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Abstract—The emergence of new connected devices has opened
up new opportunities and allowed to imagine concepts that
bring computer sciences and social sciences closer together. In
particular, today’s increasingly sophisticated miniature sensors
allow to track and understand human activities and behavior with
a great precision. Taking different approaches and perspectives,
we use in this paper smartwatches and smartglasses to explore
these behaviors and show that these objects, considered by many
as gadgets, have an important role to play in understanding
the lives of individuals. The main objective of this work is
to introduce two new scales of activity detection, which lacks
a formal and consistent definition in the literature. First, we
propose a model that precisely detects and interprets movements
made by a person wearing smart devices. Then, we use this model
to show different interactions between those micro-activities and
bigger chunks of behaviors we call macro-activities. Using a
new concept based on 3D visualization, we finally show that
combining those two scales and using a limited dataset, it is
possible to distinguish between different individuals when they
are performing very similar activities. The findings of this study
lead the way to enhanced user profiling.

Index Terms—Activity and Mobility Detection, Sensing Sys-
tems, Mobile Computing, User Profiling.

I. INTRODUCTION

In recent years, the growing availability and falling cost
of connected objects embedded with software and sensors has
opened up a world of opportunities for new applications. Apart
from smartphones, which are not all the time on the user, these
objects include a wide range of ultra-portable (or wearable)
devices that constantly interact with the body movements and
with the IT environment (e.g. using Bluetooth of Wi-Fi). These
wearables have much in common with ubiquitous computing
both in the field of research and in terms of functionality [1].
They can precisely detect a range of events and can be precise,
responsive and permanently operational [2].

Recently, the arrival on the market of major players like
Apple, Google and Microsoft popularized smartwatches and
smartglasses and facilitated the development and widespread
adoption of sensing applications (e.g. with Android Wear),
opening doors in many areas including sport and personal
monitoring. Moreover, data from activity sensors and sports
watches, usually proprietary to device manufacturers [3], can
be accessed via services such as Apple Health and Google
Fit. Technological advances have led to the integration of
sensors that can produce results equal to those of specialized

experimental devices. [4] shows for example that movements
of the arms, the hands and possibly the fingers, generate energy
strong enough to be picked up by the accelerometer and the
gyroscope of a smartwatch with 98% precision.

Detecting and identifying user activity has undergone such
extensive research that it is already being integrated into
many commercial products. From the fitness tracking market,
Google Fit App claims for example to detect basic activities
such as walking, running or biking. However, the concept of
user activity lacks of a formal and consistent definition across
the state of the art or the commercial applications. Commercial
approaches focus on activity understood as physiological and
motor activity. While physiological and motor activity can
easily be captured by wearable devices through commercial
sensors, they point to a limited area of the human activity
spectrum. In that respect, Newell [5] described a range of
behavioral levels (called bands) distinguished by the frequency
of occurrence of a specific behavior: biological, cognitive,
rational and social bands (see Table I for details).
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TABLE I: Activity scales

In the state of the art, there is no distinction between
those scales. Moreover, activity detection frequently refers to
the cognitive band only (activities lasting from split-second
to a few seconds). Those activities are elementary actions
that support the achievement of larger scale goals. For this
reason, we propose two new concepts in this work in order to
support a better understanding of user activities: on the one
side, micro-activities are activities detectable from wearable
sensors measurements that relate to activities located in the
cognitive or even in the upper-bound biological bands; on



the other side, macro-activities are activities located in the
rational or in the lower-bound social bands. In our view, users
reason in macro-activities (e.g. physical exercise). Macro-
activities are meaningful to users because they can be directly
correlated with goals. Such goals can be decomposed into
activities that individually are less meaningful: micro-activities
(e.g. walk steps, squats) do not carry value by themselves.

