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Abstract—Compressive Sensing (CS) has received much at-of CR was firstly proposed by J. Mitola in the late 1990’s
tention in several fields such as digital image processing, wireless[9] and after its conception, several researchers and indus
channel estimation, radar imaging, and Cognitive Radio (CR) " tial/academic/regulatory bodies have been working tdear

communications. Out of these areas, this survey paper focuses o the imol tati f this technol It h id
the application of CS in CR communications. Due to the under- € impiementation of this technology. as a wide range

utilization of the allocated radio spectrum, spectrum occupancy Of application areas ranging from Television WhiteSpaces
is usually sparse in different domains such as time, frequency (TVWSs) [10] to satellite communications [11], [12]. The

and space. Such a sparse nature of the spectrum occupancymain functions of a CR are to be aware of its surrounding
has inspired the application of CS in CR communications. In r44io environment, i.e., spectrum awareness, and to eitiliz

this regard, several researchers have already applied the CS th ilabl tral tuniti ffectively. | mect
theory in various settings considering the sparsity in different 1€ @vallable spectral opportunities efieclively, 1.earum

domains. In this direction, this survey paper provides a detailed €Xploitation.

review of the state of the art related to the application of CS theory states that certain signals can be recovered from
CS in CR communications. Starting with the basic principles far fewer samples or measurements than the samples required
and the main features of CS, it provides a classification of the by traditional methods [1], [2]. In this approach, a sigrfidy

main usage areas based on the radio parameter to be acquired . . ;
by a wideband CR. Subsequently, we review the existing CS- reduced number of measurements is obtained from the incom-

related works applied to different categories such as wideband iNg data stream and is expected to be reconstructible from
sensing, signal parameter estimation and Radio Environment these small number of measurements. This method basically
Map (REM) construction, highlighting the main benefits and the  combines the following key concepts: (i) sparse represienta

related issues. Furthermore, we present a generalized framewkor with a choice of a linear basis for the class of the desired

for constructing the REM in compressive settings. Finally, we . | d G i h t ts of th idered
conclude this survey paper with some suggested open research>'gnal, an (ii) incoherent measurements of the considere

challenges and future directions. signal to extract the maximum information using the minimum
number of measurements [13]. In sparse signals, most of the
signal energy is concentrated in a few non-zero coefficients
Furthermore, to apply the CS theory, it's not necessary for
the signal itself to be sparse but can be compressible within
|. INTRODUCTION sparse representations of the signal in some known transfor

Recently, Compressive Sensing (CS), also known as COdo_mam [14], [15]. For example, smooth signals are sparse in

. . ’ : e Fourier basis whereas piecewise smooth signals arsespar
pressive sampling or sparse sampling [1], [2], has beenia toH1 the wavelet basis [1]

of extensive research in various areas such as digital image - .
. . s Although there exist several survey papers in the areas of
processing [3], wireless channel estimation [4], [5], rad S . .
R communications covering a wide range of areas such as

imaging [6], Cogmnve Radio (CR) [7], eIectr_omagneUc_s}, [8.8 ectrum Sensing (SS) [16], spectrum occupancy measure-
etc. Out of the wide range of the aforementioned applicatio ; .
. o ment campaigns [17], spectrum management [18], emerging
areas, this survey paper focuses on the application of CSto . ~. -

S applications [19], spectrum decision [20], spectrum agces
CR communications.

Spectrum scarcity is one of the most important challengStrategles [21], CR techniques under practical impedesti

. . . 2], and CR networks [23], a comprehensive review on the
faced by today's wireless operators to provide high data r lications of CS in CR communications is missing from the
services to a large number of users. In this context, P Y

L . : |iterature. Besides, there exist several applications®frCCR
communication has been considered as a potential candidate D ) . .
. . communications and they have been investigated for various

to address the spectrum scarcity problem in the future gen-

: : o . objectives. In this context, first, this survey paper categs
eration of wireless communications, i.e., 5G. The concept L . .
e application areas based on the acquired environmental
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The remainder of this paper is structured as followgroblem, which basically means that it requires an exhagisti
Section II-A provides the basic principles of CS and highigy search and, in general, it is not a feasible approach. Jpecia
several important aspects such as uniqueness of a soluiibn eases of interest for convexity are all thenorms forp > 1.
compressive signal processing. Section II-B briefly disess Among them,/;-norm is very interesting and popular due to
CR communications and classifies various application ardestendency to sparsify the solution. In this context, Cleén
of CS in CR communications based on the parameter ab [27] stated that a sparse signalcan be recovered from
be acquired. Subsequently, Section Il identifies the prakt only x = O(K log(L/K)) linear non-adaptive measurements
limitations for wideband sensing and reviews in detail thiey solving the following relaxation
CS-related prior work. Section IV describes the existing ap
proaches for performing the compressive estimation obuari min [0, subject to y ~ W6, 3)
signal parameters while Section V discusses various aspéct
Radio Environment Map (REM) construction. Finally, Sentiowhere |0, = >, [0;|. Several methods are available in the
VI provides open research issues and Section VII concludésrature to solve the optimization problem in (3). The
this paper. To improve the flow of this paper, we providglinimization is a convex problem and can be recast as a
the structure of the paper in Fig. 1 and the definitions dfnear Program (LP) [28]. This is the foundation for the Basi
acronyms/notations in Table I. Pursuit (BP) techniques [27], [29], [30]. Alternatively,egdy

methods, known as Matching Pursuit (MP), can be used to
Il. CSAND ITS APPLICATIONS INCR CoMMuNIicaTIONs  Solve (3) iteratively [31], [32].
In this section, we provide an overview of the basic 2) Unigueness of a Solutionn general, the relationship

concepts related to CS theory. The detailed explanationtabB€tWeen the sensing matri@] and the signal model)

the fundamental developments in CS can be found in [1], [z'ffects the number of measurements required to reconstruct
[13]. sparse signal.

Almost all theory of CS is based on the assumption that
D = ®W is the concatenation of two orthogonal matrices.
These theories follow the uncertainty principle which egat

1) Basic Principle: CS [13], [24], [25] is a novel sens-that a signal cannot be sparsely represented bot# iand
ing/sampling paradigm that allows, under certain asswnpfi ¥ [33]. This claim depends on the similarity betwedn
the accurate recovery of signals sampled below the Nyquigid . A rough characterization of the degree of similarity

sampling limit. In order to briefly review the main ideas of CSpetween the sparsity and measurement systems is depicted by
consider the following finite length, discrete time signak  the mutual coherencavhich is given by

R”. Representing a signal involves the choice afietionary

A. Compressive Sensing Basics

which is the set of elementary waveforms used to decompose ¢ff¢j

the signal. Sparsity of a signal is defined as the number of w(®,¥) =max ——— —. 4)
non-zero elements in the signal under some representation. i I ll, - Hd’szz

signal is said to have a sparse representation over a known

dictionary @ = [tp, b, -+ by, with o, € REXL, In other words,D should have columnsel;,i = 1,..., N

0 ]T with small correlations. An explicit example of matricesierh
M—-1

if there exists a sparse vectér= |0y 0 . . .
P [ o have small coherence is the concatenation of the Identily an

such that i ) . i
M-1 Fourier matrices. Another suitable way to describés to
x= > ,0n O x=W6, (1) compute the Gram matri& = DD, using matrixD after
m=1 normalizing each of its columnd)). The mutual coherence

with [|6], = K << M. The lo-norm used throughout this is given in thi_s case by the off-diagonal entry Gf with the
paper simply counts the number of non-zero components!#gest magnitude.
6. A dictionary that leads to sparse representations caereith On the other hand, another criterion for evaluating the-qual
be chosen as a prespecified set of functions or designedityyof CS matrices that are nearly orthonormal, is the Retstd
adapting its content to fit a given set of signal examples.[28p0metry Property (RIP) introduced in [30], initially cedl

The framework of CS aims at recovering the unknow@s “uniform uncertainty principle”. The RIP is a sufficient
vectorx from an underdetermined system of linear equatio®ndition onD for exact recovery of d-sparsef.

