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The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-

exchange (EX)energy, represents the state-of-the-art exchange-correlation functionalwithindensity-functional

theory. However, the standard RPA practice—evaluating both the EX and the RPA correlation energies using

Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals—leads to a systematic

underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a

‘‘single excitation’’ contribution, so far not included in the standard RPA scheme. A similar improvement can

also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent

Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both

schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
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In the quest for finding an ‘‘optimal’’ electronic structure
method that combines accuracy and tractability with trans-
ferability across different chemical environments and di-
mensionalities (e.g., molecules, wires or tubes, surfaces,
solids), the treatment of exchange and correlation in terms
of ‘‘exact-exchange plus correlation in the random-phase
approximation (EXþcRPA)’’ [1,2] offers a promising ave-
nue [3–16]. In this approach, part of the exact-exchange
energy cancels exactly the spurious self-interaction error
present in the Hartree energy. The RPA correlation
(cRPA) energy is fully nonlocal, whereby long-range
van der Waals (vdW) interactions are included automati-
cally and accurately [17]. Moreover, dynamical electronic
screening is taken into account by summing up a sequence
of ‘‘ring’’ diagrams to infinite order, making EXþcRPA
applicable to small-gap or metallic systems where, for
example, Hartree-Fock (HF) plus 2nd-order Møller-
Plesset (MP2) perturbation theory [18] breaks down.

The concept of cRPA dates back to the many-body
treatment of the uniform electron gas in the 1950s [1,2],
and was later formulated [19] within the context of density-
functional theory (DFT) [20]. Recent years have witnessed
a revived interest in EXþcRPA and its variants in quantum
chemistry [3–9], solid state physics [10–12], and surface
science [13–15]. Within the framework of Kohn-Sham
(KS) DFT, EXþcRPA embodies an orbital-dependent
functional that can in principle be solved self-consistently
via the optimized effective potential approach [21]. This is,
however, numerically very demanding, and practical
EXþcRPA calculations are commonly performed in a
postprocessing fashion, where single-particle orbitals

from a self-consistent DFT calculation in the local-density
approximation (LDA), generalized gradient approxima-
tions (GGAs), or alike, are used to evaluate both the EX
and cRPA terms. Alternatively, one can formulate cRPA in
terms of many-body perturbation theory (MBPT) based on
a HF reference.
Throughout this Letter we will adopt the following no-

menclature: EF@SC is the total energy of the functional F,
evaluated with the orbitals of a self-consistent (SC) scheme,
e.g., HF, or the Perdew-Burke-Ernzerhof (PBE) [22] GGA.
The corresponding theoretical scheme is then labeled as
F@SC. We also use the letter ‘‘x’’ or ‘‘c’’ in front of F or
as a subscript of EF to refer to the exchange or correlation
part of the scheme explicitly. The functional F can be exact-
exchange, or additionally contain RPA correlation (EXþ
cRPA), etc. For instance, EEX@HF is the self-consistent
Hartree-Fock energy, whereas the conventional RPA scheme
based on PBE orbitals is referred to as ðEXþcRPAÞ@PBE.
The original ðEXþcRPAÞ@PBE and ðEXþcRPAÞ@HF

schemes both exhibit systematic underbinding for a large
variety of systems, including covalent molecules [3],
weakly bonded molecules [7,8], solids [11], and molecules
adsorbed on surfaces [13–15]. Several attempts have been
made to improve the accuracy of EXþcRPA. The earliest is
the so-called RPAþ scheme [23], where a local correction
at the LDA=GGA level is added to cRPA. More recent
attempts add second-order screened exchange (SOSEX)
[9,24]) to make the entire approach self-correlation free,
or invoke cRPA in a range-separated framework where
only the long-range part of cRPA is incorporated [7,8].
Among these, RPAþ improves total correlation energies
considerably [25], but not binding energies [3]. The
SOSEX correction performs well [9,24] with considerable
additional numerical effort. Range-separated RPA schemes
also improve upon the standard EXþcRPA scheme
[7,8,16], however, at the price of introducing empirical
parameters in the approach.

