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Abstract—Compressive Sensing (CS) has received much at-
tention in several fields such as digital image processing, wireless
channel estimation, radar imaging, and Cognitive Radio (CR)
communications. Out of these areas, this survey paper focuses on
the application of CS in CR communications. Due to the under-
utilization of the allocated radio spectrum, spectrum occupancy
is usually sparse in different domains such as time, frequency
and space. Such a sparse nature of the spectrum occupancy
has inspired the application of CS in CR communications. In
this regard, several researchers have already applied the CS
theory in various settings considering the sparsity in different
domains. In this direction, this survey paper provides a detailed
review of the state of the art related to the application of
CS in CR communications. Starting with the basic principles
and the main features of CS, it provides a classification of the
main usage areas based on the radio parameter to be acquired
by a wideband CR. Subsequently, we review the existing CS-
related works applied to different categories such as wideband
sensing, signal parameter estimation and Radio Environment
Map (REM) construction, highlighting the main benefits and the
related issues. Furthermore, we present a generalized framework
for constructing the REM in compressive settings. Finally, we
conclude this survey paper with some suggested open research
challenges and future directions.

Index Terms—Cognitive Radio, Compressive Sensing, Wide-
band Sensing, Radio Environment Map, Compressive Estimation

I. I NTRODUCTION

Recently, Compressive Sensing (CS), also known as com-
pressive sampling or sparse sampling [1], [2], has been a topic
of extensive research in various areas such as digital image
processing [3], wireless channel estimation [4], [5], radar
imaging [6], Cognitive Radio (CR) [7], electromagnetics [8],
etc. Out of the wide range of the aforementioned application
areas, this survey paper focuses on the application of CS to
CR communications.

Spectrum scarcity is one of the most important challenges
faced by today’s wireless operators to provide high data rate
services to a large number of users. In this context, CR
communication has been considered as a potential candidate
to address the spectrum scarcity problem in the future gen-
eration of wireless communications, i.e., 5G. The concept
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of CR was firstly proposed by J. Mitola in the late 1990’s
[9] and after its conception, several researchers and indus-
trial/academic/regulatory bodies have been working towards
the implementation of this technology. It has a wide range
of application areas ranging from Television WhiteSpaces
(TVWSs) [10] to satellite communications [11], [12]. The
main functions of a CR are to be aware of its surrounding
radio environment, i.e., spectrum awareness, and to utilize
the available spectral opportunities effectively, i.e., spectrum
exploitation.

CS theory states that certain signals can be recovered from
far fewer samples or measurements than the samples required
by traditional methods [1], [2]. In this approach, a significantly
reduced number of measurements is obtained from the incom-
ing data stream and is expected to be reconstructible from
these small number of measurements. This method basically
combines the following key concepts: (i) sparse representation
with a choice of a linear basis for the class of the desired
signal, and (ii) incoherent measurements of the considered
signal to extract the maximum information using the minimum
number of measurements [13]. In sparse signals, most of the
signal energy is concentrated in a few non-zero coefficients.
Furthermore, to apply the CS theory, it’s not necessary for
the signal itself to be sparse but can be compressible within
sparse representations of the signal in some known transform
domain [14], [15]. For example, smooth signals are sparse in
the Fourier basis whereas piecewise smooth signals are sparse
in the wavelet basis [1].

Although there exist several survey papers in the areas of
CR communications covering a wide range of areas such as
Spectrum Sensing (SS) [16], spectrum occupancy measure-
ment campaigns [17], spectrum management [18], emerging
applications [19], spectrum decision [20], spectrum access
strategies [21], CR techniques under practical imperfections
[22], and CR networks [23], a comprehensive review on the
applications of CS in CR communications is missing from the
literature. Besides, there exist several applications of CS in CR
communications and they have been investigated for various
objectives. In this context, first, this survey paper categorizes
the application areas based on the acquired environmental
information. Subsequently, it provides a comprehensive review
of the existing state of art in these categories. Furthermore,
we identify the major issues associated with each of these
application areas and present a generalized framework for
Radio Environment Map (REM) construction in compressive
settings. Finally, we suggest some interesting open research
issues and future directions.



The remainder of this paper is structured as follows:
Section II-A provides the basic principles of CS and highlights
several important aspects such as uniqueness of a solution and
compressive signal processing. Section II-B briefly discusses
CR communications and classifies various application areas
of CS in CR communications based on the parameter to
be acquired. Subsequently, Section III identifies the practical
limitations for wideband sensing and reviews in detail the
CS-related prior work. Section IV describes the existing ap-
proaches for performing the compressive estimation of various
signal parameters while Section V discusses various aspects of
Radio Environment Map (REM) construction. Finally, Section
VI provides open research issues and Section VII concludes
this paper. To improve the flow of this paper, we provide
the structure of the paper in Fig. 1 and the definitions of
acronyms/notations in Table I.

II. CS AND ITS APPLICATIONS IN CR COMMUNICATIONS

In this section, we provide an overview of the basic
concepts related to CS theory. The detailed explanation about
the fundamental developments in CS can be found in [1], [2],
[13].

A. Compressive Sensing Basics

1) Basic Principle: CS [13], [24], [25] is a novel sens-
ing/sampling paradigm that allows, under certain assumptions,
the accurate recovery of signals sampled below the Nyquist
sampling limit. In order to briefly review the main ideas of CS,
consider the following finite length, discrete time signalx ∈
R

L. Representing a signal involves the choice of adictionary,
which is the set of elementary waveforms used to decompose
the signal. Sparsity of a signal is defined as the number of
non-zero elements in the signal under some representation.A
signal is said to have a sparse representation over a known
dictionaryΨ =

[

ψ0 ψ1 · · · ψM−1

]

, with ψm ∈ R
L×1,

if there exists a sparse vectorθ =
[

θ0 θ1 · · · θM−1

]T

such that

x =

M−1
∑

m=1

ψmθm or x = Ψθ, (1)

with ‖θ‖l0 = K << M . The l0-norm used throughout this
paper simply counts the number of non-zero components in
θ. A dictionary that leads to sparse representations can either
be chosen as a prespecified set of functions or designed by
adapting its content to fit a given set of signal examples [26].

The framework of CS aims at recovering the unknown
vectorx from an underdetermined system of linear equations

y = Φx, (2)

where y ∈ R
κ×1 is the received data vector and matrix

Φ ∈ C
κ×L with K < κ < L is the sub-sampling matrix

or sensingmatrix since the number of rows is less than the
number of columns. Sinceκ < L, this system has more
unknowns than equations, and thus the system is not invertible.
In particular, (2) has infinitely many solutions. Among the
infinitely many solutions of (2), we are only interested in
the sparsest one. Direct minimization of‖θ‖l0 is an NP-hard

problem, which basically means that it requires an exhaustive
search and, in general, it is not a feasible approach. Special
cases of interest for convexity are all thelp-norms forp ≥ 1.
Among them,l1-norm is very interesting and popular due to
its tendency to sparsify the solution. In this context, Chenet
al. [27] stated that a sparse signalθ can be recovered from
only κ = O(K log(L/K)) linear non-adaptive measurements
by solving the following relaxation

min
θ

‖θ‖l1 subject to y ≈ ΦΨθ, (3)

where‖θ‖l1 =
∑

i |θi|. Several methods are available in the
literature to solve the optimization problem in (3). Thel1-
minimization is a convex problem and can be recast as a
Linear Program (LP) [28]. This is the foundation for the Basis
Pursuit (BP) techniques [27], [29], [30]. Alternatively, greedy
methods, known as Matching Pursuit (MP), can be used to
solve (3) iteratively [31], [32].

2) Uniqueness of a Solution:In general, the relationship
between the sensing matrix (Φ) and the signal model (Ψ)
affects the number of measurements required to reconstructa
sparse signal.

Almost all theory of CS is based on the assumption that
D = ΦΨ is the concatenation of two orthogonal matrices.
These theories follow the uncertainty principle which states
that a signal cannot be sparsely represented both inΦ and
Ψ [33]. This claim depends on the similarity betweenΦ
and Ψ. A rough characterization of the degree of similarity
between the sparsity and measurement systems is depicted by
the mutual coherence, which is given by

µ(Φ,Ψ) = max
i,j
i6=j

∣

∣

∣
φH

i ψj

∣

∣

∣

‖φi‖l2 ·
∥

∥ψj

∥

∥

l2

. (4)

In other words,D should have columnsdi, i = 1, . . . , N
with small correlations. An explicit example of matrices which
have small coherence is the concatenation of the Identity and
Fourier matrices. Another suitable way to describeµ is to
compute the Gram matrixG = D̃T D̃, using matrixD after
normalizing each of its columns (D̃). The mutual coherence
is given in this case by the off-diagonal entry ofG with the
largest magnitude.

On the other hand, another criterion for evaluating the qual-
ity of CS matrices that are nearly orthonormal, is the Restricted
Isometry Property (RIP) introduced in [30], initially called
as “uniform uncertainty principle”. The RIP is a sufficient
condition onD̃ for exact recovery of aK-sparseθ.

The matrixD̃ satisfies the RIP of orders ∈ N, s < L, if
there exists an isometry constant0 < δs < 1 such that

(1− δs) ‖θ‖2l2 ≤
∥

∥

∥
D̃θ

∥

∥

∥

2

l2

≤ (1 + δs) ‖θ‖2l2 (5)

holds for alls-sparse vectors, whereδs is the smallest number
satisfying (5). However, working with the RIP condition
is much more complex compared to the simple coherence
concept since for a given matrix, checking the validity of the
RIP condition is an NP-hard problem itself.
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Fig. 1. Structure of the paper

3) Compressive Signal Processing:Many signal process-
ing problems such as detection, estimation, and classification
do not require full signal recovery. The CS theory can be
further extended to address the detection, estimation and clas-
sification problems. In this context, the most relevant works are
the discussions of compressive parameter estimation in [34],
[35], compressive detection in [36], [42], [43] and compressive
classification in [36], [43], [46], [47].

It is possible to apply standard CS to continuous-valued
parameter estimation and the detection of signals in continuous
domains but it does not perform well due to the discretization
of the sparse domain. CS requires the signal to be sparse
over a finite basis whereas the parameters/signals could lie
anywhere on a continuum. This problem is known in the
literature as a basis-mismatch problem [44], [45]. Further,
basis-mismatch problems may arise in many other applications
including channel estimation discussed later in Section IV-D.

A comprehensive analysis on the performance of signal
classification based on compressive measurements is presented
in [46]. The first works where sparsity was leveraged to

perform classification with very few random measurements are
[36], [43], [47]. In particular, [43] focuses on the compressive
detection problem but provides some ideas for extensions to
classification. Later, [47] explored the use of a compressed
version of the matched filter referred to as the smashed
filter. The basic idea of the smashed filter is to implement
a matched filter directly in the compressed domain without
the requirement of reconstructing the original signal from
the compressed measurements. The utility of CS projection
observations for signal classification by means of anm-ary
hypothesis testing was proposed in [36]. In general, there are
many applications where it can be more efficient and accurate
to extract information for classification directly from a signal’s
compressive measurements than first recover the signal and
then extract the information.

