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The development and application of computational methods for studying molecular crystals, partic-
ularly density-functional theory (DFT), is a large and ever-growing field, driven by their numerous
applications. Here we expand on our recent study of the importance of many-body van der Waals
interactions in molecular crystals [A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028
(2013)], with a larger database of 23 molecular crystals. Particular attention has been paid to the
role of the vibrational contributions that are required to compare experiment sublimation enthalpies
with calculated lattice energies, employing both phonon calculations and experimental heat-capacity
data to provide harmonic and anharmonic estimates of the vibrational contributions. Exact exchange,
which is rarely considered in DFT studies of molecular crystals, is shown to have a significant con-
tribution to lattice energies, systematically improving agreement between theory and experiment.
When the vibrational and exact-exchange contributions are coupled with a many-body approach to
dispersion, DFT yields a mean absolute error (3.92 kJ/mol) within the coveted “chemical accuracy”
target (4.2 kJ/mol). The role of many-body dispersion for structures has also been investigated for a
subset of the database, showing good performance compared to X-ray and neutron diffraction crys-
tal structures. The results show that the approach employed here can reach the demanding accuracy
of crystal-structure prediction and organic material design with minimal empiricism. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4812819]

I. INTRODUCTION

The structure and properties of molecular crystals have
long been of great interest, not just for fundamental reasons
of understanding molecular aggregation but also due to their
numerous applications. As the preferred form of active phar-
maceutical ingredients for oral administration, the dissolution
and morphology of drug-molecule crystals are very important
for bio-availability and processing.1 For these reasons alone
the prediction of molecular crystal structures is of the utmost
importance.2 In addition, molecular crystals can also have a
wide range of optical, electronic, and mechanical properties,3

which in some cases can be tuned based on environmental
variables4 or composition.5

The importance of molecular crystals has lead to vari-
ous computational approaches being employed to understand
and elucidate their properties. While crystal-structure predic-
tion and pharmaceuticals are very active and important ar-
eas of research,6, 7 many computational studies have also fo-
cused on energetic materials,8, 9 proton-transfer systems,4, 10

vibrational properties such as phonons and thermal displace-
ment parameters,11, 12 as well as electronic properties.13 The
methods employed range from tailor-made force fields8 to
generic force fields such as OPLS14 and CHARMM15 to first-
principles methods such as density-functional theory (DFT).

The growth in the use of DFT for studying molecu-
lar crystals has gone in tandem with the development of
dispersion-inclusive DFT methods,16 as semi-local function-
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als (as well as hybrid functionals) neglect long-range disper-
sion or van der Waals (vdW) interactions, which can be es-
sential for the formation of molecular solids. There are numer-
ous dispersion-inclusive DFT methods, including the pairwise
approaches of DFT-D,17, 18 DFT+vdW,19 and the exchange-
diplole moment (XDM) method20 as well as “vdW density
functionals” such as vdW-DF121 and vdW-DF2.22

Given the important applications of molecular crystals,
considerable effort has been put into benchmarking these ap-
proaches. Crystal-structure prediction trials show encourag-
ing results for DFT-D approaches,6 but the small energy dif-
ferences involved7 mean that different methods can still yield
conflicting predictions of the stable structure of crystal.23 The
most common type of benchmark for these systems is to cal-
culate lattice energies,

Elat = Es

Z
− Eg, (1)

where Es is the total energy of a unit-cell, Z is the number
of molecules per unit-cell, and Eg is the total energy of the
molecule in the gas phase, in its lowest-energy conformation.
In the absence of an established computational standard, the
calculated lattice energies are often compared with sublima-
tion enthalpies.24–27 This comparison requires accounting for
a number of vibrational contributions. In many instances these
contributions were either ignored or considered in the high-
temperature limit, whereby following the Dulong-Petit law
the relationship reduces to25, 28

�Hsub(T ) = −Elat − 2RT . (2)
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A realistic benchmark of DFT methods requires
the accurate estimation of the vibrational contributions
to the sublimation enthalpy to avoid systematic bias towards
methods that over- or underestimate lattice energies. It is
equally important to properly assess the role of the den-
sity functional used to calculate the lattice energies. While
many studies have focused on the role of dispersion,25, 29, 30

few have critically assessed the shortcomings of semi-local
functionals in detail. For example, the de-localisation or self-
interaction errors in DFT31 can often have a significant effect
on hydrogen-bonded systems.32

Recent work by Otero-de-la-Roza and Johnson has
shown that apart from an implementation of XDM,33 many
dispersion-inclusive methods systematically overestimate lat-
tice energies. In subsequent work we have shown that the
origin of this overestimation for DFT+vdW (also known
as the Tkatchenko-Scheffler or TS method) clearly lies in
the absence of many-body collective response and energy
contributions.34 The recently developed many-body disper-
sion (MBD) method35, 36 was shown to correctly model these
contributions, halving the mean absolute error (MAE) com-
pared to the pairwise method and reducing the MAE between
DFT and experiment for 16 molecular crystals to 3.8 kJ/mol,
within the coveted “chemical accuracy” target of 4.2 kJ/mol.
Crucially, such good agreement hinged on using MBD with
a non-empirical hybrid functional (Perdew-Burke-Ernzerhof
(PBE0)37). The corresponding semi-local functional, PBE,38

achieved an accuracy of 6.4 kJ/mol.
In the present contribution we expand on our recent work

in three ways. First, we consider the computational evalua-
tion of the vibrational contributions to sublimation enthalpies
in detail (Sec. III A), focusing on the role of phonon disper-
sion and anharmonicity. Secondly, predicted lattice energies
for a larger set of 23 molecular crystals will be presented
and discussed in terms of many-body dispersion and exact-
exchange contributions (Sec. III B). Finally, we explore the
role of many-body dispersion in determining the structure of
molecular crystals, presenting optimized lattice constants and
structures for some representative systems (Sec. III C). The
computational methodology is outlined in Sec. II.