The matrixD satisfies the RIP of order € N, s < L, if
y = ®x, () there exists an isometry constank 6, < 1 such that

wherey € R**! is the received data vector and matrix 2

® ¢ C**L with K < k < L is the sub-sampling matrix (1-9,) ||49H122 < HDHH < (1+6s) H"”H?2 (5)

or sensingmatrix since the number of rows is less than the &

number of columns. Since < L, this system has more holds for alls-sparse vectors, whete is the smallest number
unknowns than equations, and thus the system is not inleertitsatisfying (5). However, working with the RIP condition
In particular, (2) has infinitely many solutions. Among thés much more complex compared to the simple coherence
infinitely many solutions of (2), we are only interested irtoncept since for a given matrix, checking the validity o th
the sparsest one. Direct minimization ||, is an NP-hard RIP condition is an NP-hard problem itself.
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Fig. 1. Structure of the paper

3) Compressive Signal Processinlylany signal process- perform classification with very few random measuremergs ar
ing problems such as detection, estimation, and classificat[36], [43], [47]. In particular, [43] focuses on the comsee
do not require full signal recovery. The CS theory can baetection problem but provides some ideas for extensions to
further extended to address the detection, estimation kased cclassification. Later, [47] explored the use of a compressed
sification problems. In this context, the most relevant wate version of the matched filter referred to as the smashed
the discussions of compressive parameter estimation ijy [3#llter. The basic idea of the smashed filter is to implement
[35], compressive detection in [36], [42], [43] and comgiee a matched filter directly in the compressed domain without
classification in [36], [43], [46], [47]. the requirement of reconstructing the original signal from

It is possible to apply standard CS to continuous-valugde compressed measurements. The utility of CS projection
parameter estimation and the detection of signals in cootia observations for signal classification by means ofrarary
domains but it does not perform well due to the discretiratidhypothesis testing was proposed in [36]. In general, theze a
of the sparse domain. CS requires the signal to be spansany applications where it can be more efficient and accurate
over a finite basis whereas the parameters/signals could tbeextract information for classification directly from aysal’s
anywhere on a continuum. This problem is known in theompressive measurements than first recover the signal and
literature as a basis-mismatch problem [44], [45]. Furthethen extract the information.
basis-mismatch problems may arise in many other applitsitio
including channel estimation discussed later in SectioiDI1V

A comprehensive analysis on the performance of sign%l
classification based on compressive measurements is pFdsen In this section, we provide the basics of CR communication
in [46]. The first works where sparsity was leveraged tand briefly describe various applications of CS for enabling

Applications of CS in CR Communications



TABLE |

DEFINITIONS OFACRONYMS AND NOTATIONS

Acronyms/Notations  Definitions Acronyms/Notations  Definitions
ADC Analog to Digital Converter REM Radio Environment Map
AIC Analog to Information Converter RF Radio Frequency
BP Basis Pursuit RIP Restricted Isometry Property
CDMA Code Division Multiple Access SSR Sparse Signal Representation
CR Cognitive Radio SS Spectrum Sensing
CS Compressive Sensing ST Secondary Transmitter
CMUX Compressive Multiplexer SVD Singular Value Decomposition
Csl Channel State Information SNR Signal to Noise Ratio
DoA Direction of Arrival WSS Wideband Spectrum Sensing
DCS Distributed Compressive Sensing WSN Wireless Sensor Network
DR Dynamic Range QoS (%uali\%_ of Service
FC Fusion Centre UwB Ultra-Wideband
FFT Fast Fourier Transform X Nyquist-sampled signal
FIR Finite Imﬂulse Response L Number of samples ak
GIS Geographic Information System v Dictionary or sparsifying basis
i.i.d. independent and identically distributed 6 Sparse vector
JSM Joint Sparsity Order M Number of samples of

y S\ /P
LP Linear Program lel,, Amlzl\ﬁml") / ,p>1
LASSO Least Absolute Shrinkage and Selection Operatdf|, = K number of non-zero components @f
MP Marching Pursuit y ComBressive-sampIed signal
MMV Multiple Measurement Vector K Number of samples of
MWC Modulated Wideband Converter g Sensing matrix
NP Nondeterministic Polymonial D Product of® - ¥
OMP Orthogonal Matching Pursuit fs Samgling frequenc
PT Primary Transmitter Negr Number of ADC effective bits
PR Primary Receiver > Summation
PSD Power Spectral Density T Transpose
PU Primary User &)H Conjugate transpose
ISNR In-band Signal to Noise Ratio Set of real numbers
RSNR Recovered Signal to Noise Ratio C Set of complex numbers
RD Random Demodulator o Compression factor
RSS Received Signal Strength ® Element-wise product

CR communications. The detailed description on these apgkchniques which require SUs to communicate opportunisti-
cations will be provided in latter sections by referring @t cally using the unused spectral holes in different domains
current state of the art. such as space, frequency, and time. The second paradigm
1) CR Communications:Current wireless networks areencompasses interference control/management schemes and
facing a spectrum scarcity problem due the limited ava@laballows the coexistence of primary and secondary systenys onl
spectrum and the increasing demand of high data-rate sstvidf the interference caused by Secondary Transmitters (8Ts)
On one hand, the usable spectrum seems to be scarce ttigePrimary Receivers (PRs) can be properly controlled and
to spectrum segmentation and the static frequency almtatinanaged. On the other hand, the third paradigm encompasses
policy. On the other hand, several spectrum measuremedivanced coding and transmission strategies at the STs for
compaigns show the under-utilization of the allocated speiaterference management and may require a higher level of
trum in the time and space (geographical) domains [17]. tmordination between primary and secondary systems.
this context, CR communications has been considered as a2) Applications: Although several contributions exist in
promising candidate to address the spectrum scarcity gmoblthe literature dealing with the narrowband CR scenarios, in
in future wireless networks. In CR communications, Primamyractice, a CR should be capable of monitoring the surround-
Users (PUs), also called incumbent or licensed users, are ithg radio environment over a wide spectrum range in order to
users who have legacy rights on the use of a specific partutilize the benefits of CR communications efficiently. This e
the spectrum. On the other hand, Secondary Users (SUs), alsonmental knowledge over a wideband spectrum helps a CR
called cognitive or unlicensed users, exploit this specatin  to apply adaptive resource allocation and spectrum expioit
such a way that they do not provide harmful interference techniques for the effective utilization of the underimgd
the normal operation of the licensed PUs. radio spectrum. However, due to the practical limitations
A CR should be capable of acquiring various Radion the capability of receiver hardware components, mainly
Frequency (RF) parameters in order to become aware of Asalog to Digital Converter (ADC), it's difficult to implenma
surrounding radio environment. This can be achieved withideband spectrum awareness algorithms in practice. This
the help of various spectrum awareness techniques suchddiculty can be alleviated by utilizing the benefits of CS
Spectrum Sensing (SS), database and the estimation of discussed in Section II.
signal parameters such as Signal to Noise Ratio (SNR), Chan-The RF awareness over a wideband can be acquired mainly
nel State Information (CSI), Directional of Arrival (DoAgtc. with the following mechanisms: (i) Wideband SS, (ii) Signal
After being aware of the RF environment, the next importaparameter estimation, and (iii) Database information. The
functionality for a CR is to exploit the available underimportant parameters acquired with these mechanisms are
utilized resource effectively, called spectrum explaitat The depicted in Fig. 2. In the wideband SS mechanism, the RF
widely used paradigms for spectrum exploitation are intgparameters to be acquired can be energy level and the power
weave, underlay and overlay [48]. Out of these paradignes, thpectrum. Furthermore, in the category of signal parameter
first paradigm consists of interference avoidance/oppdstic  estimation, different parameters such as CSI, DoA, SNR and