B. Applications of CS in CR Communications

In this section, we provide the basics of CR communication
and briefly describe various applications of CS for enabling



TABLE I
DEFINITIONS OFACRONYMS AND NOTATIONS

Acronyms/Notations Definitions Acronyms/Notations Definitions
ADC Analog to Digital Converter REM Radio Environment Map
AIC Analog to Information Converter RF Radio Frequency
BP Basis Pursuit RIP Restricted Isometry Property
CDMA Code Division Multiple Access SSR Sparse Signal Representation
CR Cognitive Radio SS Spectrum Sensing
CS Compressive Sensing ST Secondary Transmitter
CMUX Compressive Multiplexer SVD Singular Value Decomposition
CSI Channel State Information SNR Signal to Noise Ratio
DoA Direction of Arrival WSS Wideband Spectrum Sensing
DCS Distributed Compressive Sensing WSN Wireless Sensor Network
DR Dynamic Range QoS Quality of Service
FC Fusion Centre UWB Ultra-Wideband
FFT Fast Fourier Transform x Nyquist-sampled signal
FIR Finite Impulse Response L Number of samples ofx
GIS Geographic Information System Ψ Dictionary or sparsifying basis
i.i.d. independent and identically distributed θ Sparse vector
JSM Joint Sparsity Order M Number of samples ofθ

LP Linear Program ‖θ‖lp

(

∑M
m=1

|θm|p
)1/p

, p ≥ 1

LASSO Least Absolute Shrinkage and Selection Operator‖θ‖l0 = K number of non-zero components ofθ

MP Marching Pursuit y Compressive-sampled signal
MMV Multiple Measurement Vector κ Number of samples ofy
MWC Modulated Wideband Converter Φ Sensing matrix
NP Nondeterministic Polymonial D Product ofΦ ·Ψ
OMP Orthogonal Matching Pursuit fs Sampling frequency
PT Primary Transmitter Neff Number of ADC effective bits
PR Primary Receiver

∑

Summation
PSD Power Spectral Density (·)T Transpose
PU Primary User (·)H Conjugate transpose
ISNR In-band Signal to Noise Ratio R Set of real numbers
RSNR Recovered Signal to Noise Ratio C Set of complex numbers
RD Random Demodulator ρ Compression factor
RSS Received Signal Strength ⊙ Element-wise product

CR communications. The detailed description on these appli-
cations will be provided in latter sections by referring to the
current state of the art.

1) CR Communications:Current wireless networks are
facing a spectrum scarcity problem due the limited available
spectrum and the increasing demand of high data-rate services.
On one hand, the usable spectrum seems to be scarce due
to spectrum segmentation and the static frequency allocation
policy. On the other hand, several spectrum measurement
compaigns show the under-utilization of the allocated spec-
trum in the time and space (geographical) domains [17]. In
this context, CR communications has been considered as a
promising candidate to address the spectrum scarcity problem
in future wireless networks. In CR communications, Primary
Users (PUs), also called incumbent or licensed users, are the
users who have legacy rights on the use of a specific part of
the spectrum. On the other hand, Secondary Users (SUs), also
called cognitive or unlicensed users, exploit this spectrum in
such a way that they do not provide harmful interference to
the normal operation of the licensed PUs.

A CR should be capable of acquiring various Radio
Frequency (RF) parameters in order to become aware of its
surrounding radio environment. This can be achieved with
the help of various spectrum awareness techniques such as
Spectrum Sensing (SS), database and the estimation of the
signal parameters such as Signal to Noise Ratio (SNR), Chan-
nel State Information (CSI), Directional of Arrival (DoA),etc.
After being aware of the RF environment, the next important
functionality for a CR is to exploit the available under-
utilized resource effectively, called spectrum exploitation. The
widely used paradigms for spectrum exploitation are inter-
weave, underlay and overlay [48]. Out of these paradigms, the
first paradigm consists of interference avoidance/opportunistic

techniques which require SUs to communicate opportunisti-
cally using the unused spectral holes in different domains
such as space, frequency, and time. The second paradigm
encompasses interference control/management schemes and
allows the coexistence of primary and secondary systems only
if the interference caused by Secondary Transmitters (STs)to
the Primary Receivers (PRs) can be properly controlled and
managed. On the other hand, the third paradigm encompasses
advanced coding and transmission strategies at the STs for
interference management and may require a higher level of
coordination between primary and secondary systems.

2) Applications: Although several contributions exist in
the literature dealing with the narrowband CR scenarios, in
practice, a CR should be capable of monitoring the surround-
ing radio environment over a wide spectrum range in order to
utilize the benefits of CR communications efficiently. This en-
vironmental knowledge over a wideband spectrum helps a CR
to apply adaptive resource allocation and spectrum exploitation
techniques for the effective utilization of the under-utilized
radio spectrum. However, due to the practical limitations
on the capability of receiver hardware components, mainly
Analog to Digital Converter (ADC), it’s difficult to implement
wideband spectrum awareness algorithms in practice. This
difficulty can be alleviated by utilizing the benefits of CS
discussed in Section II.

The RF awareness over a wideband can be acquired mainly
with the following mechanisms: (i) Wideband SS, (ii) Signal
parameter estimation, and (iii) Database information. The
important parameters acquired with these mechanisms are
depicted in Fig. 2. In the wideband SS mechanism, the RF
parameters to be acquired can be energy level and the power
spectrum. Furthermore, in the category of signal parameter
estimation, different parameters such as CSI, DoA, SNR and



TABLE II
EXISTING TECHNIQUES FOR THE APPLICATIONS OFCS IN CR COMMUNICATIONS

Awareness Mechanisms Parameters Applicable CS techniques References
Spectrum sensing Energy level Compressive spectrum sensing [7], [49], [50], [52], [53], [59], [63]–[70]

Power spectrum Compressive power spectrum estimation[71]–[73]
Signal parameter estimation Channel State Information (CSI) Compressive channel estimation [81], [82]

Direction of Arrival (DoA) Compressive DoA estimation [83]–[88]
Signal to Noise Ratio (SNR) Compressive SNR estimation [89], [90]
Sparsity order Compressive sparsity order estimation [91], [127], [147]

Database information Number of active Txs, Tx locations Compressive REM construction [92], [96]–[99]
Transmit power

Wideband Spectrum

Awareness Mechanisms

Signal Parameter

Estimation

Channel

Direction

of Arrival
Sparsity

order

Energy

SNR

Power

spectrum

Number of

active Txs

Tx location

Tx

power

Database

Information

Antenna

patterns

Spectrum

Sensing

Fig. 2. Wideband spectrum awareness techniques and the main
acquisition parameters

sparsity order can be estimated compressively by employing
the CS approach. Moreover, in the third category, parameters
such as number of active Transmitters (Txs), locations of the
active Txs, power levels, etc. can be estimated which are
subsequently useful to construct the Radio Environment Map
(REM). In Table II, we present various parameters involved
with these awareness mechanisms and the related techniques.
We further provide the mapping of the related existing tech-
niques with these techniques. The detailed description of these
techniques is provided in the subsequent sections.

3) Complexity Discussion:One of the main motivations
behind using CS in CR communications is that a CS-based CR
transceiver can sense wider spectrum with the same sampling
requirements or the same spectrum with reduced sampling
requirements, thus resulting in cheaper and more energy
efficient systems. However, CS-based receivers are relatively
complex due to the involved operations in reconstructing the
original sparse signal. For the recovery of the original sparse
signals, several recovery algorithms such as Greedy Pursuit,
matching Pursuit, Orthogonal Matching Pursuit (OMP), Stage-
wise Orthogonal Matching Pursuit (StOMP), Gradient Pursuit
(GP), Tree-based OMP (TOMP), re-weightedl1 minimization,
etc. have been proposed in the literature. These algorithms
offer different tradeoffs in terms of reconstruction complexity,
performance, robustness to noise, as well as the allowable
compression ratios for a certain sparsity level of the original
sparse signal [37]. Some recovery algorithms are simple to
implement, but may require a large number of samples in order
to satisfy a desired performance level.

For instance, based on the comparative results presented
in [37], the algorithms OMP and TOMP are greedy search
algorithms which are fast in computation, however, their

recovery accuracy is poor and they need a large number of
measurements in order to reach a comparable reconstruction
performance to BP and reweightedl1 algorithms. On the other
hand, BP and re-weightedl1 algorithms provide more accurate
solutions but are demanding in terms of computational costs.
Thus, in general, there exists a clear tradeoff between the sam-
pling cost and energy saving in computation and it is crucialto
balance this tradeoff in order to enhance the overall recovery
performance. Another example is that the simple and most
commonly used OMP algorithm can be implemented using
the following four different methods [38]: (i) naive approach,
(ii) Cholesky decomposition, (iii) QR decomposition, and (iv)
matrix inversion lemma. These four implementation aspects
have different complexities and memory requirements, and
depending on the size of the considered problem, any of these
four implementations can be the fastest. As the number of
samples increases, the computation time of the naive approach
becomes much longer than for the other three and for the large
problem sizes which require higher number of iterations, the
QR decomposition approach appears to be the fastest one [38].

The aforementioned complexity discussion is applicable
while carrying out CS-based spectrum sensing using the
following steps [7], [69]: (i) acquisition of the compressed
samples, (ii) reconstruction of the Nyquist rate signal from
the compressed samples, and (iii) spectrum sensing using
the reconstructed signal. In this procedure, there have been
several attempts to reduce the computational complexity of
the employed reconstruction step by utilizing prior information
( [39] and references therein). In this regard, authors in
[39] have recently proposed a data-assisted non-iteratively re-
weighted least squares based CS algorithm by exploiting the
prior data obtained from a geo-location database in order
to reduce the computational complexity of the previously
proposed iteratively re-weighted least squares algorithm[40].

However, as highlighted in Section II-A3, for signal detec-
tion/estimation/classification problem in CR applications, it’s
not necessary to reconstruct the entire original sparse signal.
The decision on the presence or the absence of PU signals
over the considered spectrum can be made based on the com-
pressed measurements only and the reconstruction step of the
commonly used CS technique can be completely illuminated,
thus reducing the computational complexity [41], [42]. In this
context, authors in [41] proposed a Bayesian formulation to
estimate the parameters of the sparse signal directly from
the compressed measurements and demonstrated that such a
Basysian formulation is computationally less expensive, more
accurate, and achieves a higher compression rate compared to
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Fig. 3. Schematic representation of a wideband channel withNc

number of narrowband channels. Herein, sparsity order is the ratio
of the number of occupied channels to the total number of channels.

the traditional non-CS methods such as BP method. Moreover,
authors in [42] have shown that in several applications such
as detection, estimation and classification, it becomes more
efficient and accurate to extract information directly fromcom-
pressive measurements rather than the traditional approach of
first recovering the signal first and then extracting information
from the recovered signal.

