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We present a parameter-free method for an accurate determination of long-range van der Waals

interactions from mean-field electronic structure calculations. Our method relies on the summation of

interatomic C6 coefficients, derived from the electron density of a molecule or solid and accurate

reference data for the free atoms. The mean absolute error in the C6 coefficients is 5.5% when compared

to accurate experimental values for 1225 intermolecular pairs, irrespective of the employed exchange-

correlation functional. We show that the effective atomic C6 coefficients depend strongly on the bonding

environment of an atom in a molecule. Finally, we analyze the van der Waals radii and the damping

function in the C6R
�6 correction method for density-functional theory calculations.

DOI: 10.1103/PhysRevLett.102.073005 PACS numbers: 31.15.eg, 71.15.Mb, 87.15.A�

Noncovalent forces, such as hydrogen bonding and van
der Waals (vdW) interactions, are crucial for the formation,
stability, and function of molecules and materials. At
present, ubiquitous vdW interactions [1] can only be ac-
counted for properly by high-level quantum-chemical
wave function or by the Quantum Monte Carlo (QMC)
method. In contrast, the correct long-range interaction tail,
e.g., for separated molecules, is absent from all popular
local-density or gradient corrected exchange-correlation
(xc) functionals of density-functional theory (called DFT-
XCA in what follows), as well as from the Hartree-Fock
(HF) approximation [2,3].

Many encouraging concepts and methods have been
proposed to include vdW interactions in DFT calculations
[4–9]. Ultimately, a functional which is able to account for
vdW interactions in a ‘‘seamless’’ manner is desirable. The
Chalmers-Rutgers approach [4,10] is a step in that direc-
tion, but at this point, the performance is not certain and,
for example, errors are as large as 70% for the binding en-
ergy of rare-gas dimers—prototypical vdW systems [10].

A popular remedy for the missing vdW interaction in
present-day DFT consists of adding a pairwise interatomic
C6R

�6 term (EvdW) to the DFT energy [5,6,11–14],

EvdW ¼ � 1

2

X
A;B

fdampðRAB; R
0
A; R

0
BÞC6ABR

�6
AB; (1)

where RAB is the distance between atoms A and B, C6AB is
the corresponding C6 coefficient, R

0
A and R0

B are the vdW

radii. The R�6
AB singularity at small distances is eliminated

by the short-ranged damping function fdampðRAB; R
0
A; R

0
BÞ.

Obviously, at the medium and short range, this approach
can only work together with xc functionals that under-
estimate the binding energy. In particular, Grimme has
proven such schemes to be accurate for a range of molecu-
lar systems [6,12]. A serious shortcoming of the C6R

�6

schemes is their empirical nature, since the parameters do
not depend on the electronic structure, but are rather ob-

tained by fitting to experimental C6 coefficients and/or
post-Hartree-Fock binding energy data. Furthermore, we
note that the damping function will also correct (or affect)
other properties of the employed xc functional at short
distances. Though a correction of present-day xc function-
als is necessary, it is not satisfactorily handled by such an
approach. Several methods exist to determine the C6 co-
efficients either from ground-state orbitals [8,9,15] or time-
dependent DFT (TDDFT) [16,17]. Unfortunately, the er-
rors are quite large (15%–20% on average and maximum
deviation of 40%–60%) [8,15,16]. The origin of such
errors is related to the grossly overestimated polarizability
in DFT-XCA [18,19].
In this Letter, we develop and assess a scheme to deter-

mine theC6 coefficients and vdW radii from the mean-field
ground-state electron density (DFT-XCA or HF) for mole-
cules and solids. It is largely independent of the employed
DFT-XCA approximation [tested here for local-density
approximation (LDA), Perdew-Burke-Ernzerhof (PBE),
and Becke-Lee-Yang-Parr (BLYP) functionals], and it
shows a mean absolute error of 5.5% for intermolecular
C6 coefficients on a database of experimental dipole oscil-
lator strength distribution (DOSD) data of Meath and co-
workers for 1225 complexes (see, e.g., Refs. [5,8,20,21]).
The DOSD for a given molecule is the (differential) dipole
oscillator strength df=dE, as a function of excitation en-
ergy E, from the electronic absorption threshold E0 to very
high energies. Many important molecular dipole properties
can be evaluated as integrals involving the DOSD [22]. The
critical idea of our method is to use the electron density to
compute the relative and not the absolute polarizability of
an atom in a molecule. The method includes charge polar-
ization effects in a transparent way, as shown for different
atomic hybridization states and hydrogen bonding.
In order to develop our method, we start with the exact

expression (Casimir-Polder integral) for the leading iso-
tropic C6 term describing the vdW interaction between two
atoms or molecules A and B (Hartree atomic units used
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throughout) [23],

