An extension of the concept of distance to functions of several variables

Gergely Kiss, Jean-Luc Marichal, Bruno Teheux

Mathematics Research Unit, University of Luxembourg Luxembourg, Luxembourg

36th Linz Seminar on Fuzzy Set Theory, Linz, Austria 2-6. February 2016.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A pair (X, d) is called a *metric space*, if X is a nonempty set and d is a distance on X, that is a function $d: X^2 \to \mathbb{R}_+$ such that:

(i)
$$d(x_1, x_2) = 0$$
 if and only if $x_1 = x_2$,

- (ii) $d(x_1, x_2) = d(x_2, x_1)$ for all $x_1, x_2 \in X$,
- (iii) $d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)$ for all $x_1, x_2, z \in X$.

A pair (X, d) is called a *metric space*, if X is a nonempty set and d is a distance on X, that is a function $d: X^2 \to \mathbb{R}_+$ such that:

(i)
$$d(x_1, x_2) = 0$$
 if and only if $x_1 = x_2$,

(ii)
$$d(x_1, x_2) = d(x_2, x_1)$$
 for all $x_1, x_2 \in X$,

(iii) $d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)$ for all $x_1, x_2, z \in X$.

Multidistance: A generalization of a distance by Martín and Mayor.

A pair (X, d) is called a *metric space*, if X is a nonempty set and d is a distance on X, that is a function $d: X^2 \to \mathbb{R}_+$ such that:

(i)
$$d(x_1, x_2) = 0$$
 if and only if $x_1 = x_2$,
(ii) $d(x_1, x_2) = d(x_2, x_1)$ for all $x_1, x_2 \in X$,
(iii) $d(x_1, x_2) \leq d(x_1, z) + d(z, x_2)$ for all $x_1, x_2, z \in X$.
Multidistance: A generalization of a distance by Martín and Mayor
We say that $d: \bigcup_{n \ge 1} X^n \to \mathbb{R}_+$ is a *multidistance* if:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(iii)
$$d(x_1,\ldots,x_n) \leq \sum_{i=1}^n d(x_i,z)$$
 for all $x_1,\ldots,x_n,z \in X$.

Definition We say that $d: X^n \to \mathbb{R}_+$ $(n \ge 2)$ is an *n*-distance if:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition We say that $d: X^n \to \mathbb{R}_+$ $(n \ge 2)$ is an *n*-distance if: (i) $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$,

Definition We say that $d: X^n \to \mathbb{R}_+$ $(n \ge 2)$ is an *n*-distance if: (i) $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$,

(ii)
$$d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})$$
 for all $x_1, \ldots, x_n \in X$ and all $\pi \in S_n$,

Definition

We say that $d: X^n \to \mathbb{R}_+$ $(n \ge 2)$ is an *n*-distance if: (i) $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$, (ii) $d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and all $\pi \in S_n$, (iii) There is a $0 \le K \le 1$ such that

(iii) There is a
$$0 \leq K \leq 1$$
 such that
 $d(x_1, \ldots, x_n) \leq K \sum_{i=1}^n d(x_1, \ldots, x_n)|_{x_i=z}$ for all
 $x_1, \ldots, x_n, z \in X$.

Definition

We say that $d: X^n \to \mathbb{R}_+$ $(n \ge 2)$ is an *n*-distance if: (i) $d(x_1, \ldots, x_n) = 0$ if and only if $x_1 = \cdots = x_n$, (ii) $d(x_1, \ldots, x_n) = d(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and all $\pi \in S_n$, (iii) There is a $0 \le K \le 1$ such that

(iii) There is a
$$0 \leq K \leq 1$$
 such that
 $d(x_1, \ldots, x_n) \leq K \sum_{i=1}^n d(x_1, \ldots, x_n)|_{x_i=z}$ for all
 $x_1, \ldots, x_n, z \in X$.

We denote by K^* the smallest constant K for which (iii) holds. For n = 2, we assume that $K^* = 1$.

The function $d: X^n \to \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise.