III. W IDEBAND SPECTRUMSENSING

In CR networks, it is desirable for the SUs to identify
spectrum opportunities over a wideband spectrum rapidly and
accurately. Figure 3 depicts the schematic representationof a
wideband channel withNc number of narrowband channels.
As reflected in the diagram, some of the channels are occupied
and the remaining are idle at a certain time. In this context,
a CR should be able to acquire information about which
channels are idle over the considered bandwidth in order to
use them in an opportunistic way. For this purpose, an SS
technique requires the radio to receive a wideband signal
through an RF front-end, sample it by a high speed ADC,
and subsequently perform measurements for the detection of
the PU signals. For the implementation of wideband SS, a CR
transceiver needs to have a wideband antenna, a wideband
filter and amplifier, and a high speed ADC. The solutions
of wideband antennas and wideband filters are available in
the literature [100], [101], however, the development of high-
speed ADC technology is lagging [102], [103] due to the chal-
lenges involved in building sampling hardware that operates
at a sufficiently high rate [104].

The traditional way for detecting spectrum holes over a
wideband is to divide the total band into many channels
and to perform channel-by-channel sequential scanning [105],
which might introduce large latency. Another possible way
is to use an RF front-end with a bank of narrow bandpass
filters. This approach solves the latency problem since multiple
channels can be processed simultaneously. However, it is
inefficient to implement due to the requirement of numerous
RF components. An alternative approach is to directly sense
the wide frequency range at the same time, called Wide-
band Spectrum Sensing (WSS) (see [106] and the references
therein). However, special attention should be paid to the

wideband processing which renders high-rate standard ADC
costly and even impractical. Clearly, the need to process very
wide bandwidth is the most critical challenge for the WSS
[107].

To address the aforementioned issues, many researchers
have considered CS techniques for wideband SS assuming
some sparsity basis. As the wideband spectrum is inherently
sparse due to the low percentage of spectrum occupancy, CS
becomes a promising technique to reduce the burden on the
ADCs in WSS. The important advantage of the CS approach
for wideband signal acquisition is that it can increase the
overall Dynamic Range (DR) of the acquisition system [49]. In
contrast to conventional Nyquist rate sampling systems, CS-
based ADCs, also called Analog to Information Converters
(AICs) [108] provide an important benefit in reducing the
required sampling rate in order to represent the same spectrum.
Further, fewer quantization operations are required in CS-
based receivers due to the reduction in the number of acquired
measurements, thus resulting in significant power savings
[109].

Several CS-based approaches have been developed to
detect the frequency occupancy of PUs using sub-Nyquist
rate samples. CS was first applied to WSS in [7], where
sub-Nyquist rate samples are utilized to detect and classify
frequency bands through a wavelet-based edge detector. Fur-
ther, authors in [52] studied a two-step CS scheme with
the aim of minimizing the sampling rate, where the actual
sparsity was estimated in the first time slot and the com-
pressed measurements were then adjusted in the second slot.
In [110], a sequential CS approach has been proposed where
each compressed measurement was acquired in sequence. In
this sequential CS approach, observations become available
sequentially and the process can be stopped as soon as there is
a reasonable certainty of correct reconstruction. This approach
does not require knowing how sparse is the signal, and allows
reconstruction using the smallest number of samples.

The problem of sampling a signal at the minimal rate
and reconstructing the original spectrum from the compressive
measurements has been discussed in [111]–[113]. Further,
power spectrum estimation methods based on sub-Nyquist rate
samples were presented in [114], [115], where the spectrum
of the uncompressed signal is retrieved by concentrating on
the autocorrelation function instead of the original signal
itself. Moreover, CS-based correlation matching approaches
for identification of the PUs were presented in [116]–[118] in
the context of a CR.

In [119], an adaptive SS algorithm, which can adaptively
adjust compressed measurements without any sparsity esti-
mation efforts, has been studied. Consequently, the wideband
signals are acquired block-by-block from multiple mini-time
slots, and gradually reconstruct the wideband spectrum using
compressed samples until the spectral recovery is satisfactory.
In [49], the performance of a CS-based receiver has been
studied with the help of a theoretical analysis of its expected
performance with a particular emphasis on noise and DR, and
simulation results that compare the CS receiver against the
performance expected from a conventional implementation.It
has been demonstrated that CS-based systems can potentially



attain a significantly large DR since they sample at a lower
rate. Consequently, it has been shown that CS-based systems
that aim to reduce the number of acquired measurements are
somewhat sensitive to noise, exhibiting a3 dB SNR loss
per octave of subsampling similar to the classic noise-folding
phenomenon.

The sensing performance of a single node may degrade in
wireless channels for several reasons such as the hidden node
problem, shadowing, multipath fading, and interference/noise
uncertainty. To address these issues, cooperative spectrum
sensing, in which several nodes collaborate with each other
to enhance the overall sensing performance, has been inves-
tigated in several works [120]–[123]. Authors in [123] have
compared the performance of soft and hard schemes in which
a cooperative node forwards multiple bits of the raw data, i.e.,
soft cooperative scheme, and a single bit related to the decision
on spectrum availability, i.e., hard cooperative scheme, to
the fusion center, respectively. By incorporating the reporting
interval into the frame structure of a cooperative node and
independently of the employed local sensing technique, it has
been shown that the hard cooperative scheme provides better
performance than the soft cooperative scheme for short sensing
times and/or a large number of cooperative nodes. In this
particular example, compressive sensing can provide benefits
while sensing multiple channels over a wider bandwidth by
increasing the dynamic range of the ADC and also in reduc-
ing the number of cooperative nodes while sensing multiple
number of channels [64]. In the case of a soft cooperative
scheme, the CS further helps to reduce the cooperative burden
as well as the number of cooperative nodes and in the hard
cooperative scheme, the CS is more useful for local sensing.
Several works exist in the literature in the context of applying
CS for cooperative sensing in centralized [64], [68], [71] and
distributed [67], [69], [83], [124] settings. In Section III-B1
and Section III-B2, we provide a detailed discussion on the
application of CS in centralized and distributed cooperative
SS by referring to the current state of the art.

In the following, we present the main wideband sensing
issues, the existing works related to wideband compressive
collaborative SS and the hardware architectures.

A. Wideband Sensing Issues

1. Dynamic Range and Noise Folding: Dynamic Range
(DR) describes the range of the input signal levels that can
be reliably measured at the same time. In other words, it’s
the ability to accurately measure small signals in the presence
of the large signals. The DR is a useful parameter for any
measurement/acquisition system and it is determined by the
following two independent parameters [125]: (i) limitation by
noise and (ii) limitation by spurious signals.

The DR is defined as the ratio of the full scale amplitude
to the peak noise floor and for anNb bit ADC, it is given by

DR = 6.021Nb + 1.763 dB. (6)

The above equation is valid only in the time domain without
digital filtering and a different expression is needed to define
the real achievable dynamic range of the system. For a simple

acquisition system without a preamplifier, the DR is mainly
limited by the ADC and the DR in (dBFS/

√
Hz) can be written

as [125]
DR = SNR+ 10× log(fs/2), (7)

where theSNR is given by

SNR = 6.02×Neff + 1.76, (8)

where fs is the sampling frequency,Neff is the number of
ADC effective bits.

From practical perspectives, the important advantage of
CS for wideband signal acquisition is that it can increase
the overall DR of the acquisition system as compared to
the conventional Nyquist rate acquisition system within the
same instantaneous bandwidth. Due to this advantage, it can
reduce the system size, weight, and power consumption, and
the monetary cost considerably but at the cost of increasing
the noise figure of the system. The exact value of the DR
improvement that can be achieved depends on the exact speed
and the exact ADC design. Generally, CS-enabled sampling
rate reduction can increase the system DR, approximately by
one bit (approx. by6 dB) for every factor of2 that CS permits
the ADC sampling rate to be reduced [126].

If (i) the noiseless input is sparse, (ii) the additive noiseis
white, and (iii) the CS measurement process satisfies the RIP,
then the Recovered SNR (RSNR) is related to the In-band
SNR (ISNR), which measures the SNR by including only the
noise within the same bandwidth as the signal [49], of the
received signal in the following way [126]

ρ
1− δ

1 + δ
≤ ISNR

RSNR
≤ ρ

1 + δ

1− δ
, (9)

where ρ is the compression factor (decimation rate) and
δ ∈ (0, 1) is a constant determined by the CS measurement
process. The value ofρ must be less than a critical value
ρC = B/W (B being the instantaneous bandwidth andW
being the maximum signal bandwidth) i.e., the degree of
sparsity of the input signal. The above ratio can also be written
as [49]

ISNR

RSNR
≈ 10log10(ρ). (10)

From (10), it can be deduced that every time we double
the compression factorρ (i.e., a one octave increase) up to
the value ofρC , the RSNR of the recovered signal decreases
by 3 dB. This 3dB/octave SNR degradation depicts an impor-
tant tradeoff while designing CS-based receivers. The main
conclusion is that for a fixed signal bandwidthW/2, there
is a practical limit to the instantaneous bandwidthB/2 for
which we can obtain a desired RSNR [126]. Although the
above noise folding behavior of CS systems imposes a very
real cost, the dominant advantage is that it increases the DR
of the acquisition system.

2. Sampling Rate and Sparsity Order: To determine a
suitable sampling rate, most existing works implicitly assume
that the sparsity order of the underutilized spectrum is known
beforehand. However, in practical CR applications, the actual
sparsity order level corresponds to the instantaneous spectrum
occupancy of wireless users which is time varying in nature.



Thus, the actual sparsity level is often unknown and only
its upper bound, which can be measured from the maximum
spectrum utilization observed statistically over a time period,
can be obtained. Hence, in practice, the conservative deter-
mination of the sampling rate based on its upper bound can
cause unnecessarily high acquisition costs [104].

From the above discussion, it can be noted that the
sampling rate depends on the sparsity level and we need
to adapt the CS system in such a way that the sampling
rate is adaptive in accordance with the dynamic variation
of the spectrum occupancy. One method of addressing this
aspect to estimate the sparsity order first and then apply the
suitable sampling rate based on the estimated sampling rate.
In this context, the authors in [127] have proposed a two-
step CS approach in which the sparsity order is estimated at
the first step by considering sufficiently smaller number of
measurements and then the sampling rate corresponding to
the estimated sparsity order is applied at the second step to
collect additional samples. Subsequently, the reconstruction of
the signal spectrum has been carried out using all the collected
samples in both steps. Finally, based on this reconstructed
signal spectrum, SS decision is made. The aspects of sparsity
order estimation are highlighted later in Section IV-B.

Another main benefit of CS-based CR transceiver is that
the reduction in the sampling rate of an ADC due to CS
directly translates into the power savings and it becomes more
power efficient solution than the traditional non-CS based
transceivers. The power consumed by an ADC increases at
a rate of1.1fs, wherefs is the sampling rate of the ADC.
For example, an8-bit flash ADC at200 Msps consumes2320
mW of power (or11.6 nJ/sample), while an 8-bit flash ADC
at 20 Msps consumes only150 mW (or 7.5 nJ/sample) [109].
Therefore, in this example, by reducing the sampling rate
by a factor of12.5, one can reduce the power consumption
approximately by a factor of15.5.

