
Applications of the CPAL language to model,
simulate and program Cyber-Physical Systems

Loïc FEJOZ
RealTime-at-Work (RTaW), France

loic.fejoz@realtimeatwork.com

Nicolas NAVET, Sakthivel SUNDHARAM,
Sebastian ALTMEYER

University of Luxembourg, Luxembourg
firstname.lastname@uni.lu

Abstract— CPAL is a new language to model, simulate, verify

and program Cyber-Physical Systems (CPS). CPAL serves to
describe both the functional behaviour of activities (i.e., the code
of the function itself) as well as the functional architecture of the
system (i.e., the set of functions, how they are activated, and the
data flows among the functions). CPAL is meant to support two
use-cases. Firstly, CPAL is a development and design-space
exploration environment for CPS with main features being the
formal description, the editing, graphical representation and
simulation of CPS models. Secondly, CPAL is a real-time
execution platform. The vision behind CPAL is that a model is
executed and verified in simulation mode on a workstation and
the same model can be later run on an embedded board with a
timing-equivalent run-time behaviour. The design and
development of CPAL have been organized around a set of
realistic case-studies that will be demonstrated during the demo
session.

I. MODEL AS THE CODE

CPAL has been initially inspired by the success of three
interpretation-based runtime environments, successfully
certified at the highest criticality levels and deployed at large
scale in railway interlocking systems over the last 20 years at
SNCF and RATP in France, and in UK and other countries
through the Westlock interlocking system from
Westingshouse. Surprisingly to the best of our knowledge,
except above applications and some industrial automation
(PLCs) model interpretation has not been widely explored,
albeit it possesses a number of key advantages such as: the
model can be directly uploaded on the target, there is no
difference between the model and the code, the total software
size is greatly reduced both off-line and on the target,
hardware independence is ensured, etc.
CPAL supports two types of model interpretation: the direct
interpretation of the design models on an interpretation engine
running on top of the hardware, called “bare-metal model
interpretation” (BMMI), and the interpretation on top of an
OS. The latter is less predictable from a timing point of view
but more convenient for development and experimentations.
CPAL and its associated tools are jointly developed by our
research group at the University of Luxembourg and the
company RTaW since 2012. The CPAL documentation,
graphical editor and execution engine for Windows, Linux,
embedded Linux, and Raspberry Pi are freely available for all
uses at http://www.designcps.com. A BMMI port of CPAL is
available for Freescale FRDM-K64F boards.

II. CPAL: PROVIDING HIGH-LEVEL ABSTRACTIONS FOR

EMBEDDED SYSTEMS

Figure 1, shows that Model-Driven Development is an
enabling technology to fill the programming languages gaps.
But still existing languages lack the high-level abstractions and
automation features that would make them more productive. In
addition, the design and development of embedded systems,
especially ones with dependability constraints, necessitates the
use of many best practices. None of the programming
languages we are aware of are well suited to make the
development of safe and provably correct embedded systems
as quick and easy as possible.

Figure 1: Spectrum of Model-Based Design approaches (core

of the figure from [Br04]).

The main requirement when designing CPAL was to natively
provide the high-level abstractions which are (i) familiar in the
domain of embedded systems, and (ii) needed to express in an
unambiguous and concise manner domain specific patterns of
functional behaviors as well as non-functional properties. A
process denotes the core language entity to implement a
recurrent activity with its own dynamic. A process is
automatically activated at a specified rate, with the optional
requirement that a specific logical condition is fulfilled to
execute (this is called guarded execution). CPAL processes are
classically referred to as tasks, runnables or threads in other
contexts.
CPAL provides the programmers with high-level abstractions
well suited for the domain of CPS such as

 Real-time scheduling mechanisms: processes are
activated with a user-defined period, possibly with an

offset relationship with each other, and additional
execution conditions such as for instance the
occurrence of some external events.

 Finite State Machines (FSM): the logic of a process
can be defined as a Finite State Machine (FSM) based
on Mode-Automata.

 Communication channels to support data flow
exchanges between processes, and reading/writing to
hardware ports.

 Introspection mechanisms that enable processes to
query at run-time their execution characteristics such
as their activation rate and activation jitters.

A key objective behind CPAL is to let designer state the
permissible timing behavior of the system in a declarative
manner while a system synthesis step involving both analysis
and optimization then generates a scheduling solution which at
run-time is enforced by the execution environment.