The function $d: X^n \to \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise. $K^* = \frac{1}{n-1}$ for every $n \ge 2$.

The function $d: X^n \to \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise. $K^* = \frac{1}{n-1}$ for every $n \ge 2$.

Proposition

Let d and d' be n-distances on X and let $\lambda > 0$. The following assertions hold.

d + d' and λ d are n-distance on X.
 d/(1+d) is an n-distance on X, with value in [0,1].

The function $d: X^n \to \mathbb{R}_+$ defined by $d(x_1, \ldots, x_n) = 0$, if $x_1 = \cdots = x_n$, and $d(x_1, \ldots, x_n) = 1$, otherwise. $K^* = \frac{1}{n-1}$ for every $n \ge 2$.

Proposition

Let d and d' be n-distances on X and let $\lambda > 0$. The following assertions hold.

Lemma

Let $a, a_1, ..., a_n$ be nonnegative real numbers such that $\sum_{i=1}^n a_i \ge a$. Then

$$\frac{a}{1+a} \leq \frac{a_1}{1+a_1} + \dots + \frac{a_n}{1+a_n}$$

A generalization of *n*-distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition

Let $g: \mathbb{R}^n_+ \to \mathbb{R}_+$ be a symmetric function. We say that a function $d: X^n \to \mathbb{R}^+$ is a *g*-distance if it satisfies conditions (i), (ii) and

$$d(x_1,\ldots,x_n) \leqslant g(d(x_1,\ldots,x_n)|_{x_1=z},\ldots,d(x_1,\ldots,x_n)|_{x_n=z})$$

for all $x_1,\ldots,x_n,z \in X$.

A generalization of *n*-distance

Condition (iii) in Definition 1 can be generalized as follows.

Definition

Let $g: \mathbb{R}^n_+ \to \mathbb{R}_+$ be a symmetric function. We say that a function $d: X^n \to \mathbb{R}^+$ is a *g*-distance if it satisfies conditions (i), (ii) and

$$d(x_1,...,x_n) \leq g(d(x_1,...,x_n)|_{x_1=z},...,d(x_1,...,x_n)|_{x_n=z})$$

for all $x_1, \ldots, x_n, z \in X$. It is natural to ask that d + d', λd , and $\frac{d}{1+d}$ be g-distances whenever so are d and d'.

Let $g : \mathbb{R}^n_+ \to \mathbb{R}_+$ be a (symmetric) function, d and d' be g-distances. The following assertions hold.

(1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}^n_+$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g-distance.

Let $g : \mathbb{R}^n_+ \to \mathbb{R}_+$ be a (symmetric) function, d and d' be g-distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}^n_+$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g-distance.
- (2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \ge g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}^{n}_{+}$, then d + d' is a g-distance.

Let $g : \mathbb{R}^n_+ \to \mathbb{R}_+$ be a (symmetric) function, d and d' be g-distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}^n_+$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g-distance.
- (2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \ge g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}^{n}_{+}$, then d + d' is a g-distance.
- (3) If g is both positively homogeneous and superadditive, then it is concave.

Let $g : \mathbb{R}^n_+ \to \mathbb{R}_+$ be a (symmetric) function, d and d' be g-distances. The following assertions hold.

- (1) If g is positively homogeneous, i.e., $g(\lambda \mathbf{r}) = \lambda g(\mathbf{r})$ for all $\mathbf{r} \in \mathbb{R}^n_+$ and all $\lambda > 0$, then for every $\lambda > 0$, λd is a g-distance.
- (2) If g is superadditive, i.e., $g(\mathbf{r} + \mathbf{s}) \ge g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}^{n}_{+}$, then d + d' is a g-distance.
- (3) If g is both positively homogeneous and superadditive, then it is concave.
- (4) If g is bounded below (at least on a measurable set) and additive, that is, $g(\mathbf{r} + \mathbf{s}) = g(\mathbf{r}) + g(\mathbf{s})$ for all $\mathbf{r}, \mathbf{s} \in \mathbb{R}^n_+$, then and only then there exist $\lambda_1, \ldots, \lambda_n \ge 0$ such that

$$g(\mathbf{r}) = \sum_{i=1}^{n} \lambda_i r_i \qquad (1)$$

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}^n_+ , then $g(\mathbf{r}) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of *n*-distance.