B. Wideband Compressive Collaborative SS

As mentioned earlier, WSS is challenging due to the
requirement of complex and costly hardware circuitry at the
cognitive transceiver. One possible way to address this issue
is to perform collaborative SS among the CR nodes in com-
pressive settings which can improve the ability of monitoring
over the whole available spectrum band [64], [65] and also
can enhance the accuracy of the acquired information. In this
context, collaborative compressive SS has been widely studied
in the literature utilizing the efficient sampling that exploits the
underlying sparse structure of the measured radio spectrum.
However, to have the effective realization of the collaborative
CS in a CR network, the following main challenges need to
be addressed [65]

1) Conventional cooperation schemes require a Fusion Cen-
ter (FC) in order to collect measurements from all CRs
and to make the centralized sensing decision. This may
incur high overhead costs for the reporting links and
render the entire network vulnerable to the node failure.

2) The spatially separated cooperating CRs may not be
ideally synchronized to remain silent during the SS
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Fig. 4. Illustration of the centralized compressive collaborative SS approach
in [64], [129]

phase. Due to this, each CR may perceive not only
the common spectral components from the PUs but
also individualized spectral innovations arising from the
emissions of other CRs or interference in its local one-
hop region. These CR-dependent spectral innovation
components may make the cooperation among the CRs.

The existing literature basically deals with the following
two cooperative approaches: (i) centralized and (ii) distributed,
which are detailed in the following subsections.

1) Centralized: The centralized approach involves an FC
in order to collect the measurements from the spatially sep-
arated CRs and a suitable technique is applied at the FC in
order to process the collected measurements. In the context,
the contribution in [64] studied the centralized compressive
cooperative approach in which each CR node senses the linear
combinations of multiple channel information and reports
them to the FC. Subsequently, the occupied channels are
decoded at the FC from the collected reports by using a matrix
completion and a joint sparsity recovery algorithms.

In most centralized studies, it is assumed that the FC
receives and combines all CR reports assuming idle reporting
channels. However, the reports sent by the CRs are subject to
multipath fading and shadowing loss, and thus the entire report
data set may not be available at the FC. Further, it may be the
case that there are only a few CR nodes in a large network, and
thus are unable to gather enough sensing information. In this
context, each CR node can be assumed to be equipped with a
frequency selective filter, which linearly combines the multiple
channel information. Subsequently, these linear combinations
are sent as reports to the FC, where the occupied channels are
decoded from the reports utilizing suitable CS algorithms.

Figure 4 illustrates the aforementioned centralized collabo-
rative compressive approach studied in [64]. By following this
approach, both types of overheads, i.e., the amount of channel
sensing at the CRs and the number of reports sent from the
CRs to the FC, can be significantly reduced [64]. The two
compressive collaborative SS approaches proposed in [64] are



briefly described below.

1) Matrix completion problem : The aim of this method
is to reconstruct a matrix (typically low-rank) efficiently
from a relatively small number of observed entries
which can be considered as the linear combinations of
the channel powers. Each CR node equipped withp
frequency-selective filters takesp linear combinations
of channel powers and reports them to the FC. The
total pm linear combinations taken bym CRs form a
pm matrix at the FC. This matrix becomes incomplete
while incorporating the transmission loss and has the
properties enabling its reconstruction only from a small
number of its entries. Therefore, information about the
complete spectrum usage can be recovered from a small
number of reports from the CR nodes, thus reducing
the sensing and communication overloads significantly.
Two important properties of a matrix required to apply
the matrix completion problem are [128]: (i) low rank,
and (ii) incoherence property.

2) Joint sparsity recovery: This method relies on the fact
that the spectrum usage information collected by the
CR nodes contains a common sparsity pattern i.e., each
of the few occupied channels is typically observed by
multiple CRs. Let us represent the sensing information
gathered byM CRs inN channels by anN×M matrix
X, where each column corresponds to the channel
occupancy status received by themth CR and each row
represents the occupancy status of thenth channel. Since
there are only a few number of occupied channels at a
time and only a few CRs collect information about a
single channel, the matrixX is jointly sparse without
considering the effect of the noise. However,X can
be considered to be approximately jointly sparse while
taking the noise into account [64]. There exist different
joint sparsity recovery algorithms as described later in
Section III-B2 and are applicable to both centralized and
distributed CS scenarios.

Similarly, authors in [71] have studied a centralized ap-
proach where each sensor collects sub-Nyquist rate samples
and forwards them to the FC together with the CSI and
the sampler coefficients. Subsequently, the FC calculates the
cross-spectra between all measurements and then the power
spectrum of the received signals is estimated by exploitingthe
wide sense stationary property of the PU signals. Furthermore,
authors in [68] propose an adaptive sequential CS approach
to recover spectrum holes and further propose several fusion
techniques to apply the proposed approach in a collaborative
manner.

2) Distributed: Distributed CS (DCS) is considered a
powerful technique of distributed signal processing in many
applications such as sensor networks due to its capability
of simultaneous sensing and compression [66]. The theory
of DCS relies on the concept of the joint sparsity of a
signal ensemble and it exploits both intra- and inter-signal
correlation structures [130]. In a typical DCS approach, a
number of sensors measure signals (of any dimension) which
are each individually sparse in some basis and also may be

correlated from sensor to sensor. Each sensor independently
encodes its signal by projecting it onto another, incoherent
basis (such as a random one) and then transmits just a few
of the resulting coefficients to the FC. Subsequently, the FC
can jointly reconstruct all of the signals precisely exploiting
the joint sparsity of the signal ensemble. In this context, the
following two joint sparsity models have been proposed in
order to study the DCS problem [130].

• Joint Sparsity Model 1 (JSM-1): In this model, all the
signals share a common sparse component while each
individual signal contains a sparse innovation component.
If xj ∈ RN denotes thejth signal in a signal ensemble,
with j ∈ 1, . . . ,M , M being the number of signal
sources, i.e., CRs, this model implies the following

xj = z + zj , j ∈ 1, . . . ,M, (11)

where the signalzj is common to all of thexj with the
K sparsity level in the basisΨ, and the signalszj are
the unique portions of thexj having Kj sparsity level
in the same basis. A wireless sensor network used for
recording temperature, light intensities, air pressure, etc.
can be considered as an example for this model.

• Joint Sparsity Model 2 (JSM-2): This model assumes
all signals being constructed from the same sparse set of
basis vectors, but with different coefficients, i.e., each
measurement vector independently encodes the sparse
signals while the ensemble of sparse signals share a com-
mon sparsity structure. This model implies the following

xj = Ψθj , j ∈ 1, . . . ,M, (12)

where eachθj is supported only on the sameω ⊂
{1, . . . , N} with |ω| = K. In other words, all signals
are K sparse and are constructed from the sameK
elements ofΨ, but with arbitrarily different coefficients.
This model is applicable to the scenarios such as acoustic
localization/DoA estimation [83], array processing etc.,
where multiple sensors acquire the same signal but with
phase shifts and attenuations caused by signal propaga-
tion.

Authors in [69] studied the distributed compressive SS
problem by using the JSM-2 model considered in [130].
Different CR sensing receivers acquire the same wide-band
signal from the licensed system at different SNRs and the
autocorrelation vectors of the compressed signal from the CRs
are collected at the FC. Subsequently, the distributed JSM-
2 model has been used to obtain an estimate of the signal
spectrum. Similarly, the correlation between the measurements
of different CRs may be utilized by using a Kronecker
product matrix as a basis, called Kronecker sparsifying basis
[67]. This basis helps to exploit the two dimensional sparse
structure in the measured spectrum using the collaborative
measurements taken by several spatially separated CRs. In this
context, authors in [67] proposed amodified JSM-2 (JSM2M)
model which relaxes the assumptions of the the original JSM-
1 and JSM-2 models and generates signals which have a
common sparse support in the frequency domain with different
amplitudes plus innovations due to the hidden PU problem.



In [124], two cooperative distributed wideband SS ap-
proaches for a CR network are proposed utilizing the CS
technique. The first approach jointly estimates the spectrum
of the PUs based on the compressive measurements obtained
by the individual CRs where CSI is assumed to be available.
In the second method, each CR user individually recovers the
spectrum of the received faded signal without the availability
of CSI and makes a local decision on the frequency occupancy
of the PU signal based on this spectrum estimate. Subse-
quently, all CR users collaboratively make a global decision
on the frequency occupancy by using a consensus algorithm
based on single-hop communication. Recently, authors in
[83] have proposed an Multiple-Sensing-Matrices-FOCUSS
(MSM-FOCUSS) algorithm for distributed CS and wideband
DoA estimation.

C. Hardware Architectures

Several hardware architectures have been proposed and
implemented in the test-bed environments enabling the com-
pressive samples to be acquired in practical settings. Someof
the widely discussed architectures are briefly described below.
In Table III, we provide their advantages, disadvantages and
the related references.

• Random Filtering: In this method, first, a
sparse/compressible signal is captured by convolving
it with a random-tap Finite Impulse Response (FIR)
filter, and then the filtered signal is downsampled to
obtain a compressed signal. The random taps of the
filter can be generated using (i) theN (0, 1) distribution
or (ii) the Bernoulli/Rademacher distribution of{±1}s.
This method is generic to summarize many types of
compressible signals and can be applied to streaming as
well as continuous-time signals but the number of taps
must be known in order to recover the signal from the
compressed data [50].

• Random Convolution: In this method, the measurement
process consists of convolving the signal of interest
with a random pulse followed by random subsampling
[131]. This procedure is random enough to be universally
incoherent with any fixed representation system, but
structured enough to allow fast computations with the
help of Fast Fourier Transform (FFT) operations. Random
convolution has the following two advantages compared
to the completely random strategies: (i) available implicit
algorithms based on the FFT, and (ii) many physical
systems take observations of a known (and controllable)
pulse with an unknown signal i.e., radar imaging.

• Random Demodulator (RD): In this method, a sig-
nal is demodulated by multiplying it with a high-rate
pseudonoise sequence, which smears the tones across
the entire spectrum [59]. Subsequently, a low-pass anti-
aliasing filter is applied and the signal is captured by sam-
pling it at a relatively low rate. The demodulation process
ensures that each tone has a distinct signature within the
passband of the filter. Since there are only a few tones
present in many applications such as in CR networks,
it is possible to identify the tones and their amplitudes

from the low-rate samples. The main advantage of this
approach is that it bypasses the need for a high-rate ADC,
thus allowing the use of robust, low-power and readily
available components. However, this benefit comes at the
cost of highly non-linear reconstruction process, i.e., the
need of additional digital processing.

