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Abstract— This paper proposes an H∞ dynamic observer
(DO) for a class of linear time invariant (LTI) systems in
the presence of disturbances. It generalizes the existing results
on the proportional observer (PO), the proportional integral
observer (PIO) and the DO. The design method is derived from
a new formulation of linear matrix inequality (LMI), based on
the solutions of the algebraic constraints obtained from the
unbiasedness conditions of the estimation error. A numerical
example is provided to show the applicability and performances
of our observer.

I. INTRODUCTION

Due to the fact that the state variables of a dynamic
system are often not all available but have great importance
in real-world systems, such as state feedback control and
fault diagnosis, the application of the observer has received
considerable attention, since the first work of observer pre-
sented in [1] and [2].

In the last several decades, the observer has been devel-
oped for systems in the presence of exogenous disturbances.
One approach to deal with disturbances is the disturbance ob-
server. A time-varying exponentially stable interval observer
was constructed for time-invariant exponentially stable linear
systems with additive disturbances in [3], where the systems
could be transformed into cooperative and exponentially sta-
ble systems. In [4], a reduced-order disturbance observer was
proposed to attenuate the after-effects caused by the friction
on the output of the traditional PD-type control scheme,
instead of compensating the primary friction mechanics.
An output-based disturbance observer of reduced order was
presented for a class of discrete-time linear systems in [5].

Another method, named the H∞ observer, which combined
the H∞ theory with the observer, was introduced to deal
with disturbances. Instead of estimating disturbances, the H∞

observer offers a direct method to limit the negative effect
of disturbances. In [6], the linear matrix inequality (LMI)
was employed to construct the delay-dependent non-fragile
H∞ observer-based feedback control for a class of time-delay
systems, extended to observer-based finite-time H∞ control
problem for one family of discrete-time Markovian jump
systems with time-varying norm-bounded disturbance [7].
The authors of [8] proposed a robust H∞ fuzzy observer-
based controller design method for uncertain T-S fuzzy
systems, by using Finsler’s lemma.
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All the observers introduced before are the kind of propor-
tional observers (PO), which are not capable to handle the
static error. Consequently, the proportional integral observer
(PIO) has been introduced by duality to the PI controller,
which is frequently used to achieve steady-state performance.
The first result on the PIO was presented for single-input-
single-output (SISO) systems in [9]. The authors of [10]
designed a discrete-time PIO for both system states and
disturbances for systems with unknown inputs and output
disturbances. In [11], through the asymptotic error analysis
for PIO, the authors proposed integral observers for unbiased
output estimation in the presence of uncertainty. The applica-
tion of the H∞ PIO can be found in [12] for Synchronization
problem of chaotic systems.

Recently, a new structure of the observer, called dynamic
observer (DO), has been developed, which presents an al-
ternative state estimation structure. Different from the PO
and the PIO, the DO obtains the observer gain through state
space equation. In [13], it was shown that the mechanism of
the proposed DO design is the dual of the output feedback
controller design for linear time invariant (LTI) systems. The
dynamic observer-based H∞ controller design, based on a
new form of change-of-variables, was proposed for linear
systems in [14].

In this paper, by combining the H∞ theory with the DO, we
propose an H∞ DO for LTI systems subject to disturbances.
The proposed observer has a more generalized form, of
which the popularly used PO and PIO are only particular
cases. The observer is derived from the solution of new LMI
formulations, based on the transformation of the algebraic
constraint.

The paper is organized as follows: In section II, the
DO design problem and some preliminaries relevant to this
paper are presented. Section III gives some parameterization
results. In section IV, the design problem is solved for
LTI systems in the presence of disturbances. An illustrative
example is provided to show the performance of our observer
in Section V. Some conclusions are drawn in Section VI.

