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SUMMARY

Debugging Simulink models presents a significant challenge in the embedded industry. In this work, we

propose SimFL, a fault localization approach for Simulink models by combining statistical debugging and

dynamic model slicing. Simulink models, being visual and hierarchical, have multiple outputs at different

hierarchy levels. Given a set of outputs to observe for localizing faults, we generate test execution slices,

for each test case and output, of the Simulink model. In order to further improve fault localization accuracy,

we propose iSimFL, an iterative fault localization algorithm. At each iteration, iSimFL increases the set of

observable outputs by including outputs at lower hierarchy levels, thus increasing the test oracle cost but

offsetting it with significantly more precise fault localization. We utilize a heuristic stopping criterion to

avoid unnecessary test oracle extension. We evaluate our work on three industrial Simulink models from

Delphi Automotive. Our results show that, on average, SimFL ranks faulty blocks in the top 8.9% in the list

of suspicious blocks. Further, we show that iSimFL significantly improves this percentage down to 4.4% by

requiring engineers to observe only an average of five additional outputs at lower hierarchy levels on top of

high-level model outputs.

KEY WORDS: Fault localization; Simulink model; test oracle

1. INTRODUCTION

The embedded software industry increasingly relies on Simulink to develop software [44,

48, 49, 51]. Simulink is a data-flow-based block diagram language for the modeling,

simulation, and development of embedded software. The Simulink language, being supported

by advanced automated code generators, has become a prevalent language for implementing

embedded software. Automotive software modules are typically first developed as Simulink

models from which C code is later generated automatically [35, 57]. These Simulink models

are subject to extensive testing and debugging before code generation takes place. Testing

Simulink models is the primary testing phase focused on verification of the logic and behavior

of automotive software modules. Further, Simulink model testing is more likely to help with fault
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finding compared to testing code as Simulink models are more abstract and more informative for

engineers. Given the importance of testing and debugging Simulink models, an automated technique

to support localization of faults in Simulink models is crucial.

Fault localization in source code is an active research area that focuses on automating various code

debugging activities [2, 6, 12, 13, 16, 17, 25, 30, 31, 40, 41, 45, 46, 53, 54, 58, 59]. A well-known

approach in this area is statistical debugging [2, 25, 30, 31, 45, 46, 53, 54]. Statistical debugging

is a light-weight approach to fault localization and has been extensively studied for code (e.g., C

programs [2, 25, 45, 60]). This approach utilizes an abstraction of program behavior, also known as

spectra, (e.g., sequences of executed statements) obtained from testing. The spectra and the testing

results, in terms of failed or passed test cases, are used to derive a statistical fault ranking, specifying

an ordered list of program elements (e.g., statements) likely to be faulty. Developers can consider

such ranking to identify faults in their code. These fault localization techniques, however, have never

been studied for Simulink models.

In this paper, we propose SimFL, our approach to localize faults in Simulink models based on

statistical debugging. Statistical debugging is most effective when it is provided with a large number

of observation points (i.e., the spectra size). Existing approaches, where each test case produces one

spectrum, require a large test suite to generate a large number of spectra. For Simulink models,

however, test suites are typically small. This is mostly because test oracles for embedded software

are costly, and further, test suites are required to be eventually applied at the Hardware-in-the-Loop

stage where test execution is time consuming and expensive. Hence, we may not obtain a sufficiently

large number of spectra if we simply generate one spectrum per each test case as is the case in most

existing work [2, 25, 30, 31, 45, 46, 53, 54].

Simulink models, being visual, data-flow based and hierarchical, have multiple observable outputs

at different hierarchy levels, each of which can be tested and evaluated independently. For Simulink

models, engineers not only identify whether a test case passes or fails, but they also routinely

and explicitly determine which specific outputs are correct and which ones are incorrect for each

given test case. Relying on this observation, in our work, we use a dynamic slicing technique

in conjunction with statistical debugging to generate one spectrum per each output and each

test case. Hence, we obtain a set of spectra that is significantly larger than the size of the test

suite.We then use this set of spectra to rank model blocks using statistical ranking formulas. In

this work, we consider three well-known statistical formulas used for fault localization for source

code (i.e., Tarantula [25], Ochiai [2], and D∗ [54]), and study their accuracy in localizing faults in

Simulink models. Nevertheless, our approach is not specific to any particular statistical formula and

other ones could also be used.

Our approach relies on accounting for as many outputs as possible to increase the number of

spectra used to compute rankings. Such expansion, however, should be driven by needs to avoid

unreasonable overhead resulting from checking more test oracles on test case executions. In our

work, we propose iSimFL where we apply SimFL iteratively starting with a small test oracle size to

obtain some initial ranking results. We provide a heuristic to guide engineers based on the quality of

the rankings obtained at each iteration to decide whether they need to extend the oracle or not. We

then apply SimFL iteratively until the ranking results are satisfactory and do not require any further

oracle expansion. In this paper, we make the following contributions:

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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(1) We propose SimFL, a combination of statistical debugging and dynamic slicing to localize

faults in Simulink models. Our work is the first to extend statistical debugging to Simulink models.

We use dynamic slicing to generate Simulink model spectra such that each spectrum is related to

one output and one test case. We then apply statistical ranking formulas to the resulting spectra to

compute suspiciousness scores for each Simulink model block.

(2) We propose iSimFL, an iterative fault localization approach to refine rankings by increasing

the number of observed outputs at each iteration. Our approach utilizes a heuristic stopping criterion

to avoid unnecessary expansion of test oracles.

(3) We conduct, for the first time, an empirical study to evaluate statistical debugging for Simulink

models using three industrial subjects. Our experiments show that: (i) On average, using SimFL

with Tarantula, engineers need to inspect at least 2.1% and at most 8.9% of Simulink models to

find faults. Further, we found that the accuracy of Tarantula, Ochiai, and D∗ in localizing faults in

Simulink models are considerably close. (ii) We show that increasing the size of test suites does

not make any significant improvement in SimFL’s accuracy. (iii) We show that in most (but not all)

cases, extending the test oracle to include outputs at lower hierarchy levels significantly improves the

fault localization capability of SimFL. Specifically, iSimFL improves SimFL’s accuracy by requiring

engineers to inspect, on average, at least 1.3% and at most 4.4% of the model blocks while extending

test oracles with only five outputs on average. (iv) We investigate the predictability of iSimFL’s

performance with respect to changes made in to its input heuristic parameters. We, further, provide

suggestions, based on the results of our experiments, on how to set these parameters to obtain

optimal results.

The paper is organized as follows: In Section 2, we provide background on Simulink models

and motivate our approach. In Section 3, we present SimFL, our approach to fault localization in

Simulink models. In Section 4, we present an iterative fault localization approach, namely iSimFL

that can further improve the accuracy of SimFL in localizing faults. In Section 5, we evaluate

our work and discuss our experiment results. We then compare our work with the related work

in Section 6. We conclude the paper and discuss our future work in Section 7.

2. BACKGROUND AND MOTIVATION

In this section, we briefly introduce a Simulink model example, describe how Simulink models are

tested/simulated in practice, and provide a brief overview of our approach.

Simulink model example. Figure 1 presents a small sanitized snippet of a real-world Simulink

model from Delphi. The specific fragment in Figure 1 calculates temperature and pressure of the

compressed air. The model is essentially composed of numerical and combinatorial operations as

well as some constant blocks, e.g., Pmax. The model has five inputs, e.g., the position of the Clutch,

and two outputs: the output pressure pOut and the output temperature TOut. The model inputs are

specified by input ports (dashed rounded boxes), and the model outputs are shown using output

ports (grey rounded boxes). Further, Simulink models are hierarchical and allow the encapsulation

of blocks into subsystems. Each subsystem has its own input and output ports. Each input and output

port of a subsystem is connected to an atomic block within the subsystem. For example, the model

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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output signal stabilizes after 1 sec of simulation. The output values are the final (stabilized) values

of each output signal collected at the end of simulation (e.g., 30 for the signal shown in Figure 2(b)).

For Simulink models from the automotive domain, test oracles are typically developed not just

for final model outputs (e.g., pOut and TOut in Figure 1), but also for subsystem outputs (e.g.,

the output ports of Subsystem1 and Subsystem2 in Figure 1). This is because in this domain

Simulink models often capture physical devices (e.g., a supercharger), and as a result, the structure

of these models is closely related to the hardware architecture where Simulink subsystems match

physical subcomponents. Therefore, a Simulink subsystem often conceptually relates to a real stand-

alone entity, and its output is meaningful and can be evaluated independently from the final model

outputs. Test oracles in this domain are often costly because they require some degree of engineer’s

judgement and involvement to determine whether a test case passes or fails. Hence, the size of test

suites cannot be very large. In addition, although, in principle, it is possible to derive test oracles

for all the outputs at different hierarchy levels, in practice, engineers often develop test oracles for a

subset of the most important output ports, e.g., the final model outputs and a few selected subsystem

outputs.

Overview of Our Approach. Simulink models consist of blocks and lines. Blocks represent

individual functions, whereas lines represent data and control flow relations between blocks. Given

a Simulink model with multiple outputs (e.g., Figure 1), for a single test case execution, it often

happens that some outputs reveal failures, while others are correct. If any individual output value

deviates from its oracle, the engineers typically follow the links connected to that output in a

backward manner to identify faulty block(s). This helps engineers focus only on blocks that can

reach the erroneous outputs via data and control dependency links. For example, in Figure 1, if pOut

shows an error for a test case, we know that the failure at pOut cannot be due to a fault at T_C2K

because T_C2K is not in static backward slice of pOut.