Published by American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution
of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

PRL 106, 153003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

15 APRIL 2011

0031-9007=11=106(15)=153003(4) 153003-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://creativecommons.org/licenses/by/3.0/


In this Letter, we offer a new perspective, based on
MBPT, for going beyond cRPA, and show that a simple
modification of the standard EXþcRPA scheme leads to a
significant accuracy increase for molecular binding energies.
We first illustrate our key idea using the example of Ar2.

The ðEXþcRPAÞ@PBE and ðEXþcRPAÞ@HF binding
energy curves for Ar2 are plotted in Fig. 1(a). Both schemes
show a significant underbinding behavior compared to the
reference curvemodeled byTang andToennies [26] based on
experimental data. To gain more insight into the origin of the
underbinding, the EXþcRPA binding energies are decom-
posed into two contributions in Fig. 1(b): the exchange-only
part and the remaining cRPA part. Inspection of the individ-
ual components reveals that EcRPA

c @HF is (much) more
repulsive than EcRPA

c @PBE, whereas at the EX level
EEX@PBE is (much) more repulsive than EEX@HF. The
fact that EcRPA

c @PBE is more attractive than EcRPA
c @HF

is easy to rationalize by inspecting the corresponding
frequency-dependent polarizabilities and the C6 coefficients
derived from them. Extensive benchmark calculations for
1225 molecular pairs [30] show that asymptotic C6 disper-
sion coefficients derived fromEcRPA

c @HF are systematically
too small by approximately 40% [27], while this error is only
�10% for EcRPA

c @PBE. Adding �vdW corrections in an
attempt to reduce the remaining error in cRPA@PBE [31]
only leads to minor changes in the binding energy at the
equilibrium distance. What is more striking, however, is the
considerable difference in binding energies at the EX level—
EHF@HF�EEX@PBE [plotted also in Fig. 1(b) (red stars)].
It amounts to�6 meV at the equilibrium distance and is thus
close to the deviation of the ðEXþcRPAÞ@PBE binding
energy from the reference value.

From the viewpoint of Rayleigh-Schrödinger perturba-
tion theory (RSPT), EEX@HF and EEX@PBE correspond
to the sum of the zeroth and first-order terms in the
perturbative expansions based on HF and PBE reference
states, respectively [32]. The difference between EEX@HF
and EEX@PBE must therefore be compensated by higher-
order terms in the perturbation series since the final result
should be independent of the reference state, if all terms
were summed up. The next term in the series is the 2nd-

order correlation energy Eð2Þ
c , to which only single and

double excitation configurations contribute. Here we par-
ticularly examine the contribution of single excitations

(SE) to Eð2Þ
c , which can be expressed [32] as

ESE
c ¼ Xocc

i

Xunocc

a

jhc ijf̂jc aij2
�i � �a

: (1)

Here c i and �i are the single-particle orbitals and orbital

energies of the reference state, and f̂ is the single-particle
HF Hamiltonian—the Fock operator. A more detailed
derivation of Eq. (1) is given in the supplemental material
[33] (where we simply follow RSPT instead of the Görling-
Levy PT [34]). As a consequence of the Brillouin theorem
[32], ESE

c trivially vanishes for HF orbitals, but is in general
nonzero for KS orbitals [33]. The contribution of ESE

c

evaluated with PBE orbitals (referred to as SE@PBE) to
the binding energy of Ar2 is also plotted in Fig. 1(b) (violet
crosses). It amounts to 50% of the binding energy at the
equilibrium distance, and is close in magnitude to the con-
tribution from EEX@HF� EEX@PBE, and to the amount
of underbinding in the original ðEXþcRPAÞ@PBE scheme.
We therefore propose a new scheme by adding ESE

c to
EEXþcRPA (subsequently referred to as EXþcRPAþSE). In
Fig. 1(a) the resultant ðEXþcRPAþSEÞ@PBE binding en-
ergy curve is also plotted, which improves considerably
over the ðEXþcRPAÞ@PBE results, and is in close agree-
ment with the Tang-Toennies reference curve.
It appears that the quantitative agreement between ESE

c

defined in Eq. (1) and EEX@HF� EEX@PBE is a general
feature. We found for a set of 50 atoms and molecules that
the agreement typically ranges between 70% and 100%,
suggesting that replacing EEX@PBE by EEX@HF is an
effective way to account for the SE contributions. This leads
to a ‘‘hybrid-RPA’’ scheme, whose total energy is given by