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}^n_+ , then $g(\mathbf{r}) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of *n*-distance.

 $d \colon X^n \to \mathbb{R}_+ \ (n \ge 2)$ is an *n*-distance if satisfies (i), (ii) and

(iii) There is a
$$0 \leq K \leq 1$$
 such that
 $d(x_1, \ldots, x_n) \leq K \sum_{i=1}^n d(x_1, \ldots, x_n)|_{x_i=z}$ for all
 $x_1, \ldots, x_n, z \in X$.

Summerizing: If g is symmetric, non-negative, additive on \mathbb{R}^n_+ , then $g(\mathbf{r}) = \lambda \sum_{i=1}^n r_i$, which gives the 'original' definition of *n*-distance.

 $d \colon X^n \to \mathbb{R}_+ \ (n \geq 2)$ is an *n*-distance if satisfies (i), (ii) and

(iii) There is a
$$0 \le K \le 1$$
 such that
 $d(x_1, \ldots, x_n) \le K \sum_{i=1}^n d(x_1, \ldots, x_n)|_{x_i=z}$ for all $x_1, \ldots, x_n, z \in X$.

We denote by K^* the smallest constant K for which (iii) holds.

Example I.

What would be K^* ?

Example I.

What would be K^* ?

Example (Basic examples)

Given a metric space (X, d) and $n \ge 2$, the maps $d_{\max} \colon X^n \to \mathbb{R}_+$ and $d_{\Sigma} \colon X^n \to \mathbb{R}_+$ defined by

$$d_{\max}(x_1, \ldots, x_n) = \max_{1 \leq i < j \leq n} d(x_i, x_j)$$
$$d_{\Sigma}(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)$$

Example I.

What would be K^* ?

Example (Basic examples)

Given a metric space (X, d) and $n \ge 2$, the maps $d_{\max} \colon X^n \to \mathbb{R}_+$ and $d_{\Sigma} \colon X^n \to \mathbb{R}_+$ defined by

$$d_{\max}(x_1, \dots, x_n) = \max_{1 \leq i < j \leq n} d(x_i, x_j)$$
$$d_{\Sigma}(x_1, \dots, x_n) = \sum_{1 \leq i < j \leq n} d(x_i, x_j)$$

are *n*-distances for which the best constants are given by $\mathcal{K}^* = \frac{1}{n-1}$.

Let X be a set.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$. For a subgraph G of K_n we denote E(G) the edge set of a graph G.

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$. For a subgraph G of K_n we denote E(G) the edge set of a graph G.

Let \mathcal{P} be a class of graphs over x_1, \ldots, x_n .

Let X be a set. Associate a full, (weighted) graph K_n to the points $x_1, \ldots, x_n \in X$. For a subgraph G of K_n we denote E(G) the edge set of a graph G.

Let \mathcal{P} be a class of graphs over x_1, \ldots, x_n .

Theorem

Let (X, d) be a metric space and $n \ge 2$. Then for any nonempty class \mathcal{P} the map $d_{Gr} \colon X^n \to \mathbb{R}_+$ defined by

$$d_{Gr}(x_1,\ldots,x_n) = \max_{G \in \mathcal{P}} \sum_{(x_i,x_j) \in E(G)} d(x_i,x_j)$$

are n-distances for which the best constants are given by $K^* = \frac{1}{n-1}$.

1. If
$$\mathcal{P} = \{G \simeq K_2\}$$
, then $d_{Gr} = d_{\max}(x_1, \ldots, x_n)$.

1. If $\mathcal{P} = \{G \simeq K_2\}$, then $d_{Gr} = d_{\max}(x_1, \dots, x_n)$. 2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \dots, x_n)$.