Inspired by how Simulink models are debugged in practice, in our work, we define the notion

of spectrum per test case and per output. Specifically, we propose in Section 3.2 a dynamic slicing

approach to identify, for a given Simulink model, test execution slices of that model for each test case

and each output. Each test execution slice (spectrum) represents the set of blocks that are executed

by a single test case to produce a specific output. As a result, the number of spectra we obtain

is larger than the size of the test suite, and hence, we have more observation points to perform

fault localization. We propose (in Section 4) to apply our fault localization approach iteratively

starting with a small set of outputs. Further, we provide a heuristic which, based on the ranking

results from the previous iteration, determines whether extending test oracle is needed or not. If so,

engineers extend the output set typically by including subsystem outputs, and perform another fault

localization iteration.

Our iterative fault localization approach requires engineers to develop test oracles for several

model outputs as well as subsystem outputs. We note that for Simulink models from the automotive

domain, test oracles are typically developed not just for final model outputs (e.g., pOut and TOut

in Figure 1), but also for subsystem outputs (e.g., the outputs of Subsystem1 and Subsystem2 in

Figure 1). This is because in this domain Simulink models often capture physical devices (e.g., a

supercharger). Specifically, a Simulink subsystem often conceptually relates to a real stand-alone

entity, and its outputs are meaningful and can be evaluated independently from the final model

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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({cr0, . . . , crn})

(M)

(O)

Figure 3. Overview of our fault localization approach for Simulink (SimFL).

outputs. Finally, in our approach, we provide a heuristic to guide engineers on when test oracle

expansion is unlikely to be worthwhile, thus avoiding unnecessary overhead.

3. FAULT LOCALIZATION FOR SIMULINK

We present SimFL, our fault localization approach for Simulink models. Figure 3 shows an

overview of SimFL. The inputs to our approach is a (faulty) Simulink model (M ), a test suite

(TS = {tc0, . . . , tcn}), and a test oracle (O) to determine whether the test cases in TS pass or

fail.

Given a Simulink model M , we denote the set of input ports of M by I . For the model in Figure 1,

the set I is {NMOT, Clutch, Bypass, pIn, TIn}, and each test case in TS provides a value (i.e.,

a constant signal) for each element in I . We denote the set of all outputs of M by O, including the

model outputs (at depth zero) as well as all the subsystem outputs. For each test case tc ∈ TS , the

test oracle O determines whether each output o ∈ O passes or fails tc.

The output of the approach in Figure 3 is a ranked list of Simulink (atomic) blocks where the

top ranked blocks are more likely to be faulty. This ranked list is generated based on the three main

steps of SimFL, i.e., Test Case Execution, Slicing, and Ranking, that we discuss in Sections 3.1 to

3.3, respectively.

3.1. Test Case Execution

This step takes as input a test suite TS , a test oracle O, and a (faulty) Simulink model M . In

this step, we execute M for each test case in TS to generate the following information: (1) The

PASS/FAIL information corresponding to each output o of M and each test case in TS , and (2) A list

{cr0, . . . , crn} of coverage reports corresponding to the test cases {tc0, . . . , tcn}.

In Section 2, we discussed how Simulink output signals are typically evaluated to obtain the

PASS/FAIL information. In this section, we focus on coverage reports. Given a test case tcl, Simulink

generates a coverage report crl after simulating M using tcl. A coverage report shows the list of

atomic blocks that were covered during execution of tcl.

Using a coverage report describing a list of atomic blocks covered by a test case, we identify

which inputs of those blocks were covered by that test case as well. Simulink atomic blocks have

two kinds of inputs: data inputs and control inputs. Every (non trivial) atomic block has some data

inputs†. But they may or may not have control inputs. For a block that has only data inputs, e.g., a

multiplication, we know that all its inputs are covered if that block is covered, i.e., appears in the

†Some trivial Simulink blocks (e.g., clock) do not have any input.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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of five passing and three failing execution slices. For example, the execution slice for pOut and

TC1 includes SC_Active, LimitP , IncrPres , PressRatioSpd , etc, because the coverage report for

TC1 indicated that control block SC_Active selects (for TC1 ) the input coming from control block

LimitP , and LimitP selects the input coming from IncrPres , and so on.

Table I. Test execution slices and suspiciousness scores of model blocks using Tarantula for the example
model of Figure 1.

Test Execution Slices Scores Overall

TC1 TC2 TC3 TC4 Ranking

Block Name pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut Overall (Min-Max)

SC_Active X X X X 0.5 NaN 0.5 5-13

LimitP X X 0 NaN 0 14-20

Pmax X 0 NaN 0 14-20

IncrPres X 0 NaN 0 14-20

PressRatioSpd X 0 NaN 0 14-20

N_SC X 0 NaN 0 14-20

Pct2Val X 0 NaN 0 14-20

FlapIsClosed X X X X X X X X 0.5 0.5 0.5 5-13

FlapPosThreshold X X X X X X X X 0.5 0.5 0.5 5-13

dp X X X X 0.75 1 0.875 1- 2

p_Co X X X X 0.75 1 0.875 1- 2

pComp X X X X X 0.6 1 0.8 3- 4

pAdjust X X X X X 0.6 1 0.8 3- 4

CalcT X X X X NaN 0.5 0.5 5-13

dT X X X X NaN 0.5 0.5 5-13

TScaler X X X X NaN 0.5 0.5 5-13

T_K2C X X X X NaN 0.5 0.5 5-13

IncrP X X X X NaN 0.5 0.5 5-13

T_C2K X X NaN 0 0 14-20

0 C X X X X NaN 0.5 0.5 5-13

Passed/Failed Passed Failed Passed Failed Failed Passed Passed Passed

3.3. Ranking

The third step of our approach is ranking of Simulink blocks. This step takes as input test execution

slices from the Slicing step, and the PASS/FAIL information for each test case and for each output

from the Test Case Execution step. The output of this step is a ranked list of Simulink (atomic)

blocks where each block is ranked with a suspiciousness score. The higher the suspiciousness score

of a block, the higher the probability that the block has caused a failure.

To compute the suspiciousness score for a Simulink block, we use three well-known statistical

formulas proposed for source code fault localization, namely, Tarantula [25], Ochiai [2], and

D∗ [54]. Tarantula and Ochiai have been the subject of many experiments, and are supported by

more substantial empirical evidence than other formulas [7, 21, 23, 24, 32, 33, 39, 46, 55]. Recently,

D∗ has been shown to outperform 38 statistical formulas in localizing faults for programs [54].

Hence, we decided to focus on these three formulas as a representative set of the many existing

statistical ranking formulas. Finally, we note that these formulas are intuitive and easy to explain.

This is important as we require involvement of engineers in our experiments. Note that our technique

is not tied to any particular ranking formula and can be extended to work with other statistical

formulas.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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Let s be a statement, and let passed(s) and failed(s) respectively be the number of passed and

failed test cases that execute s. Let totalpassed and totalfailed represent the total number of passed

and failed test cases, respectively. The suspiciousness score of s according to Tarantula, Ochiai, D∗

denoted by ScoreTa(s), ScoreOc(s), and ScoreD
∗

(s), respectively, are calculated as:

ScoreTa(s) =
failed(s)
totalfailed

passed(s)
totalpassed

+
failed(s)
totalfailed

ScoreOc(s) = failed(s)√
totalfailed×(failed(s)+passed(s))

ScoreD
∗

(s) = failed(s)∗

(totalfailed−failed(s))+passed(s)

Similar to [28], we set * to 2 in D∗. Wong et al., [54] show that D2 is the lowest power D∗ variant

that still outperforms several existing ranking formulas.

In our work, we compute the suspiciousness score of a Simulink block with respect to each

individual output o ∈ O and denote it by Scoreo . To compute Scoreo , we define the functions,

totalpassedo , totalfailedo , passedo , and failedo for every output o ∈ O. Based on the Test Case

Execution step, we obtain the set of test execution slices and the pass/fail information for each slice.

We define totalpassedo , totalfailedo , passedo(b) and failedo(b) for each output o ∈ O and atomic

block b as follows:
totalpassedo = |{sliceo,l | ∀tcl ∈ TS ∧ sliceo,l is passing}|
totalfailedo = |{sliceo,l | ∀tcl ∈ TS ∧ sliceo,l is failing}|
passedo(b) = |{sliceo,l | ∀tcl ∈ TS ∧ b ∈ sliceo,l ∧ sliceo,l is passing}|
failedo(b) = |{sliceo,l | ∀tcl ∈ TS ∧ b ∈ sliceo,l ∧ sliceo,l is failing}|

That is, totalpassedo and totalfailedo represent the total passing and failing test execution slices,

respectively, for output o. The sets passedo(b), and failedo(b) represent the numbers of test execution

slices that pass and fail, respectively, for output o, and include b. For each output o ∈ O, we define

the suspiciousness score of block b for Tarantula, ScoreTa
o (b), for Ochiai, ScoreOc

o (b), and for D∗,

ScoreD
∗

o (b) as follows:

ScoreTa
o (b) =

failedo(b)
totalfailedo

passedo(b)
totalpassedo

+
failedo(b)
totalfailedo

ScoreOc
o (b) = failedo(b)√

totalfailedo×(failedo(b)+passedo(b))

ScoreD
∗

o (b) = failedo(b)
∗

(totalfailed
o
−failedo(b))+passedo(b)

Note that for a block b, Scoreo(b) is undefined (NaN ) if both passedo(b) and failedo(b) are zero.