II. METHODOLOGY

A. Density-functional theory calculations

All DFT calculations were performed using the CASTEP
plane-wave DFT code (version 6.01).39 A plane-wave cut-off
energy of 1000 eV was used in all calculations, sufficient
to converge both norm-conserving and ultra-soft pseudo-
potential calculated total energies to less than 1 meV/atom.
For solid-state calculations a k-point sampling of at least
0.06 Å−1 was used to sample the electronic reciprocal space.
Norm-conserving pseudo-potentials were employed for cal-
culating total energies used in the lattice-energy calculations,
while the phonon calculations were performed using ultra-soft
pseudo-potentials, with phonon calculations starting from the
ultra-soft pseudo-potential minimized geometry.40 To ensure
convergence, the Fourier-transform grid scales for the den-
sity and its high-frequency components were set to 2.25 and

2.50 times the wavefunction value, respectively. Calculations
were performed with the PBE38 and hybrid PBE037 function-
als. Pairwise dispersion-interaction contributions were added
using the DFT+vdW (or TS method),19 using the built-in
functionality of CASTEP.41

Initial structures for the crystals were obtained either
from Otero-de-la-Roza and Johnson30 or the Cambridge
Structural Database.42 Space-group symmetry was exploited
for solid-state calculations. Isolated molecules, representing
the gas-phase reference for lattice-energy calculations, were
modeled in cubic supercells of at least 15 Å in length, with
some of the larger molecules, such as adamantane and an-
thracene being modeled in a supercell of 20 Å length. In most
cases the initial structure for the isolated molecule was ob-
tained directly from the optimized crystal structure. For oxalic
acid, care was taken to use the correct gas-phase confor-
mation, which features intra-molecular hydrogen bonds that
substantially alter the gas-phase stability of the molecule.43

Succinic acid is known to have a number of gas-phase con-
formers around 445 K,44 but here we use only the most sta-
ble C2 conformer, which is likely to be the main conformer
at the lower temperature range (360–375 K) of the sublima-
tion measurement.45 The full geometries (lattice parameters
for crystals and coordinates for both crystals and molecules)
were optimized at the PBE+TS level, with convergence cri-
teria of 5 × 10−6 eV/atom for total energies, 5 × 10−3 eV/Å
for forces, 1 × 10−3 Å for displacements, and 2 × 10−2 GPa
for stresses. All subsequent PBE0 and MBD single-point cal-
culations were performed using these PBE+TS geometries.46

B. Many-body dispersion method

The MBD method is described in detail elsewhere.34–36

Briefly, the atoms in the system are represented as quantum
harmonic dipole oscillators defined by the TS polarizabili-
ties. In a two stage process, the frequency-dependent elec-
trodynamic response of the system is first obtained using the
self-consistent screening (SCS) equations.47, 48 The resulting
screened polarizabilities and static frequencies are used in a
Hamiltonian that explicitly considers all orders of dipole in-
teractions. The calculation of MBD energies has been imple-
mented in a development version of CASTEP. For the solid-
state calculations of both the SCS equations and MBD ener-
gies, interactions with periodic replicas of the unit-cell have
been included in the dipole-coupling elements within a spher-
ical cut-off distance of ≈50 Å. The SCS equations are solved
for the unit-cell only, as there is no dependence on the size of
the simulation cell, as long as sufficient periodic interactions
are included. However, the many-body Hamiltonian must be
evaluated for a supercell (typically 25 Å in each direction)
to properly sample the reciprocal space of the explicit many-
body interactions. For isolated molecules the MBD calcula-
tions are performed with a single molecule in an aperiodic
calculation.

The derivation of analytical forces and stresses for the
MBD method is currently in progress,49 although analytical
gradients exist for the contributions from the SCS equations.50

In the present work, finite-difference forces and stresses have
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been used to optimize a small number of the crystal structures
studied. The convergence criteria were the same as those for
the PBE+TS optimizations.

C. Estimation of vibrational contributions
to sublimation enthalpies

The enthalpy of sublimation can be related to the lat-
tice energy via a number of vibrational and thermodynamic
quantities:

�Hsub(T ) = −Elat + (EZPE,g − EZPE,s)

+
∫ T

0
�Cp(T )d T +

∑
�Htrans, (3)

where s and g refer to the solid and gas-phase respectively,
EZPE is the zero-point vibrational energy (ZPE), �Cp is the
difference between the gas-phase and solid-state heat capac-
ities, and �Htrans is the enthalpy of transformation for any
phase transition that occurs between 0 K and T. This ex-
pression is only valid when the isolated molecule has a sin-
gle well-defined conformation at the temperature of the mea-
surement. When this is not the case additional terms account-
ing for the conformation ensemble must be included. By de-
sign, the present database includes relatively rigid molecules,
which are known to have a single conformation at the tem-
perature of the experimental sublimation-enthalpy measure-
ments. In the limit of an ideal gas, taking the rigid-rotor and
harmonic approximations and assuming no solid-state phase
transformations, Eq. (3) reduces to

�Hsub(T ) = −Elat + �Evib(T ) + 4RT, (4)

where �Evib(T ) is the total (thermal and zero-point)
vibrational-energy difference between the gas and the solid.
For a linear molecule, such as CO2, the final term becomes
7/2RT to account for the missing rotational degree of freedom.
For a more detailed discussion of these approximations see,
e.g., Otero-de-la-Roza and Johnson.30 The vibrational quanti-
ties can be readily calculated in the harmonic limit using DFT
phonon calculations,30, 51

Evib(T ) =
∑

q

⎛
⎝∑

p

⎛
⎝¯ωp,q

2
+ ¯ωp,q

exp
(
¯ωp,q

kbT

)
− 1

⎞
⎠

⎞
⎠ , (5)

where ωp, q is the pth phonon frequency at wavevector q, T
is the temperature, and kb is Boltzmann’s constant. The first
part of Eq. (5) is the ZPE, while the second part gives the ther-
mal energy based on a Planck distribution. In the absence of
phonon dispersion or for an isolated-molecule supercell cal-
culation, the summation can be performed using only the �-
point frequencies. In the present work we have determined
the vibrational terms using both unit-cell and supercell finite-
displacement phonon calculations52, 53 (at the PBE+TS level
of theory) to interpolate to arbitrarily fine q-point grids, using
the in-built functionality of CASTEP. The thermal contribu-
tion was evaluated at 298 K, the temperature to which most
sublimation enthalpies are extrapolated.54, 55 The application
of density functional perturbation theory51 is not possible as
it would require a fully self-consistent implementation of the

TS vdW term, which is not currently available in the CASTEP
code. The vibrational quantities for isolated molecules were
also determined using phonon calculations. In such isolated-
molecule calculations we expect to find six zero-frequency
modes (or five for a linear molecule), which correspond to the
translational and rotational degrees of freedom. Three such
zero-frequency modes are expected at the � point in the solid
state, corresponding to complete translations of the crystal. In
any numerical calculations, minor deviations with small neg-
ative or positive non-zero values will occur.56 Care was taken
to ignore the spurious contributions from these frequencies.
In no case were “true” negative frequencies found, indicat-
ing that all of the optimized molecular geometries and crys-
tal structures represented true minima on the potential-energy
surface.

For adamantane,57 anthracene,58 hexamine,57

naphthalene,59 succinic acid,60 trioxane,61 and urea62

experimental solid-state Cp data are available. These data
have been used with DFT-calculated gas-phase Cp values and
the DFT ZPE values to evaluate Eq. (3) directly, yielding
a semi-anharmonic value for the lattice energy. Taking
the derivative of Eq. (5) with respect to temperature, the
constant-volume heat capacity for an isolated molecule can
be calculated as

CV (T ) = kb

∑
p

⎛
⎜⎝

(
¯ωp

kbT

)2
exp

(
¯ωp

kbT

)
(

exp
(
¯ωp

kbT

)
− 1

)2

⎞
⎟⎠ . (6)

The calculated values of CV were then converted to Cp by
adding R. To account for the rotational heat capacity of the
isolated molecule in the rigid-rotor approximation, 3RT was
added to the value of the integrated heat-capacity difference.