Ehybrid-RPA ¼ EEX@HFþ EcRPA
c @PBE; (2)

as an alternative to boost the accuracy of RPA. Figure 1(a)
shows that the resultant binding energy curve is in almost
perfect agreement with the reference curve.
At this point, it is illustrative to take a closer look at the

individual contributions to EEX@HF� EEX@PBE. In
Fig. 2 we further decompose the EX@HF and EX@PBE
binding energies into their kinetic (Ts), electrostatic (E

elec,
external potential energy and Hartree energy combined),
and exchange components (EEX

x ) for Ar2.
All three energy components behave quite differently for

HF and PBE orbitals. The HF kinetic energy is purely
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FIG. 1 (color online). (a) Binding energy curve for Ar2 com-
puted with four RPA-based approaches, in comparison to the
accurate reference curve by Tang and Toennies [26]. (b) Decom-
position of the ðEXþcRPAÞ@HF [ðEXþcRPAÞ@PBE] binding
energy ofAr2 into individual contributions: EX@HF (EX@PBE)
and cRPA@HF (cRPA@PBE). The difference between EX@HF
and EX@PBE, and the SE@PBE term, are also plotted. The
vertical dashed line marks the equilibrium distance.
Calculations are done using FHI-aims [27,28] and Dunning’s
aug-cc-pV6Z basis [29]. The basis set superposition error is
corrected here and in the following.
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repulsive, whereas the PBE one exhibits spurious attraction
at intermediate and large distances. TheHF electrostatic and
exact-exchange energies, on the other hand, are purely
attractive and decay to zero from below, while the corre-
sponding PBE ones become repulsive in the intermediate
range and decay to zero from above at large distances. Since
the PBE orbitals are much more delocalized than the HF
ones, all three energy components decay much slower in
PBE than in HF. The overall effect is that EEX@PBE be-
comes significantlymore repulsive thanEEX@HF, resulting
in the underbinding behavior of ðEXþcRPAÞ@PBE. The
more physical behavior ofEX@HF at the EX level provides
a sound basis for the systematic improvement from
ðEXþcRPAÞ@PBE to hybrid-RPA.

Indeed, the exceptional performance of the hybrid-RPA
and ðEXþcRPAþSEÞ@PBE schemes for rare-gas dimers
carries over to many other molecular systems. As a second
example we show results for the N2 molecule adsorbed on
benzene (N2@benzene), which is an important model sys-
tem for studying molecular adsorption on graphene and
graphite surfaces [35]. We consider two possible configu-
rations: N2 placed parallel or perpendicular to the benzene
plane. A successful theoretical approach for this system
must be able to describe the delicate balance between
electrostatic and dispersion interactions. We use FHI-aims
(Fritz Haber Institute ab initio molecular simulations)
[27,28] and numeric atom-centered orbital basis
(6s5p4d3f2g for C, O, N, and 5s3p2d1f for H) augmented
with Gaussian diffuse functions from aug-cc-pV5Z to ac-
hieve convergence of the binding energy to within 1 meV.
The results shown in Fig. 3 are very similar to the case of
rare-gas dimers: ðEXþcRPAÞ@HF and ðEXþcRPAÞ@PBE
underbind significantly at the equilibrium distance, while
hybrid-RPA and ðEXþcRPAþSEÞ@PBE bring the binding
energy intomuch closer agreement with the reference curve
computedwith the coupled clustermethod including single,
double, and perturbative triple excitations [CCSD(T)] [35].
In contrast, the traditionalMP2method vastly overbinds the
system.

