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Background

Nondestructive evaluation (NDE)
Methods used to examine an object, material or system without impairing
its future usefulness

Available Techniques:
impedance tomography,
radiography, ultrasounds,
acoustic emission

SHM - Damage Detection:
Monitor changes in the dynamic
properties of a structure
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Inverse problem

→ Detection of cracks in existing structures

→ Measurements are available

→ A computational model is employed

→ The difference between the two is minimized

→ Information regarding the cracks is obtained
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Inverse problem
Mathematical formulation:

Find βi such that
F (r (βi ))→ min

where

βi Parameters describing the crack geometry

r (·) Norm of the difference between measurements and computed
values

F Some function of the residual

The CMA-ES algorithm is employed to solve the problem.
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Inverse problem

Solution process:

→ Generation of initial population (βi ) with CMA-ES

→ Fitness function (F (r (βi ))) evaluation using XFEM and
measurements

→ Population is updated with CMA-ES

→ The procedure is repeated until convergence
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Inverse problem

During the optimization proccess:

A large number of crack geometries is tested

The computational model is solved several times

An efficient and robust method is required
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XFEM

FEM vs XFEM for fracture:

FEM
⇒

XFEM
⇒

No crack

Crack 1 Crack 2
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XFEM approximation

XFEM approximation:

u (x) =
∑
∀I

NI (x) uI︸ ︷︷ ︸
FE approximation

+
∑
∀I

N∗I (x) Ψ (x) bI︸ ︷︷ ︸
enriched part

where:

NI (x) are the FE shape functions

uI are the nodal displacements

N∗I (x) are functions forming a PU

Ψ (x) are the enrichment functions

bI are the enriched dofs
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Enrichment functions

Jump enrichment functions:

H(φ) =
{

1 for φ > 0
− 1 for φ < 0

Tip enrichment functions:

Fj (r , θ) =
[√

r sin θ2 ,
√

r cos θ2 ,
√

r sin θ2 sin θ,
√

r cos θ2 sin θ
]
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XFEM

Some drawbacks of XFEM:

The use of tip enrichment in a fixed area around the crack front
(geometrical enrichment) is required for optimal convergence

The use of geometrical enrichment causes conditioning problems

Blending problems the enriched and the standard part of the
approximation

K. Agathos et al. XFEM based crack detection 1/6/2016 11 / 21



Global enrichment XFEM

An XFEM variant is employed which:

Enables the application of geometrical enrichment to 3D

Employs weight function blending

Employs enrichment function shifting
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Global enrichment XFEM

Special front elements are introduced:

crack surface

crack front

front element
boundary

front node front element
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Global enrichment XFEM

Front element shape functions:

boundary
front elementnode

front element
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Global enrichment XFEM
Displacement approximation:

u (x) =
∑
I∈N

NI (x) uI + ϕ̄ (x)
∑

J∈N j

NJ (x) (H (x)− HJ)bJ+

+ ϕ (x)

 ∑
K∈N s

Ng
K (x)

∑
j

Fj (x)−
∑

T∈N t
NT (x)

∑
K∈N s

Ng
K (xT )

∑
j

Fj (xT )

 cKj

where:

ϕ̄, ϕ are weight functions

Ng
K are front element shape functions

HJ ,Fj are nodal values of the enrichment functions
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Problem parametrization

Elliptical cracks are considered:
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Parameters:

Coordinates of center
point x0 ({x0, y0, z0})

Rotation about the three
axes θx , θy and θz

Lengths a and b
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Problem parametrization

Scaling of parameters:

pi = pi1 + pi2
2 + pi2 − pi1

2 sin
(
βi
10 ·

π

2

)
where:

βi are design variables

pi are geometrical parameters of the crack

pi1 , pi2 are lower and upper values for the parameters
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Penny crack in a cube

Geometry and sensors:
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Penny crack in a cube
Optimization problem convergence:
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Penny crack in a cube
Best solution after different numbers of iterations

Actual crack

Detected crack

Initial guess 500 evaluations 1000 evaluations

1500 evaluations 2000 evaluations
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Conclusions

→ A 3D crack detection scheme was presented

→ Promising results were obtained

→ Extension to practical problems would increase computational cost

→ Computational cost of forward problem solutions should be reduced

K. Agathos et al. XFEM based crack detection 1/6/2016 21 / 21


	Inverse problem formulation
	Global enrichment XFEM
	Parametrization and constraints
	Numerical examples
	Conclusions