In the case of adamantane, examination of the literature
revealed that a phase transformation from the ordered trigo-
nal phase to a disordered fcc phase occurs at 208 K.57 The
low-temperature structure used as the basis of the DFT calcu-
lations here is not appropriate for use with Eq. (4) as this ig-
nores the enthalpy of transition and the highly anharmonic na-
ture of phase transitions. Experimental Cp values are available
for the solid phase over the range of 0–298 K.57 By extrapo-
lating the Cp data through the second-order phase-transition
an estimate for the vibrational contribution has been made on
the basis of the low-temperature trigonal crystal structure.

III. RESULTS AND DISCUSSION

A. Vibrational contributions to theoretical
lattice energies

To enable a direct and fair comparison between theoret-
ical lattice energies and experimental sublimation enthalpies
requires careful evaluation of Eqs. (3) or (4). In the harmonic
limit, this can be readily achieved using phonon calculations
as outlined above. In the solid state, interactions over dis-
tances larger than the unit-cell lead to a wavevector depen-
dence of the phonon frequencies. Using finite-displacements
within a unit-cell neglects this dispersion, sampling only the
� point and ignoring the acoustic modes, which are purely
translation (ω = 0) at the zone center. By exploiting the
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TABLE I. The zero-point energy and total vibrational energy at 298 K (per
molecule) of phase-I ammonia as calculated using PBE+TS phonon calcula-
tions with three different supercells of length a.

Supercell EZPE,s (kJ/mol) Evib,s(298 K) (kJ/mol) a (Å)

1 × 1 × 1 98.04 104.21 4.9548
2 × 2 × 2 98.49 105.86 9.9096
3 × 3 × 3 98.53 105.88 14.8644

short-range nature of the force-constant matrix the supercell
or direct method can extrapolate unit-cell phonon calculations
to arbitrary wavevectors, presuming the simulation cell is of
sufficient size so that force constants decay to zero.52, 53

To assess the importance of phonon dispersion and the
size of simulation cell for the supercell method we have
performed phonon calculations using both a crystallographic
unit-cell and supercells of phase-I ammonia. The PBE func-
tional (without a vdW term) is already known to model the
phonons of phase-I ammonia well at the � point.11 Table I
shows the calculated ZPE and total vibrational energy at
298 K using different sized cells to calculate the phonon fre-
quencies at the PBE+TS level of theory. Changing from a
unit-cell to a 3 × 3 × 3 supercell leads to a change in the ZPE
of 0.5 kJ/mol and a change in the thermal energy, and hence
vibrational contribution, of nearly 1.7 kJ/mol at 298 K, 5% of
the sublimation enthalpy. The larger contribution of phonon
dispersion to the total energy can be understood as the con-
tribution of the acoustic and low-frequency phonon modes,
which are more sensitive to the simulation cell size. While
their low frequencies contribute less to the ZPE, they are ther-
mally populated more easily. Figure 1 shows the phonon dis-
persion for ammonia as calculated using the 2 × 2 × 2 su-
percell. It is clear that there is appreciable phonon dispersion
in the lattice and acoustic modes. Encouragingly, even with
a cell of only 9 Å, the acoustic modes are well represented,
with only some minor artefacts as they approach the � point.

The difference in energies between the 2 × 2 × 2 and
3 × 3 × 3 supercells is of the order of 0.1 kJ/mol, suggest-
ing that supercells around the size of 9–10 Å are of suffi-
cient size to obtain reliable estimates of the vibrational con-
tributions to the sublimation enthalpy. This is supported by

FIG. 1. The phonon dispersion of the lattice modes of phase-I ammonia, cal-
culated with PBE+TS using the supercell method, with a 2 × 2 × 2 simula-
tion cell. The isolated molecule vibrations appear at higher wavenumbers.11

FIG. 2. Vibrational contributions (�Evib + 4RT ) to the sublimation en-
thalpy in the harmonic limit at 298 K, as derived from PBE+TS unit-cell
and supercell phonon calculations. The gray line indicates the 2RT value.

supercell phonon calculations of the polyacene crystals.63

To study the broad importance of phonon dispersion on the
vibrational contributions unit-cell and supercell (of at least
9–10 Å length in each direction) calculations have been per-
formed for the whole database of molecular crystals. The
resulting vibrational contributions at 298 K are shown in
Figure 2. For the majority of cases there is a substan-
tial increase in the vibration contributions. Those systems
where there are only small changes are typically ones with
larger unit-cells (e.g., the smallest lattice constant for triazine
is ≈7 Å). In the case of oxalic acid (both α and β) and suc-
cinic acid the unit-cell calculations give spuriously small val-
ues. Both oxalic acid polymorphs have small unit-cells and
feature hydrogen bonding over cell boundaries. It is likely
that the interpolation of the force-constant matrix to arbitrary
wavevectors is not at all valid for such small simulations cells.
The relative rigidity will also reduce the contribution from in-
ternal degrees of freedom.

Recently, Otero-de-la-Roza and Johnson have also car-
ried out phonon calculations to obtain vibrational contribu-
tions for many of the systems studied here.30 They employed
the Einstein model to approximate the zero-point and thermal
energy of each crystal. In this model the phonon dispersion is
ignored and each phonon branch is approximated with a sin-
gle frequency obtained at the � point. The ZPE contribution
from the acoustic modes is then neglected, while their thermal
contribution is approximated in the Dulong-Petit limit as 3RT.
This approach was validated based on the lack of any phonon
dispersion in the CO2 crystal. Figure 2 confirms this asser-
tion for CO2, but it is clear that for the majority of systems
there is some contribution from dispersion. However, this may
be limited solely to the contribution of the acoustic modes,
which are poorly modeled in small simulation cells. To as-
sess this, a comparison between the full phonon treatment
and the Einstein model is given for a selection of systems in
Table II. Generally, the Einstein model underestimates zero-
point energies by 0.5–1.0 kJ/mol, partly due to neglecting the
contribution of the acoustic vibrations and phonon dispersion
in the low-frequency translational vibrations, which typically
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TABLE II. Comparison between zero-point and thermal (298 K) vibrational
energies (per molecule) calculated using supercell phonon calculations and
the Einstein model using only �-point frequencies. A contribution of 3RT
has been added to the Einstein-model thermal energies (before converting
into per molecule values) to account for the acoustic modes.

Einstein model Supercell method

Crystal EZPE (kJ/mol) Evib (kJ/mol) EZPE (kJ/mol) Evib (kJ/mol)

Adamantane 624.52 649.14 625.05 649.15
Ammonia 98.22 105.77 98.53 105.88
Benzene 261.66 277.98 261.81 278.00
Cyanamide 92.87 103.61 93.11 103.66
Ethylcarbamate 281.69 303.27 282.48 303.35
Urea 170.02 184.65 171.19 184.30

increases the wavevector-averaged zero-point energy. How-
ever, overall there is some error cancellation as the final ther-
mal energies at 298 K are in remarkable agreement, with de-
viations of less than 0.5 kJ/mol.