Finally we examine the performance of hybrid-RPA and
ðEXþcRPAþSEÞ@PBE for the S22 database of Jurečka

et al. [36], which represents a balanced benchmark set for
noncovalent interactions. The molecular dimers in this
database can be divided into three groups of different
bonding types: hydrogen bonded, dispersion bonded, and
mixed complexes. We note that RPA in a range-separated
framework has been applied to the S22 database very
recently [16]. In Fig. 4 we plot the deviation from the
CCSD(T) reference values [37] for the binding energies
of the S22 molecules [36] for four RPA-based approaches
and MP2. The basis set type and quality are the same as for
N2@benzene. A detailed error analysis is presented in
Table I.
We observe that the standard ðEXþcRPAÞ@PBE

scheme systematically underbinds all complexes.
ðEXþcRPAÞ@HF performs even worse for dispersion and
mixed bonding, but better for hydrogen bonding. The latter
case can be explained by the fact that the better performance
of EX@HF dominates over the bad performance of cRPA
@HF for hydrogen-bonded systems. Again hybrid-RPA
and ðEXþcRPAþSEÞ@PBE correct the underbinding
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FIG. 2 (color online). Decomposition of the EEX@HF and
EEX@PBE binding energies for Ar2 into their kinetic, electro-
static, and exchange components.
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RPA-based approaches as well as MP2, in comparison to refer-
ence CCSD(T) results from Ref. [35].
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FIG. 4 (color online). Deviation from the CCSD(T) reference
values [37] for the binding energies of the S22 database [36] for
RPA-based approaches as well as MP2. Positive errors corre-
spond to overbinding and negative ones to underbinding.
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behavior of the standard EXþcRPA scheme, and improve
the accuracy considerably. The hybrid-RPA schemeyields a
mean absolute error (MAE) of 14 meV. The performance of
ðEXþcRPAþSEÞ@PBE is very similar to hybrid-RPA for
dispersion and mixed bonding, albeit somewhat worse for
hydrogen bonding. However, the mean absolute percentage
error for hydrogen bonding (6%) is still quite small.
The accuracies achieved here compare favorably to the
recently developed vdW functional (vdW-DF) [38], where
the MAE for the PBE-based vdW-DF results for S22 [39] is
54 meV. We also note that for covalent molecules the
accuracies in the atomization energies are improved
considerably by the two schemes. For instance, the MAE
of the atomization energies of the G2-I set is reduced from
10.5 to 6:2 kcal=mol by ðEXþcRPAþSEÞ@PBE and
6:3 kcal=mol by hybrid-RPA.

To summarize, we have unraveled the origin of
the underbinding that plagues the standard
ðEXþcRPAÞ@PBE scheme, which is mostly due to the
too-repulsive nature of EEX@PBE rather than the (slight)
underestimation of the long-range dispersion force by
EcRPA
c @PBE. This problem can be largely solved

either by replacing EEX@PBE by the self-consistent HF
energy EEX@HF or by adding a SE correction to the
standard ðEXþcRPAÞ@PBE approach. In particular,
ðEXþcRPAþSEÞ@PBE is a well-defined parameter-free
scheme in which the SE term does not add any significant
computational cost to the approach. In addition, the SE
correction is compatible with other beyond-RPA schemes
like RPAþ or SOSEX. We also like to emphasize that in
both schemes cRPA is evaluated with KS orbitals, which is
essential for producing quantitatively correct asymptotics
for vdW bonded systems. Despite its success for describing
vdW and covalently bonded molecules, one obvious defi-
ciency of the 2nd-order SE as given by Eq. (1), however, is
that it is not well behaved for systems with vanishing gaps.
In such cases, we propose to ‘‘renormalize’’ the SE con-
tribution via a resummation of a geometrical series of
higher-order diagrams involving single excitations (in
the spirit of cRPA). This leads to additional terms in the
denominator of Eq. (1) which prevent the possible diver-
gence even when the KS gap closes. A brief derivation of
this renormalized SE (RSE) scheme is presented in the
supplemental material [33]. And we note in passing that SE
and RSE are invariant to unitary transformations of the

occupied or virtual orbitals [27,33]. Further details and
benchmark calculations will be published elsewhere [27].
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