1. If
$$\mathcal{P} = \{G \simeq K_2\}$$
, then $d_{Gr} = d_{\max}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \ldots, x_n)$.
3. For any $1 \le s \le n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{K_s}(x_1,\ldots,x_n) = \max_{G\in\mathcal{P}}\sum_{(x_i,x_j)\in E(G)}d(x_i,x_j)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

is an *n*-metric with $K^* = \frac{1}{n-1}$.

1. If
$$\mathcal{P} = \{G \simeq K_2\}$$
, then $d_{Gr} = d_{\max}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \ldots, x_n)$.
3. For any $1 \le s \le n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{\mathcal{K}_{\mathcal{S}}}(x_1,\ldots,x_n) = \max_{\mathcal{G}\in\mathcal{P}}\sum_{(x_i,x_j)\in \mathcal{E}(\mathcal{G})}d(x_i,x_j)$$

is an *n*-metric with $K^* = \frac{1}{n-1}$.

4. If \mathcal{P} is the class of Hamiltonian cycles of K_n . Then

$$d_{Ham}(x_1,\ldots,x_n) = \max_{H \in \mathcal{P}} \sum_{(x_i,x_j) \in E(H)} d(x_i,x_j)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

is an *n*-metric with $K^* = \frac{1}{n-1}$.

1. If
$$\mathcal{P} = \{G \simeq K_2\}$$
, then $d_{Gr} = d_{\max}(x_1, \ldots, x_n)$.
2. If $\mathcal{P} = \{G \simeq K_n\}$, then $d_{Gr} = d_{\Sigma}(x_1, \ldots, x_n)$.
3. For any $1 \le s \le n$ let $\mathcal{P} = \{G \simeq K_s\}$. Then

$$d_{\mathcal{K}_{\mathcal{S}}}(x_1,\ldots,x_n) = \max_{G\in\mathcal{P}}\sum_{(x_i,x_j)\in E(G)}d(x_i,x_j)$$

is an *n*-metric with $K^* = \frac{1}{n-1}$.

4. If \mathcal{P} is the class of Hamiltonian cycles of K_n . Then

$$d_{Ham}(x_1,\ldots,x_n) = \max_{H \in \mathcal{P}} \sum_{(x_i,x_j) \in E(H)} d(x_i,x_j)$$

is an *n*-metric with $K^* = \frac{1}{n-1}$.

5. ${\cal P}$ is a class of circles of given size, or the class of spanning trees, etc.

Examples II.

Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \ge 2$ arbitrary points in \mathbb{R}^k $(k \ge 2)$ and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

Examples II.

Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \ge 2$ arbitrary points in \mathbb{R}^k $(k \ge 2)$ and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

(日) (同) (三) (三) (三) (○) (○)

(1) The radius of $B(x_1, ..., x_n)$ is an *n*-distance whose best constant $K^* = \frac{1}{n-1}$.

Examples II.

Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \ge 2$ arbitrary points in \mathbb{R}^k $(k \ge 2)$ and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

- (1) The radius of $B(x_1, ..., x_n)$ is an *n*-distance whose best constant $K^* = \frac{1}{n-1}$.
- (2) If k = 2, then the area of $B(x_1, ..., x_n)$ is an *n*-distance whose best constant $K^* = \frac{1}{n-3/2}$.

Examples II.

Example (Geometric constructions)

Let x_1, \ldots, x_n be $n \ge 2$ arbitrary points in \mathbb{R}^k $(k \ge 2)$ and denote by $B(x_1, \ldots, x_n)$ the smallest closed ball containing x_1, \ldots, x_n . It can be shown that this ball always exist, is unique, and can be determined in linear time.

- (1) The radius of $B(x_1, ..., x_n)$ is an *n*-distance whose best constant $K^* = \frac{1}{n-1}$.
- (2) If k = 2, then the area of $B(x_1, ..., x_n)$ is an *n*-distance whose best constant $K^* = \frac{1}{n-3/2}$.
- (3) The k-dimensional volume of $B(x_1, ..., x_n)$ is an *n*-distance and we conjecture that the best constant K^* is given by $K^* = \frac{1}{n-2+(1/2)^{k-1}}$. This is correct for k = 1 or 2.