This paper reports on experiments where we used two
smart devices for extracting micro- and macro-activity in-
formation. After introducing related work in Section II and
our methodology in Section III, we show in Section IV how
smartglass devices could be used to determine head gestures
along with a long-run visualization of those gestures. A long-
run visualization of directional head movement in combination
with social ones might be a possible way to understand
group interactions in a given environment. In contrast, for the
reporting of Section V we used smartwatches to classify users
in different locomotion activities using a three sensor approach
and a 3D visualization of the data. To summarize, this work
has the following objectives: (1) to present two concepts, i.e.
micro- and macro-activities; (2) to characterize and compare
those micro- and macro-activities using two smart devices to
collect data; (3) to present future ways of using these new
devices to improve our understanding of human activities.

II. RELATED WORK

A. Sensing Systems

The use of smart devices as key elements in a sensing plat-
form has been discussed for many years, in both industrial and
research communities [6]. Wearables such as smartwatches
and smartglasses have their place in this ecosystem and can
open up new perspectives. By combining these devices, a large
amount of data can be obtained from sensors such as GPS,
accelerometer, gyroscope, magnetometer and most recently
even barometer, temperature or heart rate monitor, as well as
interactions with Bluetooth, WiFi, NFC or cellular [7].

In most cases, smart devices are connected via Bluetooth
Low Energy (BLE) [8], a relatively new technology that has
been standardized under the Bluetooth 4.0 specification [9].
Detection can be as opportunistic [10] as it is participa-
tory [11]. In the case of a participatory system, incentives
are an important aspect as the user is involved in the data
collection process: they can include services, games or per-
sonal benefits [7]. In the case of an opportunistic system, a lot
of applications are based on crowd-sensing to aggregate data
from sensors [12].

Finally, note that these kind of ecosystems can address three
levels of detection [6]. At individual level, where detection
and data processing are targeted at and for the individual (or
perhaps some authorized person), as in the case of certain
applications connected to sport [13]. At group level, where
individual participants with devices share a goal or a com-
mon interest, when there is an element of trust within the
group [14]. At community level, with many participants [15].
At this level, when people are strangers and don’t have the

same trust in one another, it is important to define rigorous
systems for the protection of personal privacy.

B. Activity and Context Detection

As introduced, the direct activity and movements of the
user can be reliably deduced by smart devices [4], [16].
FDSVM [17] (Frame-based Descriptor and multi-class SVM)
is an approach that can classify a large variety of gestures
using a three-axis accelerometer. It is based on SVM [18]
(Support Vector Machine), a set of statistical learning methods
intended to resolve problems of discrimination and regres-
sion. [19] present a pointing device that detects movement
with FDSVM and also takes social interaction into account.
Other algorithms are also known and are based on the DTW
approach [20] (Dynamic Time Warping) or even HMM [21]
(Hidden Markov Model).

Detecting motion and different types of activity (walk-
ing, running, traveling in a car, etc.) is also possible using
a smartphone alone [22]. However, this choice is not the
most relevant, given that the user doesn’t always have the
smartphone with him. Moreover, studies in the University of
Washington – Intel Mobile Sensing Platform [23] show a real
interest in activity detection using new sensors, still little used
on the market (e.g. walking on a wet floor using humidity
sensors). [24] studies patients with mental disorders and uses
smartwatches to help quantify the exercise and the amount
of sunlight wearers received. The measured data is sent to a
server where it can be analyzed and consulted by doctors.

Finally, smart devices can detect and understand the context
(or environment) in which a user finds himself. [25] uses
data from the accelerometer, sound, GPS and WiFi signals
to classify its activities. It also monitors ambient noise. By
continuously recording sound, it is possible to identify the
contexts of a person’s life, whether having a conversation,
sitting in the office, walking out on the street, or even making
coffee [26]. EmotionSense [27] is a platform that uses data col-
lected by smartphones for social psychology studies, detecting
activities but also verbal interaction and proximity to others.
[28] automatically classifies personal events, and automatically
shares the results of its analysis on social networks.