TABLE I
EXISTING TECHNIQUES FOR THE APPLICATIONS OFCSIN CR COMMUNICATIONS

Awareness Mechanisms Parameters Applicable CS techniques References
Spectrum sensing Energy level Compressive spectrum sensing [71, [49], [50], [52], [53], [59], [63]-[70]
Power spectrum Compressive power spectrum estimation[71]-[73]
Signal parameter estimation Channel State Information (CSI) | Compressive channel estimation [81], [82]
Direction of Arrival (DoA) Compressive DoA estimation [83]-[88]
Signal to Noise Ratio (SNR) Compressive SNR estimation [89], [90]
Sparsity order Compressive sparsity order estimation| [91], [127], [147]
Database information Number of active Txs, Tx locations Compressive REM construction [92], [96]-[99]
Transmit power

recovery accuracy is poor and they need a large number of
measurements in order to reach a comparable reconstruction
performance to BP and reweightgdalgorithms. On the other
hand, BP and re-weightdg algorithms provide more accurate
solutions but are demanding in terms of computational costs
Thus, in general, there exists a clear tradeoff betweendime s
pling cost and energy saving in computation and it is cruacial
P balance this tradeoff in order to enhance the overall ragove
performance. Another example is that the simple and most
@ commonly used OMP algorithm can be implemented using

the following four different methods [38]: (i) naive appuba

(ii) Cholesky decomposition, (iii) QR decomposition, amd) (

Zicg-u?éiti(\;\r’]ide;imeg’sec”“m awareness techniques and the Mgiyrix inversion lemma. These four implementation aspects
q P have different complexities and memory requirements, and
depending on the size of the considered problem, any of these

) ) ) four implementations can be the fastest. As the number of
sparsity order can be estimated compressively by employiggmyes increases, the computation time of the naive agiproa

the CS approach. Moreover, in the third category, parametgf:omes much longer than for the other three and for the large
such as number of active Transmitters (Txs), locations ef thy5pjem sizes which require higher number of iterations, th

active Txs, power levels, etc. can be estimated which &k gecomposition approach appears to be the fastest one [38]
subsequently useful to construct the Radio Environment Map

(REM). In Table II, we present various parameters involved 1N€ aforementioned complexity discussion is applicable
with these awareness mechanisms and the related techniglfd@ carrying out CS-.ba_sed spectrum sensing using the
We further provide the mapping of the related existing tecfR!lowing steps [7], [69]: (i) acquisition of the compresise

nigues with these techniques. The detailed descriptiohesfa Samples, (if) reconstruction of the Nyquist rate signahfro
techniques is provided in the subsequent sections. the compressed samples, and (iii) spectrum sensing using

3) Complexity DiscussionOne of the main motivations the reconstructed signal. In this procedure, there hava bee

behind using CS in CR communications is that a CS-based ER/€ral attempts to reduce the computational complexity of
transceiver can sense wider spectrum with the same sampfifig @mployed reconstruction step by utilizing prior infation

requirements or the same spectrum with reduced samplind39] and references therein). In this regard, authors in
requirements, thus resulting in cheaper and more enelgyl Nave recently proposed a data-assisted non-itefpiee

efficient systems. However, CS-based receivers are reliativVeighted least squares based CS algorithm by exploiting the

complex due to the involved operations in reconstructirggy ("o data obtained from a geo-location database in order
original sparse signal. For the recovery of the originalrspa © reduce the computational complexity of the previously

signals, several recovery algorithms such as Greedy RursBfOPOSed iteratively re-weighted least squares algor{dhdi

matching Pursuit, Orthogonal Matching Pursuit (OMP), 8tag  However, as highlighted in Section 11-A3, for signal detec-
wise Orthogonal Matching Pursuit (StOMP), Gradient Pursuion/estimation/classification problem in CR applicaipit’s
(GP), Tree-based OMP (TOMP), re-weightgdninimization, not necessary to reconstruct the entire original sparseakig
etc. have been proposed in the literature. These algorithifise decision on the presence or the absence of PU signals
offer different tradeoffs in terms of reconstruction comyly, over the considered spectrum can be made based on the com-
performance, robustness to noise, as well as the allowaplessed measurements only and the reconstruction step of th
compression ratios for a certain sparsity level of the aagi commonly used CS technique can be completely illuminated,
sparse signal [37]. Some recovery algorithms are simple ttaus reducing the computational complexity [41], [42]. hist
implement, but may require a large number of samples in ordmntext, authors in [41] proposed a Bayesian formulation to
to satisfy a desired performance level. estimate the parameters of the sparse signal directly from
For instance, based on the comparative results preserttesl compressed measurements and demonstrated that such a
in [37], the algorithms OMP and TOMP are greedy seardBasysian formulation is computationally less expensiverem
algorithms which are fast in computation, however, theaccurate, and achieves a higher compression rate compared t

Wideband Spectrum
Awareness Mechanisms

Spectrum
Sensing




Idle channels wideband processing which renders high-rate standard ADC

Occupied channels costly and even impractical. Clearly, the need to procesg ve
wide bandwidth is the most critical challenge for the WSS
[107].

To address the aforementioned issues, many researchers
have considered CS techniques for wideband SS assuming
some sparsity basis. As the wideband spectrum is inherently
““““““““ sparse due to the low percentage of spectrum occupancy, CS
becomes a promising technique to reduce the burden on the
ADCs in WSS. The important advantage of the CS approach
for wideband signal acquisition is that it can increase the

12 3 4 5 Ne3 N2 Nel N overall Dynamic Range (DR) of the acquisition system [48]. |
Fig. 3. Schematic representation of a wideband channel with contrast to conventional Nyquist rate sampllng systems, CS
number of narrowband channels. Herein, sparsity order is the ragased ADCs, also called Analog to Information Converters

of the number of occupied channels to the total number of channd|8/Cs) [108] provide an important benefit in reducing the
required sampling rate in order to represent the same spectr

- Further, fewer quantization operations are required in CS-
the trad|t-|ona| non-CS methods su_ch as BP methpd. _Moreovg 'sed receivers due to the reduction in the number of achuire
authors in [42] have shown that in several applications su

. X ; Ol . easurements, thus resulting in significant power savings
as detection, estimation and classification, it becomesem?iog] 9 9 P 9

efficient and accurate to extract information directly froom-
pressive measurements rather than the traditional apprafac
first recovering the signal first and then extracting infotiora
from the recovered signal.