Examples III.

Example (Fermat point based *n*-distances)

Given a metric space (X, d), and an integer $n \ge 2$, the *Fermat set* F_Y of any element subset $Y = \{x_1, \ldots, x_n\}$ of X, is defined as

$$F_Y = \Big\{x \in X : \sum_{i=1}^n d(x_i, x) \leq \sum_{i=1}^n d(x_i, z) \text{ for all } z \in X\Big\}.$$

Examples III.

Example (Fermat point based *n*-distances)

Given a metric space (X, d), and an integer $n \ge 2$, the *Fermat set* F_Y of any element subset $Y = \{x_1, \ldots, x_n\}$ of X, is defined as

$$F_{\mathbf{Y}} = \Big\{ x \in X : \sum_{i=1}^n d(x_i, x) \leq \sum_{i=1}^n d(x_i, z) \text{ for all } z \in X \Big\}.$$

Since $h(x) = \sum_{i=1}^{n} d(x_i, x)$ is continuous and bounded from below by 0, F_Y is non-empty **but** usually not a singleton.

(日) (同) (三) (三) (三) (○) (○)

Examples III.

Example (Fermat point based *n*-distances)

Given a metric space (X, d), and an integer $n \ge 2$, the *Fermat set* F_Y of any element subset $Y = \{x_1, \ldots, x_n\}$ of X, is defined as

$$F_{\mathbf{Y}} = \Big\{ x \in X : \sum_{i=1}^n d(x_i, x) \leq \sum_{i=1}^n d(x_i, z) \text{ for all } z \in X \Big\}.$$

Since $h(x) = \sum_{i=1}^{n} d(x_i, x)$ is continuous and bounded from below by 0, F_Y is non-empty **but** usually not a singleton. We can define $d_F : X^n \to \mathbb{R}_+$ by

$$d_F(x_1,\ldots,x_n)=\min\Big\{\sum_{i=1}^n d(x_i,x):x\in X\Big\}.$$

Proposition

 d_F is an n-distance and $K^* \leq \frac{1}{\lceil \frac{n-1}{2} \rceil}$.

Let G = (V, E) be an undirected graph.

Let G = (V, E) be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique z := m(u, v, w) such that z is in the intersection of shortest paths between any two elements among u, v, w.

Let G = (V, E) be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique z := m(u, v, w) such that z is in the intersection of shortest paths between any two elements among u, v, w.

Let G = (V, E) be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique z := m(u, v, w) such that z is in the intersection of shortest paths between any two elements among u, v, w. Examples: Hypercubes and trees.

Let G = (V, E) be an undirected graph.

G is called *median graph* if for every $u, v, w \in V$ there is a unique z := m(u, v, w) such that z is in the intersection of shortest paths between any two elements among u, v, w.

Examples: Hypercubes and trees.

We can define $d_m: V^3 o \mathbb{R}_+$ by

$$d_m(u, v, w) = \min_{s \in V} \{ d(u, s) + d(v, s) + d(w, s) \}.$$

Proposition

 d_m is a 3-distance, $d_m(u, v, w)$ is realized by s = m(u, v, w) and $K^* = \frac{1}{2}$.

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some *m* (with respect to the Hamming-distance).

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m, we can define d_{gm} by

$$d_{gm}(x_1,\ldots,x_n) = \min_{z \in V(H_m)} \sum_{i=1}^n d(z,x_i).$$

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m, we can define d_{gm} by

$$d_{gm}(x_1,\ldots,x_n) = \min_{z \in V(H_m)} \sum_{i=1}^n d(z,x_i).$$

Let $m = Maj(x_1, \ldots, x_n)$ denote the majority of x_1, \ldots, x_n .*

Every median graph can be embedded into a hypercube $H_m = \{0, 1\}^m$ for some m (with respect to the Hamming-distance). For a given m, we can define d_{gm} by

$$d_{gm}(x_1,\ldots,x_n) = \min_{z \in V(H_m)} \sum_{i=1}^n d(z,x_i).$$

Let $m = Maj(x_1, ..., x_n)$ denote the majority of $x_1, ..., x_n$.* Theorem d_{gm} is a n-distance, $d_{gm}(x_1, ..., x_n)$ is realized by (any)

$$m = Maj(x_1, ..., x_n)$$
 and $K^* = \frac{1}{n-1}$.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Are there any n-distance d such that the $K^* = 1$ for any n?

