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Abstract. Extensions of the concept of distance to more than two elements have
been recently proposed in the literature to measure to which extent the elements
of a set are spread out. Such extensions may be particularly useful to define dis-
persion measures for instance in statistics or data analysis. In this note we provide
and discuss an extension of the concept of distance, called n-distance, as func-
tions of n variables. The key feature of this extension is a natural generalization
of the triangle inequality. We also provide some examples of n-distances that
involve geometric and graph theoretic constructions.

1 Introduction

The notion of metric space is one of the key ingredients in many areas of pure and
applied mathematics, particularly in analysis, topology, and statistics.

Denote the half line [0,+∞[ by R+. Recall that a metric space is a pair (X, d),
where X is a nonempty set and d is a distance on X , that is a function d : X2 → R+

satisfying the following properties:

(i) d(x1, x2) = 0 if and only if x1 = x2,
(ii) d(x1, x2) = d(x2, x1) for all x1, x2 ∈ X ,

(iii) d(x1, x2) 6 d(x1, z) + d(z, x2) for all x1, x2, z ∈ X .

Property (iii) is often refereed to as triangle inequality.
It is natural to generalize the concept of metric space by considering a notion of

“distance” among more than two elements of X . The idea behind such a notion is to
measure in some sense how spread out the elements of X are. Several attempts in this
line have been proposed for instance in [2–4,6,8,9]. For example, Martı́n and Mayor [6]
recently introduced the concept of multidistance as follows. Let Sn denote the set of
all permutations on {1, . . . , n}. A multidistance on a nonempty set X is a function
d : ∪n>1 X

n → R+ satisfying the following properties for every integer n > 1:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,
(ii) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ X and all π ∈ Sn,

(iii) d(x1, . . . , xn) 6
∑n

i=1 d(xi, z) for all x1, . . . , xn, z ∈ X .



Properties of multidistances as well as instances such as Fermat multidistance and
smallest enclosing ball multidistances have been investigated for example in [1, 5–7]

In this short note we introduce and discuss the following alternative generalization
of the concept of metric space by considering the underlying distance as a function of
n > 2 variables.

Definition 1. Let n > 2 be an integer. We say that an n-metric space is a pair (X, d),
where X is a nonempty set and d is an n-distance on X , that is a function d : Xn → R+

satisfying the following properties:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,
(ii) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ X and all π ∈ Sn,

(iii) There exists K ∈ [0, 1] such that d(x1, . . . , xn) 6 K
∑n

i=1 d(x1, . . . , xn)|xi=z

for all x1, . . . , xn, z ∈ X .

We denote by K∗ the smallest constant K for which (iii) holds. For n = 2, we assume
that K∗ = 1.

Clearly, Definition 1 gives an extension of the concept of metric space. Indeed, a
function d : X2 → R+ is a distance if and only if it is a 2-distance.

We observe that an important feature of n-distances is that they have a fixed number
of arguments, contrary to multidistances (see Martı́n and Mayor [6]), which have an
indefinite number of arguments. In particular, an n-distance can be defined without
referring to any given 2-distance.

Example 1 (Drastic n-distance). The function d : Xn → R+ defined by d(x1, . . . , xn) =
0, if x1 = · · · = xn, and d(x1, . . . , xn) = 1, otherwise, is an n-distance, called the
drastic n-distance, for which the best constant K∗ is given by 1

n−1 for every n > 2.
The function d′ : Xn → R+ defined by d′(x1, . . . , xn) = |{x1, . . . , xn}| − 1 is an
n-distance for which the best constant is K∗ = 1.

Proposition 1. Let d and d′ be n-distances on X and let λ > 0. The following asser-
tions hold.

(1) d+ d′ and λ d are n-distance on X .
(2) d

1+d is an n-distance on X , with value in [0, 1].

2 A generalization of n-distances

Condition (iii) in Definition 1 can be generalized as follows.