The following notations will be used throughout this
paper: Rn and Rn×m denote the set of n dimensional real
vectors and the set of all n×m real matrices, respectively;
‖.‖∞ is the H∞ norm; A+ is the generalized inverse of matrix
A satifying AA+A = A; AT denotes the transpose of A; A is
symmetric positive definite if and only if AT = A and A > 0;
matrices I and 0 denote the identity matrix and zero matrix
of appropriate dimensions, respectively; Let V be a vector
space over a filed F , for a subset W of V , we define the
left orthogonal complement W⊥ to be W⊥ = {x ∈V : xT y =
0 for all y ∈W}. There is a corresponding definition of the
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right orthogonal complement.

II. PROBLEM FORMULATION

Let us consider the following LTI system in the presence
of disturbances:

ẋ = Ax+Bu+D1w
y = Cx+D2w (1)

with the initial state x(0) = x0, where x ∈Rn,y ∈Rp,u ∈Rl

and w ∈ R f are the state vector, the measurement output
vector, the control input vector and the disturbance vector,
respectively. A,B,C,D1 and D2 are known constant matrices
and of appropriate dimensions.

Next, let us consider the following DO:

ż = Nz+ Jy+Hu+Mv
v̇ = Pz+Qy+Gv
x̂ = Rz+Sy

(2)

where z ∈ Rq,v ∈ Rq and x̂ ∈ Rn are the state vector of
the observer, the auxiliary state vector and the estimation
of x, respectively. Matrices N,J,H,M,P,Q,G,R and S are
unknown to be determined and of appropriate dimensions.
The auxiliary vector v is similar to the additional term in the
PIO, which is proportional to the integral of the output error,
aiming to achieve robustness performance.

Remark 1:
1. The observer (2) is in a generalized form. In fact, if

M = 0,P = 0,Q = 0,G = 0,S = 0, and R = I, we obtain
the full order PO:

˙̂x = Nx̂+ Jy+Hu

If G = 0,Q = I,P =−C,R = I and S = 0, we obtain the
following PIO:

˙̂x = Nx̂+ Jy+Hu+Mv

v̇ = y−Cx̂

If R = I,S = 0,Ξ = G,Γ = Q,Λ = M,Ψ = J,A−JC = N
and −QC = P, we obtain the following standard DO:

˙̂x = Ax̂+Bu+ξ

v̇ = Ξv+Γµ

ξ = Λv+Ψµ

µ = y− ŷ

2. Assume that rank C = p, if q = n− p, we obtain the
reduced-order observer; if q = n, we obtain the full-
order one.

Our aim is to design a DO to estimate the system state
x, and the design problem is to determine all the parameter
matrices N,J,H,M,P,Q,G,R and S such that the following
two conditions are satisfied:

1 for disturbances w = 0, the estimation error e→ 0(e =
x̂− x) when t→ ∞;

2 for disturbances w 6= 0, the norm ‖Twe‖∞ < γ .
where Twe represents the transfer function from the distur-
bances w to the estimation error e and γ is a given positive
scalar.

III. PARAMETERIZATION OF THE OBSERVER

In this section, we will present the parameterization of the
observer. Firstly, we define a new error variable ε = z−T x,
where the matrix T ∈Rq×n is an arbitrary matrix. Then we
can give the following lemma:

Lemma 1: For w= 0, the system (2) is a dynamic observer
for system (1) if there exits an arbitrary matrix T such that
the following constraints are satisfied:

NT −TA+ JC = 0 (3a)
H = T B (3b)

PT +QC = 0 (3c)
RT +SC = I (3d)

and the matrix

A=

(
N M
P G

)
is Hurwitz.

Proof: From the definition of the error ε , we obtain the
dynamic of the error ε:

ε̇ = ż−T ẋ

= Nz+ Jy+Hu+Mv−TAx−T Bu

= Nε +(NT −TA+ JC)x+(H−T B)u+Mv

Furthermore, we obtain:

v̇ = Pε +(PT +QC)x+Gv

x̂ = Rε +(RT +SC)x

One can see that the dynamics of the error ε and the
auxiliary state v are independent of x and u if the following
constraints are satisfied:

NT −TA+ JC = 0
H = T B

PT +QC = 0

On the other hand, if RT +SC = I, the estimation error e
becomes:

e = Rε

In this case, we obtain the following system:

ζ̇ = Aζ

e = Cζ
(4)

where ζ =

(
ε

v

)
, A=

(
N M
P G

)
and C=

(
R 0

)
.

