Ab-initio study of the temperature effects on the optical properties of transition metal dichalcogenides

Alejandro Molina-Sánchez, Maurizia Palummo, Andrea Marini, Ludger Wirtz

Motivation

Realistic description of electronic structure, electronlattice interaction

Temperature effects: bandgap renormalization, finite lifetime for electrons and excitons

First step for a carrier relaxation study. Application in valley depolarization, ultra-fast spectroscopy

A few formulas...

$$\bar{H} = \bar{H}_{el} + \bar{H}_{ion} + \bar{H}_{el-ion}$$

Without lattice-interaction: Electronic states have infinite lifetimes Reality: Lattice-interaction gives them a finite lifetime

A few formulas...

Scattering of an electron by a phonon

Temperature enters via population of phonon states

$$\Sigma_{n\mathbf{k}}^{Fan}(i\omega_{i},T) = \sum_{\mathbf{q}\lambda\mathbf{n}'} \frac{|g_{nn'\mathbf{k}}^{\mathbf{q}\lambda}|^{2}}{N_{q}} \left[\frac{N_{\mathbf{q}\lambda}(T) + 1 - f_{n'\mathbf{k}-\mathbf{q}}}{i\omega - \varepsilon_{n'\mathbf{k}-\mathbf{q}} - \omega\mathbf{q}\lambda - i0^{+}} + \frac{N_{\mathbf{q}\lambda}(T) + f_{n'\mathbf{k}-\mathbf{q}}}{i\omega - \varepsilon_{n'\mathbf{k}-\mathbf{q}} + \omega\mathbf{q}\lambda - i0^{+}} \right]$$

$$\Sigma_{n\mathbf{k}}^{DW}(T) = \sum_{\mathbf{q}\lambda} \Lambda_{nn\mathbf{k}}^{\mathbf{q}\lambda, -\mathbf{q}\lambda} (2N_{\mathbf{q}\lambda}(T) + 1)$$

Two-phonon scattering process

Quasiparticle approximation

$$E_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}} + Z_{n\mathbf{k}}$$

Complex Bare energy energy

$$E_{n\mathbf{k}}=arepsilon_{n\mathbf{k}}+Z_{n\mathbf{k}}\Big[\Sigma_{n\mathbf{k}}^{Fan}(arepsilon_{n\mathbf{k}},T)+\Sigma_{n\mathbf{k}}^{DW}(T)\Big]$$
 emplex Bare energy energy

$$A_{n\mathbf{k}}(\omega,T) = \frac{Z_{n\mathbf{k}}(T)|\Gamma_{n\mathbf{k}}(T)|}{\pi \left[(\omega - \Re[E_{n\mathbf{k}}](T))^2 + \Gamma_{n\mathbf{k}}^2(T) \right]}$$

Bandgap renormalization

Bandgap renormalization

Breakdown QP approx.

What about optical properties (excitons)?

Excitons at finite temperature

$$H_{ee',hh'}^{FA} = (E_e - E_h)\delta_{eh,e'h'} + (f_e - f_h)\Xi_{ee',hh'}$$

Experiments show lines with different broadenings

Spectra usually obtained at room temperature

Homogeneous broadening for all the peaks

Excitons at finite temperature

$$H_{ee',hh'}(T) = H_{ee',hh'}^{FA} + [\Delta E_e(T) - \Delta E_h(T)] \delta_{eh,e'h'}$$

Bethe-Salpeter Hamiltonian is not hermitian Excitons acquire a finite lifetime

Excitons at finite temperature

$$H_{ee',hh'}(T) = H_{ee',hh'}^{FA} + [\Delta E_e(T) - \Delta E_h(T)] \delta_{eh,e'h'}$$

Bethe-Salpeter Hamiltonian is not hermitian Excitons acquire a finite lifetime

Conclusions and ongoing work

Temperature effects are important for an accurate bandgap value and for a realistic description of the bands

Breakdown of quasiparticle approximation

Lifetime of quasiparticles (excitons)

Carrier relaxation for ultra-fast optics

Acknowledgements

Fonds National de la Recherche Luxembourg

CORE-JUNIOR TRACK FAST-2DMAT PROJECT

L.Wirtz
Theoretical Solid-State Physics Group

D. Sangalli & A. Marini CNR Rome, Italy

Carrier relaxation for ultra-fast optics