This means that b has not appeared in any of the execution slices related to o.

In practice, engineers may either choose to use the scores for each output separately or combine

the scores for all outputs. In particular, when there is some indication that failures in different outputs

are caused by different faults, e.g., when the test execution slices of different outputs are disjoints, it

is preferable to study scores separately. Otherwise, combining scores may improve the accuracy of

fault localization, as in typical Simulink models a single faulty block may produce several failures

in different outputs.

In our experiment in Section 5, we decided to combine the scores, since we want to assess the

overall accuracy for all faults and outputs. We considered and experimented with several alternative

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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ways of combining the score functions Scoreo, and based on our experiments computing the average

of the scores (see below) yielded the best experiment results. Hence, we use this method to combine

the scores of the individual outputs in Section 5.

Score(b) =
∑

o∈O∧Scoreo(b) 6=NaN
Scoreo(b)

|{o∈O|Scoreo(b) 6=NaN}|

Having computed the scores, we now rank the blocks based on these scores. The ranking is done

by putting the blocks with the same suspiciousness score in the same rank group. Given blocks in

the same rank group, we do not know in which order the blocks are inspected by engineers to find

faults. Hence, we assign a min and a max rank number to each rank group. The min rank for each

rank group indicates the least number of blocks that would need to be inspected if the faulty block

happens to be in this group and happens to be the first to be inspected. Similarly, the max rank

indicates the greatest number blocks that would be inspected if the faulty block happens to be the

last to be inspected in that group.

For example, Table I reports the Tarantula suspiciousness score for each block and for each of

the pOut and TOut outputs as well as the mean of these two scores for the example in Figure 1. Note

that undefined scores are shown as NaN cells and are not used for mean score computation. Table I

also shows the block rankings obtained based on the mean scores. According to the overall ranking,

the blocks dp and p_Co have the highest ranking (min rank: 1 and max rank: 2). In this example,

the block p_Co is faulty causing both pOut and TOut to fail for different test cases. Note that if we

use the scores for the pOut and TOut outputs (without averaging), four blocks dp, p_Co, pComp, and

pAdjust appear in the highest rank, whereas the average ranking, which ranks two of these blocks

as the highest, is more refined.

4. ITERATIVE FAULT LOCALIZATION

In this section, we describe how the approach in Figure 3 can be applied iteratively, allowing

engineers to start with a small test oracle O, and extend the oracle only when it is necessary.

The purpose of iterative fault localization is to enable engineers to select a trade-off between the

accuracy of fault localization and the cost of test oracles. The core of our iterative fault localization

is a heuristic that guides engineers based on the quality of the ranking obtained at each iteration to

determine whether it is worthwhile to continue fault localization with an extended test oracle or not.

Figure 6 shows our iterative fault localization algorithm referred to as iSimFL. Similar to SimFL

(Figure 3), iSimFL takes as input a Simulink model M and a test suite TS . Since in iSimFL, the

test oracle O is built incrementally, O is not part of its input. In addition, iSimFL receives two

input parameters: (1) N which is the number of top most suspicious blocks that engineers typically

inspect during fault localization, and (2) g which is a coarseness threshold. The coarseness threshold

is used to determine whether a given group is too coarse or not. A rank group is too coarse if its size

is larger than the maximum number of blocks that engineers can conceivably inspect (i.e., larger

than g). These parameters are used in our heuristic and are domain specific. In practice, the values

of these parameters are determined by archival analysis of historical fault localization data.

As discussed in Section 2, Simulink models are composed of subsystems blocks that can be

hierarchical. Each subsystem at each hierarchical level can have multiple outputs. We denote the

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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Algorithm. iSimFL

Input: - M : Simulink model

- TS : Test suite

- N : Number of most suspicious blocks that engineers typically inspect

- g : Coarseness threshold

Output: - L: A ranked list of blocks

1. Let h be the hierarchy depth of M , let itr = 0, and let O = ∅.

2. do

3. Let O′ be the test oracle for outputs at depth itr , and let O = O ∪O′

4. Let L = {g0, . . . , gm} be the ranking list obtained by calling SimFL(M,TS ,O)
5. Let L′ = {g0, . . . , gk} such that |⋃0≤i≤k

gi| ≥ N and |⋃0≤i≤k−1 gi| < N

6. Let g∗ be the largest group in L′

7. if (|g∗| < g) do

8. break;

9. itr ++
10. while (itr ≤ h)
11. return L

Figure 6. Iterative fault localization with iSimFL

hierarchy depth of M by h, i.e., the maximum subsystem nesting level. Model M has outputs at

hierarchy depths 0 to h. For example, for the model in Figure 1, we have h = 1. The outputs pOut

and TOut are at depth 0, and the outputs of Subsystem1 and Subsystem2 are at depth 1.

In iSimFL, we start at hierarchy depth zero (itr = 0), and iteratively build test oracle O such

that O always includes the test oracle data for all the outputs from depth 0 up to depth itr .

At each iteration, we call original SimFL with test oracle O (line 4) to obtain a ranked list

L = {g0, g1, . . . , gm} containing rank groups. Given a ranked list L = {g0, g1, . . . gm}, we apply

our heuristic to determine whether another iteration of iSimFL is worthwhile or not.

Briefly, the intuition behind our heuristic is that engineers cannot effectively localize faults when

the ranked list L is coarse, particularly within the top blocks in the list. We say a ranked list L is

coarse for the top blocks, if, among the rank groups covering the top N blocks, there is a rank group

whose size is larger than g (coarseness threshold). Lines 5 to 8 in Figure 6 implement our heuristic.

If L happens to be coarse for the N top most blocks, we proceed to the next iteration where we

increase itr , extend O to include test outputs at depth itr , and call SimFL with the extended test

oracle. Otherwise, we terminate iSimFL either when L does not pass our heuristic, i.e., is not coarse

(line 8), or when we reach the outputs at depth h of M (line 10).

5. EMPIRICAL EVALUATION

In this section, we present our research questions, describe our industrial subjects, and experimental

setup, followed by the analysis of the results.

5.1. Research Questions

RQ1. [SimFL’s accuracy] Can SimFL help localize faults by ranking the faulty blocks in the top

most suspicious blocks? and what is the accuracy of SimFL for different statistical formulas? We

start by investigating whether SimFL can help engineers locate faulty blocks by inspecting a small

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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subset of the model blocks. Specifically, we report the minimum and maximum number of blocks

that engineers have to inspect to identify faulty blocks when they are provided with a ranked list

of blocks generated by SimFL using Tarantula, Ochiai, and D2. We then compare the accuracy of

SimFL in localizing faults for these three ranking formulas.

RQ2. [Increasing test suite size] Does increasing test suite size improve SimFL’s accuracy in

localizing faults? In order to increase the spectra size, one can either increase the size of test suites

or increase test oracles to include more outputs. Both require effort and have to be investigated.

Here, we focus on the former to determine if increasing the size of test suites can improve the

accuracy of SimFL in localizing faults.

RQ3. [Extending test oracle] Does extending the set of outputs and correspondingly the test oracle

to include more subsystem outputs improve the accuracy of SimFL in localizing faults? For Simulink

models, engineers often try to manually localize faults by inspecting intermediary outputs (i.e., the

subsystem outputs at different hierarchy levels) in addition to final model outputs. We investigate

the impact of increasing the number of outputs, by including subsystem outputs, on the accuracy of

SimFL in localizing faults.

RQ4. [iSimFL vs SimFL] How do the accuracy results of iSimFL compare with those of SimFL,

and further, does iSimFL help limit the size of test oracles while improving accuracy? Given that

developing test oracles for subsystem outputs, though common and feasible, is costly, it is important

to evaluate the heuristic we use in iSimFL to determine if it can predict when test oracle expansion

is worthwhile. That is, when extending test oracles results in significant improvement in fault

localization accuracy justifying the expansion overhead.

RQ5. [Impact of iSimFL’s parameters] Does the performance of iSimFL change in a predictable

way when we vary its input parameters g and N? In RQ4, we compare the performance of iSimFL

with that of SimFL by giving fixed values to the g and N parameters used in iSimFL. It is important

to investigate if and how the performance of iSimFL is impacted when these parameters change.

Specifically, for this question, we report the test oracle size required by iSimFL and the accuracy of

iSimFL for different values of g and N . This data allows us (1) to determine whether the changes

to the oracle size and accuracy are monotonic, and hence predictable; and (2) to identify optimal

values for g and N . The optimal values of g and N are determined by comparing the results of

SimFL and iSimFL and are those values that lead to a larger oracle size reduction with a negligible

accuracy loss.

5.2. Our Industrial Subject

We use three Simulink models developed by Delphi in our experiments. These models simulate

physical processes that occur inside the powertrain systems, more specifically, the combustion

engine and gearbox behavior. We refer to these three models as MS, MC, and MG. All these three

models contain different types of Simulink blocks such as switches, lookup tables, conditional

blocks, integrator blocks, From/Gotos, and feedback loops. Table II shows key information about

our industrial subjects. For example, Model MS contains 37 subsystems, 646 atomic blocks, and 596

links. The hierarchy depth is five, and the model has 12 inputs, 8 outputs at hierarchy depth zero, 8

outputs at depth one, and 7 outputs at depth two. That is, the number of outputs at depths zero and

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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one (O1) is 16, and the number of outputs at depths zero, one, and two (O2) is 23. The outputs at

depths three to five are redundant because they match those at depths one and two (e.g., in Figure 1,

the Subsystem2 output matches TOut).