Obviously, the estimation error e→ 0 if ε→ 0, and ε→ 0
and v→ 0 if and only if A is Hurwitz, which completes the
proof of the lemma.

Consequently, the observer design problem in the case of
w = 0 is reduced to the stabilization of system (4).

Now, from equations (3c) and (3d) we obtain the following
equation: (

P Q
R S

)(
T
C

)
=

(
0
I

)
(5)
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The necessary and sufficient condition for (5) to have a
solution is:

rank


T
C
0
I

= rank
(

T
C

)
= n

Assumed the condition above is satisfied, let E ∈Rq×n be
an arbitrary matrix such that:

rank
(

E
C

)
= rank

(
T
C

)
= n (6)

since T is unknown, then there always exits parameter
matrices T and K such that:(

T
C

)
=

(
I −K
0 I

)(
E
C

)
or equivalently T = E−KC.

Consequently, equation (5) becomes:(
P Q
R S

)(
I −K
0 I

)(
E
C

)
=

(
0
I

)
(7)

The general solution to (7) is given by:(
P Q
R S

)
=

{(
0
I

)
Σ
+−Z

[
I−ΣΣ

+
]}(I K

0 I

)
or equivalently:

P =−Z2β1,Q =−Z2β2,R = α1−Z3β1 and S = α2−Z3β2
(8)

where

Σ =

(
E
C

)
, Z is an arbitrary matrix,

Z2 =
(
I 0

)
Z, Z3 =

(
0 I

)
Z,

α1 = Σ+

(
I
0

)
, β1 = (I−ΣΣ+)

(
I
0

)
,

α2 = Σ+

(
K
I

)
and β2 = (I−ΣΣ+)

(
K
I

)
.

(9)

One can see from the expression of estimation error e=Rε

that e→ 0 when ε → 0, i.e. e is independent of matrix R.
Then we can take Z3 = 0 and we obtain R = α1 and S = α2.

Notice that T = E−KC, we have the equation:(
T K

)( I
C

)
= E (10)

which has a solution if:

rank

 I
C
E

= rank
(

I
C

)
(11)

In this case, one solution to (10) is given by:

T = E
(

I
C

)+(I
0

)
and K = E

(
I
C

)+(0
I

)
. (12)

Furthermore, equation (3a) can be rewritten as:

N(R−KC)− (R−KC)A+ JC = 0

or (
N K1

)
Σ = Θ (13)

where K1 = J−NK and Θ = TA and the general solution to
(13) is given by:(

N K1
)
= ΘΣ

+−Z1(I−ΣΣ
+)

where Z1 is an arbitrary matrix, or equivalently:

N = α3−Z1β1 and K1 = α4−Z1β3 (14)

where

α3 = ΘΣ
+

(
I
0

)
,α4 = ΘΣ

+

(
0
I

)
and β3 = (I−ΣΣ

+)

(
0
I

)
.

(15)
Then we can obtain the equation of J:

J = Θα2−Z1β2 (16)

From these results above, matrix A becomes:

A=

(
α3 0
0 0

)
−
(

Z1 M
Z2 G

)(
β1 0
0 −I

)
= A1−ZA2 (17)

and we obtain
ζ̇ = (A1−ZA2)ζ (18)

Then, the design problem without disturbance is reduced
to study system (18), i.e. to determine the parameter matrix
Z which can be obtained from the following theorem:

Theorem 1: System (18) is stable if and only if there
exists a symmetric positive definite matrix P and a matrix Y
such that