C6AB ¼ 3

�

Z 1

0
�Aði!Þ�Bði!Þd!; (2)

where �A=Bði!Þ is the frequency-dependent polarizability

of A and B evaluated at imaginary frequencies. We retain
only the leading term in the Padé series [24] for �A=Bði!Þ,
yielding for �1

Að!Þ
�1
Að!Þ ¼ �0

A=½1� ð!=�AÞ2�; (3)

where �0
A is the static polarizability of A and �A is an

effective frequency. Substituting �1ði!Þ of Eq. (3) for
�ði!Þ in Eq. (2) yields the London formula [25],

C6AB ¼ 3

2
½�A�B=ð�A þ �BÞ��0

A�
0
B: (4)

For A ¼ B, we obtain

�A ¼ 4

3

C6AA

ð�0
AÞ2

; (5)

with a corresponding expression for �B. Combining
Eqs. (4) and (5), we arrive at a formula for C6AB which de-
pends only on homonuclear parameters C6AA, C6BB, �

0
A,

and �0
B,

C6AB ¼ 2C6AAC6BB

½�0
B

�0
A

C6AA þ �0
A

�0
B

C6BB�
: (6)

For the free-atom reference values of �0
A and C6AA, we

rely on the database of Chu and Dalgarno [16], which
reports self-interaction corrected TDDFT values scaled to
reproduce accurate all-order many-body calculations for
rare gases, alkalis, and alkaline earth atoms. The accuracy
of the free-atom results is presumed to be better than 3%
for �0

A and C6AA for nonmetallic elements (1% for rare

gases, alkalis, and alkaline earth atoms). Using these ho-
monuclear values along with Eq. (6), we obtain a mean
absolute relative error (MARE) of just 2.7% on a database
of 70 heteronuclearC6 coefficients between light elements,
rare gases, alkalis, and alkaline earth atoms from accurate
many-body calculations [26–28]. The almost perfect cor-
relation is shown in Fig. 1.

Let us now define the C6 coefficient for an atom inside a
molecule or a solid. This requires the definition of the
effective volume, referenced to the free atom in vacuo.
We take advantage of the direct relation between polar-
izability and volume [29], and employ the Hirshfeld parti-
tioning of the electron density for the latter [8,30],

�eff
A

�free
A

�eff
A

�free
A

¼ Veff
A

Vfree
A

¼
�R

r3wAðrÞnðrÞd3rR
r3nfreeA ðrÞd3r

�
; (7)

wAðrÞ ¼ nfreeA ðrÞP
B n

free
B ðrÞ ; (8)

where �i
A is the proportionality constant between volume

and polarizability for the free-atom and atom-in-a-
molecule, wAðrÞ is the Hirshfeld atomic partitioning
weight for the atom A, r3 is the cube of the distance from

the nucleus of an atom A, nðrÞ is the total electron density,
nfreeA ðrÞ is the electron density of the free atom A, and the
sum goes over all atoms in the system. Both nðrÞ and
nfreeA ðrÞ are calculated from DFT-XCA. The effective coef-
ficient Ceff

6AA for an atom in a molecule is determined in the

following way from Eqs. (4) and (5):

Ceff
6AA ¼ �eff

A

�free
A

�
�free
A

�eff
A

�
2
�
Veff
A

Vfree
A

�
2
Cfree
6AA: (9)

We assume the proportionality constant
�eff
A

�free
A

ð�free
A

�eff
A

Þ2 to be

unity and prove this choice to be remarkably good for a
large variety of molecules. Indeed, this approximation
breaks down only for the smallest H2 molecule, with
deviation of 44% for the C6 coefficient. Already for mole-
cules such as N2 and CO2, the error is less than 10%. Since
the static polarizability of a molecule cannot be expressed
as a linear combination of atomic polarizabilities in gen-
eral, and thus �free

