frac{1}{n-1-(1 / 2)^{k-1}}$	$n>1$
$d_{\text {Fermat }}$	arbitrary metric	$? \leq \frac{1}{\left\lceil\frac{n-1}{2}\right\rceil}$	$n>1$
$d_{\text {median }}$	median graph G	$\frac{1}{2}$	$n=3$
$d_{\text {hypercube }}$	$\{0,1\}^{n}$	$\frac{1}{n-1}$	$n>1$
d_{n}	\mathbb{R}	1	$n>1$

Summary

Table: Critical values

n-distance	space X	$\mathrm{K} *$	nb . of var.
$d_{\text {Gr }}, d_{\text {max }}, d_{\sum}$	arbitrary metric	$\frac{1}{n-1}$	$n>1$
$d_{\text {diameter }}$	$\mathbb{R}^{m}(m \geq 1)$	$\frac{1}{n-1}$	$n>1$
$d_{\text {area }}$	$\mathbb{R}^{m}(m \geq 2)$	$\frac{1}{n-3 / 2}$	$n>1$
$d_{\text {volume }(k)}$	$\mathbb{R}^{m}(m \geq k)$	$?=\frac{1}{n-1-(1 / 2)^{k-1}}$	$n>1$
$d_{\text {Fermat }}$	arbitrary metric	$? \leq \frac{1}{\left\lceil\frac{n-1}{2}\right\rceil}$	$n>1$
$d_{\text {median }}$	median graph G	$\frac{1}{2}$	$n=3$
$d_{\text {hypercube }}$	$\{0,1\}^{n}$	$\frac{1}{n-1}$	$n>1$
d_{n}	\mathbb{R}	1	$n>1$

Conjecture

$$
\frac{1}{n-1} \leq K^{*} \leq 1
$$

Question

1. Are there any n-distance such that $K^{*}<\frac{1}{n-1}$?
2. Can we characterize the n-distances for which $K^{*}=\frac{1}{n-1}$?
3. Can we characterize the n-distances for which $K^{*}=1$?
4. Can we show an example where $K^{*}=1$ is realized?

Thank you for your kind attention!