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^* = 1$ for any n? Yes.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^* = 1$ for any n? Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \dots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^* = 1$ for any n? Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \dots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.
Proposition
 d_n is an n-distance for every $n \ge 2$ and $K^* = 1$.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^* = 1$ for any n? Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \cdots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Proposition

 d_n is an n-distance for every $n \ge 2$ and $K^* = 1$. But it is not realized.

For all of the previous examples $\frac{1}{n-1} \leq K^* \leq \frac{1}{n-2}$ (when we know the exact value).

Question

Are there any n-distance d such that the $K^* = 1$ for any n? Yes. In \mathbb{R} we can define

$$A_n(\mathbf{x}) = \frac{x_1 + \dots + x_n}{n}, \quad \min_n(\mathbf{x}) = \min\{x_1, \dots, x_n\}$$

and $d_n(\mathbf{x}) = A_n(\mathbf{x}) - \min_n(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Proposition

 d_n is an n-distance for every $n \ge 2$ and $K^* = 1$. But it is not realized. (For every $\varepsilon > 0$ it can be shown that $K^* > 1 - \varepsilon$.)

Summary

Table: Critical values

<i>n</i> -distance	space X	K*	nb. of var.
$d_{Gr}, d_{max}, d_{\sum}$	arbitrary metric	$\frac{1}{n-1}$	n > 1
d _{diameter} —	$\mathbb{R}^m \ (m \geq 1)$	$\frac{1}{n-1}$	n > 1
d _{area}	$\mathbb{R}^m \ (m \ge 2)$	$\frac{1}{n-3/2}$	n > 1
d _{volume(k)}	$\mathbb{R}^m \ (m \ge k)$	$? = \frac{1}{n-1-(1/2)^{k-1}}$	n > 1
d _{Fermat}	arbitrary metric	$? \leq \frac{1}{\left\lceil \frac{n-1}{2} \right\rceil}$	n > 1
d _{median}	median graph G	$\frac{1}{2}$	<i>n</i> = 3
$d_{hypercube}$	$\{0,1\}^n$	$\left \frac{\frac{2}{n-1}}{\frac{2}{n-1}} \right $	n > 1
d_n	\mathbb{R}		n > 1

Summary

Table: Critical values

<i>n</i> -distance	space X	K*	nb. of var.
$d_{Gr}, d_{max}, d_{\sum}$	arbitrary metric	$\frac{1}{n-1}$	n > 1
d _{diameter}	$\mathbb{R}^m \; (m \geq 1)$	$\frac{1}{n-1}$	n > 1
d _{area}	$\mathbb{R}^m \ (m \ge 2)$	$\frac{1}{n-3/2}$	n > 1
d _{volume(k)}	$\mathbb{R}^m \ (m \geq k)$? = $\frac{1}{n-1-(1/2)^{k-1}}$	n > 1
d _{Fermat}	arbitrary metric	$? \leq \frac{1}{\left\lceil \frac{n-1}{2} \right\rceil}$	n > 1
d _{median}	median graph G	$\frac{1}{2}$	<i>n</i> = 3
$d_{hypercube}$	$\{0,1\}^n$	$\left \begin{array}{c} \frac{-1}{n-1} \end{array} \right $	n > 1
d_n	R	1	n > 1

Conjecture

$$\frac{1}{n-1} \leq K^* \leq 1.$$

Question

- 1. Are there any n-distance such that $K^* < \frac{1}{n-1}$?
- 2. Can we characterize the n-distances for which $K^* = \frac{1}{n-1}$?

- 3. Can we characterize the n-distances for which $K^* = 1$?
- 4. Can we show an example where $K^* = 1$ is realized?

Thank you for your kind attention!