AT
1 P+PTA1−YA2−AT

2 YT < 0 (19)

in this case, Z= P−1Y.
Proof: Choose a Lyapunov function candidate V (ζ ) =

ζ TPζ ,P=PT > 0, then the differential of V (ζ ) is along with
the solution of (18):

V̇ (ζ ) = ζ̇
TPζ +ζ

TPζ̇

= ζ
T (A1−ZA2)

TPζ +ζ
TP(A1−ZA2)ζ

= ζ
T (AT

1 P+PTA1−YA2−AT
2 YT )ζ

where Y= PZ.
One can see that system (18) is stable if and only if V̇ (ζ )<

0, or equivalently:

AT
1 P+PTA1−YA2−AT

2 YT < 0

This completes the proof.
The design procedure of the proposed observer for w = 0

is summarized as follows:

1. Choose the matrix E according to the condition (6);
2. Compute T and K from (12);
3. Compute α1,α2,α3,α4,β1,β2 and β3 from (9) and (15);
4. Compute the parameter matrix Z from the solution of

the LMI (19);
5. Deduce all the matrices N,J,H,M,P,Q,G,R and S from

equations (3b), (8), (14) and (16).
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IV. H∞ DYNAMIC OBSERVER DESIGN

In this section, we will investigate the observer design
problem in the case that w 6= 0. By using constraint equations
of lemma 1, we obtain the dynamic of error ε:

ε̇ = Nε +Mv+(JD2−T D1)w

the dynamic of v becomes:

v̇ = Pε +Gv+QD2w

and the estimation error e becomes:

e = Rε +SD2w

In this case, we obtain:(
ε̇

v̇

)
=

(
N M
P G

)(
ε

v

)
+

(
JD2−T D1

QD2

)
w

and estimation error e becomes:

e = Rε +SD2v

From the above results, we obtain the following system:

ζ̇ = Aζ +Bw
e = Cζ +Dw

(20)

where

A=

(
N M
P G

)
, B=

(
JD2−T D1

QD2

)
,C=

(
R 0

)
and D= SD2.

Remark 2: According to the results of section III, the four
matrices A,B,C and D can be rewritten as:

A= A1−ZA2,B= B1−ZB2,

B1 =

−T D1 +ΘΣ+

(
K
I

)
D2

0

 ,

B2 =

(
−β2D2

0

)
,C=

(
α1 0

)
and D= α2D2.

(21)

Then, the observer design problem in the presence of
disturbances is reduced to determine the parameter matrix
Z such that:
• Matrix A is a stability matrix for w = 0 ;
• for w 6= 0, ‖Twe‖∞ is minimized.
Generally, according to the bounded-real lemma, the prob-

lem above can be settled by solving one LMI and the solution
leads to M = 0, P = 0 and Q = 0. In this case, we can only
obtain PO. In order to obtain the more general solution, we
propose the following theorem to obtain the parameter matrix
Z:

Theorem 2: There exists a parameter matrix Z such that
the system (20) is asymptotically stable for w = 0 and
‖Twe‖∞ < γ for w 6= 0, if and only if there exist a symmetric
positive definite matrix X and a positive scalar γ such that
the following LMIs are satisfied:{

DTD− γ2I < 0
C T⊥QC T⊥T < 0

(22)

where

Q =

(
X A1 +AT

1 X +CTC X B1 +CTD
BT

1 X +DTC DTD− γ2I

)
(23)

Suppose the above statements hold, let (Bl ,Br) and (Cl ,Cr)
be any full rank factors of B and C , i.e. B = BlBr,C =
ClCr.