Several CS-based approaches have been developed to
detect the frequency occupancy of PUs using sub-Nyquist
rate samples. CS was first applied to WSS in [7], where
sub-Nyquist rate samples are utilized to detect and classif
frequency bands through a wavelet-based edge detector. Fur

IIl. WIDEBAND SPECTRUMSENSING ther, authors in [52] studied a two-step CS scheme with

In CR networks, it is desirable for the SUs to identifythe aim of minimizing the sampling rate, where the actual
spectrum opportunities over a wideband spectrum rapidlly agparsity was estimated in the first time slot and the com-
accurately. Figure 3 depicts the schematic representafien pressed measurements were then adjusted in the second slot.
wideband channel withiV., number of narrowband channelsin [110], a sequential CS approach has been proposed where
As reflected in the diagram, some of the channels are occupésth compressed measurement was acquired in sequence. In
and the remaining are idle at a certain time. In this contexhis sequential CS approach, observations become awilabl
a CR should be able to acquire information about whickequentially and the process can be stopped as soon assthere i
channels are idle over the considered bandwidth in orderdaeasonable certainty of correct reconstruction. Thisaeah
use them in an opportunistic way. For this purpose, an $i8es not require knowing how sparse is the signal, and allows
technique requires the radio to receive a wideband sigmatonstruction using the smallest number of samples.
through an RF front-end, sample it by a high speed ADC, The problem of sampling a signal at the minimal rate
and subsequently perform measurements for the detectionantl reconstructing the original spectrum from the compress
the PU signals. For the implementation of wideband SS, a GReasurements has been discussed in [111]-[113]. Further,
transceiver needs to have a wideband antenna, a widebaonder spectrum estimation methods based on sub-Nyquést rat
filter and amplifier, and a high speed ADC. The solutionsamples were presented in [114], [115], where the spectrum
of wideband antennas and wideband filters are available dhthe uncompressed signal is retrieved by concentrating on
the literature [100], [101], however, the development afthi the autocorrelation function instead of the original signa
speed ADC technology is lagging [102], [103] due to the chaitself. Moreover, CS-based correlation matching appreach
lenges involved in building sampling hardware that operatéor identification of the PUs were presented in [116]-[118] i
at a sufficiently high rate [104]. the context of a CR.

The traditional way for detecting spectrum holes over a In [119], an adaptive SS algorithm, which can adaptively
wideband is to divide the total band into many channesdjust compressed measurements without any sparsity esti-
and to perform channel-by-channel sequential scanning][10mation efforts, has been studied. Consequently, the witeba
which might introduce large latency. Another possible wasignals are acquired block-by-block from multiple minmiag
is to use an RF front-end with a bank of narrow bandpastots, and gradually reconstruct the wideband spectrumgusi
filters. This approach solves the latency problem sinceiptelt compressed samples until the spectral recovery is satisjac
channels can be processed simultaneously. However, itlns[49], the performance of a CS-based receiver has been
inefficient to implement due to the requirement of numerowtudied with the help of a theoretical analysis of its expéct
RF components. An alternative approach is to directly sengerformance with a particular emphasis on noise and DR, and
the wide frequency range at the same time, called Widsimulation results that compare the CS receiver against the
band Spectrum Sensing (WSS) (see [106] and the referenpesformance expected from a conventional implementatton.
therein). However, special attention should be paid to thmas been demonstrated that CS-based systems can pogentiall



attain a significantly large DR since they sample at a loweacquisition system without a preamplifier, the DR is mainly
rate. Consequently, it has been shown that CS-based systémied by the ADC and the DR in (dBF$/Hz) can be written
that aim to reduce the number of acquired measurements ase[125]

somewhat sensitive to noise, exhibiting3adB SNR loss DR = SNR + 10 x log(fs/2), (7)
per octave of subsampling similar to the classic noisekfigld o
phenomenon. where theSNR is given by

The sensing performance of a single node may degrade in SNR = 6.02 x Nug + 1.76, @)

wireless channels for several reasons such as the hidden nod
problem, shadowing, multipath fading, and interferencistn  where f, is the sampling frequencyyV.s is the number of
uncertainty. To address these issues, cooperative spectADC effective bits.
sensing, in which several nodes collaborate with each other From practical perspectives, the important advantage of
to enhance the overall sensing performance, has been in@S- for wideband signal acquisition is that it can increase
tigated in several works [120]-[123]. Authors in [123] havéhe overall DR of the acquisition system as compared to
compared the performance of soft and hard schemes in whitble conventional Nyquist rate acquisition system withie th
a cooperative node forwards multiple bits of the raw data, i. same instantaneous bandwidth. Due to this advantage, it can
soft cooperative scheme, and a single bit related to theideci reduce the system size, weight, and power consumption, and
on spectrum availability, i.e., hard cooperative schenee, the monetary cost considerably but at the cost of increasing
the fusion center, respectively. By incorporating the répg the noise figure of the system. The exact value of the DR
interval into the frame structure of a cooperative node arthprovement that can be achieved depends on the exact speed
independently of the employed local sensing techniqueast hand the exact ADC design. Generally, CS-enabled sampling
been shown that the hard cooperative scheme provides betéte reduction can increase the system DR, approximately by
performance than the soft cooperative scheme for shorirgensone bit (approx. by dB) for every factor of that CS permits
times and/or a large number of cooperative nodes. In thlee ADC sampling rate to be reduced [126].
particular example, compressive sensing can provide lienefi If (i) the noiseless input is sparse, (ii) the additive nase
while sensing multiple channels over a wider bandwidth bwyhite, and (iii) the CS measurement process satisfies the RIP
increasing the dynamic range of the ADC and also in reduitien the Recovered SNR (RSNR) is related to the In-band
ing the number of cooperative nodes while sensing multip@\NR (ISNR), which measures the SNR by including only the
number of channels [64]. In the case of a soft cooperatimpise within the same bandwidth as the signal [49], of the
scheme, the CS further helps to reduce the cooperative tourdeceived signal in the following way [126]
as well as the number of cooperative nodes and in the hard 1-6 ISNR 1445
cooperative scheme, the CS is more useful for local sensing. Py 5 < RSNR =15’ 9)
Several works exist in the literature in the context of apuy
CS for cooperative sensing in centralized [64], [68], [7@fla Where p is the compression factor (decimation rate) and
distributed [67], [69], [83], [124] settings. In Section-B1 ¢ € (0,1) is a constant determined by the CS measurement
and Section 111-B2, we provide a detailed discussion on th¥ocess. The value o must be less than a critical value
application of CS in centralized and distributed coopeeati pc = B/W (B being the instantaneous bandwidth aid
SS by referring to the current state of the art. being the maximum signal bandWldth) i.e., the degree of
In the fo”owing, we present the main wideband SensirﬁparSity of the input Signal. The above ratio can also bdenrit
issues, the existing works related to wideband compressi@ [49]
collaborative SS and the hardware architectures. %

From (10), it can be deduced that every time we double
the compression factgs (i.e., a one octave increase) up to
1. Dynamic Range and Noise Foldin®ynamic Range the value ofpc, the RSNR of the recovered signal decreases
(DR) describes the range of the input signal levels that cgf) 3 dB. This 3dB/octave SNR degradation depicts an impor-
be reliably measured at the same time. In other words, ifgnt tradeoff while designing CS-based receivers. The main
the ability to accurately measure small signals in the prese conclusion is that for a fixed signal bandwidth /2, there
of the large signals. The DR is a useful parameter for afy 3 practical limit to the instantaneous bandwidsi2 for
measurement/acquisition system and it is determined by thfich we can obtain a desired RSNR [126]. Although the
following two independent parameters [125]: (i) limitatiby  aphove noise folding behavior of CS systems imposes a very
noise and (ii) limitation by spurious signals. real cost, the dominant advantage is that it increases the DR
The DR is defined as the ratio of the full scale amplitudgsf the acquisition system.
to the peak noise floor and for ax, bit ADC, it is given by 2. Sampling Rate and Sparsity Ordefo determine a
DR = 6.021N, + 1.763 dB. ) suitable samp_ling rate, most existing_v_vorks implicitlym
that the sparsity order of the underutilized spectrum isakno
The above equation is valid only in the time domain withouieforehand. However, in practical CR applications, theact
digital filtering and a different expression is needed tordefi sparsity order level corresponds to the instantaneougrspec
the real achievable dynamic range of the system. For a simplecupancy of wireless users which is time varying in nature.