Table II. Key information about industrial subjects.

Model

Name

# of sub-

system

# of atomic

blocks

# of

links

# of

inputs

Hierarchy

Depth

# of model outputs

(depth 0)

O0

(depths 0 to 1)

O1

(depths 0 to 2)

O2

MS 37 646 596 12 5 8 16 23

MC 64 819 798 13 7 7 11 14

MG 15 295 261 5 4 6 13 17

We asked a Delphi engineer to seed 40 realistic faults in each one of MS and MC, and 15 realistic

faults in MG. In total, we generated 95 faulty versions (one fault per each faulty version). The

faults were seeded before our experiment took place. The engineer seeded faults based on his past

experience in Simulink development and, to achieve diversity in terms of the location and types

of faults, we required faults of different types to be seeded in different parts of the models. We

categorize the seeded faults into the following three groups: (1) Wrong Function which indicates a

mistake in the block function type such as choosing > instead of >=. (2) Wrong Connection which

indicates a wrong link between two blocks. For example, engineers may connect the signal A to

input 2 instead of input 1 of a block. Note that if the data type of signal A and input 2 does not

match, Simulink reports a syntax error. Hence, this fault refers to cases where the types match, but

the connection is still wrong. (3) Wrong Value, indicating a wrong value in a constant Simulink

block or a wrong threshold value in a Simulink control block.

The above classification of faults does not include Stateflow [37], which is the state machine

notation of Simulink. This is because (1) our industrial subjects do not include any Stateflows, and

(2) we would need to adapt slicing to Stateflow, which is out of the scope of this paper. Further,

Simulink models may fail due to the wrong configuration of the simulator, e.g., a wrong step size.

In our work, we focus on handling failures caused by faults applied to the model and not those that

are due to the wrong configuration of the simulator.

Finally, we note that our industrial subjects are representative in terms of size and complexity

among Simulink models developed at Delphi. Our industrial subject models include about ten

times more blocks than the publicly available Simulink models from the Mathworks model

repository [36]. In addition, most publicly available Simulink models are small exemplars created

for the purpose of training for which realistic faults are not available. Hence, we chose to perform

our experiments exclusively on industrial subjects for which realistic faults could be obtained from

an experienced engineer.

5.3. Experiment Settings

In addition to a Simulink model, which is discussed in Section 5.2, SimFL requires as input a test

suite and a test oracle which are discussed below, along with the experiment design and evaluation

metrics.

Test Suite. In this paper, we generated test suites using Adaptive Random Testing [10]. In our

experiment, we were provided with the valid ranges of input signals of our industrial subjects.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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Adaptive random testing is a black box and lightweight test generation strategy that distributes test

cases evenly within the input space (i.e., the valid ranges), and therefore, helps ensure diversity

among test cases.

Test Oracle. In practice, the development of test oracles is largely manual and out of scope of this

paper. In our experiment, we chose to use a fault-free version of our industrial subject model for

the oracle information to automate our large-scale and time-consuming experiments. Note that the

Simulink models used in our experiment, when provided with constant input signals, are expected

to stabilize and eventually converge to a constant output signal (see Figure 2(b)). If the output signal

does not stabilize within a sufficiently large simulation time interval, we mark that as a failure. In this

case study, we followed the suggestion from Delphi engineers and set the simulation time (and thus,

the moment at which we measure the output signal) to 10 seconds. For each output, to determine

if a test case passes or fails, we compared the values of that output from the faulty Simulink model

with the fault-free Simulink model at the end of a 10-sec simulation. If they matched, we marked

the output as PASS, and otherwise, as FAIL.

Experiments. We perform five separate experiments, referred to as EXP1, EXP2, EXP3, EXP4,

and EXP5 to answer our research questions. In our experiments, we consider three different sets

of outputs and their corresponding test oracles: (1) test oracle O0 for the model outputs at depth

zero, (2) test oracle O1 for the outputs at depth zero and one, and (3) test oracle O2 for the outputs

at depths zero, one, and two. Table II shows the sizes of test oracles O0 to O2 for each industrial

subject.

To answer RQ1, we perform experiment EXP1 where we apply SimFL (Figure 3) using Tarantula,

Ochiai, and D2 to our 95 faulty models with a test suite size of 200 and with the smallest test oracle

(O0). Note that the size selected for test suites was based on typical practice at Delphi given test

budget constraints and the cost of oracles. For RQ2, we perform experiment EXP2 where we apply

SimFL using Tarantula, Ochiai, and D2 to our 95 faulty models with the test oracle O0 and with

nine different test suites of varying size: 200, 300, 400, 500, 600, 700, 800, 900, and 1000. We

start from the test suite with 200 test cases and augment the test suites by adding (100) more test

cases generated using Adaptive Random Testing. For RQ3, we perform experiment EXP3 where

we apply SimFL using Tarantula, Ochiai, and D2 to our 95 faulty models with a test suite size of

200 and with test oracles O1 and O2. Based on the results of EXP1, EXP2, and EXP3, we select

one statistical formula to be used by iSimFL in EXP4 to EXP5. For RQ4, we perform experiment

EXP4 where we apply iSimFL (Figure 6) to our 95 faulty models with a test suite size of 200 and

rely on the heuristic used in iSimFL to determine how many iterations are required for each faulty

model. For the parameters N and g used in iSimFL, we set their values based on our experience and

discussions with domain experts. Specifically, we set N = 15 because engineers, when provided

with a ranked list of blocks, are able to typically and routinely inspect the top 15 blocks. Further, for

each faulty model, we set g to 6% of the size of the model. Finally, for RQ5, we perform experiment

EXP5 where we apply iSimFL with different values of N and g to our 95 faulty models with a test

suite size of 200. EXP5 consists of two parts i.e., EXP5a and EXP5b. For EXP5a, we apply iSimFL
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where we fix N to 15 and vary the value of g to 1%, 2%, ..., 10% of the model size. For EXP5b, we

apply iSimFL where we fix g to 6% of the model size and vary the value of N to 5, 10, ..., 25.

Evaluation Metrics. Assuming that engineers inspect block rankings generated by SimFL or

iSimFL to find faults, we evaluate the accuracy of SimFL and iSimFL using the following metrics

from the fault localization literature [13, 24, 31, 33, 41, 45]: The percentage of blocks inspected

to find faults, the absolute number of blocks inspected to find faults, and the proportion of faults

localized when engineers inspect fixed numbers of the top most suspicious blocks.

For the absolute number of blocks inspected to find faults, we consider the min and the max ranks

of the rank group that contains the faulty block. For the percentage of blocks inspected to find faults,

we divide the absolute number of blocks inspected (both for the min and the max ranks) by the total

number of blocks. The proportion of faults localized is the proportion of localized faults over the

total number of faults when engineers inspect a fixed number of the top most suspicious blocks from

a ranked list.

5.4. Experiment Results

In this section, we address our research questions based on our experiment results.

RQ1. [SimFL’s accuracy] To answer this question, we performed EXP1 described in Section 5.3.

We evaluate SimFL’s accuracy in localizing faults in terms of the percentage and the absolute

number of blocks inspected, and the proportion of faults localized, as follows:

Percentage and absolute number of blocks inspected. In Table III, we show the percentages and

absolute numbers of blocks that engineers need to inspect when they use SimFL with the smallest

test oracle (i.e. O0) for three formulas i.e., Tarantula, Ochiai, and D2. For all 95 models, when using

SimFL with O0 and Tarantula as the statistical formula, engineers need to inspect, on average, at

least 14 and at most 63 blocks (i.e., 2.1% - 8.9%). Similarly, when using SimFL with Ochiai as the

statistical formula, engineers need to inspect, on average, at least 23 and at most 62 blocks (i.e.,

3.1% - 8.8%), and when using SimFL with D2, engineers need to inspect, on average, at least 16

and at most 56 (i.e., 2.3% - 7.9%).

Table III. Average percentage and absolute number of blocks inspected using SimFL with O0 for Tarantula,

Ochiai, and D2.

Model
min.#(%) - max.#(%) for SimFL with O0

name Tarantula Ochiai D2

MS 13 (2.1%) - 46 (7.1%) 14(2.2%) - 43(6.7%) 11(1.6%) - 40(6.1%)

MC 19 (2.4%) - 96 (11.7%) 39(4.7%) - 98(12%) 26(3.2%) - 86(10.5%)

MG 4 (1.4%) - 18(6%) 5(1.6%) - 18(6%) 4(1.4%) - 18(6.0%)

All models 14 (2.1%) - 63 (8.9%) 23 (3.1%) - 62 (8.8%) 16 (2.3%) - 56 (7.9%)

Proportion of faults localized. In Figures 7, 8, and 9, we present the proportion of faults localized

when engineers inspect a fixed number of the most suspicious blocks in the rank lists generated

by SimFL with three statistical formulas (i.e., Tarantula, Ochiai, and D2) for MS, MC, and MG,

respectively. In each figure, the solid line shows the maximum proportion of faults localized, and

the dashed line shows the minimum proportion of faults localized.