In this case, matrix Z= X −1Y and Y is given by

Y = B+
r K C+

l +Z −Z ClC
+
l (24)

where Z is an arbitrary matrix and

K ,−R−1
ΦC T

r (CrΦC T
r )−1 +S 1/2L (CrΦC T

r )−1/2

(25)
S , R−1−R−1[Φ−ΦC T

r (CrΦC T
r )−1CrΦ]R−1 (26)

where L is an arbitrary matrix such that ‖L ‖ < 1 and R
is an arbitrary positive definite matrix such that

Φ , (R−1−Q)−1 > 0 (27)
Proof: According to the bounded-real lemma, system

(20) is asymptotically stable for w = 0 and ‖Twe‖∞ < γ for
w 6= 0 if and only if there exist a symmetric positive definite
matrix X and a positive scalar γ such that the following
LMI is satisfied:(

AT X +X A+CTC X B+CTD
(X B)T +DTC −γ2I +DTD

)
< 0 (28)

By inserting matrices A, B, C and D of remark 2 into the
LMI (28), we obtain the following LMI:(

Π Ω

ΩT −γ2I +DTD

)
< 0

⇔ Q+BY C +(BY C )T < 0
(29)

where

Π = X A1 +AT
1 X −Y A2− (Y A2)

T +CTC
Ω = X B1−Y B2 +CTD

Q =

(
X A1 +AT

1 X +CTC X B1 +CTD
BT

1 X +DTC DTD− γ2I

)

B =

(
−I
0

)
, C =

(
A2 B2

)
and Y = X Z.

According to [15], the inequality (29) is equivalent to:

B⊥QB⊥T < 0
C T⊥QC T⊥T < 0

In this case, matrix Y can be obtained by:

Y = B+
r K C+

l +Z −B+
r BrZ ClC

+
l (30)

where Z is an arbitrary matrix and

K ,−R−1
ΦC T

r (CrΦC T
r )−1 +S 1/2L (CrΦC T

r )−1/2

(31)
S , R−1−R−1BT

l [Φ−ΦC T
r (CrΦC T

r )−1CrΦ]BlR
−1

(32)
where L is an arbitrary matrix such that ‖L ‖ < 1 and R
is an arbitrary positive definite matrix such that

Φ , (BlR
−1BT

l −Q)−1 > 0 (33)
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Now, since matrix B =

(
−I
0

)
, we obtain:

B⊥ =
(
0 −I

)
,Bl = I,Br =

(
−I
0

)
and B+

r =
(
−I 0

)
.

(34)
Inserting these matrices into (31)-(33), we obtain the

equations (25)-(27) and the inequality (22), which completes
the proof.

Finally, the H∞ dynamic observer design procedure can be
summarized as follows:

1. Choose the matrix E according to condition (6);
2. Compute T and K from (12);
3. Compute matrices α1, α2, α3, α4, β1, β2 and β3 from

(9) and (15);
4. Compute matrices A1, A2, B1, B2, C and D given in

remark 2;
5. Compute Z from the theorem 2;
6. Deduce all the matrices N,J,H,M,P,Q,G,R and S from

equations (3b), (8), (14) and (16).

V. NUMERICAL EXAMPLE

The following numerical example illustrates the proposed
observer design procedure . Let us consider a LTI system of
the form (1) that:

A =

−2 2 1
0 −2 3
0 0 −1

 ,B =

1
2
1

 ,D1 =

0.2
0.5
1

 ,
C =

[
0 1.5 0

]
and D2 =

[
0.1
]
.

The initial conditions are x1(0) = 1, x2(0) = 2 and x3(0) = 3.
By applying our design approach to design a DO, we

obtain the following results, by choosing the matrix E =1 0 1
0 0 1
2 1 1

: γ = 0.5,

X = 104


1.0155 −0.4445 −0.4815 0.0001 0.0001 0.0001
−0.4445 0.2482 0.1736 0.0001 0.0001 0.0001
−0.4815 0.1736 0.2573 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.4826 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.4826 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.4826

 ,

and Z=

 −87.2562 43.7778 43.8220 −29.1456 0.5363 0.5363 0.5363
−82.6827 41.4775 41.5175 −27.6154 0.5254 0.5254 0.5254
−107.5952 53.9871 54.0437 −35.9417 0.7135 0.7135 0.7135
−0.0100 0.0049 0.0049 −0.0033 −0.5003 −0.0003 −0.0003
−0.0100 0.0049 0.0049 −0.0033 −0.0003 −0.5003 −0.0003
−0.0100 0.0049 0.0049 −0.0033 −0.0003 −0.0003 −0.5003