~ 10log((p)- (20)

A. Wideband Sensing Issues



Thus, the actual sparsity level is often unknown and only

its upper bound, which can be measured from the maximum

spectrum utilization observed statistically over a timeiqob

can be obtained. Hence, in practice, the conservative -deter Wideband
mination of the sampling rate based on its upper bound can .
cause unnecessarily high acquisition costs [104].

From the above discussion, it can be noted that the
sampling rate depends on the sparsity level and we need
to adapt the CS system in such a way that the sampling
rate is adaptive in accordance with the dynamic variation
of the spectrum occupancy. One method of addressing this
aspect to estimate the sparsity order first and then apply the
suitable sampling rate based on the estimated sampling rate
In this context, the authors in [127] have proposed a two-
step CS approach in which the sparsity order is estimated at
the first step by considering sufficiently smaller number of
measurements and then the sampling rate corresponding to
the estimated sparsity order is applied at the second step to _ _ _ _
collect additional samples. Subsequently, the recortidruof |Fn|g[6i] [T;z;ratlon of the centralized compressive coll@tive SS approach
the signal spectrum has been carried out using all the tetlec
samples in both steps. Finally, based on this reconstructed ) ,
signal spectrum, SS decision is made. The aspects of sparsit Phase. Due to this, each CR may perceive not only
order estimation are highlighted later in Section IV-B. the common spectral components from the PUs but

Another main benefit of CS-based CR transceiver is that /SO individualized spectral innovations arising from the
the reduction in the sampling rate of an ADC due to CS emissions of other CRs or interference in its I_ocal one-
directly translates into the power savings and it becomeemo ~ NOP region. These CR-dependent spectral innovation
power efficient solution than the traditional non-CS based ~ COomPponents may make the cooperation among the CRs.
transceivers. The power consumed by an ADC increases atThe existing literature basically deals with the following
a rate of1.1f,, where f, is the sampling rate of the ADC. two cooperative approaches: (i) centralized and (ii) ttisted,

For example, as-bit flash ADC at200 Msps consumeg320 Which are detailed in the following subsections.

mW of power (orl11.6 nJ/sample), while an 8-bit flash ADC 1) Centralized: The centralized approach involves an FC
at 20 Msps consumes only50 mW (or 7.5 nJ/sample) [109]. in order to collect the measurements from the spatially sep-
Therefore, in this example, by reducing the sampling ra@ated CRs and a suitable technique is applied at the FC in
by a factor of12.5, one can reduce the power consumptioarder to process the collected measurements. In the context
approximately by a factor of5.5. the contribution in [64] studied the centralized compnessi
cooperative approach in which each CR node senses the linear
combinations of multiple channel information and reports
them to the FC. Subsequently, the occupied channels are

As mentioned earlier, WSS is challenging due to thgecoded at the FC from the collected reports by using a matrix
requirement of complex and costly hardware circuitry at thgsmpletion and a joint sparsity recovery algorithms.
cognitive transceiver. One possible way to address thigiss |n most centralized studies, it is assumed that the FC
is to perform collaborative SS among the CR nodes in coffeceives and combines all CR reports assuming idle regortin
pressive settings which can improve the ability of monitgri channels. However, the reports sent by the CRs are subject to
over the whole available spectrum band [64], [65] and alsAultipath fading and shadowing loss, and thus the entirertep
can enhance the accuracy of the acquired information. & thfata set may not be available at the FC. Further, it may be the
context, collaborative compressive SS has been widelyestudcase that there are only a few CR nodes in a large network, and
in the literature utilizing the efficient sampling that eait$ the  thus are unable to gather enough sensing information. & thi
underlying sparse structure of the measured radio spectridntext, each CR node can be assumed to be equipped with a
However, to have the effective realization of the collalivea frequency selective filter, which |inear|y combines the]im[é
CS in a CR network, the following main challenges need ¥hannel information. Subsequently, these linear comioinst
be addressed [65] are sent as reports to the FC, where the occupied channels are

1) Conventional cooperation schemes require a Fusion Celecoded from the reports utilizing suitable CS algorithms.
ter (FC) in order to collect measurements from all CRs Figure 4 illustrates the aforementioned centralized bolla
and to make the centralized sensing decision. This megtive compressive approach studied in [64]. By followihist
incur high overhead costs for the reporting links andpproach, both types of overheads, i.e., the amount of éhann
render the entire network vulnerable to the node failureensing at the CRs and the number of reports sent from the
2) The spatially separated cooperating CRs may not B&Rs to the FC, can be significantly reduced [64]. The two
ideally synchronized to remain silent during the S$ompressive collaborative SS approaches proposed in fé4] a

B. Wideband Compressive Collaborative SS



briefly described below. correlated from sensor to sensor. Each sensor independentl
encodes its signal by projecting it onto another, incoheren
basis (such as a random one) and then transmits just a few

gf the resulting coefficients to the FC. Subsequently, the FC
@n jointly reconstruct all of the signals precisely exihg

the joint sparsity of the signal ensemble. In this contexg t

frequency-selective filters takegs linear combinations following two joint sparsity models have been proposed in

of channel powers and reports them to the FC. Tr%der to study the DCS problem [130].
total pm linear combinations taken by, CRs form a Joint Sparsity Model 1 (JSM-1): In this model, all the
pm matrix at the FC. This matrix becomes incomplete ~ Signals share a common sparse component while each
while incorporating the transmission loss and has the individual signal contains a sparse innovation component.
properties enabling its reconstruction only from a small  If 2; € RY denotes theith signal in a signal ensemble,
number of its entries. Therefore, information about the With j € 1,...,M, M being the number of signal
complete spectrum usage can be recovered from a small sources, i.e., CRs, this model implies the following
number of reports from the CR nodes, thus reducing
the sensing and communication overloads significantly.
Two important properties of a matrix required to apply  where the signat; is common to all of ther; with the
the matrix completion problem are [128]: (i) low rank, K sparsity level in the basi@, and the signals; are
and (ii) incoherence property. the unique portions of the; having K; sparsity level

2) Joint sparsity recovery. This method relies on the fact in the same basis. A wireless sensor network used for
that the spectrum usage information collected by the recording temperature, light intensities, air pressute, e
CR nodes contains a common sparsity pattern i.e., each can be considered as an example for this model.
of the few occupied channels is typically observed by « Joint Sparsity Model 2 (JSM-2): This model assumes
multiple CRs. Let us represent the sensing information  all signals being constructed from the same sparse set of