Given the good agreement between the supercell and Ein-
stein models, we would expect the vibrational contributions
of Otero-de-la-Roza and Johnson30 to agree well with those
obtained here. However, in general the values of Otero-de-la-
Roza and Johnson are smaller than those obtained here, by
around 1.4 kJ/mol on average, although in some cases the dif-
ference is as much as 5 kJ/mol. It should be noted that their
calculations were performed with the PBE functional using
PBE+XDM geometries. In the absence of a vdW contribu-
tion, the PBE+XDM geometry will be far from equilibrium,
a necessary prerequisite for phonon calculations. This could
substantially affect the low-frequency lattice modes and the
vdW term is the most likely source of the remaining dis-
crepancies between the two sets of vibrational contributions.
Performing the phonon calculations with PBE+MBD might
further increase the vibrational contributions but given the dif-
ference between the PBE and PBE+TS values it is unlikely
to alter the values significantly. This is the case for ammo-
nia, where the �-point ZPE increases by less than 0.2 kJ/mol
when using MBD instead of TS.

The harmonic treatment ignores effects due to anhar-
monic thermal motion and cell expansion. To partly under-
stand the effect of these approximations, experimental solid-
state heat capacities have been used with DFT-calculated
ZPEs and gas-phase heat capacities [Eq. (6)] to evaluate
Eq. (3) in a semi-anharmonic fashion. A comparison between
the harmonic and semi-anharmonic vibrational contributions
is given in Table III. In most cases the semi-anharmonic cor-
rection is appreciably larger than the harmonic one by around
2–3 kJ/mol. The small correction for hexamine is likely due to
its high-symmetry crystal structure (I 4̄3m) and rigid molec-
ular structure. Figure 3 shows the experimental and theoreti-
cal heat capacities for naphthalene. The experimental curve
clearly has additional contributions to the heat capacity in
the low temperature region (<75 K) and also diverges from
the theoretical data at higher temperatures, indicating the an-
harmonic contributions of the low-frequency modes, which
are populated at low-temperatures and the high-frequency

TABLE III. Harmonic and semi-anharmonic estimates of the vibrational
contribution (�Evib + 4RT ) to the sublimation enthalpy at 298 K. It should
be noted that the semi-anharmonic value for adamantane includes the contri-
bution from the phase transformation known to occur at 208 K.

�Evib + 4RT (kJ/mol)

Crystal Harmonic Anharmonic

Adamantane − 8.0 − 11.0
Anthracene − 7.6 − 10.9
Hexamine − 9.9 − 10.4
Naphthalene − 7.9 − 10.5
Succinic acid − 4.3 − 7.2
Trioxane − 8.3 − 10.1
Urea − 6.6 − 8.7

modes, which are only populated sufficiently as the system
approaches room temperature.

For naphthalene and anthracene there are experimental
gas-phase heat capacities that have been extrapolated to low
temperature.64 For naphthalene using the experimental gas-
phase values changes the vibrational contribution by less than
0.2 kJ/mol, a clear indication that in taking the difference
between a theoretical and experimental quantity we do not
lose any fortuitous cancellation of errors in the computational
quantities. Performing the phonon calculations with experi-
mental lattice parameters might account for part of the ther-
mal expansion contributions to the ZPE, but it is not clear to
what extent such contributions are contained within the Cp

term.
Anharmonic corrections of the order of 2–3 kJ/mol are

not negligible in pursuit of chemical accuracy (4.2 kJ/mol).
Give the magnitude of the contributions and fact that even
where Cp data are available the anharmonicity in the ZPE is
ignored, we must always attach an uncertainty to experimen-
tal lattice energies, even when there is little uncertainty in the
value of the underlying sublimation enthalpy.

FIG. 3. Solid-state heat capacity of naphthalene as a function of temperature
obtained from experiment (black solid line, Ref. 59) and PBE+TS supercell
phonon calculations (red dashed line).
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TABLE IV. Experimental sublimation enthalpies (�H 0
sub; at 298 K), vibrational contributions (�Evib + 4RT ; calculated using supercell phonon calculations

with experimental Cp data were available), the resulting experimental lattice energies (Elat,exp), DFT-predicted lattice energies (EDF+disp, where “DF” is the
density functional and “disp” the dispersion method), and the contributions of many-body and exact-exchange effects to the PBE0+MBD binding energies, for
each of the crystals studied. Experimental sublimation enthalpies are taken from Otero-de-la-Roza and Johnson,30 except for those of anthracene,55 succinic
acid,45 and hexamine.64, 66 All quantities are in kJ/mol.

Lattice energies

Molecules �H 0
sub �Evib + 4RT Elat,exp EPBE+TS EPBE0+TS EPBE+MBD EPBE0+MBD �EMBD

a �EPBE0
b

1,4-cyclohexanedione 81.1 − 7.5 − 88.6 − 105.9 − 101.2 − 92.2 − 88.2 13.0 4.1
Acetic acid 68.0 − 4.9 − 72.8 − 82.6 − 79.0 − 78.3 − 74.6 4.4 3.6
Adamantane 58.4 − 11.0 − 69.4 − 108.0 − 105.0 − 81.0 − 78.6 26.4 2.4
Ammonia 29.8 − 7.4 − 37.2 − 45.4 − 42.4 − 42.9 − 40.2 2.2 2.7
Anthracene 101.9 − 10.9 − 112.7 − 134.4 − 133.5 − 121.8 − 119.1 14.5 2.8
Benzene 45.1 − 6.6 − 51.7 − 66.3 − 62.0 − 55.0 − 51.0 11.0 4.0
CO2 24.6 − 3.8c − 28.4 − 25.2 − 24.4 − 21.7 − 21.2 3.2 0.5
Cyanamide 75.5 − 4.2 − 79.7 − 94.3 − 88.8 − 94.3 − 88.8 0.0 5.5
Cytosine 163.4 − 6.4 − 169.8 − 172.6 − 167.9 − 170.0 − 164.5 3.5 5.6
Ethylcarbamate 78.7 − 7.6 − 86.3 − 99.2 − 94.0 − 92.1 − 87.1 6.9 5.0
Formamide 71.8 − 7.4 − 79.2 − 86.3 − 84.0 − 82.8 − 80.7 3.3 2.1
Hexamine 75.8 − 10.4 − 86.2 − 114.9 − 109.8 − 86.9 − 83.4 26.3 3.5
Imidazole 81.4 − 5.5 − 86.8 − 101.9 − 96.3 − 97.1 − 91.4 4.9 5.7
Naphthalene 71.3 − 10.5 − 81.7 − 99.9 − 98.4 − 87.4 − 85.4 13.0 2.0
Oxalic acid (α) 93.7 − 4.7 − 96.3 − 100.7 − 98.5 − 98.1 − 95.7 2.8 2.3
Oxalic acid (β) 93.6 − 2.4 − 96.1 − 104.3 − 100.1 − 98.6 − 94.8 5.3 3.9
Pyrazine 56.3 − 5.0 − 61.3 − 76.2 − 72.0 − 67.3 − 63.0 9.0 4.3
Pyrazole 72.4 − 5.4 − 77.7 − 88.5 − 83.1 − 82.8 − 77.6 5.5 5.2
Succinic acid 123.1 − 7.2 − 130.3 − 147.1 − 143.4 − 138.7 − 135.3 8.1 3.4
Triazine 55.7 − 6.0 − 61.7 − 68.9 − 65.6 − 58.7 − 55.7 10.0 3.0
Trioxane 56.3 − 10.1 − 66.4 − 75.9 − 72.0 − 62.4 − 59.3 12.7 3.2
Uracil 129.2 − 6.5 − 135.7 − 149.0 − 144.6 − 145.9 − 140.4 4.2 5.5
Urea 93.8 − 8.7 − 102.5 − 113.1 − 111.4 − 111.2 − 109.7 1.7 1.5