III. METHODOLOGY

Local Sensing System
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recognition
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(    )

Fig. 1: Overview of our architecture

The architecture used as part of our studies is illustrated
in Figure 1. It is composed of two main parts. First, the



sensing system is based on one or more smart devices with the
objective of collecting metrics when users wear them. This is
done in particular through an Android application that we have
developed independently for smartglasses and smartwatches,
which usually need a smartphone to access the Internet. Then,
an online platform is responsible for data storage and overall
processing. The devices used as part of our experiments are
detailed in Table II.

Devices RAM /
Storage CPU Network

Interfaces Main sensors

EPSON
Moverio
BT-200

1 GB /
8 GB

Dual-
core

1.2 GHz

GPS, 802.11
b/g/n, Bluetooth

3.0

Accelerometer,
gyroscope, compass,

microphone.

Samsung
Gear Live

512 MB /
4 GB

Quad-
core

1.2 GHz
Bluetooth 4.0

Heart rate,
pedometer,

accelerometer,
gyroscope, compass.

TABLE II: Specification of the devices

In this study, we use smartglasses for detecting micro-
activities, and smartwatches for detecting macro-activities.

Indeed, as micro-activities are short actions, they do not
need a long period of data collection. Smartglasses are gener-
ally less comfortable than smartwatches, which can be worn
over a longer time. In addition, micro-activities are more sensi-
tive to movements, i.e. we need to collect data at a high rate.
Smartglasses are for studying micro-activities because head
movements are generally less important than arm movements
with respect to goal achievement. The sensitivity of the system
is therefore important. We used the Epson MOVERIO BT-200
smartglasses for our experiments because of their advanced
and open operating system (Android). However, the methods
described in this paper are applicable to any type of device
running on Android 4+.

Smartwatches were then selected for the detection of macro-
activities, as they are comfortable and integrate additional
sensors to detect specific activities (e.g. being in public
transportation detecting nearby devices and access points).
Moreover, these devices have a good battery capacity and can
detect the IT environment using Bluetooth 4.0.

IV. DETECTING MICRO-ACTIVITIES

In this section, we use Dynamic Time Warping (DTW)
to detect micro-activities. DTW is one of the most popular
algorithms that measures the similarities between two time
sequences of different speed and duration [29]. Using this
method on smartglasses and based on a small dataset col-
lected over three participants (Sec. IV-C), we then study the
advantages and disadvantages of using those micro-activities
to understand the human behavior and mobility.

A. Dynamic Time Warping

DTW aligns two time series in order to minimize the
cumulative distance d between each of the data points.

Suppose we have two one-dimensional time series: X =
(x1, ..., x|X|) and Y = (y1, ..., y|Y |). DTW provides a cost,
which is calculated through a two-dimensional cost matrix
C (|X| by |Y |). Each cell represents the minimum cost

accumulated between the time series X and Y to the position
of that cell, and is calculated by:

C(i,j) = D(xi, yi)+min{C(i,j−1), C(i−1,j), C(i−1,j−1)} (1)

which represents the distance between point i of series X
and point j of series Y , of the minimum accumulated distance
from the previous three cells that surround cell i, j (the cell at
the top, left and diagonally). D is a distance function, generally
Euclidean:

D(xi, yi) = (xi − yi)2 (2)

When the matrix is full, the minimum normalized distance
between X and Y is obtained by taking the value of the last
cell:

DTW (X,Y ) = D(|x|, |y|) (3)

Figure 2 shows an example of the alignment of multiple
time series, taking the three axes of the gyroscope and de-
scribing a “Yes”, nodded while wearing smartglasses.
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Fig. 2: Alignment of multiple time series describing a “Yes”

B. Considering multiple dimensions

In order to perform motion detection and recognition, we
set up a program to record a training dataset composed of
multiple time series identified by a label (i.e. the name of the
movement being performed – e.g. nodding head).

Using the three axes of the gyroscope as the basis for
detecting and registering head movements, we then defined
two groups and a total of seven movements, i.e. social: yes,
no, don’t know (which corresponds to a shrug and a slight tilt
of the head) and direction: up, bottom, right, left.