• Modulated Wideband Converter (MWC) : In 2010,
Mishali et al. proposed an architecture, called MWC,
which generally comprises of a bank of modulators
and low-pass filters. This architecture first multiplies the
analog signal by a periodic waveform, whose period cor-
responds to the multiband model parameters. A square-
wave alternating at the Nyquist rate is one choice; other
periodic waveforms are also possible. Subsequently, the
product is lowpass filtered and sampled uniformly at
a low rate. The goal of the modulator is to alias the
spectrum into baseband. The most distinguishing charac-
teristic of the MWC from that of the RD is that the RD
has sampling functions that have finite temporal extent
but infinite spectral support while the MWC employs
sampling functions that have finite spectral support but
infinite temporal support [138].

• Compressive Multiplexer (CMUX): This method does
not require the calibration of an analog low-pass filter
or integrator as required in the random modulator and
MWCs. Furthermore, the basic calibration in this method
can be simply achieved with the knowledge of a few
resistor values and unlike other parallel structures, it
requires only one ADC rather than one per channel
[53]. It can be considered to be analogous to coded
digital communications schemes such as Code Division
Multiple Access (CDMA). Instead of coding the signal
with orthogonal codes and transmitting into the same
channel, the CMUX effectively codes each channel with
a near orthogonal code and then combines the coded
channels together following the approach proposed in
[53]. Recently, authors in [54] have proposed a CMUX
architecture for the acquisition of the ensembles of cor-
related signals by exploiting the correlation structure of
the signal ensemble even though it is unknown a priori.

D. Comparison of CS and non-CS Detectors

Spectrum sensing in a CR involves deciding whether the
PU is present or not from the observed signals. Thus, spectrum
sensing can be formulated as a binary hypothesis testing
problem in the following way

y(n) =

{

w(n) H0,
s(n) + w(n) H1,

(13)

wherey(n) denotes the received signal at the CR device at the
nth sampling instance,s(n) denotes the primary signal and
z(n) is the Additive White Gaussian Noise (AWGN). The CR
user has to decide if the primary signal is present (H1) or not
(H0) from the observationsy(n) collected over the sensing
duration.



TABLE III
ADVANTAGES AND DISADVANTAGES OF THE EXISTING COMPRESSIVE ARCHITECTURES

Name and References Advantages Disadvantages
Random Filtering (RF) Applicable to many types of compressible signals Number of filter taps must be known
[50], [51] Measurement operator can be stored and applied efficientlyNonlinear reconstruction algorithm

Easy implementation
Random Convolution (RC) Available implicit algorithms based on the FFT Not applicable for all sparse/compressible signals
[131], [132] Utilization of the known pulse in many physical systems The pulse structure may not be known
Random Demodulator (RD) No need for a high-rate ADC Slow reconstruction process and high sampling delay
[59], [60], [62] Robust against noise and quantization errors Only suitable for signals having a finite set of pure sinusoids
Modulated Wideband Converter (MWC) Suitable for analog multiband signals Requires ideal low pass filters for reconstruction
[61], [63] Parameter choice is insensitive to the exact bandwidth Imperfections of non-ideal lowpass filters

Flexible control of sampling rate at each channel Limited number of bands and bandwidth
Fast reconstruction process and low sampling delay

Compressive Multiplexer (CMUX) It requires only one ADC rather than one per channel Undersampling factor is more restricted
[53], [54] Flexibility to increase the total bandwidth Inherent non-idealities in the RF tuner

Simpler calibration

In compressive settings, the above detection problem can
be written in the following way

y =

{

Φw H0,
Φ(s+w) H1,

(14)

wherey is aκ×1 compressive-sampled received signal,Φ is
a κ× L compressive matrix,s is anL× 1 PU signal vector,
andw denotes theL× 1 AWGN vector. If we already know
the value ofs during the design ofΦ, the optimal strategy
is to choose the value ofΦ as Φ = sT . However, since
this knowledge is difficult to obtain in practice for the case
of CR applications, the value ofΦ should be universal and
is considered to be a random matrix in most of the existing
literature [42].

With regard to the detection problem (13), there exist
several CR techniques in the literature. The main SS tech-
niques are matched filter based detection, Energy Detection
(ED), feature-based detection, autocorrelation based detection,
covariance based detection, eigenvalue based detection, etc
[16], [22], [55]. Corresponding to the hypothesis testing prob-
lem in compressive settings represented in (14), a general
framework for signal processing of compressed measurements
for detection and estimation without reconstructing the original
signal has been detailed in [42]. A much more involved
analysis for the estimation setting was presented in [58], where
the behavior of the achievable estimation performance in the
sparse setting has been analyzed. Out of the aforementioned
SS techniques, in this paper, we analyze the performance of
the following detectors in compressive and non-compressive
settings.

• Matched Filter Detection: The matched filter is an
optimal detector in the presence of stationary Gaussian
noise since it maximizes the received SNR. However, it
requires a priori knowledge of the primary signal and
the performance may degrade if this information is not
accurate. In practice, most wireless systems have pilots,
preambles, synchronization words or spreading codes that
can be used for the coherent detection.

• Energy Detection: The energy detector is the most
common way of spectrum sensing because of its low
complexity (computational and implementation) [56]. It
can be considered as a semiblind technique since it only
requires the knowledge of the noise variance and does
not rely on any signal feature. The main drawback of the

energy detector is its inability to discriminate between
sources of received energy (the primary signal and noise)
making it susceptible to uncertainties in background noise
power, specially at a low SNR.

• Feature-based Detection: If some features of the primary
signal such as its carrier frequency or modulation type
are known a priori, more sophisticated feature detectors
may be employed to carry out spectrum sensing at the
cost of increased complexity. Cyclostationary detection
[57] and correlation matching detection [116]–[118] are
particularly appealing because of their ability to dis-
tinguish the primary signal from the interference and
noise. They can work in a very low SNR region due
to their noise rejection capability but sometimes they are
computationally complex and requires significantly long
observation time.

Next, we present some numerical results about the perfor-
mance of the aforementioned three types of SS techniques. To
analyze the performance in compressive settings, we consider
a multi-coset sampling (periodic non-uniform sampler) in
which the total number of received samples is divided into
blocks, and the same compressive matrixΦ is applied to each
block. Figure 5 depicts the probability of detection (Pd) versus
SNR results for a primary signal in AWGN considering a fixed
probability of false alarmPf = 10−3. From the figure, it can
be noted that the matched filter outperforms the simple energy
detector since it is able to reliably detect low-power primary
signals. The value ofρ in Fig. 5 indicates the compression
ratio, i.e., the ratio of the number of rows to the number of
columns inΦ, defined in Section II, and the valueρ = 1
represents the Nyquist rate sampling, i.e., the conventional
non-CS approach. As the value ofρ decreases, i.e., we use
more compression, the detection performance of both matched
filter and the energy detector with respect to SNR decreases as
depicted in Fig. 5. This means that there exists a clear trade-
off between the detection performance and the sampling rate
for both matched filter and the energy detector.

In addition, we provide the performance comparison of
correlation matching detectors (which falls under the cate-
gory of feature-based detection [117]) in CS and non-CS
settings in Fig. 6. The scenario considers a desired Binary
Phase Shift Keying (BPSK) signal withSNR = 10dB at
the normalized frequency of0.2 and a pure-tone interference
with SNR = 10dB located at the normalized frequency of
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Fig. 5. Probability of detection versus SNR of the energy detector and
matched filter with compressive measurements (Probability of false
alarm,Pf = 10

−3), Number of Nyquist rate samples=99.

0.7. Figure 6(a) uses the Euclidean metric (Frobenius norm)
which works as a conventional energy detector, and it can be
noted that this approach does not provide a good performance
in discriminating interference from the desired signal. On
the other hand, the result in Fig. 6(b) uses the minimum
eigenvalue technique presented in [117], [118] and this method
is able to distinguish the desired signal from the interference
effectively. Furthermore, the presented results in Figs. 6(a) and
6(b) show the degradation of the correlation matching-based
WSS techniques in terms of the capability of distinguishing
the desired signal from the interference with the decrease in
the compression ratioρ = 1, i.e., with more compression.
However, in Fig. 6(b), it is interesting to note that the power
level estimation does not suffer due to compression since the
main peak is located at the true frequency with the level close
to the SNR value of10dB.

IV. COMPRESSIVESIGNAL PARAMETER ESTIMATION

As described in Section II-B, a CR may acquire different
signal parameters such as SNR, channel, sparsity order, etc.
for enabling CR communications. In contrast to the most
commonly used spectrum occupancy information required for
an interweave CR, the parameters such as SNR, DoA, CSI,
etc. will allow the CR to implement underlay CR techniques
such as cognitive beamforming [139], cognitive interference
alignment [140], Exclusion Zone (EZ), and power control
[141]. Due to the practical constraints in the acquisition
hardware, the CS-based approach can be utilized to estimate
these parameters compressively, leading to the saving in the
hardware resources [34]. In the following, we describe the
existing contributions which utilized the CS approach in order
to acquire these parameters.

A. Compressive SNR Estimation

In the existing literature, various data-aided and non data-
aided SNR estimators have been investigated in the context
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Fig. 6. Performance of CS-based correlation-matching wideband
detector [117], [118]. In the considered scenario, there is a desired
BPSK signal withSNR = 10dB at the normalized frequency of
0.2 and there is a pure-tone interference located at the normalized
frequency of0.7 and with SNR = 10dB. The parameterρ defines
the compression rate/ratio withρ = 1 indicating the Nyquist rate
sampling, i.e., no compression. (a) detector based on the traditional
Euclidean metric (Frobenius norm), (b) detector based on the mini-
mum eigenvalue technique proposed in [117], [118].

of traditional legacy based systems (see [142] and reference
there in). SNR estimation is helpful for legacy based systems
in order to implement adaptive techniques such as handoff
algorithms, adaptive bit loading and optimal soft value calcu-
lation for improving the performance of channel decoders. In
addition to the aforementioned benefits, estimation of primary
SNR is useful for CR-based systems in order to implement
proper underlay transmission strategies [89].

Existing SNR estimation literature mostly focus on nar-
rowband CR systems [89], [143]–[145] where the applica-
tion of CS does not provide much benefit. However, in
practice, it is highly desirable to estimate the primary SNR
over the wideband spectrum in order to utilize the available
spectrum opportunities effectively. In this context, authors in
[90] recently studied an eigenvalue-based compressive SNR
estimation problem for a wideband cognitive receiver utilizing
the CS approach. The following two correlated scenarios have
been studied considering the equal received power across all
the carriers: (i) correlated noise, and (ii) correlated Multiple
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Fig. 7. Normalized Mean Square Error (MSE) versus Signal to Noise
Ratio (SNR) for the correlated noise scenario (sparsity orderσ = 0.6,
correlation coefficientζ = 0.6, N = 100) [90]. In the figure,ρ
denotes the compression ratio.

Measurement Vectors (MMVs). In practice, the correlated
noise case may arise due to filtering and oversampling op-
erations. Similarly, the correlated MMV case may arise due
to channel correlation or imperfections in frequency selective
filters present at the CR node.

