

CMD 25 - JMC 14 August 24th - 29th 2014

Université Paris descartes



## Optical properties of MoS<sub>2</sub> Excitons beyond the bandgap

# Alejandro Molina-Sánchez University of Luxembourg Paris, 26-8-2014



#### ... Bandgap engineering and transistors



#### ... a rich phenomenology in optical properties



Intrinsic MoS<sub>2</sub>: AMS *et. al.*, *Phys. Rev. B* 88, 045412 (2013). MoS<sub>2</sub> on metals: J. Mertens, Y. Shi, AMS, L. Wirtz, H. Y. Yang, and J. J. Baumberg, *Appl. Phys. Lett.* 104, 191105 (2014).

#### ... a rich phenomenology in optical properties



Intrinsic MoS<sub>2</sub>: AMS *et. al.*, *Phys. Rev. B* **88**, 045412 (2013).

MoS<sub>2</sub> on metals: J. Mertens, Y. Shi, AMS, L. Wirtz, H. Y. Yang, and J. J. Baumberg, *Appl. Phys. Lett.* **104**, 191105 (2014).

#### ... spin- and valley-physics



Valley-physics: PRL 108, 196802 (2012), Nat. Nano 7, 494 (2012), Nat. Nano 7, 490 (2012),.

#### ... an increasing family of materials



Photon energy (eV)



#### Electronic properties (band structure)







#### Electronic structure



See Refs. in review, AMS, K. Hummer and L. Wirtz, *Surface Science Reports* 

### Electronic structure

- Beyond LDA. ScGW-method
- Spinor fully described
- Semi-core d-orbitals

**Results critically** 

scGW "flavour",

starting point,

depends on

structural

etc.

• On top of van der Waals lattice optimization

K<sub>c</sub>

 $K_{v1}$ 

 $K_{v2}$ 



#### Electronic structure



Bandgap engineering can be performed with external strain.

Not only the bandgap value changes, the character direct/indirect is reversed depending on the sign and strength of the applied strain.



 $X_{_{\!\!A}}$  and  $X_{_{\!\!R}}$  excitons come from the interband transitions at  $\boldsymbol{K}$ 





We represent these coefficients summing over all the transitions (i,j index)





#### Density of states



Exciton in k-space



The wave function of this exciton has two contributions

Around K and around G



Only the localized part contributes to the total WF. Much more confined than XA and XB excitons



*Excitons in a mirror: Formation of "optical bilayers" using MoS2 monolayers on gold substrates*. J. Mertens, Y. Shi, AMS, L. Wirtz, H. Y. Yang, and J. J. Baumberg, *Appl. Phys. Lett.* **104**, 191105 (2014).

Observed also in experiments of photocurrent spectroscopy and second harmonic generation

(A. R. Klots et. al, arXiv:1403.6455; PRB 87, 201401(R) (2013))

H exciton is not a single peak

We find localized excitons in a range of 0.1 eV



#### Interaction with metallic substrates



#### Interaction with metallic substrates



Splitting the H-peak in gold substrate

A- and B-excitons are scarcerly affected

*Excitons in a mirror: Formation of "optical bilayers" using MoS2 monolayers on gold substrates.* J. Mertens, Y. Shi, AMS, L. Wirtz, H. Y. Yang, and J. J. Baumberg, *Appl. Phys. Lett.* **104**, 191105 (2014).

#### Interaction with metallic substrates



## Other TMDs (MoSe<sub>2</sub>, WS<sub>2</sub>, WSe<sub>2</sub>)



## Other TMDs (MoSe<sub>2</sub>, WS<sub>2</sub>, WSe<sub>2</sub>)



Larger separation for A-B exctions, potentially optimum for valley-physics

Spin-orbit interaction opens a gap between H-excitons

## Other TMDs (MoSe<sub>2</sub>, WS<sub>2</sub>, WSe<sub>2</sub>)



#### Conclusions and ongoing work

- Bandgap engineering by applying strain
- A and B peak can be modelled by interband transitions between parabolic bands
- H peak arise from a high density of states. "Van-Hove" exciton?
- A and H excitons have different response to interaction with the substrate
- Metals as Cu and Au seem to affect only the H-excitons
- Role of different substrates
- Role of the electron-phonon interaction
- Valley physics (relaxation processes after optical excitation)

#### References and acknowledgements

- Phonons: A. Molina-Sánchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011).
- Band structure and excitons: A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, *Phys. Rev. B* 88, 045412 (2013).
- Interaction of MoS<sub>2</sub> with gold substrate: J. Mertens, Y. Shi, A. Molina-Sánchez, L. Wirtz, H. Y. Yang, and J. J. Baumberg, *Appl. Phys. Lett.* 104, 191105 (2014).
- Review: A. Molina-Sánchez, K. Hummer, and L. Wirtz, Surface Science Reports, coming soon.
  - Yambo team. Davide Sangalli and Andrea Marini. CNR Roma. Vamh.
  - GW calculations. Kerstin Hummer, University of Vienna.



- Experiments. Jeremy J. Baumberg, University of Cambridge.
- Theoretical Solid State Physics. Ludger Wirtz.





## **THANKS FOR YOUR ATTENTION!**