After each movement led one or more times, the detection
of a movement is done simply by comparison with the training
dataset. In order to treat the three dimensions represented
by the three axes of the gyroscope, we use a Euclidean
normalization (L2 norm) to reduce each movement to a one-
dimensional series

√
α2 + β2 + γ2, with α, β and γ axes of

the gyroscope.

C. Experiments

We have implemented our method on smartglasses whose
choice was justified in the previous section. The setting is of
an Android application that allows (1) to record a training
dataset consisting of several movements defined by the user,
and (2) to return the movement and the distance determined
using DTW that match a current movement.

To record the user’s movements, the application automati-
cally detects sudden changes of the gyroscope, and stores or
classifies the corresponding time series. Two other methods
were also implemented, one based on a time slot (e.g. regis-
tration or classification every 5 seconds) and the other based
on a button that the user must push to start or stop recording.

Our experiments were based on three different participants.
The first recorded the movements described in Sec. IV-B for a
training dataset. The second wore glasses for 2.8 h at different
places (work, public transport, city center, etc.), which caused
the detection of 1,863 movements (i.e. one every 5.4 seconds).
The third wore them for 3.6 h and was all the time in the same
room, which caused the detection of 1,689 movements (i.e. one
every 7.65 seconds). It seems logical that an inactive person
does less movements that a person who is moving.

D. Results

Figure 3 shows the number of movements (described in
Sec. IV-B) detected in both groups for the second participant,
whose behavior seems more interesting than the third. The
red dots show the difference between group A (direction) and
group B (social). After consulting a diary activity1 provided by
the participant, we can draw some conclusions. Around 2,000
and 8,000 seconds, the participant was sitting in a bar, which
caused more social movements. Between 3,000 and 5,000 sec-
onds, the participant was in the street walking with a variable
speed. The peak of attention seems longer between 3,000 and
4,000 seconds, when the participant was in the middle of a
fun-fair. Finally, before 2,000 and around 6,500 seconds, the
participant was not wearing the hardware, which explains the
lack of movements. This allows to understand more precisely
the type of interaction performed by a user, without having to
use expensive methods (e.g. image processing).

Figure 4 shows the distribution of distances computed for
each registered gesture. The graph shows three categories of
gestures that are detected each with different accuracies. This
means that the training dataset is not representative of all
types of movements that can be performed, and even less of
different people that can make these movements. Indeed, each

1Available online: http://swipe.sfaye.com/mobiworld16/diary-activity.pdf
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Fig. 3: Micro-activity detection timeline

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

Distance

D
en
si
ty

Up
Down
Right
Left
Don't know
No
Yes

Fig. 4: Micro-activity detection distribution. The distance is
computed according to the formula 2 used for one-dimensional
series (Section IV-B).

individual has his own way of behaving, and this scale study
is too precise to easily identify real differences.

As just presented, the combined detection of several micro-
activities can describe moments in the user’s life and forms
macro-activities. This approach can be useful to understand
how small physical actions can compose into complex and
goal-directed actions. Furthermore, this approach has the po-
tential to consider other metrics, such as the ambient sound
or the orientation of the smartglasses to detect additional
contextual information. In the next section, we use micro-
activities in order to distinguish between users performing the
same given macro-activity.

V. USING MACRO-ACTIVITIES TO CLASSIFY USERS

In this section, as discussed above, we assume that we
have enough tools and technologies to easily detect macro-
activities. In [30], for example, we proved that it is possible
to use a combination of different sensors from a smartphone
and a smartwatch to describe physical and social behaviors
of different users. Other algorithms are also relevant, such as
those integrated to Android to detect physical moves of a user.