A =�eff
A � 1, �eff

A =�free
A , and ð�free

A =�eff
A Þ2

are inversely proportional.
Since the C6 coefficients are additive [22,31], the inter-

molecular C6 coefficient, Cmol
6 , is given by the sum of all

interatomic contributions

Cmol
6 ¼ X

A2M1

X
B2M2

Ceff
6AB; (10)

where M1 and M2 refers to the first and the second mole-
cule, respectively.
To assess the accuracy of our scheme, it was bench-

marked on a database of 1225 intermolecular C6 coeffi-
cients, derived from pseudo DOSD data of Meath and co-
workers (see, e.g., Refs. [5,8,20,21]). The database con-

FIG. 1 (color online). Comparison of the C6 coefficients for
atom-atom interaction (At) and atom-molecule and molecule-
molecule interaction (Mol). The reference results for atom-atom
interaction are from accurate wave function calculations [26–
28]. For molecules, DOSD results are taken as a reference
[5,8,20,21]. Our results (only 211 values out of 1225 are shown)
are compared to those of Chalmers-Rutgers collaboration [15]
and Johnson-Becke [8]. The only outliers for our method are
cases involving the H2 molecule (20–44% deviation).
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tains the C6 coefficients for the interaction between 8
atoms and 42 molecules (organic and inorganic, from small
dimers to C8H18). The geometry of every molecule was
fully relaxed using the FHI-AIMS [32] code together with
LDA, PBE, and BLYP functionals. The atomic Ceff

6 coef-

ficients were calculated from Eq. (9) using the DFT density
and then the molecular Cmol

6 coefficients were computed

using Eq. (10). The correlation between the calculated C6

coefficients and reference results is shown in Fig. 1 and
compared with other methods for obtaining the C6 coef-
ficients from the ground-state density. With a MARE of
5.5%, we note that our scheme is a factor of 2–3 more
accurate than existing methods [8,9,15]. Furthermore, if
the H2 molecule is excluded from the database, the MARE
drops down to 4.5%. The C6 coefficients vary only slightly
for different exchange-correlation (xc) functionals. The
MARE in the C6 coefficients between LDA and PBE is
1.4% (maximum deviation of 3.8%), while for BLYP and
PBE it is 0.68% (maximum deviation of 2.1%). Clearly, the
difference in the electron density between xc functionals is
compensated when computing the ratio in Eq. (7).

In Table I, we show the values of the C6 coefficients for
various atoms in the DOSD database. It is encouraging that
the C6 coefficients correspond very closely to those em-
pirically fitted by Wu and Yang [5] for different hybridiza-
tion states of C and O atoms. This further indicates that our
scheme correctly accounts for different atomic environ-
ments without the need of empirical parameters. The larg-
est variations occur for carbon and silicon, due to various
possible hybridization states for these elements.

In order to further illustrate the change in the atomic C6

coefficients as a function of molecular bonding and ge-
ometry, we show the case of the hydrogen-bonded water
dimer in Fig. 2. As the H2O molecules approach to form a
hydrogen bond, the polarizabilities and the C6 coefficients
of all atoms are modified. The hydrogen involved in the
hydrogen bond becomes significantly more polarizable
along with the donor oxygen. On the other hand, the
acceptor oxygen becomes less polarizable along with the
attached hydrogens. The plot in Fig. 2 was done for a fixed
water dimer geometry to illustrate that the change in the C6

coefficients is a purely electronic effect. Relaxing the
geometries for every O-O distance yields a similar plot
for distances larger than the equilibrium one.

We carried out preliminary tests of our scheme for
solids, calculating the C6 coefficient of the carbon atom
in a graphene sheet and in a diamond crystal at experimen-
tal geometries. For carbon in a graphene sheet, we get a
value of 33.0, close to the expected value of 30.3 for the
sp2 hybridization in benzene. For diamond, we get a value
of 38.6, significantly larger than 24.1 for the sp3 hybrid-
ization in methane.

Our method can in principle treat all elements, including
ions, on the same footing. Most problematic cases are those
where the concept of atoms-in-molecules cannot be ap-
plied. Clearly, a pairwise summation of C6R

�6 interactions

can fail qualitatively for metallic low-dimensional systems
due to nonadditive higher-order effects [33]. Our scheme
can be further generalized to higher-order van der Waals
coefficients (C8, etc.) since approximations similar to the
London formula are known [22]. The Axilrod-Teller-Muto
three-body term [22] can also be calculated since it in-
volves an integral similar to the Casimir-Polder one.
Let us now briefly discuss the coupling of the above

long-range scheme for correcting DFT-XCA calculations
for shorter distances. For this, the damping function
fdampðRAB; R