For 40 faulty versions of MS (see Figure 7), by inspecting the top 10% of most suspicious blocks

(i.e., 65 blocks), engineers can locate at most 95% and at least 78% of the faults when SimFL with
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Tarantula is used; at most 93% and at least 78% of the faults when SimFL with Ochiai is used; and

at most 95% and at least 83% of the faults when SimFL with D2 is used. For 40 faulty versions of

MC (see Figure 8), by inspecting the top 10% of most suspicious blocks (i.e., 82 blocks), engineers

can locate at most 85% and at least 33% of the faults when SimFL with Tarantula is used; at most

80% and at least 33% of the faults when SimFL with Ochiai is used; and at most 85% and at least

35% of the faults when SimFL with D2 is used. For 15 faulty versions of MG (see Figure 9), by

inspecting the top 10% of most suspicious blocks (i.e., 30 blocks), engineers can locate at most

100% and at least 93% of the faults when SimFL with Tarantula and D2 are used; and at most 100%

and at least 87% of the faults when SimFL with Ochiai is used.

Note that, for all of the three formulas (i.e., Tarantula, Ochiai, and D2), the results of using

SimFL for MC is not as good as the results for the other two models. This is because, compared

to MS and MG, MC includes a larger number of lookup tables, integrator blocks, unit convertors,

and trigonometry and logarithmic functions that may potentially reduce or mask data discrepancies,

and hence, impact the number of observed failures for outputs at depth zero. As a result, the fault

localization results for MC when we focus on the outputs in O0 are less accurate compared to the

results for MS and MG.

Comparing with the state-of-the-art. Since no studies on fault localization for Simulink models

are reported, we briefly report the results obtained from applying statistical debugging approaches

(with various ranking formulas) to source code implemented in C or Java. We note that, like our

work, the approaches discussed here assume that the code under analysis has a single fault.

Comparing the percentage of blocks inspected, on average, according to [13, 31, 33, 45],

developers need to inspect at most around 20% of their code (i.e., program blocks) to localize faults,

while SimFL, on average, requires at most around 8% (i.e., 8.9% for SimFL with Tarantula, 8.8%

for SimFL with Ochiai, and 7.9% for SimFL with D2) of the model blocks to be inspected to find

faults. Comparing the proportion of faults localized, assuming that developers only inspect the top

10% of the most suspicious code elements, on average, the minimum percentage of faults localized

is less than 55% [13, 31, 33, 45]. When engineers inspect 10% of the top most suspicious blocks

returned by SimFL, on average, the minimum percentage of faults localized is around 60% (i.e.,

58/95 for SimFL with Tarantula 57/95 for SimFL with Ochiai, and 61/95 for SimFL with D2).

While source code debugging and Simulink model debugging have major differences, the above

comparison shows that our results are promising and statistical debugging for Simulink models

is potentially useful. We note that while inspecting 10% of software code may indeed require

developers to review tens or hundreds of KLOC, 10% of a typical Simulink model is often less than

100 blocks. Moreover, engineers are often able to conceptually trace Simulink blocks to abstract

functions and concepts, making it easier for them to determine whether an individual block is faulty

or not.

Comparing Tarantula, Ochiai, and D2. The above results show that the accuracy of ranking results

obtained by these three formulas are considerably close. Based on Table III, the percentage and

absolute numbers of blocks inspected using SimFL with O0 for Tarantula, Ochiai, and D2 are

considerably close. The average maximum percentages of blocks inspected corresponding to the

three formulas range from 7.9% to 8.9%. Figure 10 shows the comparison of the proportions of

faults localized for all 95 faulty versions when using SimFL with Tarantula, Ochiai, and D2. Based

on Figure 10, the minimum proportions of faults localized when using the three formulas are close,
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Figure 7. Proportion of faults localized for MS using SimFL with O0.
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Figure 8. Proportion of faults localized for MC using SimFL with O0.
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Figure 9. Proportion of faults localized for MG using SimFL with O0.
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Figure 10. Proportion of faults localized for all models using SimFL with O0.
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in particular when engineers inspect the top 20 blocks. Further, when engineers inspect more than

20 blocks, the variations in the minimum proportions of faults localized across the three formulas

are less than 7%, and hence, not substantial.

In summary, the answer to RQ1 is that, on average, SimFL is able to rank the faulty blocks as the

most suspicious blocks that should be inspected by engineers. Further, the accuracies of SimFL using

Tarantula, Ochiai, and D2 in localizing faults in Simulink models are not substantially different.

RQ2.[Increasing test suite size] To answer this question, we performed EXP2. We observed that

the maximum number of blocks that engineers need to inspect to find the fault in each faulty model

remains almost constant as we apply SimFL with Tarantula, SimFL with Ochiai, and SimFL with D2

using test suite sizes of 200, 300, . . . , 1000. For all the 95 faulty models and for these three formulas,

changes in the rankings of the faulty blocks are negligible as we apply SimFL with different test

suite sizes. Specifically, for the three formulas, the differences on the maximum percentages of

blocks inspected are less than 1.8% as we increase the test suite size. Note that we start with a test

suite with size 200 because this size is realistic and comparable to test suite sizes used for Simulink

models in Delphi.

To explain why the rankings of the faulty blocks remain almost constant, we introduce the notion

of Coincidentally Correct Test cases (CCT) [52]. CCTs are test execution slices that execute faulty

blocks but do not result in failure. CCTs are likely to occur in Simulink models because these models

often contain various mathematical function blocks that may reduce or mask data discrepancies,

resulting in passing test execution slices that exercise faulty blocks. We note that based on the

Tarantula, Ochiai, and D2 formulas, and given that our faulty models include a single faulty block,

the following hold: (1) The Tarantula scores of faulty blocks depend on the proportion of CCTs over

the total number of passing test execution slices [52], (2) the Ochiai scores of faulty blocks depend

on the proportion of total failing test execution slices over the number of test execution slices that

cover the faulty blocks, and (3) the D2 scores of faulty blocks depend on the proportion of total

failing test execution slices over the number of CCTs.

In our experiments, we observed that as we increase the test suite size: (1) the proportion of CCT

over all passing test execution slices remains almost constant (i.e., changes in this proportion are

less than 1%), (2) the proportion of total failing test execution slices over the total number of test

execution slices that cover the faulty blocks also remains almost constant with an average difference

of 0.004, and (3) the changes in the proportion of total failing test execution slices over the number

of CCTs are negligible (i.e., the average difference is 0.22). Hence, increasing the test suite size has

no notable impact on the rank of faulty blocks for none of these three formulas.

In summary, the answer to RQ2 is that increasing the size of test suites, above what can be

considered a typical size in our application context, does not make any significant changes in

SimFL’s accuracy.

RQ3.[Extending test oracles] To answer this question, we performed EXP3. In Figures 11(a)

to 11(f), we show the maximum percentages of blocks required to be inspected for 58 out of 95

faulty models when SimFL with Tarantula is applied with test oracles O0, O1, and O2. The results

for the other 37 models are not shown, as SimFL with O0 already performs well, i.e., on average, the

maximum percentage of blocks inspected is 4.4% and by extending test oracles of those 37 models,

the accuracy only slightly improves or remains the same.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)

Prepared using stvrauth.cls DOI: 10.1002/stvr

Page 19 of 33

http://mc.manuscriptcentral.com/stvr

Software Testing, Verification and Reliability

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20 B. LIU ET AL.

Table IV. Number of failing execution slices based on test oracles O0, O1, and O2.

Model

Name

Test suite # of failing slices (min. ∼ max.)

size Test oracle O0 Test oracle O1 Test oracle O2

MS 200 6 ∼ 1009 34 ∼ 1796 47 ∼ 2461

MC 200 8 ∼ 1010 8 ∼ 1390 8 ∼ 1390

MG 200 34 ∼ 249 92 ∼ 467 102 ∼ 467

Among the 58 models under consideration, SimFL with O0 performs reasonably well for 20

models (Figures 11(a) and 11(b)) as the maximum percentage of blocks inspected for these models

is less than 10%. We still chose to show the results for these 20 models because these results are

used to answer RQ4 as well. For the other 38 models (i.e., models in Figures 11(c) to 11(f)), SimFL

with O0 requires engineers to inspect more than 10% of the blocks in order to locate faults (between

10.2% and 26.6%).

For faulty models shown in Figure 11(a), extending test oracles from O0 to O2 improves SimFL’s

accuracy slightly (i.e., up to 3%) for 13 models, while for the other three models (i.e., MS39, MG3,

and MG9), SimFL’s accuracy remains the same. For 29 faulty models (Figures 11(b) to 11(d)),

extending test oracles from O0 to O1 notably improves SimFL’s accuracy. Specifically, on average,

the maximum percentage of blocks inspected reduces to 1.8%, 3%, and 10% for the models in

Figures 11(b), 11(c), and 11(d), respectively. However, for these models, the accuracy improves

slightly or remains the same when we extend the oracle to O2. On the contrary, for the 10 models as

shown in Figure 11(e), extending the oracle to O1 improves SimFL’s accuracy slightly, but extending

the oracle to O2 notably improves the accuracy to, on average, 4%. Note that extending the test

oracle could potentially increase the number of failing execution slices that are useful for localizing

faults. In Table IV, we show the minimum and maximum numbers of failing execution slices for all

the faulty versions of MS, MC, and MG, as we extend the test oracle from O0 to O2. For the large

difference between the minimum and maximum, we can see that certain faults are much easier to

detect than others and hence they result in many more failing execution slices. Based on Table IV,

the minimum and maximum numbers of failing execution slices increase or remain the same as we

extend the test oracle from O0 to O2.