1) Matrix completion problem: The aim of this method
is to reconstruct a matrix (typically low-rank) efficiently
from a relatively small number of observed entrie
which can be considered as the linear combinations
the channel powers. Each CR node equipped with

rj=z2+z,j€l,....M, (12)

gathered byl CRs inN channels by aiV x M matrix basis vectors, but with different coefficients, i.e., each
X, where each column corresponds to the channel measurement vector independently encodes the sparse
occupancy status received by theh CR and each row signals while the ensemble of sparse signals share a com-
represents the occupancy status ofiilechannel. Since mon sparsity structure. This model implies the following
there are only a few number of occupied channels at a

time and only a few CRs collect information about a rj =W j€l,.... M, (12)

single channel, the matriX is jointly sparse without
considering the effect of the noise. HowevéX, can

be considered to be approximately jointly sparse while
taking the noise into account [64]. There exist different
joint sparsity recovery algorithms as described later in
Section 111-B2 and are applicable to both centralized and
distributed CS scenarios.

where eachd; is supported only on the same C
{1,...,N} with |w| = K. In other words, all signals
are K sparse and are constructed from the same
elements ofl, but with arbitrarily different coefficients.
This model is applicable to the scenarios such as acoustic
localization/DoA estimation [83], array processing etc.,
where multiple sensors acquire the same signal but with
Similarly, authors in [71] have studied a centralized ap- phase shifts and attenuations caused by signal propaga-
proach where each sensor collects sub-Nyquist rate samples tion.
and forwards them to the FC together with the CSI and Authors in [69] studied the distributed compressive SS
the sampler coefficients. Subsequently, the FC calcul&es problem by using the JSM-2 model considered in [130].
cross-spectra between all measurements and then the powiferent CR sensing receivers acquire the same wide-band
spectrum of the received signals is estimated by explottieg signal from the licensed system at different SNRs and the
wide sense stationary property of the PU signals. Furthe#moautocorrelation vectors of the compressed signal from Re C
authors in [68] propose an adaptive sequential CS approag collected at the FC. Subsequently, the distributed JSM-
to recover spectrum holes and further propose severalfusi model has been used to obtain an estimate of the signal
techniques to apply the proposed approach in a collaberatdpectrum. Similarly, the correlation between the measargsn
manner. of different CRs may be utilized by using a Kronecker
2) Distributed: Distributed CS (DCS) is considered agproduct matrix as a basis, called Kronecker sparsifyingsbas
powerful technique of distributed signal processing in ynari67]. This basis helps to exploit the two dimensional sparse
applications such as sensor networks due to its capabildiyucture in the measured spectrum using the collaborative
of simultaneous sensing and compression [66]. The theaneasurements taken by several spatially separated CRgsIn t
of DCS relies on the concept of the joint sparsity of aontext, authors in [67] proposednaodified JSM-2 (JSM2M)
signal ensemble and it exploits both intra- and inter-dignmodel which relaxes the assumptions of the the original JSM-
correlation structures [130]. In a typical DCS approach, B and JSM-2 models and generates signals which have a
number of sensors measure signals (of any dimension) whimmon sparse support in the frequency domain with difteren
are each individually sparse in some basis and also may @maplitudes plus innovations due to the hidden PU problem.



In [124], two cooperative distributed wideband SS ap- from the low-rate samples. The main advantage of this
proaches for a CR network are proposed utilizing the CS approach is that it bypasses the need for a high-rate ADC,
technique. The first approach jointly estimates the spectru  thus allowing the use of robust, low-power and readily
of the PUs based on the compressive measurements obtained available components. However, this benefit comes at the
by the individual CRs where CSI is assumed to be available. cost of highly non-linear reconstruction process, i.ee, th
In the second method, each CR user individually recovers the need of additional digital processing.
spectrum of the received faded signal without the avaitgbil « Modulated Wideband Converter (MWC): In 2010,
of CSI and makes a local decision on the frequency occupancy Mishali et al. proposed an architecture, called MWC,
of the PU signal based on this spectrum estimate. Subse- which generally comprises of a bank of modulators
quently, all CR users collaboratively make a global decisio  and low-pass filters. This architecture first multiplies the
on the frequency occupancy by using a consensus algorithm analog signal by a periodic waveform, whose period cor-
based on single-hop communication. Recently, authors in responds to the multiband model parameters. A square-
[83] have proposed an Multiple-Sensing-Matrices-FOCUSS wave alternating at the Nyquist rate is one choice; other
(MSM-FOCUSS) algorithm for distributed CS and wideband periodic waveforms are also possible. Subsequently, the
DoA estimation. product is lowpass filtered and sampled uniformly at
a low rate. The goal of the modulator is to alias the
spectrum into baseband. The most distinguishing charac-
teristic of the MWC from that of the RD is that the RD

Several hardware architectures have been proposed and has sampling functions that have finite temporal extent
implemented in the test-bed environments enabling the com- pyt infinite spectral support while the MWC employs
pressive samples to be acquired in practical settings. 38me  sampling functions that have finite spectral support but

C. Hardware Architectures

the widely discussed architectures are briefly describéahbe infinite temporal support [138].

In Table Ill, we provide their advantages, disadvantages an , Compressive Multiplexer (CMUX): This method does

the related references. not require the calibration of an analog low-pass filter
o Random Filtering: In this method, first, a or integrator as required in the random modulator and

sparse/compressible signal is captured by convolving MWCs. Furthermore, the basic calibration in this method
it with a random-tap Finite Impulse Response (FIR) can be simply achieved with the knowledge of a few
filter, and then the filtered signal is downsampled to resistor values and unlike other parallel structures, it
obtain a compressed signal. The random taps of the requires only one ADC rather than one per channel
filter can be generated using (i) thé(0, 1) distribution [53]. It can be considered to be analogous to coded
or (ii) the Bernoulli/Rademacher distribution ¢f-1}s. digital communications schemes such as Code Division
This method is generic to summarize many types of Multiple Access (CDMA). Instead of coding the signal
compressible signals and can be applied to streaming as with orthogonal codes and transmitting into the same
well as continuous-time signals but the number of taps channel, the CMUX effectively codes each channel with
must be known in order to recover the signal from the a near orthogonal code and then combines the coded
compressed data [50]. channels together following the approach proposed in
o Random Convolution: In this method, the measurement  [53]. Recently, authors in [54] have proposed a CMUX
process consists of convolving the signal of interest architecture for the acquisition of the ensembles of cor-
with a random pulse followed by random subsampling related signals by exploiting the correlation structure of
[131]. This procedure is random enough to be universally the signal ensemble even though it is unknown a priori.
incoherent with any fixed representation system, but
structured enough to allow fast computations with the
help of F_ast Fourier Transf(_)rm (FFT) operations. Randopy Comparison of CS and non-CS Detectors
convolution has the following two advantages compared
to the completely random strategies: (i) available implici  Spectrum sensing in a CR involves deciding whether the
algorithms based on the FFT, and (ii) many physic&U is present or not from the observed signals. Thus, spactru
systems take observations of a known (and controllablegnsing can be formulated as a binary hypothesis testing

pulse with an unknown signal i.e., radar imaging. problem in the following way

« Random Demodulator (RD) In this method, a sig-
nal is demodulated by multiplying it with a high-rate | w(n) Ho, 13
pseudonoise sequence, which smears the tones across y(n) = s(n) +w(n) Hai, (13)

the entire spectrum [59]. Subsequently, a low-pass anti-

aliasing filter is applied and the signal is captured by samterey(n) denotes the received signal at the CR device at the
pling it at a relatively low rate. The demodulation processth sampling instances(n) denotes the primary signal and
ensures that each tone has a distinct signature within the:) is the Additive White Gaussian Noise (AWGN). The CR
passband of the filter. Since there are only a few toneser has to decide if the primary signal is presét)(or not
present in many applications such as in CR network&{,) from the observationg(n) collected over the sensing

it is possible to identify the tones and their amplitudeduration.