a�EMBD = (EPBE0+MBD − EPBE0+TS).
b�EPBE0 = (EPBE0+MBD − EPBE+MBD).
cCalculated as �Evib + 7/2RT .

B. Prediction of lattice energies

1. Overview of the X23 database

Having determined the vibrational contributions to the
sublimation enthalpy, we can now directly compare the DFT
predicted lattice energies with experimental estimates. In this
work we consider 23 systems, the 21 systems of Otero-de-la-
Roza and Johnson,30 and two additional systems, hexamine
and succinic acid. This database (the X23 database) contains
a mix of systems that have largely vdW or hydrogen bond-
ing, together with three systems that feature both interactions.
These two types of interactions are among the most impor-
tant and common in molecular crystals, making the database
a useful and broad benchmark. Before comparing theory and
experiment it is worth briefly commenting on uncertainties
in experimental sublimation enthalpies. One estimate of the
general uncertainty in sublimation enthalpies is 4.9 kJ/mol,
based on a statistical assessment of experimental deviations.65

Other broad estimates are ±10%.25 Some of the systems in
the present database, such as naphthalene and anthracene, are
established thermochemical standards with well-defined un-
certainties of around 1–2 kJ/mol.55 For other systems larger
uncertainties, up to 10 kJ/mol, are not uncommon and there
can often be a wide variation between different experimen-
tal measurements.64 As such, care must be taken when inter-

preting experimental data. The majority of the systems in the
present database have multiple experimental values and small
or moderate uncertainties. Therefore, in the present work we
can quantitatively assess the performance of computational
methods to an accuracy of around 1–3 kJ/mol.

The predicted lattice energies using PBE and PBE0
with TS and MBD are given in Table IV, while a statisti-
cal summary is give in Table V. Figure 4 shows the rela-
tive error in the lattice energy, with the database divided into
mainly vdW interactions and hydrogen-bonding interactions,
although many systems will also have appreciable electro-
static interactions. CO2 is discussed separately in Sec. III D.
The general trends for the performance of the different

TABLE V. The mean error (ME), mean absolute error (MAE), standard de-
viation (SD), and mean absolute relative error (MARE) of different vdW-
inclusive DFT methods with respect to experimental lattice energies. The
ME, MAE, and SD are in kJ/mol, while the MARE is in (%).

ME MAE SD MARE

PBE+TS 13.13 13.40 8.62 17.22
PBE0+TS 9.51 10.02 8.53 12.94
PBE+MBD 4.72 5.91 5.13 8.04
PBE0+MBD 1.17 3.92 4.79 5.51
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FIG. 4. Relative error in the lattice energy prediction of 22 molecular crys-
tals with four different combinations of vdW terms and functionals. As the
relative error is calculated as 100% × (Elat,DFT − Elat,exp)/Elat,exp, a positive
value indicates overbinding.

functionals are the same as seen with our smaller study of
the X16 database of 16 molecular crystals:34 the inclusion of
MBD generally halves the MAE and standard deviation (SD)
in the pairwise TS method, while the inclusion of a fraction
of exact exchange shifts the lattice energies down, reducing
the MAE but barely changing the SD. While with this larger
database there is a slight increase in the MAE and SD com-
pared to the X16, the MAE is still within the chemical accu-
racy target of 4.2 kJ/mol, and the SD within one estimate of
experimental uncertainties, 4.9 kJ/mol.65

In absolute terms, the worst agreement is for adaman-
tane, a globular molecule whose lattice energy is overesti-
mated by 9.2 kJ/mol with PBE0+MBD, although this is a
significant improvement on the PBE+TS value. Interestingly,
hexamine, which also has a similar globular structure, has a
much smaller absolute error of less than 2.8 kJ/mol. In rel-
ative terms, the worst agreement is for CO2, with a relative
error of 25%. This value is very sensitive to any contributions
from MBD and PBE0 as the experimental lattice energy is the
smallest in the database at −28.4 kJ/mol. Possible origins for
this large deviation will be discussed in Sec. III D.

2. Many-body dispersion contributions

It is evident from Table IV that the role of MBD is to
reduce lattice energies, with positive values for the contribu-
tion of MBD to the lattice energy in all cases bar cyanamide,
where there is practically no difference between the lattice en-
ergies with MBD and TS. Many previous studies at capturing
many-body effects in dispersion have employed some vari-
ation on the Axilrod-Teller-Muto (ATM) three-body disper-
sion interaction.67 It is well known that the contribution of the
three-body term to cohesive energies or lattice energies is nor-
mally repulsive.68 In their recent work Otero-de-la-Roza and
Johnson employed an XDM-based ATM term for 21 of the
23 systems studied here.69 They found that the ATM term had
only relatively small contributions to the total dispersion en-
ergies and marginal contributions to lattice energies, although

this may in part stem from the damping functions employed.
Overall the ATM terms increased the MAE marginally for
their dataset. This is in contrast to the MBD contributions
to the 23 systems studied here. Risthaus and Grimme have
also shown recently that an ATM term can give significant im-
provements for the modeling of supramolecular complexes.70

It is clear from the results here that many-body con-
tributions for molecular crystals are significant, not just for
the relative energies but also for the absolute value of the
dispersion energy, e.g., for the acetic acid crystal the pair-
wise energy is −39.6 kJ/mol, while the MBD energy is
−45.1 kJ/mol, an increase of 12%. Even for adamantane, in
which MBD reduces the lattice energy by 26.4 kJ/mol, the
MBD energy of the lattice is 29.0 kJ/mol larger than the pair-
wise energy. However, the corresponding MBD energy of the
isolated molecules are also substantially larger and in relative
terms the isolated molecules become more stable, reducing
lattice energies.