Definition 2. Let g : Rn
+ → R+ be a symmetric function. We say that a function d : Xn →

R+ is a g-distance if it satisfies conditions (i) and (ii) in Definition 1 as well as the con-
dition

d(x1, . . . , xn) 6 g
(
d(x1, . . . , xn)|x1=z , . . . , d(x1, . . . , xn)|xn=z

)
for all x1, . . . , xn, z ∈ X .



In view of Proposition 1, it is natural to ask that d+ d′, λ d, and d
1+d be g-distances

whenever so are d and d′. The following proposition provides sufficient conditions on
g for these properties to hold. We observe that these conditions are rather strong.

Proposition 2. Let g : Rn
+ → R+ be a symmetric function. The following assertions

hold.

(1) If g is positively homogeneous, i.e., g(λ r) = λ g(r) for all r ∈ Rn
+ and all λ > 0,

then for every λ > 0, λ d is a g-distance whenever so is d.
(2) If g is superadditive, i.e., g(r+ s) > g(r) + g(s) for all r, s ∈ Rn

+, then d+ d′ is a
g-distance whenever so are d and d′.

(3) If g is both positively homogeneous and superadditive, then it is concave.
(4) If g is bounded from below and additive, that is, g(r + s) = g(r) + g(s) for all

r, s ∈ Rn
+, then and only then there exist λ1, . . . , λn > 0 such that

g(r) =

n∑
i=1

λi ri (1)

(5) Suppose that g has the form (1) with λi > 1 for i = 1, . . . , n. Then d
1+d is a

g-distance whenever so is d.

3 Examples

We end this note by considering a few examples of n-distances that arise in different
fields of pure and applied mathematics.

Example 2 (Basic examples). Given a metric space (X, d) and an integer n > 2, the
maps dmax : X

n → R+ and dΣ : Xn → R+ defined by

dmax(x1, . . . , xn) = max
16i<j6n

d(xi, xj)

dΣ(x1, . . . , xn) =
∑

16i<j6n

d(xi, xj)

are n-distances for which the best constants are given by K∗ = 1
n−1 .

Example 3 (Geometric constructions). Let x1, . . . , xn be n > 2 arbitrary points in Rk

(k > 2) and denote by B(x1, . . . , xn) the smallest closed ball for the Euclidean distance
containing x1, . . . , xn. It can be shown that this ball always exists, is unique, and can
be determined in linear time.

(1) The radius of B(x1, . . . , xn) is an n-distance whose best constant K∗ satisfies
K∗ > 1

n−1 and we conjecture that K∗ = 1
n−1 .

(2) The k-dimensional volume of B(x1, . . . , xn) is an n-distance and we conjecture
that the best constant K∗ is given by K∗ = 1

n−1−(1/2)k
. Actually this value for K∗

is correct for k = 2.



Example 4 (Fermat point based n-distances). Given a metric space (X, d), and an in-
teger n > 2, the Fermat set FY of any n-element subset Y = {y1, . . . , yn} of X , is
defined as

FY =
{
x ∈ X :

n∑
i=1

d(xi, x) 6
n∑

i=1

d(xi, z) for all z ∈ X
}
.

Since the function h : X → R+ defined by h(x) =
∑n

i=1 d(xi, x) is continuous and
bounded from below by 0, the Fermat set of an n-element subset of X is never empty.
Hence, we can define a function dF : Xn → R+ by setting

dF (x1, . . . , xn) = min
{ n∑

i=1

d(xi, x) : x ∈ X
}
.

Thus defined, the map dF : Xn → R+ is an n-distance on X for which the best constant
K∗ satisfies K∗ 6 1

⌈(n−1)/2⌉ .

4 Further research

In this note, we have introduced and discussed an extension of the concept of distance,
called n-distance, as functions of n-variables. The key feature of this extension is a
natural generalization of the triangle inequality. Finding the best constant for various
classes of n-distances and studying their topological properties are topics of current
research.
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