 .
Finally, the obtained DO is then given by:

żg =

 86.9615 −42.4807 −44.4807
82.4805 −42.2403 −41.2403

107.6003 −49.8771 −55.8002

zg +

10.4576
8.4595

13.7026

y

+

 2
1

3.6

u+

0.5363 0.5363 0.5363
0.5254 0.5254 0.5254
0.7135 0.7135 0.7135

vg

v̇g =

0.0099 −0.0050 −0.0050
0.0099 −0.0050 −0.0050
0.0099 −0.0050 −0.0050

zg +

0.0010
0.0010
0.0010

y

+

−0.5003 −0.0003 −0.0003
−0.0003 −0.5003 −0.0003
−0.0003 −0.0003 −0.5003

vg

x̂g =

 0.0690 −0.5345 0.4655
−0.1379 0.0690 0.0690
0.3103 0.8448 −0.1552

zg +

−0.0955
0.6525
0.0318

y

We also design a PO and a PIO to provide comparisons
with our DO. These observers are designed under the same
condition with γ = 0.5. The obtained PO is given by:

˙̂xp = Ax̂p +Bu+

1.4976
0.6177
4.0444

(y−Cx̂p)

The obtained PIO is given by:

˙̂xpi =

−2 −1.1716 1
0 −4.0686 3
0 1.0865 −1

 x̂pi +Bu

+

 2.1144
1.3791
−0.7243

y+

 2.6206
21.4783
−2.3894

vpi

v̇pi = −Cx̂pi + y

In the simulation, we add an uncertain term ∆A in
the system (A + ∆A), where ∆A = 0.1∆sin10πt and ∆ =0.1 0.2 0.1

1 0.1 0.5
0.5 0.3 0.1

.

The simulation results are shown in the following figures.
Figure 1 shows the disturbance and the uncertainty.

Figures 2, 4 and 6 present the state estimations, obtained
from DO, PO and PIO, respectively.

The solid line represents the original system state. The
dashed line represents the state estimation obtained from
the DO. The dot-dashed line represents the state estimation
obtained from the PO. The dotted line represents the state
estimation obtained for the PIO.

Figures 3, 5 and 7 show the estimation errors (e = x̂− x)
of DO, PO and PIO, respectively.

From these simulations, one can see that our observer
presents the best performances, compared with the PO and
PIO.

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

 

 

uncertainty

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

time/s

 

 

disturbance

Fig. 1. uncertainty and disturbance (dashed line: uncertainty; dot-dashed
line: disturbance)
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Fig. 2. estimation x1 (solid line: original state; dashed line: DO; dot-dashed
line: PO; dotted line: PIO)
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Fig. 3. estimation error e1(dashed line: DO; dot-dashed line: PO; dotted
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0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time/s

X
2

 

 

X2

X2DO

X2PO

X2PIO

Fig. 4. estimation x2 (solid line: original state; dashed line: DO; dot-dashed
line: PO; dotted line: PIO)
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Fig. 5. estimation error e2 (dashed line: DO; dot-dashed line: PO; dotted
line: PIO)
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Fig. 6. estimation x3 (solid line: original state; dashed line: DO; dot-dashed
line: PO; dotted line: PIO)
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Fig. 7. estimation error e3 (dashed line: DO; dot-dashed line: PO; dotted
line: PIO)

VI. CONCLUSION

In this paper, an H∞ dynamic observer is proposed for
LTI systems subject to disturbances. The proposed observer
has a more generalized form, of which the popularly and
widely used PO and PIO can be considered as particular
cases. Furthermore, it has a simpler structure than standard
DO. The design of the observer is derived from the solution
of new LMIs. A numerical example is given to illustrate
the observer design procedure and the better performances,
compared with PO and PIO.
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