These different effects, increases in absolute energies,
decreases in relative energies, stem primarily from polariza-
tion effects. MBD considers not just many-body energies, like
the ATM expression, but also explicitly couples the various
dipole interactions, leading to a number of different types
of polarization effects within the molecules and solids. The
first effect is short-range intramolecular polarization, whereby
the polarizability of an atom increases appreciably along co-
valent chemical bonds. Obtaining C6 coefficients from the
self-consistently screening polarizabilities can illustrate this
effect, with, for example, the C-atom C6 of β oxalic acid in-
creasing from 34 a.u. with TS to 43.0 a.u. This increase in po-
larizability will increase the dispersion energy, but it is present
in both the solid and the isolated molecules.

The second contribution is long-range de-polarization or
screening of the dispersion interactions. In a solid, the pres-
ence of many atoms and molecules in between two (or more)
interacting atoms will typical reduce the polarizabilty. We
have noted previously that the screened C-atom C6 coeffi-
cients of form-I aspirin are 10% smaller than those of the
isolated molecules.34 The MBD Hamiltonian will also give
additional long-range screening as it is equivalent to a
random-phase approximation treatment of the model cou-
pled dipole-oscillators system it considers.49 The third type of
polarization effect is intermolecular polarization. Hydrogen-
bonded solids have strong interactions in the solid state,
through which further polarization of atoms can occur. As
such polarization is missing in the isolated molecules, any
such additional polarization will increase the polarizability
and hence relative stability of the solid form. Competition be-
tween short-range intermolecular polarization and long-range
de-polarization may explain the more complex behavior of
MBD for the hydrogen-bonded solids. All of the vdW systems
show appreciable screening effects, with large reductions in
the lattice energy, whereas some hydrogen-bonded systems
(e.g., cyanamide and cytosine) show barely any change. The
importance of polarization effects has also recently been
demonstrated using solely the SCS equations by Bučko and
co-workers.50

These competing effects are illustrated for oxalic
acid in Figure 5. The ellipsoids represent the anisotropic
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FIG. 5. Screened anisotropic polarizability tensors for a molecule of the β

oxalic acid crystal structure without and with solid-state interactions. In β

oxalic acid the molecules form chains of hydrogen-bonded dimers. Note that
the correct gas-phase conformation of oxalic acid has intramolecular hydro-
gen bonds.43

polarizability tensors obtained from the self-consistent
screening equations, with half of the molecule shown with
the solid-state tensors and half with the gas-phase ones. A C2

axis relates the two parts. The intramolecular polarization is
evident with highly anisotropic polarizabilities directed pri-
marily along chemical bonds, although in the gas phase the
H atoms point also towards the more polarizable C atoms. In
standard pairwise methods all of the atoms would have spher-
ical polarizabilities. Examining the C-atom tensors we can see
that the gas-phase one is slightly larger (C6 = 43.0 a.u. in the
solid and 45.5 a.u. in the isolated molecule), partly illustrat-
ing the long-range screening effect. Going from the gas phase
to the solid state there is a significant re-orientation of the
H-atom tensor, shifting from being orientated towards the C
atom, to being orientated along the hydrogen bonds that are
formed in the solid state.

3. Role of exact exchange

Inclusion of 25% exact exchange through the PBE0 func-
tional has a small but still important contribution to the lat-
tice energy. In general the contribution of PBE0 is to shift
the lattice energies down, as can be seen from the reduction
in the mean error (ME) and the slight change in the standard
deviation. The individual contributions vary between 1 and
5 kJ/mol, with many of the hydrogen-bonded and lone-pair
systems having a larger contribution. However, even benzene
has a large change in its lattice energy of the order of 8%,
which likely stems from the better modeling of its multipole
moment and density with a hybrid functional.71 The primary
reason for applying hybrid functionals for cohesive properties
is to correct for artefacts due to electron self-interaction or
de-localisation errors.31 Such errors are less significant in the
solid state, where there is natural de-localisation, especially in
hydrogen-bonded systems. The role of PBE0 is therefore most
likely related to reducing de-localisation errors in isolated
molecules, stabilising them relative to the solid. The compa-
rable relative contribution of MBD and exact exchange for
many system suggests that caution must be employed when
fitting or scaling dispersion contributions. As both contribu-

tions reduce the lattice energy, spurious and inconsistent re-
sults may be obtained by fitting or scaling pairwise dispersion
terms for semi-local functionals to experimental or bench-
mark theoretical data.

Hybrid functionals are often not used in the study of co-
hesive properties of molecular crystals,29, 30 largely due to
their additional computational cost, which particularly in a
plane-wave basis can reach more than an order of magni-
tude larger than the corresponding semi-local functional. The
present database of crystals suggests that hybrids may be im-
portant for accurate work. Indeed, the correct polymorphic
ordering of the polymorphs of oxalic acid and glycine is
only recovered when coupling MBD with PBE0.72 In their
study of 21 molecular crystals Otero-de-la-Roza and John-
son employed the B86b functional,30 as it best mimicked the
Hartree-Fock repulsive wall when compared to other semi-
local functionals.33 However, B86b only marginally improves
over PBE by 0.6 kJ/mol, whereas the hybrid functional used
here (PBE0) yields contributions of around 3 kJ/mol.

The choice of PBE0 is driven by its non-empirical na-
ture. While there is no definitive value for the amount of ex-
act exchange that should be added to a hybrid, there is some
motivation for a value of 25%,73 and the important aspect of
PBE0 (and PBE) is that it is not fitted to any experimental or
theoretical data and is therefore not artificially biased towards
or against specific systems. PBE0 also has a small short-range
many-body correlation error,74 which allows it to cleanly cou-
ple with the MBD method.

There are numerous other exchange functionals avail-
able, both with and without exact exchange and different frac-
tions thereof. Indeed, recently it has been suggested that a
fraction of 1/3 exact exchange should be used as the PBE-
based hybrid functional.75 In addition, screened hybrids such
as the Heyd, Scuseria, and Ernzerhof (HSE) functional76

might be more computationally efficient and accurate in some
cases, although their effect on molecular-crystal lattice en-
ergies is largely unknown. It is likely that for many of the
hydrogen-bonded systems the lattice energy could be tuned
with differing amounts of exact exchange and/or screening,
as different systems have different hydrogen-bond strengths
and therefore de-localisation. We refrain from such a study
in the present work, in part due to the substantial computa-
tional cost of hybrid functionals in a plane-wave implementa-
tion. Crystal-structure prediction and material design can also
only work when computational methods are fully transferable
to different geometries and even compositions, making an ab
initio approach essential.