III. DEMONSTRATION OF CPAL USE-CASES

CPAL [Na16] supports several use-cases discussed below and
that will be demonstrated during the demonstration session.

A. High-level programming language for network simulation
environments

CPAL can serve to describe the functional behavior of
applications and high-level protocol layers. A CPAL model is
for instance used in [Se15] to simulate the SOME/IP Service
Discovery protocol in a Daimler Car’s prototype network. The
model hands over the frames once created to the simulation
kernel of RTaW-Pegase, a communication architecture
performance analysis tool from RTaW. Interestingly, the same
CPAL simulation model can be executed with no changes on
an embedded target or a workstation to experiment on a test-
bed later in the design process.
This use-case will be briefly demonstrated through a CPAL
model that transmits video streams with different coding
standards (raw video, H.263) with segmentation an automotive
Ethernet network.

B. Modeling and simulation language for Design Space
Exploration

CPAL is meant to support the formal description, the editing,
graphical representation and simulation of cyber-physical
systems. It can be used in its own development environment,
like done for the FMTV Challenge [Al15], or within
Matlab/Simulink to implement the controller, as done for the
landing gear case-study [Bo14]. The simulation models can be
executed in real-time (i.e., activation periods are respected) or
as fast as possible in simulation mode.
This use-case will be briefly illustrated on the FMTV
Challenge 2015, highlighting also the limits of what can be
automated.

C. Real-time execution engine

The intention of CPAL is to provide not only a modeling
language, but also an interpreter which ensures equivalence
between the simulated behavior of the model and the behavior
on the execution platform, both in the functional and the
temporal domain.

As in Figure 2, this use-case will be demonstrated on the
“smart parachute”, a remote termination add-on component
improving safety of UAS [Ci16] developed in partnership with
the company Alérion. The parachute is controlled by a CPAL
program, on top of the bare-metal interpreter, executing on a
Freescale FRDM-K64F board.

Figure 2: From simulation to field test

D. CPAL for teaching and research

CPAL has been used for teaching Model-Based Design
(MBD) for embedded systems since 2012 at the University of
Luxembourg at the 3rd year Bachelor level. Practicals include
programming a capsule coffee machine, a simplified
programmable floor robot and elevator control system, etc.
Our experience has been positive in terms of how fast students
have been able to work autonomously on the development of
the system. Indeed, most students are able to master the
language within a few hours. In addition to the simplicity of
the language, the free availability of the tools, the on-line
examples and the CPAL-Playground facilitate the learning
process. CPAL is also used in the experiments of the research
conducted at the University of Luxembourg on timing-aware
Model-Driven Engineering. We will present small case-studies
used in teaching and research outcomes based on CPAL.

REFERENCES
[Al15a] S. Altmeyer, N. Navet, L. Fejoz, “Using CPAL to model and validate

the timing behaviour of embedded systems”, WATERS Workshop, July
2015.

[Al15b] S. Altmeyer, N. Navet, "Towards a declarative modeling and
execution framework for real-time systems", First IEEE Workshop on
Declarative Programming for Real-Time and Cyber-Physical Systems,
San-Antonio, USA, December 1, 2015

[Bo14] F. Boniol, V. Wiels, “The landing gear system case study”, pp1-18,
Proc. ABZ 2014, 2014.

[Br04] A. Brown, “An Introduction to Model Driven Architecture – Part1:
MDA and today’s systems”, IBM technical library, 2004.

[Ci16] L. Ciarletta, L. Fejoz, A. Guenard, N. Navet, “Development of a safe
CPS component: the hybrid parachute, a remote termination add-on
improving safety of UAS”, to appear at ERTSS2016, Toulouse, January
2016.

[Na16] N. Navet, L. Fejoz, L. Havet, S. Altmeyer, “Lean Model-Driven
Development through Model-Interpretation: the CPAL design flow”,
Embedded Real-Time Software and Systems (ERTS 2016), Toulouse,
France, January 27-29, 2016.

[Se15] J. Seyler, T. Streichert, M. Glaß, N. Navet, J. Teich, “Formal Analysis
of the Startup Delay of SOME/IP Service Discovery”, DATE 2015,
Grenoble, France, March 9-13, 2015.