In contrast to the above models, where SimFL’s accuracy either improves or stays the same as

we expand the oracle, for MS32, MS33, and MS14 (Figure 11(f)), SimFL may fare worse as we

extend the oracle. For MS32 and MS33, the maximum percentages of blocks that engineers need

to inspect decrease to below 10% (i.e., 5.8%) when going from O0 to O1, but these percentages

increase to above 10% (i.e., 15.7% and 10.9%) again when O2 is used. As for MS14, SimFL fares

worse when we extend the oracle from O0 to O1. But after extending the oracle to O2, we observe

a high improvement (i.e., 8.3%).

To explain why test oracle expansion does not always improve accuracy, we note that as we

extend the size of test oracles, either the number of CCTs increases or stays the same. In the latter

case, SimFL’s accuracy either improves or remains the same because none of the new passing test

execution slices exercise faults, and hence, the block rankings either stay the same or become more

accurate. In the former case, however, SimFL’s accuracy is unpredictable and may even decrease.

Our experiment data confirms this intuition. For the cases where SimFL’s accuracy declines as we

increase the spectra size, i.e., for MS32 and MS33 (from O1 to O2) and for MS14 (from O0 to O1),

the size of CCT increases.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
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Nevertheless, we note that for all but three faulty models, SimFL’s accuracy improves or remains

the same as we extend the test oracles to include more subsystem outputs. When using SimFL with

O2, on average, engineers need to inspect, for MS, at least 1.7% and at most 4.0% of model blocks

(i.e., 11 to 26 blocks); for MC, at least 1.1% and at most 4.1% of model blocks (i.e., 9 to 34 blocks);

and for MG, at least 1.4% and at most 3.4% of model blocks (i.e., 4 to 10 blocks). On average, for

all 95 faulty models and using SimFL with O2, engineers need to inspect at least 1.4% and at most

4% of model blocks (i.e., 9 to 27 blocks) , which is less than the results for SimFL with O0 (i.e., on

average, at least 2.1% and at most 8.9% of model blocks). Furthermore, using SimFL with O2, by

inspecting only the top 10% of most suspicious blocks, engineers are able to find at least 91 out of

95 faults, which is 33 more faults compared to using SimFL with O0.

When we extend the test oracle to O2, the accuracy of SimFL with Ochiai and SimFL with D2 is

similar to the accuracy of SimFL with Tarantula. Specifically, for all the 95 faulty models and for

SimFL with Ochiai, the number of blocks inspected decreases to, on average, at least 1.8% and at

most 4% of the model blocks (i.e., 13 to 27 blocks). Similarly, for SimFL with D2, the number of

blocks inspected decreases to, on average, at least 1.5% and at most 3.6% of the model blocks (i.e.,

10 to 24 blocks).

In summary, the answer to RQ3 is that extending test oracles by including more outputs at lower

hierarchy levels may or may not improve SimFL’s accuracy in localizing faults on a specific model.

But overall, oracle extension leads to the detection of significantly more faults.

Since, as shown in RQ1 to RQ3, there is no significant differences in the accuracies ofTarantula,

Ochiai, and D2 in localizing faults in Simulink models, we answer RQ4 and RQ5 based on iSimFL

results with one of these formulas. In particular, we report the results for iSimFL with Tarantula as

its results are representative for the other two formulas.

RQ4.[iSimFL vs SimFL] To answer this question, we performed EXP4. Our experiment shows

that for 37 out of 95 models (not shown in Figure 11), iSimFL only performed one iteration before

it terminates. That is, the loop in Figure 6 was executed only once and with oracle O0 for these 37

models. The maximum percentages of blocks inspected for these 37 models with O0 are reasonably

low (4.4% on average) and hence, as iSimFL correctly predicted, oracle expansion is not necessary.

The results of EXP4 for the other 58 models are shown in Figures 11(g) to 11(l).

For 16 faulty models as shown in Figure 11(g), iSimFL extends test oracles although the

maximum percentages of blocks inspected using O0 are already good (4.2% on average) and oracle

expansion does not lead to a substantial improvement. For these models, the iSimFL heuristic still

extended O0 because there were some coarse groups (with size larger than g) below the faulty block

but within the top N blocks. Specifically, for eight of these 16 models, iSimFL extends test oracle

to O1, and for the other eight models (i.e., MS3, MS12, MS34, MS36, MC2, MC29, MC31, MC33),

iSimFL extends test oracle to O2.

For four faulty models as shown in Figure 11(h), the maximum percentages of blocks inspected

using O0 are within an acceptable range (8.8% on average). Nevertheless, extending test oracles to

O1 is still beneficial. For these models, iSimFL correctly extends test oracles to O1. By doing so,

on average, the maximum percentage of blocks inspected notably decreases from 8.8% to 1.8% of

the model blocks. However, for MC14 and MG15, iSimFL unnecessarily extends the oracles to O2

while the maximum percentage of blocks inspected remains the same.
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Figure 11. Maximum percentage of blocks that need to be inspected to find faults for SimFL with
Tarantula and test oracles O0, O1, and O2 and for iSimFL with Tarantula: (a) SimFL’s accuracy improves
slightly or remains the same as we extend the oracle, (b-e) SimFL’s accuracy improves notably as we extend
the oracle, (f) SimFL’s accuracy is unpredictable as we extend the oracle, and (g-l) iSimFL’s accuracy for

those models where, according to the iSimFL’s heuristic, oracle expansion is required.

For the other 38 models (Figures 11(i) to 11(l)), the maximum percentages of blocks inspected

using O0 are considerably high (15.5% on average). For 34 of the 38 models, iSimFL correctly

extends oracles which substantially decreases the maximum percentage of blocks inspected.

Specifically, iSimFL correctly performs two iterations (with O0 and O1) for 20 models and three

iterations (with O0, O1, and O2) for 14 models. For these 34 models, iSimFL continues extending

the oracle either until its accuracy improves and fall below 10%, or until no further extension is

possible. Note that only one model (i.e., MS40) falls in the latter group. Further, for four models

(i.e., MS1, MS11, MC3, and MC4 (Figure 11(i))), iSimFL correctly predicts that extending oracles
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to O1 is beneficial, though iSimFL additionally and unnecessarily extends the oracles to O2 while

the accuracy remains the same or does not substantially improve.

In summary, oracle extension is not necessary for 53 out of 95 models. For the other 42 models

where it is necessary (i.e., leads to considerable improvement in accuracy), 28 models need to extend

the test oracle up to depth one (i.e., O1), and 14 models require to extend the test oracle up to depth

two (i.e., both O1 and O2).

The iSimFL heuristic was able to correctly identify 37 out of 53 models that do not need oracle

extension and correctly identify all models (i.e., 42) that require oracle extension. Among these 42

models, the iSimFL correctly predict the oracle extension depth for 36 models. For the other six

models (i.e., MS1, MS11, MC3, MC4, MC14, and MG15), iSimFL correctly extends test oracles to

O1, but iSimFL unnecessarily extends test oracles further to O2. Further, using iSimFL, the average

oracle size for each model is about 12 and therefore lower compared to the size of O2 (23 for MS,

14 for MC, and 17 for MG). Finally, iSimFL was able to properly handle the three cases discussed in

RQ3 where oracle extension caused the accuracy to decline (Figure 11(f)). Specifically, for MS32

and MS33, iSimFL stops after applying O1, whereas for MS14, it goes all the way to O2.

Table V shows the minimum and maximum numbers (and percentages) of blocks inspected for

each industrial subject, comparing SimFL with O0, SimFL with O2 (i.e., extending all oracles), and

iSimFL. Specifically, after applying iSimFL to our 95 faulty models, we obtained the following

values for our evaluation metrics:

Percentage and absolute number of blocks inspected. For all models, using iSimFL, engineers

need to inspect, on average, at least 1.3% and at most 4.4% of model blocks. As shown in Table V,

these results are comparable to those obtained by SimFL with O2 and are better than those obtained

by SimFL with O0.

Table V. Average of minimum and maximum numbers of blocks inspected and test oracle sizes when using
SimFL-Tarantula with O0, SimFL-Tarantula with O2, and iSimFL-Tarantula.

Model SimFL with O0 SimFL with O2 iSimFL

name
min. #(%) - max. #(%)

(|O0|)
min. #(%) - max. #(%)

(|O2|)
min. #(%) - max. #(%)

(Avg.|O|)
MS

13 (2.1%) - 46 ( 7.1%)

(8 outputs)

11 (1.7%) - 26 (4.0%)

(23 outputs)

9 (1.5%) - 29 (4.5%)

(12 outputs)

MC
19 (2.4%) - 96 (11.7%)

(7 outputs)

9 (1.1%) - 34 (4.1%)

(14 outputs)

10 (1.2%) - 37 (4.5%)

(12 outputs)

MG
4(1.4%) - 18( 6.0%)

(6 outputs)

4 (1.4%) - 10 (3.4%)

(17 outputs)

4 (1.4%) - 11 (3.7%)

(11 outputs)

Proportion of faults localized. Using iSimFL, engineers can find at least 90 out of 95 faults (i.e.,

95%) when only the top 10% of most suspicious blocks are inspected. iSimFL is able to locate a

similar number of faults compared to SimFL with O2 (i.e., 90 vs. 91).

In summary, the answer to RQ4 is that the accuracy of iSimFL is similar to the accuracy of SimFL

with O2, while the average test oracle size for iSimFL is 12 compared to a larger size for O2 (12 vs.