In order to go further in trying to compare and classify
users doing similar activities, our idea is to combine different
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(b) Physical activity
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Fig. 5: Three aspects of the user’s everyday life

macro-activities with micro-activity metrics, i.e. raw data
from sensors. To this extent, we introduce novel 3D visual
representations, allowing the comparison of different users
with similar activities. Moreover, we rely on a dataset obtained
from 13 participants we have collected using a smartwatch, a
smartphone and the SWIPE open-source application [31] (i.e.
157.2 h of recording). More details can be found in [30].

First of all, we choose three metrics to represent different
aspects of a user’s everyday life. We avoid using metrics
such as GPS or environmental data because we want to focus
on the behavior of the user, i.e. his movements as well as
physiological data. For this reason, we choose to use (1) the
average heart rate of the user from the smartwatch (recorded
every 60 seconds), (2) the average linear acceleration com-
puted on the smartwatch (recorded every 30 seconds) and
(3) the maximum linear acceleration on the smartwatch to
detect sudden movements (recorded every 30 seconds). The
linear acceleration can be described as the rate of change of
velocity of an object. It is computed over the three axes of the
accelerometer:

√
x2 + y2 + z2.

These metrics are then computed for three complementary
aspects as shown in Figure 5, namely inactivity, physical
activity and transportation. Figure 5(a) is a 3D representation
of the three normalized metrics computed when the users
was in the “sitting” position. Figure 5(b) represents the users
when they were in a “walking” activity. In both cases, we can
see a relation between the maximum and the average linear
acceleration, and a good distribution of all users. This means
that each user has his own way of moving, and it is visible
easily using this kind of graph. Finally, figure 5(c) shows when
the users was in a vehicle. The distribution is different from
the two others as we clearly see one big cluster, showing
participants that use their own car. The two other participants
were using public transportation (bus, train).

Figure 6 gives an idea of how we can compute a profile for
each user. The idea is to combine the three previous graphs
and to compute three distinct indexes: activity index, inactivity
index and transportation index. Each index is normalized
between 0 and 1 and is computed depending on the gravity

center of the graphs, which is a common value between all
data points: it is used to compute the distance of each user
compared to the average behavior. For example, the activity
index of P11 is the absolute value of the distance between the
gravity center of all other participants and the P11 point in
Figure 5(b). We can see for example than the profile of P1
seems to be close to the one of P8. This example is just an
introduction to the possibilities we have using such aggregated
graphical methods and can lead to user profiling and enhanced
personalized services as we discuss in the next section.
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VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented two activity detection scales and
studied their interactions in order to improve the understanding
of human behavior and mobility. Using new visualization
methods drawn from smartglasses and smartwatches data,
we show that micro- and macro-activities could be analyzed
together for a better understanding of the user behavior: on
the one hand, combining micro-activities can provide a better
understanding of user activity overall (like in Figure 3); on the
other hand, within a given macro-activity, individuals could be
identified using micro-activity patterns (see Figure 5).

In our point of view, the originality of combining micro-
and macro-activity levels of behaviors will lead to two types



of innovative applications and services. First, if a gesture is the
unit of user’s daily routine as a word is the unit of a sentence,
combining different levels of activity will allow for a better
understanding of the user’s goals which in turn will improve
tailoring applications and services to his/her needs. Then,
having a complete scope of a user’s daily routine will make it
easier to match user content or service recommendations by
using preferences of users who share the same routine. Such an
approach can rise challenges in terms of the trade-off between
privacy constraints and profiling accuracy.

Beyond detection and classification, sensing activities and
environments may open possibilities of long-term life-logging
and memory augmentation. More specifically, long-term mem-
ory mostly works based on contextual cues and priming that
actually activate more abstract, verbal memories about facts
and self. A good illustration of this is Proust’s “episode
of the madeleine”. What if a wearable device could sense,
store and (re-)activate context automatically and on a large
scale? Applications are ranging from personal information
management, social sharing of stories and activities, and
even medical applications related to supporting memory or
detecting disease early-on. Finally, it is important to note that
those applications rise important issues in terms of privacy:
how to improve user awareness of what is currently being
logged, how it is processed or shared, and how the user may
tune the sensitiveness of context sensing.
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