4. Comparison with (effective) pairwise treatments

The results presented in Subsections III B 1
and III B 2 show that the MBD approach represents a
physically motivated and systematic improvement over the
TS pairwise method. There are a number of other pairwise or
two-body approaches reported in the literature. Using the data
for 21 crystals of Otero-de-la-Roza and Johnson, we compare
PBE0+MBD with XDM and the vdW-DF2 functional in
Table VI. To make a direct comparison it should be noted
that for oxalic acid the gas-phase structure was assumed
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TABLE VI. The ME, MAE, SD, and MARE of different vdW-inclusive
DFT methods for the lattice energies of the 21 molecule crystals of Otero-de-
la-Roza and Johnson.30 Note that an approximate correction has been applied
to the oxalic acid lattice energies of Ref. 30 and that the reference lattice en-
ergies from the present work (Table IV) have been employed for calculating
the different metrics. The ME, MAE, and SD are in kJ/mol, while the MARE
is in (%).

ME MAE SD MARE

B86b+XDM − 3.47 4.71 5.49 5.97
vdW-DF2 4.80 6.40 5.77 8.49
PBE0+MBD 1.17 3.92 4.87 5.69

to have the solid-state conformation in their work. At the
PBE and PBE0 levels (with and without dispersion contri-
butions) the difference between the correct conformer and
the solid-state conformation is approximately 21.5 kJ/mol
and a correction of this amount has been applied. As this
is averaged over 21 systems variations in this correction
due to the different functionals are liable to be minimal. Of
the three methods PBE0+MBD performs the best for all
four metrics. The MAE of B86b+XDM is still quite good
at 4.71 kJ/mol. However, with a negative ME, correctly
adding exact-exchange or many-body contributions would
make the XDM performance worse, as has in part been seen
with the use of the ATM term.69 The vdW-DF2 functional
performs well compared to the TS pairwise method but still
appreciably overbinds the crystals, almost twice as much
as PBE0+MBD. This overbinding is surprising given the
known underestimation of small-molecule C6 coefficients by
vdW-DF2.77

That an effective pairwise approach can give seemingly
good performance for molecular crystals is no surprise. There
are numerous studies of condensed phases of molecular sys-
tems employing empirical potentials. Fitting or scaling of C6

parameters for specific systems can often give good results
but their transferability and suitability for arbitrary molecular
configurations is a concern.78 Given that the overall role of
MBD is to reduce the lattice energy, it is natural to investi-
gate to what extend could a scaled version of the TS method
capture this behavior. Fitting the expression Elat = (Elat,PBE0

+ Ascr.ETS,solid − ETS,gas) to the experimental lattice energies
yields a pairwise screening coefficient of Ascr. = 0.85(2) and
a MAE of 4.54 kJ/mol.

While a scaled version of TS might yield good predic-
tions for lattice energies, there are a number of situations
where the fine detail of many-body dispersion is essential.
The lattice energy of cytosine is predicted well by both TS
and MBD, likely due to cancellation of the different polariza-
tion effects in MBD. Scaling the TS value therefore gives a
very poor prediction, in error by 14 kJ/mol. Constant scaling
would also not affect the relative ordering of polymorphs, the
correct ordering of which is the critical challenge for crystal-
structure prediction. In the present database, TS and other
pairwise approaches30 systematically overestimate the stabil-
ity of β oxalic acid, with near degeneracy only restored at the
PBE0+MBD level.34, 72 The importance of including many-
body effects goes beyond cohesive energies; it has been re-

cently shown that the prediction of the dielectric constants of
the polyacene crystals is also significantly improved by the
MBD method.63

C. Role of MBD in crystal structure geometries

All of the lattice energy and phonon calculations present
in Secs. III A and III B have employed PBE+TS optimized
geometries. Compared to PBE without any vdW contribu-
tions, PBE+TS yields very good lattice parameters, often
within a few percent of experimental values.29, 30 To under-
stand the role of MBD in determining the structure of molec-
ular crystals, the lattice parameters and internal geometries of
a selection of molecular crystals have been optimized at the
PBE+MBD level. The resulting lattice parameters are com-
pared with PBE+TS and experiment in Table VII.

In many cases the MBD and TS lattice vectors are
smaller than experimental values, with mean relative errors
of −0.55% and −0.75% for TS and MBD, respectively. It
is interesting to note that although MBD reduces the bind-
ing energy, it leads to a more compact structure than the
stronger bound pairwise method. None of the systems stud-
ied are known to feature negative thermal expansion and
therefore we expect the equilibrium optimized lattice param-
eters to be smaller than experimental values, as even at very
low temperatures zero-point vibrations will lead to an ex-
pansion of the experimental cell, both in terms of contribu-
tions to the free-energy surface and anharmonic averaging
over the lattice vibrations. In non-cubic systems variations
in the orientation of the molecules will also lead to changes
in the cell parameters and their relative sizes. Quantifying
how much smaller the lattice parameters should be in the
absence of zero-point and thermal contributions is difficult.
For simple systems the expansion contribution from quasi-
harmonic effects can be readily determined using phonon
calculations,51, 79 but for orthorhombic or monoclinic systems
accurate calculations would be much more demanding. Es-
timation of the anharmonic contributions would also require
NPT molecular-dynamics simulations, which would be simi-
larly demanding, especially at low temperatures, where path-
integral methods would be required. However, the ZPE con-
tributions to covalently bound cubic solids are known to be of
the order of 0.25%–0.5% of the lattice constant.79 For weaker-
bound molecular crystals values around 1% cannot be seen as
surprising, and this is consistent with the range of values ob-
served here.

In a few cases, MBD yields lattice vectors longer than
experiment. TS also overestimates the length of the benzene c
lattice vector. The overestimated lattice vectors in acetic acid
and pyrazine both occur for relatively short lattice vectors,
with sheets or stacking of molecules occurring in these direc-
tions. In particular, the c vector of pyrazine corresponds to
the direction in which the molecules stack in sheets, tilted at
an angle. Such geometries can lead to repulsive three-body
interactions.68 Over such small distances the repulsive contri-
butions likely dominate the other attractive interactions. This
may be sensitive to the range-separation parameter used to
match MBD to the DFT functional, which is fitted solely
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TABLE VII. The unique equilibrium lattice parameters and unit-cell volumes of 6 molecular crystals obtained using PBE+TS and PBE+MBD optimizations,
together with relative errors and experimental values determined at the temperature Texp.. Zero-point vibrational contributions are not included in the unit-cell
relaxations but are known for simple cubic covalently bound solids to amount 0.25%–0.5% of the lattice constant.79 Lattice parameters are in (Å) and (◦), while
volumes are in (Å3) and relative quantities are in (%).

Molecule Texp. (K) PBE+TS �PBE+TS PBE+MBD �PBE+MBD Exp.