TABLE Il
ADVANTAGES AND DISADVANTAGES OF THE EXISTING COMPRESSIVE ARHITECTURES

Name and References Advantages Disadvantages
Random Filtering (RF) Applicable to many types of compressible signals Number of filter taps must be known
[50], [51] Measurement operator can be stored and applied efficigntNonlinear reconstruction algorithm
Easy implementation
Random Convolution (RC) Available implicit algorithms based on the FFT Not applicable for all sparse/compressible signals
[131], [132] Utilization of the known pulse in many physical systems| The pulse structure may not be known
Random Demodulator (RD) No need for a high-rate ADC Slow reconstruction process and high sampling delay
[59], [60], [62] Robust against noise and quantization errors Only suitable for signals having a finite set of pure sinusoid
Modulated Wideband Converter (MWC)) Suitable for analog multiband signals Requires ideal low pass filters for reconstruction
[61], [63] Parameter choice is insensitive to the exact bandwidth | Imperfections of non-ideal lowpass filters
Flexible control of sampling rate at each channel Limited number of bands and bandwidth
Fast reconstruction process and low sampling delay
Compressive Multiplexer (CMUX) It requires only one ADC rather than one per channel Undersampling factor is more restricted
[53], [54] Flexibility to increase the total bandwidth Inherent non-idealities in the RF tuner
Simpler calibration

In compressive settings, the above detection problem can energy detector is its inability to discriminate between

be written in the following way sources of received energy (the primary signal and noise)
B 2 making it su;ceptible to uncertainties in background noise
y = { B(s 1 w) 7—[07 (14) power, specially at a low SNR. _

b » Feature-based Detectionlf some features of the primary
wherey is ax x 1 compressive-sampled received sigrblis signal such as its carrier frequency or modulation type
a x x L compressive matrixs is anL x 1 PU signal vector, are known a priori, more sophisticated feature detectors
andw denotes the, x 1 AWGN vector. If we already know may be employed to carry out spectrum sensing at the
the value ofs during the design of®, the optimal strategy cost of increased complexity. Cyclostationary detection
is to choose the value ob as ® = s’ . However, since [57] and correlation matching detection [116]-[118] are
this knowledge is difficult to obtain in practice for the case particularly appealing because of their ability to dis-
of CR applications, the value b should be universal and tinguish the primary signal from the interference and
is considered to be a random matrix in most of the existing noise. They can work in a very low SNR region due
literature [42]. to their noise rejection capability but sometimes they are

With regard to the detection problem (13), there exist computationally complex and requires significantly long
several CR techniques in the literature. The main SS tech- observation time.
niques are matched filter based detection, Energy Detection Next, we present some numerical results about the perfor-
(ED), feature-based detection, autocorrelation basezttien, mance of the aforementioned three types of SS techniques. To
covariance based detection, eigenvalue based detection, galyze the performance in compressive settings, we cansid
[16], [22], [55]. Corresponding to the hypothesis testimglp a multi-coset sampling (periodic non-uniform sampler) in
lem in compressive settings represented in (14), a genefdlich the total number of received samples is divided into
framework for signal processing of compressed measurameiibcks, and the same compressive mafixs applied to each
for detection and estimation without reconstructing thginal  plock. Figure 5 depicts the probability of detectid,) versus
signal has been detailed in [42]. A much more involvedNR results for a primary signal in AWGN considering a fixed
analysis for the estimation setting was presented in [SBEr& probability of false alarmP; = 10~3. From the figure, it can
the behavior of the achievable estimation performance én the noted that the matched filter outperforms the simple gnerg
sparse setting has been analyzed. Out of the aforementiofgekctor since it is able to reliably detect low-power priyna
SS techniques, in this paper, we analyze the performancesgnals. The value o in Fig. 5 indicates the compression
the following detectors in compressive and non-compressisatio, i.e., the ratio of the number of rows to the number of
settings. columns in®, defined in Section I, and the valye = 1
« Matched Filter Detection: The matched filter is an represents the Nyquist rate sampling, i.e., the conveaition
optimal detector in the presence of stationary Gaussiann-CS approach. As the value pfdecreases, i.e., we use
noise since it maximizes the received SNR. However, linore compression, the detection performance of both madtche
requires a priori knowledge of the primary signal andlter and the energy detector with respect to SNR decreases a
the performance may degrade if this information is natepicted in Fig. 5. This means that there exists a clear trade
accurate. In practice, most wireless systems have pilotdf between the detection performance and the sampling rate
preambles, synchronization words or spreading codes tif@it both matched filter and the energy detector.
can be used for the coherent detection. In addition, we provide the performance comparison of
o Energy Detection The energy detector is the mostorrelation matching detectors (which falls under the cate
common way of spectrum sensing because of its logory of feature-based detection [117]) in CS and non-CS
complexity (computational and implementation) [56]. Isettings in Fig. 6. The scenario considers a desired Binary
can be considered as a semiblind technique since it ofthase Shift Keying (BPSK) signal witiNR = 10dB at
requires the knowledge of the noise variance and doém normalized frequency @f.2 and a pure-tone interference
not rely on any signal feature. The main drawback of theith SNR = 10dB located at the normalized frequency of
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Fig. 5. Probability of detection versus SNR of the energy detector and
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0.7. Figure 6(a) uses the Euclidean metric (Frobenius norm)
which works as a conventional energy detector, and it can be
noted that this approach does not provide a good performance
in discriminating interference from the desired signal. On
the other hand, the result in Fig. 6(b) uses the minimum
eigenvalue technique presented in [117], [118] and thisotet ST el 02 o3 o4 o5 o6 o7 o8 os 1

is able to distinguish the desired signal from the interfeee Normalized Frequency

effectively. Furthermore, the presented results in Fi¢g) &nd (b)

6(b) show the degradation of the correlation matching-thase

WSS techniques in terms of the capability of distinguishingg. 6. Performance of CS-based correlation-matching wideband

the desired signal from the interference with the decreasedetector [117], [118]. In the considered scenario, there is a desired

the compression ratip = 1, i.e., with more Compression.BPSK signal withSNR = 10dB at the normalized frequency of
' ' 0.2 and there is a pure-tone interference located at the normalized

However., n ,Flg' 6(b), it is interesting to note thaF the ,powef equency of0.7 and with SNR = 10dB. The parametep defines

level estimation does not suffer due to compression sinee tﬁ['\e compression rate/ratio with = 1 indicating the Nyquist rate

main peak is located at the true frequency with the leveleclosampling, i.e., no compression. (a) detector based on the traditional

to the SNR value ofl 0OdB. Euclidean metric (Frobenius norm), (b) detector based on the mini-
mum eigenvalue technique proposed in [117], [118].