Figure 7 depicts the normalized Mean Square Error (MSE)
versus SNR for the correlated noise scenario for both the
compressive and full measurement cases assuming correlation
knowledge at the CR receiver [90], [146]. It can be deduced
from the figure that the compressive case with the compression
ratio ρ = 0.8 has to sacrifice almost0.3 % estimation error
in comparison to the full measurement case atSNR = 1 dB.
Furthermore, this estimation error increases with the decrease
in the value ofρ, i.e., increase in the compression. On the
other hand, the advantage is that((1 − ρ) ∗ 100) % saving
can be obtained in terms of hardware resources in comparison
to the full measurement case. Various results on compressive
SNR estimation for the correlated noise and correlated MMV
cases can be found in [90].

B. Compressive Sparsity Order Estimation

For a wideband CR, sparsity order is another useful pa-
rameter to be acquired and it basically provides information
about what percentage of the licensed band is available for the
secondary usage. This awareness is helpful in implementing
CS-based wideband sensing. Since this is a time varying
parameter and is not known to the CR receiver as a priori,
it needs to be estimated in practice. If the information about
the sparsity order is available to the wideband CR transceiver,
it can dynamically adapt its sampling rate in order to fully
exploit the advantages of the CS technique. In this context,
estimating the sparsity order is crucial and has been studied
in some existing contributions [91], [127], [147].

Like in other parameter estimation problem, estimating
sparsity order over a wideband requires high sampling rate,
hence demanding the increased cost in the ADC hardware.
In this context, it is advantageous to estimate sparsity or-
der compressively by exploiting some sparsity basis. In this
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Fig. 8. Normalized Sparsity Order Estimation Error (SOEE) versus
sparsity order with compressive and full measurements for the varying
power scenario (Dynamic RangeDR = 6.02dB, N=100, mean power
= 7.78 dBW) [91]. In the figure,ρ = 0.8 denotes the 20 %
compression, i.e., 20 % less measurements and the full measurement
case indicates the Nyquist rate sampling, i.e.,ρ = 1.

context, authors in [91] have recently studied an eigenvalue-
based compressive sparsity order estimation technique using
asymptotic random matrix theory. The detailed theoretical
analysis for the signal plus noise case has been carried out
to derive the asymptotic eigenvalue probability distribution
function (aepdf) of the measured signals covariance matrix
for sparse signals. Subsequently, the sparsity order of the
wideband spectrum has been estimated based on the derived
aepdf expressions utilizing the maximum eigenvalue of the
measured signal’s covariance matrix.

In [91], the following three different scenarios have been
considered: (i) constant received power, (ii) varying received
power, and (iii) correlated scenario with the correlated MMVs.
The first scenario assumes equal received power across all the
carriers and uncorrelated non-zero entries across the MMVs.
The second scenario allows the received power levels to vary
across all the carriers vary but with a known distribution while
the third scenario considers the correlated scenario in which
the non-zero entries across the MMVs are correlated.

Figure 8 presents the comparison of the normalized Spar-
sity Order Estimation Error (SOEE) versus sparsity order
for full and compressive measurement cases with parameters
considering varying received power, which is modeled usinga
modified semicircular distribution [91], [146]. From the figure,
it can be noted that sparsity order up to0.5 can be estimated
with less than2.9 % estimation error for the compressive case
(with ρ = 0.8) and with less than2.5 % estimation error for
the full measurement case. Furthermore, it can be concluded
that there exists a tradeoff between estimation performance
(expressed in terms of sparsity order estimation error) and
the hardware cost (number of measurements). Based on the
presented results in Fig. 8, at the cost of0.4 % estimation
error,20 % hardware resources can be saved since20 % less
measurements are utilized.



C. Compressive DoA Estimation

The DoA information is useful for CR networks or CR
based sensor networks for various objectives such as adaptive
beamforming, and active PU localization. For the DoA estima-
tion problem, CS has been widely used in the literature [84]–
[86]. Authors in [84] have studied a two dimensional (2D)
bearing estimation of multiple acoustic sources with a set of
sensors using a wireless channel under bandwidth constraints
and the l1-norm minimization was applied considering the
target bearings as a sparse vector.

Furthermore, a CS-based architecture has been presented
in [85] for array based applications by exploiting the CS in the
spatial domain. The main idea behind this architecture it that
a large size array can be transformed into a small size array
with the random selections of the array elements. Moreover,
the contribution in [86] focuses on parameter estimation using
a random linear array and the CS technology. The concept
behind the proposed approach in [86] is that a random linear
array removes the limitation of a uniform array, and when
combined with the CS reduces the burden in the design of the
array.

A number of joint sparse representation methods specific
to wideband DOA estimation has been studied in the literature
[87], [88], [148]. Some important of these are briefly described
below.

1) l1-Singular Value Decomposition (l1-SVD) recon-
struction: This method combines the SVD step of the
subspace algorithms with a sparse recovery method
based onl1-norm minimization [148]. This algorithm
can handle closely spaced correlated sources if the num-
ber of sources is known. However, it suffers from some
performance degradation when the number of sources is
unknown [88].

2) Joint l0 Approximation DOA (JLZA-DOA) method :
In this method, the snapshots of the measurements
are represented as some jointly sparse linear combi-
nations of the columns of an array manifold matrix
and subsequently the problem is solved by using a
mixed approximation approach, which is a member of
the smoothedl0 (SL0) approximation methodology [88].
These SL0 algorithms approximate thel0-norm using a
class of Gaussian functions. This algorithm can resolve
the closely spaced and highly correlated sources using
a small number of noisy snapshots, and does not need
the prior knowledge about the number of sources.

3) Aliasing free Sparse Signal Representation (SSR)
recovery method: This method is based on the the
SSR-based approach which constructs steering matrices
corresponding to different frequency components of the
target signal [87]. The main drawback of SSR based
approach is that this method is subject to ambiguity
resulting from not only spatial aliasing as in classical
beamforming but also from the over-completeness of
the dictionary. To overcome this issue, the aliasing free
SSR recovery method utilized MMVs to alleviate the
ambiguity resulting from an over-complete dictionary
and further uses multiple dictionaries to remove the

ambiguity resulting from spatial aliasing.

D. Compressive Channel Estimation

In CR networks, the knowledge of the CSI towards the
PRs is crucial in order to protect the PUs from the harmful
interference caused by the STs while employing underlay
CR techniques. Further, the channel information of the links
between STs and secondary receivers is important in order
to guarantee the Quality of Service (QoS) of the secondary
link. Since there is no cooperation between PUs and SUs
in practice, the estimation of crosslink channels is the main
challenge. Moreover, the knowledge of primary channel statis-
tics can be very helpful in making opportunistic spectrum
access decisions for a CR [74]. In addition, the knowledge
of the CSI information is essential for implementing advanced
precoding and beamforming algorithms at the CR transmitters.
Therefore, the estimation of the channel statistics efficiently
and accurately is an important issue in CR networks as in
legacy wireless networks. However, the conventional channel
estimation methods may lead to large pilot overheads and the
issue of pilot contamination in large CR networks. In this
context, CS plays an important role to reduce the estimation
overhead by exploiting the channel sparsity in wireless net-
works including the CR networks [4].

The wireless channel can often be modeled as a sparse
channel in which the delay spread could be very large, but the
number of significant paths is normally very small. The prior
knowledge of the channel sparseness can be effectively used
to improve the channel estimation using the CS theory. The
common assumption used in the application of CS for channel
estimation application is that a sparse multipath channel leads
to a baseband channel model in which most of the channel taps
are negligible [4]. The sparsity of the time domain channel can
be exploited by choosing the pilots randomly. In this way, a
random compressive measurement matrix can be constructed,
hence conserving the available bandwidth [75].

In order to efficiently utilize the available spectral opportu-
nities in an underlay CR network either by means of resource
allocation or interference mitigation, a secondary transmitter
should have the channel state information of multiple PU
channels over a wide frequency band towards multiple primary
receivers. In this context, CS can be helpful in reducing thees-
timation overhead as in other wireless networks. Furthermore,
in contrast to sparse channel estimation techniques in general
wireless communication channels, the pilot design in a CR
network can be based on the output of spectrum sensing [76].
For example, in Orthogonal Frequency Division Multiplexing
(OFDM)-based CR systems, after spectrum sensing is carried
out, the OFDM subcarriers occupied by the PUs can be deac-
tivated first, and then among the remaining active subcarriers,
some subcarriers can be assigned for pilot transmission and
the others to transmit data symbols for the SUs.

In the CR literature, a few works exist in the areas of
sparse channel estimation using the CS approach [76]–[78].
The CS-based pilot design for sparse channel estimation in
OFDM-based CR networks may help in improving the data
rate and the flexibility of SUs. In this regard, authors in [76]



studied the pilot design problem for sparse channel estimation
in OFDM-based CR systems. It has been shown that the
proposed spectrum sensing based sparse channel estimation
can achieve11.5 % improvement in spectrum efficiency
while maintaining the same performance as the traditional
least square channel estimation. In the context of distributed
resource allocation problem for a CR, authors in [77] have
developed a CS based estimation algorithm in order to acquire
the channel and interference parameters needed for resource
allocation. Furthermore, authors in [78] proposed a sparsity
adaptive matching pursuit algorithm for channel estimation
in Non Continuous OFDM (NC-OFDM) systems. However,
the disadvantage of this sparsity adaptive matching pursuit
algorithm is that it requires quite large reconstruction time.
To address this issue, authors in [78] further modified the
proposed algorithm as an adaptive matching algorithm and
have shown that the modified adaptive matching algorithm
improves the computing speed and the reconstruction accuracy
as compared to those of the sparsity adaptive matching pursuit
algorithm.

The compressive channel estimation has also received
important attention in the area of Ultra-Wideband (UWB)
technology, which can be considered as an implementation
technology for the underlay CR. Due to very low Power Spec-
trum Density (PSD), this technology facilitates the coexistence
of SUs with the PUs that operate within the UWB’s wide
spectrum band, i.e., 3.1 to 10.6 GHz [79]. The transmission
of ultrashort pulses in UWB technology leads to several
desirable characteristics such as the rich multipath diversity
introduced by a large number of propagation paths existing in
a UWB channel. The rich multipath coupled with the fine
time resolution of the UWB creates a challenging channel
estimation problem. Fortunately, multipath wireless channels
tend to exhibit impulse responses dominated by a relatively
small number of clusters of significant paths, especially when
operating at large bandwidths and signaling durations and/or
with the numbers of antenna elements [80]. These channels are
often called as “sparse channels”. The conventional channel
estimation methods usually provide higher errors because they
ignore the prior knowledge about the sparseness of the wireless
channel.