0
A; R

0
BÞ in Eq. (1) must be defined. The vdW

radii, R0
A=B, are not experimental observables, unlike theC6

coefficients. However, a rigorous theoretical definition
does exist: the vdW radius corresponds to half of the
distance between two atoms where the Pauli repulsion
balances the London dispersion attraction [34]. Using the
definition of the effective atomic volume in Eq. (7), the
vdW radius of an atom in a molecule becomes

R0
eff ¼

�
Veff

Vfree

�
1=3

R0
free: (11)

According to the above definition, the free-atom vdW radii,
R0
free, for rare-gas atoms correspond to the equilibrium

distance of rare-gas dimers. Unfortunately, the vdW radii
of Bondi [34] for other elements cannot be used since they
correspond to atoms-in-molecules case. The simplest an-

TABLE I. Free-atom C6 coefficients (hartree � bohr6) from
Chu and Dalgarno [16] along with atom-in-a-molecule (mini-
mum and maximum) C6 coefficients for various atoms computed
for molecules from the DOSD database. For CNOH atoms, these
values are compared to empirical results of Wu and Yang [5] for
different hybridization states.

Cfree
6AA Cmin

6AA Cmax
6AA Wu-Yang Cfree

6AA Cmin
6AA Cmax

6AA

H 6.5 2.1 2.8 2.8 F 9.5 7.9 8.5

C 46.6 24.1 33.0 22.1—29.8 Si 305 146 158

N 24.2 17.1 19.6 19.3 S 134 113 134

O 15.6 11.7 14.7 11.6—13.0 Cl 94.6 88.8 89.4

FIG. 2 (color online). Dependence of the atomic C6 coeffi-
cients on the O-O distance in the water dimer. Note the two
different scales on both sides for H and O atoms.
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satz for defining consistent free-atom vdW radii comes
from the electron density for the (spherical) free atoms.
The electron density contour value corresponding to the
vdW radius can be determined for the rare-gas atoms and
then used to define R0

free for other elements in the same row

of the periodic table.
We used the above ansatz for the light elements

(CNOH), to illustrate the performance of our nonempirical
C6 scheme with DFT. We use a Fermi-type damping func-
tion [5],

fdampðRAB; R
0
ABÞ ¼

1

1þ exp½�dð RAB

sRR
0
AB

� 1Þ� ; (12)

where R0
AB ¼ R0

A þ R0
B, d and sR are free parameters. The

d parameter adjusts the damping function steepness. Our
analysis indicates that the results change negligibly for
12< d< 45. A small value of d affects covalently bonded
systems, whereas a large value yields kinked binding en-
ergy curves. The choice of d ¼ 20 turned out to satisfy
both constraints as tested for binding energy curves of rare-
gases and vdW-bonded organic molecule dimers (CH4 and
benzene), as also shown by Grimme in previous work [12].
Therefore, the scaling coefficient sR remains as a single
empirical parameter which determines the onset of the
vdW correction for a particular xc functional in terms of
the distance [14]. We use the S22 database of Jurecka et al.
[35] to obtain the sR parameter [36]. The database reports
converged CCSD(T) binding energies for 22 different
dimers with varying interaction strength, from a weakly
vdW-bonded CH4 dimer (23 meV) to a hydrogen-bonded
uracil dimer (0.9 eV). The performance of our scheme,
when coupled with the PBE functional, is significantly
better than for highly empirical C6R

�6 approaches
[6,12,14]. The mean absolute error (MAE) of our approach
on the S22 database is 13 meV (20, 13, and 6 meV on
hydrogen-bonded, vdW-bonded and mixed systems, re-
spectively). This can be compared to 20 meV (29, 20,
and 9 meV) when using empirical C6 coefficients and
vdW radii from Ref. [14]. It is especially encouraging
that the overestimation of the hydrogen-bonded systems is
significantly reduced due to larger effective vdW radii for
atoms involved in hydrogen bonds. Since the atomicC6 co-
efficients are functionals of the electron density [Eq. (9)],
the potential due to the energy expression in Eq. (1) should
enter the Kohn-Sham equations in DFT calculations.
However, we do not expect a self-consistent treatment to
give major changes as also noticed in Ref. [10]. This aspect
will be addressed in future work.

In summary, we have presented an accurate nonempir-
ical method to obtain molecular C6 coefficients from
ground-state electron density and reference values for the
free atoms. Our scheme can also be used to improve the
description of weakly bonded systems in DFT for a range
of xc functionals.

A. T. acknowledges the Alexander von Humboldt (AvH)
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