23 for MS, 12 vs. 14 for MC, and 11 vs. 17 for MG). That is, iSimFL achieves the same accuracy as

SimFL with O2 using smaller test oracles. Further, iSimFL, with an average oracle size of 12, yields
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a significant improvement in accuracy over SimFL with O0, which has an average oracle size of 7.

That is, iSimFL extends only by five outputs the oracle O0.

RQ5.[Impact of iSimFL’s parameters] To answer this question, we performed EXP5a and

EXP5b as described in Section 5.3. We evaluated the impact of changes in the values of N and

g parameters of iSimFL on the average accuracy and the average oracle size extension of iSimFL.

The reference for comparison is SimFL with the maximum oracle (O2). Specifically, we want to

know, when changing N and g, how the average accuracy and the average oracle size of iSimFL

fare compared to the accuracy and the test oracle size of SimFL with O2.

Figures 12 and 13 show the results of these experiments: In Figure 12, we show the results of

EXP5a where N is fixed at 15 and we vary the value of g from 1% to 10% of model blocks.

Specifically, Figure 12(a) shows the average reduction in the oracle size required by iSimFL

compared to the size of O2 for MS, MC, and MG, and Figure 12(b) shows the average loss in the

accuracy of iSimFL, which tries to use smaller oracles than O2, compared to the accuracy of SimFL

with O2 for MS, MC, and MG. For example, based on the results in these figures, by applying

iSimFL to MS and when g is set to 3% of the size of MS, the average accuracy of the rankings

generated by iSimFL is around 2 (blocks) less than the average accuracy of rankings obtained by

SimFL with O2 (see Figure 12(b)). But iSimFL obtains these rankings with an oracle that contains

on average seven less outputs compared to O2 (see Figure 12(a)). In Figure 13, we show the results

of EXP5b where g is set to 6% of the size of the underlying models and N is set to 5, 10, 15, 20,

and 25. Similar to Figure 12, Figure 13(a) shows the average reduction in the oracle size required

by iSimFL compared to the size of O2 for MS, MC, and MG, and Figure 13(b) shows the average

loss in the accuracy of iSimFL compared to the accuracy of SimFL with O2 for MS, MC, and MG.

As shown in Figure 12, for N = 15, as the value of g increases, iSimFL extends test oracles less

(i.e., the difference between the oracle size required by iSimFL and size of O2 increases), while the

accuracy of ranking results mostly decreases (i.e., engineers on average have to inspect more blocks

to find the fault compared to the number of blocks that they need to inspect when SimFL with O2

is used). This is because for larger g, the probability of finding rank groups with size larger than g

decreases and iSimFL’s heuristic tends to extend test oracles less often (line 7 in Figure 6). Note that

for MS and for two points g = 1% and g = 5%, the accuracy slightly decreases when we increase

g. This is because as we observed in RQ3, in some few cases by extending test oracles, accuracy

may decrease. So although the relationship between g and oracle reduction is monotonic and fully

predictable, i.e., oracle size decreases with increasing g, the relationship between g and accuracy

loss is not always monotonic. However, as shown in Figure 12(b), in most cases by increasing g,

accuracy loss either increases or stays the same, and only in two cases we may slightly gain accuracy

by increasing g.

Similarly, when we fix g to 6% of the size of model (Figure 13) and increase N , iSimFL extends

test oracles more (i.e., the difference between iSimFL required oracle size and size of O2 decreases),

while the accuracy of ranking results increases (i.e., engineers on average have to inspect less blocks

to find the fault compared to the number of blocks that they need to inspect when SimFL with O2 is

used). Note that, when the value of N increases, iSimFL checks a larger number of most suspicious

blocks for deciding whether the suspiciousness ranking is coarse or not. When the set of most

suspicious blocks checked by iSimFL is larger, iSimFL is more likely to find a rank group with
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Figure 12. The impact of varying the value of g on the average reduction of oracle size (a) and the average
loss in fault localization accuracy (b).
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Figure 13. The impact of varying the value of N on the average reduction of oracle size (a) and the
average loss in fault localization accuracy (b).

size > g (i.e., coarse ranking results), and hence, is more likely to decide that oracle extension is

necessary. As a result, the average reduction on oracle size decreases. On the other hand, as shown

in Figure 13(b), as the value of N increases, the accuracy of iSimFL gets closer to the accuracy

of SimFL with O2, i.e., accuracy loss decreases. Note that the trend in Figure 13(b) happens to be

monotonic, but as we discussed earlier, the changes in accuracy that are caused by changes in the

oracle size are in general unpredictable.

In summary, the answer to RQ5 is that changing the value of the parameters (i.e., N and g) used in

iSimFL has a predictable impact on the oracle size required by iSimFL. By increasing g, oracle size

decreases, and by increasing N , oracle size increases when compared to the size of the maximum

oracle (O2). The accuracy loss is not always predictable when we change N and g. In a majority of

cases, however, by increasing g, the accuracy loss increases, and by increasing N , the accuracy loss

decreases when compared with the results obtained by SimFL with O2. Finally, based on Figure 12,

we observe that when the value of g is between 4% to 6% of the model blocks, the average loss in

fault localization accuracy is low (i.e., less than 5 blocks) for all the three models, while reduction

in the test oracle size is relatively large (around 8 outputs on average for the three models). Based

on Figure 13, we observe that the loss in accuracy is high when N is less than 15, suggesting that

checking less than 15 most suspicious blocks may not be enough to assess the coarseness of ranking

results and could lead to missing necessary oracle extensions, hence degrading iSimFL’s accuracy.
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MC is the largest model but also has the smallest variation in oracle size from O0 to O2, i.e.,

there is less room for improvement compared to MS and MG. With the highest value of g and the

smallest value of N , the heuristic leads to extending the oracle by only two more outputs, resulting

in a larger loss of accuracy compared to MS and MG.

Based on the above results for three distinct models of different sizes, for the experiment whose

results are reported in Figure 11, we picked optimal values for g and N , that is 6% and 15,

respectively. When setting these parameters in practice, it does not make much sense for g to go

higher than 10%, which is already a quite large rank group size. Further, g should not be below

4% of the model size since our results suggest that the reduction in oracle size will be limited. The

parameter N is limited by how much time engineers have to inspect blocks. Our results suggest

that, for our three subject studies, by setting N to be at least 15, i.e., less than 5% of the model size

for our smallest model and less than 2% for our largest model, we are able to provide a reasonable

prediction as to when the test oracle extensions are beneficial. Covering such small percentages of

blocks is feasible in most practical contexts and situations.

5.5. Threats to Validity

Threats to the external validity relate to the generalizability of our findings. In this work, we

evaluated the accuracy of our approach in localizing 95 faulty versions of three industrial Simulink

models from the automotive domain. The industrial Simulink models that we analyzed are

representative in terms of size and complexity among Simulink models developed at Delphi, and

the seeded faults were realistic and were obtained from Delphi engineers. However, it is yet to be

seen if our findings are generalizable to Simulink models from other domains.

Threats to the internal validity relate to the assumptions we made in our experiments. In particular,

we evaluated our approach on faulty Simulink models where each faulty model contained one fault

only. In practice, models may have multiple faults, and these faults may impact one another in

unknown ways. However, a large bulk of existing research on applying statistical debugging to code

is exclusively evaluated on programs seeded with single faults [2, 5, 9, 11, 12, 13, 24, 25, 30, 31,

32, 41, 45, 46, 56]. Our approach is the first to apply statistical debugging to Simulink models,

and no prior empirical results on Simulink fault localization exist. In our work, in order to be able

to compare our findings with those reported in the literature, we decided to be consistent with the

existing experiment settings and evaluate our approach on models seeded with single faults. Our

work is a necessary basis before we can move forward to more complex evaluations involving

models seeded with multiple faults. Further, our work opens up opportunities for more research on

applying statistical debugging to Simulink models.

6. RELATED WORK

In this section we present the related work to our fault localization approach. First, we discuss fault

localization techniques applied to source code that are closely related to our work. Next, we present

the existing work on the analysis of Simulink models.
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6.1. Software Fault Localization

Many fault localization techniques have been proposed to localize faults in programs[1, 2, 3, 4, 5,

6, 9, 11, 12, 13, 16, 17, 24, 25, 26, 29, 30, 31, 32, 38, 40, 41, 42, 45, 46, 50, 53, 54, 56, 58, 59, 60].

Statistical debugging is one family of fault localization approaches that has been extensively studied

to localize faults in programs [1, 2, 3, 4, 5, 9, 11, 24, 25, 26, 29, 30, 31, 32, 38, 42, 45, 46, 50, 54, 56,

60]. Nevertheless, statistical debugging has not been studied to localize faults in Simulink models.

In this work, we propose a statistical debugging technique that takes into account the characteristic

of Simulink in order to localize faults in Simulink models.

To identify faults in programs, statistical debugging techniques analyze program spectra and use

a statistical formula to measure the likelihood of program elements to be faulty. Different types of

program spectra have been analyzed to localize faults, e.g. sequences of statements [24, 25, 45, 56,

54], program blocks [1, 2, 32, 45, 60], predicates [30, 31, 42], combination of spectra [46], program

path [11]. A number of statistical formulas to measure suspiciousness of program elements have

also been proposed e.g., Tarantula [25], Ochiai [1, 2], formulas from data mining [32], Naish [39],

D∗ [54], formulas generated using genetic programming [56], SOBER [31], CBI [30]. In this work,

we analyze sequences of (atomic) blocks in Simulink and use existing statistical formulas (i.e.,

Tarantula, Ochiai, and D∗) to measure the suspiciousness of Simulink (atomic) blocks to be faulty.