In the above context, the UWB sparse channel estima-
tion problem has been studied in [81] under a time domain
sparse model point of view. In particular, [81] defined a
suitable dictionary formed by the delayed versions of the
UWB transmitted pulse in order to better match the UWB
signal. However, the spike basis achieves maximal incoherence
with the Fourier basis and due to this reason, it seems more
convenient to work with frequency domain measurements.
That approach was followed in [82], where the use of CS was
examined for the estimation of highly sparse channel by means
of a new sparse channel estimation approach based on the
frequency domain model of the UWB signal. By constructing
a dictionary that closely matches the received signal (either
in the time or frequency domain), the signal contributions
from the strongest paths of the UWB multipath channel can be
recovered from the set of random projections of the received
pilot signals.
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Fig. 9. Comparison of the CS-based channel estimation techniques in
[81] and [82] in terms of RMSE of the reconstructed channel versus
SNR.

Figure 9 depicts the Root Mean Square Error (RMSE) of
the recovered signal for both models ( [81] and [82]). It can
be observed that when the compression rateρ is high, both
perform equally well but, as the compression rate decreases,
the error obtained with [81] increases faster than the error
obtained with [82] as we move to lower SNR region.

V. COMPRESSIVERADIO ENVIRONMENT MAP (REM)
CONSTRUCTION

In this section, first, we highlight the importance of the
Radio Environment Map (REM) construction utilizing the
CS approach, i.e., compressive REM construction, for the
implementation of CR networks. Subsequently, we review the
existing related works in the context of compressive REM
construction highlighting the challenges in heterogeneous en-
vironment. Then we propose a generalized framework for
constructing the REM in REM settings along with the main
issues to be addressed.

A. Importance in CR Networks

The REM is an architectural concept for storing envi-
ronmental information for use in CR networks [149]. This
facilitates the geolocation database-assisted CR communica-
tions which is an alternative spectrum awareness mechanism
to obtain the knowledge of the RF environment. One way
of constructing the REM is to use the spectrum cartography
method which is the process of plotting an attribute of the
RF environment over a finite geographical area. Spectrum
cartography has important applications in network planning,
maintenance and optimization, and has been widely used by
the cellular network designers. In CR applications, spectrum
cartography can be used as a powerful tool to determine the
presence and the range of active PU transmitters [96], [99].

For the effective implementation of CR networks, an REM
can be extremely useful for the proper selection of the SU
channel and the transmit parameter. The accurate selectionof
these parameters must be made considering the requirements
of PU interference control and the QoS of the secondary



link, of which the first requirement is the more crucial. This
interference control can only be guaranteed only if the PU
locations and the received powers levels from other PUs are
known by the SUs. Therefore, the locations of the transmitters
and their transmit power levels need to be accurately estimated
in order to construct an REM. Subsequently, the map of the
received power level throughout a two dimensional area can
be created utilizing the estimated locations and the transmit
power levels.

In practice, it is highly desirable to construct the REM over
a wide coverage area and over a wide spectrum band. However,
this requires a large number of sensors and a high overhead
on parameter acquisition and recovery while applying the
conventional non-CS based approaches. In this context, the
following two practical aspects motivate the use of the CS in
REM construction problems.

1) As mentioned earlier, there is a small number of active
carriers compared to the total number of carriers used
in the legacy systems, thus creating thesparsity in the
frequency domain.

2) There is a small number of active primary transmitters
compared to the total number of distributed sensors, thus
creating thesparsity in the spatial domain.

By utilizing the above sparsity bases, system designers can
take advantage of the CS method in constructing the REM
over a wideband area and a wideband spectrum band.

B. Related Literature

There exist several spectrum cartography works in the
literature [150]–[152], which do not exploit the sparsity of
the active PUs in space and frequency domains. In most of
these works, spatial interpolation, which is commonly used
in Geographic Information Systems (GIS), has been used. It
refers to any system manipulating geographical referenceddata
for capture, storage, analysis and management purposes. The
main spatial interpolation techniques are the Inverse Distance
Weighting (IDW), the Nearest Neighbor Interpolation, Splines
and Kriging [153].

Determining the location and power level of the active
PTs considering the sparsity feature of the primary activity
significantly helps in constructing an REM. In this regard,
several researchers have exploited this sparsity in various set-
tings [92], [96], [97], [154]. One of the widely used CS-based
REM construction method relies on a location fingerprinting
approach [92], [96], [97]. In this approach, PUs and SUs
are assumed to be located in a random subset of the grid
points within a certain discretized geographic area. The RSS
from the target PUs is measured by each SU and this set of
measurements is used to recover the PU locations and transmit
power levels. In many cases, the sparsity is exploited assuming
that the number of active PUs is much smaller than the number
of grid points.

In a sparse target localization problem, the main objective
is to determine the locations of the targets, i.e., active transmit-
ters, simultaneously using a relatively small number of noisy
Received Signal Strength (RSS) measurements. In this context,
authors in [92] present a framework for localizing multiple
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Fig. 10. The flow chart of CS-based multiple target localization
approach [92]

targets/transmitters utilizing the CS theory. The multiple target
localization problem has been formulated as a sparse matrixin
the discrete spatial domain and an RSS-based algorithm has
been used to find the location of targets. The flow chart of
the CS-based multiple target localization approach studied in
[92] is depicted in Fig. 10 and the involved steps are briefly
summarized in the following paragraph.

The M × K input matrix Y in Fig. 10 consists of
compressive noisy RSS measurements taken byK targets
on M arbitrary reference points. For the considered target
localization problem in [92], the sparsity basisΨ and the
measurement matrixΦ are coherent in the spatial domain and
CS theory can not be directly applied. In this context, one ap-
proach to apply the CS principle is to carry out pre-processing
operation on the measured matrixY, which results in the
same effect as in orthogonalizing two matrices. After pre-
processing, the original sparse coefficients can be recovered
from the compressive noisy measurements using suitablel1
minimization algorithms such as BP, Basis Pursuit Denoising
(BPDN), etc. Then, post-processing operation is required in
order to compensate for the grid assumption error since the
targets may not be exactly located at these grid points. For this
purpose, the dominant coefficients, whose values are above a
certain thresholdλ, can be found and then the centroid of
these grid points, which acts as the location indicator, canbe
calculated as illustrated in [92].

Besides the application of CS in spectrum cartography
and target counting/localization, CS is relevant when creating
interference maps in various wireless networks such as IEEE
802.22 Wireless Regional Area Networks (WRAN), which
is the first CR-based wireless standard. In a typical cellular
network like WRAN, user terminals have to communicate via
the base station and they cannot communicate with each other
directly. To address this drawback and to take advantage of
both centralized control and the sharing of spectrum among
user terminals, Peer to Peer WRAN (P2PWRAN), which re-
quires the information regarding potential interference among
flows, i.e., interference map, has been proposed in [93]. The
accuracy of this interference map affects the channel allocation
as well as the network performance.

In the above context, authors in [94] have proposed self-
adapting interference mapping protocol in order to cope with
the unexpected events in P2PWRAN networks without consid-
ering CS aspects. In practice, it’s not realistic to capturethe
global information about the spectrum usage in its surrounding
environment using a single CR transmitter. The problem of
reconstructing the spectrum map using incomplete information



becomes interesting since a CR transmitter can acquire only
the local data from a limited number of cooperative nodes.
Due to ability of the CS technique to sample and compress
simultaneously, it can serve the requirement of fast sensing in
a CR. Furthermore, a spectrum map facilitates the definitionof
the QoS constraint based on Signal to Interference plus Noise
Ratio (SINR), thus enabling the simultaneous operation of the
routing and cooperative spectrum sensing [95]. Subsequently,
it is applicable in creating interference maps with the helpof
CR sensors. In contrast to the statistical power spectral density
map creation for spatial frequency reuse in [154], authors
in [95] have proposed aggregated interference-based deter-
ministic power-level maps for routing using significantly less
measurements compared with the traditional non-CS methods.

Furthermore, authors in [154] proposed a Least Absolute
Shrinkage and Selection Operator (LASSO) based distributed
algorithm which exploits sparsity to construct PU Power
Spectral Density (PSD) and to reveal the unknown positions of
the active PUs. The following two forms of sparsity are used
in [154]: (i) the sparsity introduced by the narrow-band nature
of transmit-PSDs relative to the broad range of the usable
spectrum, and (ii) the sparsity emerging from sparsely located
active radios in the operational space. It has been demonstrated
that exploiting sparsity in the distributed CR sensing reduces
spatial and frequency spectrum leakage by15 dB relative to
the least square alternatives.

In the similar context, authors in [96] propose an OMP
algorithm-based technique [155] considering the cartography
process as a CS problem. The proposed Orthogonal Matching
Pursuit Spatial Extension (OMPSE) algorithm exploits the
spatial correlation between two nearby reference points in
a neighbourhood and provides better performance over the
traditional OMP technique. Additionally, the authors in [99]
investigated the performance of CS-based cartography process
in a fading environment where real time channel estimation
may not be available. The well-known iteratively reweighted
l1 minimization approach has been extended by exploiting
spatial correlation between two points in space in order to
accommodate the lack of channel information.

In practice, Wireless Sensor Networks (WSNs) can be
used to acquire the information about the surrounding ra-
dio environment in order to construct an REM. In WSNs,
the following two problems can be addressed by the CS
approach [156]. First, there are a very limited number of
active sensors, i.e., the active PU transmitters, comparedwith
the total number of sensors in the network. Moreover, the
number of events is much less compared to the number of all
sources. Second, different events may happen simultaneously
and cause interference to detect them individually. As a result,
the received signals are superimposed all together, and an
efficient algorithm is required to separate the superimposed
signals.

Besides, it’s highly costly to deploy a WSN over a large
geographical area solely for the purpose of constructing the
REM. To address this issue, the network operators can oppor-
tunistically use the heterogeneous RF devices in the desired
area that are deployed for functions other than spectrum
mapping. In this context, the spectrum cartography system has

to account for different radio types, propagation environments,
and sensor densities as well as sparse receiver measurements.
Further, the system must be scaled based on the number of
users that must be supported [98].

In a practical heterogeneous environment which may con-
sist of heterogeneous sensor devices, there exist the following
challenges for creating a reliable dynamic spectrum mapping
system [98].

• Dedicated resources may not be available for the sensing
tasks and we may need to rely on the opportunistic use
of the devices deployed for other purposes. Besides, due
to several structural, operational, and economic practical
constraints, we have to rely on the sparse measurements.

• The spectrum awareness has to be carried out over a
wide frequency band that may be heavily occupied with
a large number of heterogeneous sources/PU transmitter
types. Although current methods utilize multiple, identi-
cal, broadband, high performance spectrum analyzers in
the vicinity of the sensors, this solution is neither cost-
effective nor easily scalable.

• The WSNs deployed for the purpose of gathering the RF
information should operate in a dynamic RF environment
with diverse propagation constrained network infrastruc-
ture with the minimal impact on the main objective of the
sensors. Further, as the number of devices and the rate of
data collection increase, scalable solutions are needed to
store, process, retrieve, and disseminate the information.

• The sensor network may consist of heterogeneous RF
devices over a large geographical area. The coordination
between these heterogeneous devices is highly desirable
from the practical perspective.