Naphthalene80 10 a 8.109 0.30 7.970 − 1.42 8.0846
b 5.884 − 0.90 5.868 − 1.17 5.9375
c 8.660 0.30 8.570 − 0.74 8.6335
β 124.05 − 0.50 123.11 − 1.26 124.67
V 342.32 0.44 335.70 − 1.50 340.83

Ammonia81 2 a 4.962 − 1.70 4.987 − 1.21 5.048
V 122.18 − 5.02 124.03 − 3.58 128.63

Urea82 12 a 5.559 − 0.11 5.508 − 1.03 5.565
c 4.683 − 0.02 4.662 − 0.47 4.684
V 144.71 − 0.24 141.42 − 2.51 145.06

Benzene83 4 a 7.368 0.24 7.307 − 0.60 7.351
b 9.225 − 1.48 9.293 − 0.76 9.364
c 6.839 2.15 6.814 1.78 6.695
V 464.88 0.87 462.69 0.40 460.84

Acetic acid84 40 a 13.157 0.05 12.988 − 1.24 13.151
b 3.907 − 0.40 4.005 2.10 3.923
c 5.712 − 0.86 5.686 − 1.31 5.762
V 293.66 − 1.21 295.82 − 0.49 297.27

Pyrazine85 184 a 9.292 − 0.35 9.181 − 1.54 9.325
b 5.717 − 2.28 5.689 − 2.74 5.850
c 3.683 − 1.33 3.763 0.80 3.733
V 195.66 − 3.92 196.55 − 3.48 203.64

considering a database of 22 small gas-phase dimers.35 How-
ever, the differences between PBE and PBE+TS/MBD dwarf
those between TS and MBD alone. Both methods capture the
vast majority of the contribution of dispersion, and given its
far superior prediction of lattice energies, MBD is clearly a
better choice for DFT calculations of molecular crystals.

D. Higher-order multipole contributions to
van der Waals interactions

The many-body dispersion method accounts for all or-
ders of dipole interactions in a seamless fashion. While
these dipole interactions represent the leading order contri-
bution to the dispersion energy, a number of two-body meth-
ods also employ higher-order dipole-quadrupole (C8) and
quadrupole-quadrupole (C10) interactions in the pairwise en-
ergy expansion.18, 20 These higher-order terms are much more
short-ranged than the leading order dipole-dipole term and
can become correlated with the semi-local functional, mak-
ing their parameterization difficult.18 While several groups
advocate the use of these higher-order terms, a number of
studies suggest that with non-empirical semi-local function-
als the leading-order dipole term is the most important in the
pairwise expansion of the dispersion energy,86, 87 while for
water-sulfate clusters the higher-order terms in XDM have
been found to worsen the prediction of binding energies.88

The present work, focusing on ambient-pressure crystal struc-
tures, strengthens the suggestion that the dipole contributions
are dominant when they are coupled with non-empirical DFT
functionals.

At higher pressures or for very close-packed structures,
atoms may approach at much shorter distances, making the
short-range multipole terms more important for describing
their properties. This has been seen for the high-pressure
phases of ice, which cannot be sufficiently modeled using
only a dipole-dipole term.32 In the present database we believe
CO2 to be an example of a close-packed structure where mul-
tipoles are important. The lattice has high symmetry (Pa3) and
is essentially fcc packing of angled ellipsoids. The TS method
yields a reasonable prediction for the lattice energy, however
when many-body contributions are accounted for, the lattice
energy is underestimated by nearly 7 kJ/mol (PBE0+MBD),
a relative error of 25%. The TS lattice parameter for CO2 is
5.790 Å, while the experimental value, extrapolated to 0 K,
is 5.55 Å.89 Even with a lattice constant 4.3% too large all
of the CO nearest neighbor distances (3.21 Å) are within the
CO vdW radius of 3.32 Å. Optimizing the lattice with MBD
yields little improvement with a = 5.786 Å. With such high
symmetry, many of the dipole contributions cancel out, mak-
ing an accurate treatment of the multipole terms important.
We note though that the XDM method, which does include C8

and C10 terms in the pairwise expansion, yields a very simi-
lar lattice constant to TS,30 suggesting that such an accurate
treatment is not trivial. Indeed, as they are so short ranged
in nature, the higher-order effects might be better represented
by using improved functionals. For instance, it is known that
PBE0 has smaller short-range errors for interactions in van
der Waals systems compared to PBE.74

Systems such as CO2 and adamantane clearly require ad-
ditional contributions, whether higher-order multipole terms
or improved density functionals and they therefore are
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useful targets for method development. However, the excel-
lent performance of PBE0+MBD for the remainder of the
X23 database demonstrates that it is a powerful approach for
predicting lattice energies and stabilities of organic molecular
crystals.

IV. CONCLUSION

In the present work, a detailed assessment of the differ-
ent contributions to the lattice energies of molecular crys-
tals has been performed. The vibrational contributions are
not strictly contributions to the lattice energy, but rather are
important for converting experimental sublimation enthalpies
into lattice energies that can be compared with theory. In the
harmonic approximation, supercell phonon calculations show
significant deviations from the widely used Dulong-Petit law,
as noted elsewhere.30 A semi-anharmonic treatment using ex-
perimental heat-capacity data suggests that the anharmonic
contributions are not negligible and care should be taken in
comparing experimental lattice energies with DFT values.

The contribution of many-body dispersion and exact ex-
change to the lattice energy has been assessed for a database
of 23 molecular crystals, building on our previous work with
16 systems.34 Both contributions are found to be important.
The use of MBD as compared to the TS pairwise method re-
duces the MAE by more than half from 10.04 kJ/mol with
PBE0+TS to 3.92 kJ/mol with PBE0+MBD. Using a sin-
gle scaling parameter, the pairwise approach can reach within
0.6 kJ/mol of the many-body lattice energies. However, such
scaling will not correct any systematic deviations, such as the
incorrect ordering of polymorph stabilities. The use of exact
exchange has a smaller but still important contribution of the
order of 3 kJ/mol, reducing the impact of de-localisation er-
rors, particularly in hydrogen-bonded systems.

The role of MBD in determining the lattice parame-
ters has also been explored for a selection of systems us-
ing finite-difference forces and stresses. Compared to PBE,
which is known to often substantially overestimate lattice
constants,29 both the pairwise and many-body approaches
give good agreement with experiment, with many of the dif-
ferences likely to be of the order of zero-point and thermal
vibrational contributions to the lattice constants. The estima-
tion of these contributions for any crystal is non-trivial and
will form part of our future work in this area.

Overall, it has been shown that assessing predictions of
lattice energies requires careful consideration of vibrational,
many-body dispersion and exact-exchange contributions. Ne-
glecting any of these contributions would lead to an overes-
timation of the importance of other contributions, hindering
efforts to develop more accurate and physically moti-
vated computational approaches. While the need for exact-
exchange functionals may at present pose computational dif-
ficulties, developments in localized-basis set codes90 and
screened-exchange functionals76 should provide a way for-
ward. The excellent performance of MBD, both for lattice en-
ergies and structures, suggests that it can be a powerful tool
for the investigation of structure-properties relationships of
molecular crystals. Ongoing development of analytical forces
and stresses should enable us to fully explore the role of MBD

in governing geometries and phonons, as well as related prop-
erties. Studies at high pressure should also lead to a better
understanding of multipole terms in the dispersion energy.
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