Tang et al. [50] build a hierarchy of program predicates using hierarchical clustering and uses

it to compute the suspiciousness of each predicate. Parsa et al. [42] focus on comparing the

effectiveness of ranking results for different code abstractions. Our work uses intermediary model

outputs obtained from different subsystems at different hierarchical levels, and focuses on extending

test oracles based on these outputs.

The above techniques [1, 2, 9, 24, 25, 30, 31, 32, 45, 46, 56, 60] localize faults by performing

statistical debugging technique only once. Other debugging techniques [5, 11, 42, 50, 61] iteratively

apply a statistical debugging technique until developers find the root cause of failures. The

techniques proposed in [5, 11] first instrument selected program elements and apply a statistical

debugging technique to obtain the most suspicious program element. Developers then check

whether the most suspicious program element is faulty or not. If the suspicious element is not

faulty, these techniques extend their instrumentation to other program elements, and a statistical

debugging technique is applied again to locate faults. Chilimbi et al. [11] search the location of

faults by extending their instrumentation to include program elements (i.e., functions) that are

highly dependent on the non-suspicious program elements (e.g., functions, branches). A program

element is not suspicious if their suspiciousness score is less than a threshold. Nainar and Liblit [5]

extend their instrumentation to include program elements (i.e., predicates) that are nearby to the

most suspicious program element (i.e., predicates). Their intuition is that predicates that are nearby

to the most suspicious predicate are also suspicious. Instead of extending the instrumentation to

include other program elements, Zuo et al. [61] search the location of faults using hierarchical

instrumentation. They first instrument functions in a program and use a statistical debugging

technique to rank functions. They then instrument predicates of the functions that appear in the top

rank and run the statistical debugging technique to locate the faulty predicates. The existing iterative

debugging techniques [5, 11, 61] focus on extending and improving program instrumentation to

reduce memory and time required by the instrumentation. In our work, however, we focus on
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extending test oracles to improve the accuracy of statistical debugging in localizing faults. Further,

our approach does not require engineers to inspect the ranked list first in order to decide whether or

not another iteration is needed, since our heuristic automatically predicts whether another iteration

of fault localization is needed or not.

Gong et al. [14] refine suspiciousness rankings returned by a statistical debugging techniques

by using developer feedback (i.e., whether a program element is faulty or not) to adjust the

suspiciousness scores of program elements and rerank the program elements. Our approach refines

the ranked lists by asking engineers whether some selected intermediary outputs are correct or not,

and use this information to narrow down the potential faulty Simulink blocks.

Program slicing has been used to refine ranking results produced by statistical debugging

techniques [3, 4, 20, 29, 34, 38]. Alves et al. [4] first obtain one spectrum for each test case and

apply statistical debugging on these spectra. They then prune the ranking results by removing

the statements that are not in the dynamic slicing of incorrect outputs. Our work is different as

instead of using dynamic slicing to prune the ranking results, we first obtain one spectrum (test

execution slice) per output and per test case, and then apply statistical debugging on all the test

execution slices. When multiple outputs are incorrect in a test execution, the techniques proposed

in [29, 34] rely on the spectra related only to the first failing output and use only those spectra

to compute rankings. Hofer et al. [20] use the spectra from incorrect outputs to generate sets of

program elements that can explain failures. In our work, we use spectra from all outputs instead of

only one output [29, 34] or only incorrect outputs [20]. Further, we compute block scores based on

the combined spectra related to all the outputs. Note that in our work, we notice that some output

may fail for all test executions. That is, considering the spectra only from one output is not sufficient

to produce meaningful rankings. Finally, we also provide a heuristic to improve the ranking results

by guiding engineers on how to extend test oracles.

Statistical debugging has been previously extended to spreadsheets [18, 19, 22] and to multi-

agent systems [43] as well. Similar to our work, in both of these approaches, the notion of spectrum

is defined per test case and per output. Specifically, in the spreadsheet fault localization approach,

only one test case is used for each spreadsheet, and each execution of that test case for each output

amounts to one spectrum [18, 19, 22]. In the multi-agent system fault localization, the behavior of

each agent at each time step is considered to be a spectrum [43]. Our work bears some similarities

with these two approaches with respect to the notion of spectrum and application of ranking

formulas. However, our approach is applied to Simulink models that are drastically different from

spreadsheets and multi-agent systems in terms of structure and usage, and further, the computation

of Simulink model spectra (test execution slices) is significantly different in our work compared to

these approaches.

Gonzales et al. [15] and Campos et al. [8], respectively, prioritize and generate test cases with

the goal of reducing the size and number of ambiguity groups in ranked lists. In our work, we use

the maximum size of the top-most ranked ambiguity groups in a ranked list as a heuristic to choose

whether to continue expanding test oracles or not. Specifically, our coarseness measure differs from

those in [8, 15] in that we focus on the size of ambiguity groups that ranked in the top of the list as

opposed to the size of ambiguity groups in the entire list.

Statistical debugging assumes developers can find faults by inspecting statements in isolation,

while in reality they often need context information to decide if a statement is faulty or not [41].
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Like existing work, we generate block rankings without including context information. However,

Simulink blocks often contain some implicit context information since engineers often label them

with terms coming from requirements or architecture. For example, the multiplication block with

label IncrPres in Figure 1 refers to an operation for increasing the pressure of supercharger. This

observation suggests that block rankings could be useful to find faults in Simulink.

6.2. Analysis of Simulink Models

In our work, we relied on model simulations to identify control dependencies between Simulink

blocks. Reicherdt and Glesner [44] proposed a slicing method for Simulink models where control

dependencies are obtained via Simulink Conditional Execution Contexts (CECs) and are used

to create static slices based on a set of blocks. In our work, we chose to use model execution

information to identify control dependencies and compute slices since the static slicing of [44, 49]

based on CECs may provide over approximations that may not be sufficiently precise to determine

control dependencies.

Our work relates to the recent work of Schneider [47] that proposes a technique for tracking

the root causes of defects in Simulink. In that technique, engineers identify failures, typically run-

time failures, at the level of code generated from Simulink models. The program statement that

exhibits the failure is then mapped to a Simulink block, and all the paths leading to that block are

collected and assigned weights based on some heuristic. The path with the highest weight is then

reported to the engineer as the root cause of the defects. This work focuses on runtime failures

(e.g., division by zero), while in our work, we consider a wider range of fault types for Simulink

models (see Section 5.2). Further, in [47], the author does not provide any realistic evaluation of the

proposed approach. In particular, the number of blocks that engineers need to eventually inspect is

not reported. Finally, the scalability of the approach to large models is not discussed as the number

of paths leading to a specific block can be very large for real-world Simulink models.

7. CONCLUSION AND FUTURE WORK

We presented SimFL, a new fault localization approach for Simulink models by combining statistical

debugging and dynamic model slicing. In our work, we generate finer grained spectra (i.e., one

spectrum for each test case and each output) compared to the existing techniques where one test

case yields a single spectrum. This allows us to apply statistical debugging to Simulink models

where test suites are typically small due to the practical limits of embedded system development.

We use backward static slicing and coverage reports to generate test execution slices. We then

compute suspiciousness scores per block and per output using three different, well-known statistical

ranking formulas and take the average of suspiciousness scores of each block over all outputs to

obtain the final scores used for ranking. Our approach considers as many outputs as possible and

necessary, potentially increasing test oracle cost. Hence, we propose an iterative fault localization

algorithm (iSimFL) to help engineers determine when oracle extension is likely to increase accuracy.

We applied SimFL to 95 faulty models generated based on three different Simulink models from

the automotive industry. Our results show that SimFL’s accuracy in localizing faults in Simulink

models is promising: on average, for example, using SimFL with Tarantula, the percentage of blocks
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inspected is at least 2.1% and at most 8.9% of the total model blocks. In contrast to fault localization

for source code, we found that the accuracy of Tarantula, Ochiai, and D2 in localizing fault in

Simulink models are very similar. Further, we show that increasing the size of test suites, above

what is common practice in embedded systems, does not significantly change SimFL’s accuracy.

Hence, to improve accuracy, we extend test oracles using iSimFL, a method to iteratively refine

them and augment their failure detection capability. We show that iSimFL significantly improves

SimFL’s accuracy (i.e. on average, at least 1.3% and at most 4.4% of the total model blocks need to

be inspected) by extending test oracles with only five outputs on average.

The performance of iSimFL depends on a stopping criterion heuristic, which is tunable via

parameters N (the number of top most suspicious blocks inspected) and g (coarseness threshold).

Our analysis shows that changing the value of N and g has a predictable impact on the test oracle

size required by iSimFL. Further, for the majority of cases, the impact on the accuracy of iSimFL

is also predictable. This is expected to facilitate the setting of such parameters. In this work, we

relied on our experience and discussions with domain experts to determine the value of iSimFL’s

parameters. Practical guidelines for choosing values for N and g require further studies and are left

for future work.

Our results suggest that the three well-known statistical formulas (i.e., Tarantula, Ochiai, and D2)

yield similar accuracy in localizing faults for Simulink models. In future, we will investigate why

different statistical formulas have similar impacts on fault localization accuracy. Moreover, we plan

to extend SimFL to localize faults in Stateflow (state machine) models. In addition, we intend to

perform user studies with engineers to better understand their information needs while debugging,

so as to provide additional insights along with the block rankings.
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