In the context of heterogeneous environment, authors in
[98] have studied a method, called PRISM (Precise Radio-
Propagation Interpolation from Sparse Measurements). This
method takes the sparse spatial measurements and uses sparse
signal reconstruction techniques in order to determine the
simplest arrangement of virtual sources consistent with the
observations. Furthermore, Kanerva’s sparse distributedmem-
ory model has been used to address system scaling challenges
which represents theN -dimensional binary vectors without
regard to the semantic interpretation of the data.

Moreover, target counting and localization are the key as-
pects in order to construct the REM using the sensor networks.
Although there exists much literature in the field of non-CS
based target counting, only a few recent contributions have
focussed on CS-based target counting and localization [97],
[156], [157], [159]–[164]. Among these contributions, [156],
[157] have focussed on CS-based target counting, [97], [159]
have focussed on both target counting and localization, andthe
rest have focussed CS-based localization. The contribution in
[157] proposed a CS-based approach for sparse target counting
and positioning in wireless sensor networks by employing a
novel Greedy Matching pursuit (GMP) algorithm. Recently,
authors in [158] studied the problem of target counting and
localization by exploiting the joint sparsity feature of anMMV
model and demonstrated that the performance of the proposed
MMV approach is superior than that of the conventional single



measurement vector method in terms of target counting and
localization accuracies.

C. Framework for Compressive REM Construction and Re-
lated Issues

As stated earlier, the main objectives of compressive REM
construction over a wideband coverage area are

• To recover the active carriers within the area of interest
• To create an REM for each active carrier based on

compressive measurements
Thus constructed REM can be used to implement carrier
assignment and power control for secondary devices of the
CR networks.

Let us consider a grid ofL sensors spanning a coverage
area of interest. Within the same area, there is usually an
unknown small number of active Txs, i.e.,K << L. In
general, the following parameters have to be recovered to
reconstruct the REM: (i) number of active TxsK, (ii) position
of Txs, and (iii) radiated power for each Tx. The Txs are
assumed to be collocated with one of the sensors. If this
is not the case, appropriate interpolation techniques can be
employed. In a centralized setting, the sensors measure the
received energy over a number of samples and relay these
measurements to the FC. The reporting links from the sensors
to the FC are usually bandwidth limited and need to be
utilized effectively. In this context, it can be assumed that
the received measurements are relayed to the FC throughC
number of wireless collectors. Further, due to the limitation
in the backhaul link bandwidth, onlyD out of C wireless
collectors can be accessed simultaneously at each time slot. It
can be assumed that this access pattern is randomly generated.

Let xi, i = 1 . . . L denote the locations of sensors, while
yi, i = 1 . . . K the locations of active transmitters andpi, i =
1 . . . K the transmit power of the PU Txs. In vectorial form,
we can define theL× 1 vectorx and the sparseK× 1 vector
s = y ⊙ p. To construct the compressive REM in the above
setting, the objective is to estimate the following parameters:
(i) the number of non-zero points (sparsity order)K, (b) the
positions of non-zero pointsyi, and (ii) the values of non-zero
pointspi.

Assuming that the sensor locations are known through GPS
feedback, the following relation can be applied

x = As, (15)

whereA is a K ×K channel matrix including the transmit,
receive antenna gains and the path loss calculated based on
distances between sensors. This can also be target energy
decay matrix as considered in [157]. Similarly, assuming that
the locations of the collectors is known, the output at the active
collectors can be expressed as aD × 1 vectorw, given by

w = Bx = BAs+ z, (16)

whereB is a D × K power law path loss matrix calculated
based on the distances between the collector and sensors, and z

is additive white Gaussian noise vector. Since the selection of
active collectors is random, the matrixB is also random with
positive elements. Finally, at the FC, arbitrary CS matrices

such asC can be applied in such a way that the received
sample vectorv becomes

v = Cw. (17)

Based on the above formulation, we highlight the main
issues to be considered for future investigation below.

• How to estimate the parameters without completely re-
constructing the signal and with lower complexity?

• How to designB in order to satisfy the incoherency with
A and the RIP property?

• How to designC which is practically implementable?
• Are multiple sample vectorsv helpful to improve perfor-

mance in the above setting?

VI. CHALLENGES AND FUTURE RECOMMENDATIONS

In this section, we highlight the main challenges and
suggest future recommendations to address them.

A. Alleviating Existing Assumptions

• Requirement of Channel Occupancy Knowledge: In
most of the contributions using the CS approach, it is
assumed that the sparsity of a signal to be acquired is
known. However, in the context of CR networks, the prior
information about the PU channel occupancy may not
been known to the CR sensor. This creates a great barrier
to the practical usage of CS in CR scenarios. The possible
way forward for this would be to investigate suitable
sparsity order estimation method in order to estimate
the sparsity order of the wideband spectrum accurately
[91]. Further, the sparsity order of the wideband signal
generally varies over the time and it may be difficult to
estimate it in practice due to the dynamicity of the pri-
mary spectrum usage or the time-varying fading channels
between CRs and the PUs [104]. Moreover, the required
sampling rate changes proportionally with the sparsity
order of the wideband signal.Therefore, it’s an important
research challenge to investigate adaptive sparsity order
estimation methods to capture the dynamicity of the
spectrum usage in time-varying wireless environments,
and subsequently to choose an appropriate sampling rate
to be applied at the CS-based CR transceiver.

• Investigation of Suitable Sparsity Basis: On the one
hand, most existing CS works in the context of CR com-
munications assume the sparsity of the radio spectrum in
the frequency domain due to its lower utilization. On the
other hand, the main objective of CR communications is
to enhance the usage of the spectrum. In this regard, the
consideration of sparsity in the frequency domain may
be relevant for the current scenario but the situation may
change in the future due to the enhanced usage of the
radio spectrum [166].Therefore, it’s crucial to investigate
suitable sparsity bases/domains in order to apply CS in
CR applications. One solution would be to exploit the
sparsity in different features of the primary signals such
as spectral correlation function which is sparse in both
cyclic and angular frequency domains.



• Basis Mismatch in Compressive Estimation/Detection:
In many CS problems, the field/signal to be acquired
is assumed to be sparse in some basis. However, in
practice, the signal may not be sparse in any a priori
known basis, resulting in the basis mismatch [44]. In
this context, it is important to analyze the sensitivity
of CS to mismatch between the assumed and the actual
sparsity bases and to investigate suitable approaches to
reduce this mismatch. Moreover, developing robust CS
approaches with unknown basis is an important research
challenge.

• Evaluation under Realistic Signal Model: In most
of the existing contributions, a random signal model is
considered in numerical experiments. However, it does
not provide an adequate description of real signals, whose
frequencies and phases significantly differ from that of
the random signal [59]. In this context,it is crucial to
investigate the performance of CS algorithms for real
signals in the considered CR scenarios. Furthermore, in
most of the CR related CS research, finite-length and
discrete-time signals have been considered [104]. In this
context,investigating low-complex solutions to implement
the CS-based signal processing techniques in the analog
domain should be one of the focus areas in the future
research.

B. Tackling Implementation Aspects

• Design of a Practical Measurement Matrix: Another
issue in designing practical CS-based receivers is to
investigate suitable practical sensing matrices. The com-
pression of a non-sparse signal depends on the proper
selection of the measurement matrix. Furthermore, the
costs for CS encoding and decoding significantly depends
on the type of measurement matrix [50]. The well-known
family of CS matrices is a random projection or a matrix
of i.i.d. random variables from a sub-Gaussian distribu-
tion such as Gaussian or Bernoulli since this family is
universally incoherent with all other sparsifying bases
[165]. However, in practical applications, the unstructured
nature of random matrices make their realizations highly
complex and the memory requirement also increases.
In this context, it is an open challenge to investigate
practical sensing matrices required for compressive de-
tection/estimation applications.

• Compressive REM Construction in Heterogeneous
Networks: REMs are useful for the implementation of
database-based cognitive communication over a wide
coverage area and wide bandwidth. They can be cre-
ated with the help of distributed sensor measurements.
However, due to the constraints on the sensor hardware
and energy, it is necessary to keep the number of sensor
measurements low. As highlighted in Section V, there
exist several practical issues while constructing REM
with the help of compressive measurements. Some of the
important issues are diverse propagation characteristics,
no or imperfect knowledge about the primary network,
practical constraints on the sensor placement, constrained

network infrastructure, scalability with the future sensor
nodes etc. Furthermore, the issues mentioned in Section
V-C should be considered in the future research towards
implementing the compressive REM construction. In this
context, the application of CS for REM construction by
exploiting the sparsity in the frequency and spatial do-
mains can be considered as an interesting future research
problem.
Furthermore, in the spectral coexistence scenario of satel-
lite and terrestrial networks [11], elevation angle provides
an additional degree of freedom in enabling this coex-
istence [167]. However, the existing REM construction
methods do not take into account of the elevation angle.
In this context,it’s an important future topic to explore
a suitable construction method for three dimensional
(3D) REM considering elevation angle as an additional
dimension.

C. Performance Limits under Practical Imperfections

Most existing CS techniques assume system models con-
taminated with either Guassian noise with the known variance
or the bounded noise. Furthermore, most CS-based works in
the context of CR communications assume ideal operating
conditions in terms of noise, channel and transceiver hardware
components and there exist only a few works investigating
CS-based techniques in the presence of practical imperfec-
tions such as interference [168], and noise uncertainty [169].
However, in practice, there may occur various imperfections
such as noise uncertainty, channel uncertainty, noise/channel
correlation, and transceiver hardware imperfections suchas
ADC errors (quantization and clipping errors), synchronization
errors, amplifier non-linearity, multicarrier distortion, calibra-
tion etc [22]. For example, the centralized compressive collab-
orative approach (Fig. 4) studied in [64], [129] considers ideal
reporting channels, which is not the case in practice. These
imperfections may lead to significant performance degradation
of a CS-based techniques in practical CR communications.
Therefore, it’s an important future step to investigate theprac-
tical gains that can be achieved with CS-based approaches
in the presence of practical imperfections and to develop a
common framework to combat their aggregate effect in a CS-
based CR transceiver.

VII. C ONCLUSIONS

CS has been well motivated for CR communications due to
the sparse nature of the radio spectrum occupancy in practical
wireless systems. In this context, this paper has provided
a comprehensive review on the applications of CS in CR
communications. Starting with the basic principles and the
main aspects of the CS technique, this paper has identified
various application areas such as wideband SS, environmental
parameter estimation and REM construction based on the
RF parameter to be acquired. Subsequently, dynamic range
and sampling rate issues for wideband SS have been dis-
cussed and the existing related works have been reviewed.
Furthermore, the existing works on compressive estimation
of various parameters such as SNR, sparsity order, DoA and



channel have been detailed in the context of a CR. Moreover,
the state of the art approaches on the compressive REM
construction have been discussed and a generalized framework
has been presented. Finally, some open issues which need to
be considered in the future research have been identified.
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