IV. COMPRESSIVESIGNAL PARAMETER ESTIMATION

. . . . . f traditional legacy based systems (see [142] and referenc
As described in Section II-B, a CR may acquire d'ﬁerer}%ere in). SNR estimation is helpful for legacy based system

signal parameters such as SNR, channel, sparsity order, fiCorder to implement adaptive techniques such as handoff

for enabling CR communications. In contrast to the moﬁﬁrqorithms, adaptive bit loading and optimal soft valuecaal

commonly used spectrum occupancy information required f ion for improving the performance of channel decoders. |
an mtgrweave CR, the parameters such as SNR, DOA’ c (ﬁ’dition to the aforementioned benefits, estimation of anim
etc. will allow 'the CR 1o |mpl'ement underlay 'CR.techmquegNR is useful for CR-based systems in order to implement
such as cognitive beamforming [139], cognitive mterfaa:len(ﬁroper underlay transmission strategies [89].

alignment [140], Exclusion Zone (EZ), and power contr Existing SNR estimation literature mostly focus on nar-

[141]. Due to the practical constraints in the acquisition N o
hardware, the CS-based approach can be utilized to estin{ézgvtr\a:b‘?)?CICCS:R d?éssterr::)st [Sr?\,/icgé%r‘r]wgr? Sg)evr\:zgtre ;Z?NS\E)epr“Ci?w
these parameters compressively, leading to the savingein T T P . . !

hardware resources [34]. In the following, we describe Hperacnce, it is highly desirable to estimate the primary SNR

" - ! o . over the wideband spectrum in order to utilize the available
existing contributions which utilized the CS approach idesr - . . :
. spectrum opportunities effectively. In this context, authin
to acquire these parameters.

[90] recently studied an eigenvalue-based compressive SNR

) o estimation problem for a wideband cognitive receiver zitily

A. Compressive SNR Estimation the CS approach. The following two correlated scenariog hav
In the existing literature, various data-aided and non-dataeen studied considering the equal received power acrbss al

aided SNR estimators have been investigated in the contthe carriers: (i) correlated noise, and (ii) correlated fiple
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Fig. 7. Normalized Mean Square Error (MSE) versus Signal to Noise
Ratio (SNR) for the correlated noise scenario (sparsity arder0.6,
correlation coefficientt = 0.6, N = 100) [90]. In the figure,p
denotes the compression ratio.

Fig. 8. Normalized Sparsity Order Estimation Error (SOEE) versus
sparsity order with compressive and full measurements for the \aryin
power scenario (Dynamic Ran@iR = 6.02dB, N=100, mean power

= 7.78 dBW) [91]. In the figure,p = 0.8 denotes the 20 %
Measurement Vectors (MMVs). In practice, the correlategbmpression, i.e., 20 % less measurements and the full measurement
noise case may arise due to filtering and oversampling amse indicates the Nyquist rate sampling, ices 1.

erations. Similarly, the correlated MMV case may arise due
to channel correlation or imperfections in frequency dalec
filters present at the CR node. context, authors in [91] have recently studied an eigemvalu
Figure 7 depicts the normalized Mean Square Error (MSlBased compressive sparsity order estimation techniquey usi
versus SNR for the correlated noise scenario for both thgymptotic random matrix theory. The detailed theoretical
compressive and full measurement cases assuming casrelatinalysis for the signal plus noise case has been carried out
knowledge at the CR receiver [90], [146]. It can be deduced derive the asymptotic eigenvalue probability distribot
from the figure that the compressive case with the compnessfanction (aepdf) of the measured signals covariance matrix
ratio p = 0.8 has to sacrifice almogi.3 % estimation error for sparse signals. Subsequently, the sparsity order of the
in comparison to the full measurement cas&ldR = 1 dB. wideband spectrum has been estimated based on the derived
Furthermore, this estimation error increases with theetess aepdf expressions utilizing the maximum eigenvalue of the
in the value ofp, i.e., increase in the compression. On theeasured signal’s covariance matrix.
other hand,.the _advantage is th@l — p) = 100) % saving ~In [91], the following three different scenarios have been
can be obtained in terms of hardwgre resources in comparigQsidered: (i) constant received power, (i) varying reee
to the full measurement case. Various results on compeessier, and (i) correlated scenario with the correlated WM
SNR estimation for the correlated noise and correlated MMyhe first scenario assumes equal received power acrosall th
cases can be found in [90]. carriers and uncorrelated non-zero entries across the MMVs
The second scenario allows the received power levels to vary
B. Compressive Sparsity Order Estimation across all the carriers vary but with a known distributiorilerh
For a wideband CR, sparsity order is another useful pdle third scenario considers the correlated scenario irctwhi
rameter to be acquired and it basically provides infornmatigh® non-zero entries across the MMVs are correlated.
about what percentage of the licensed band is availablénéort  Figure 8 presents the comparison of the normalized Spar-
secondary usage. This awareness is helpful in implementisity Order Estimation Error (SOEE) versus sparsity order
CS-based wideband sensing. Since this is a time varyifay full and compressive measurement cases with parameters
parameter and is not known to the CR receiver as a priocpnsidering varying received power, which is modeled using
it needs to be estimated in practice. If the information @abomodified semicircular distribution [91], [146]. From thelig,
the sparsity order is available to the wideband CR transeceivit can be noted that sparsity order up(té can be estimated
it can dynamically adapt its sampling rate in order to fullyvith less thar2.9 % estimation error for the compressive case
exploit the advantages of the CS technique. In this contefith p = 0.8) and with less thar2.5 % estimation error for
estimating the sparsity order is crucial and has been studibe full measurement case. Furthermore, it can be concluded
in some existing contributions [91], [127], [147]. that there exists a tradeoff between estimation perforemanc
Like in other parameter estimation problem, estimatin@xpressed in terms of sparsity order estimation error) and
sparsity order over a wideband requires high sampling ratee hardware cost (number of measurements). Based on the
hence demanding the increased cost in the ADC hardwapeesented results in Fig. 8, at the costOof % estimation
In this context, it is advantageous to estimate sparsity @tror,20 % hardware resources can be saved siic@b less
der compressively by exploiting some sparsity basis. Is thineasurements are utilized.



C. Compressive DoA Estimation ambiguity resulting from spatial aliasing.

The DoA information is useful for CR networks or CR
based sensor networks for various objectives such as adapD. Compressive Channel Estimation
beamforming, and active PU localization. For the DoA estima
tion problem, CS has been widely used in the literature [84§5R

[86]. Authors in [84] have studied a two dimensional (2Dj0terence caused by the STs while employing underlay

bearing estimation of multiple acoustic sources with a set er techniques. Further, the channel information of theslink

sensors using a wireless channel under bandwidth constrajfl,. veen STs and secondary receivers is important in order

and thell-norm minimization was applied considering the guarantee the Quality of Service (QoS) of the secondary
target bearings as a sparse vector. link. Since there is no cooperation between PUs and SUs
_ Furthermore, a CS-based architecture has been preseftefactice, the estimation of crosslink channels is thenmai
in [85] for array based applications by exploiting the CShe t ¢halenge. Moreover, the knowledge of primary channelstat
spatial domain. The main idea behind this architectureat thj.q can be very helpful in making opportunistic spectrum
allarge size array can pe transformed into a small size argy.ass decisions for a CR [74]. In addition, the knowledge
with the random selections of the array elements. Moreovgg ihe Csj information is essential for implementing adwehc
the contrlbu_tlon in [86] focuses on parameter estimatiangus precoding and beamforming algorithms at the CR transrsitter
a random linear array and the CS technology. The concéfferefore, the estimation of the channel statistics efittje
behind the proposed approach in [86] is that a random linegfy accurately is an important issue in CR networks as in
array removes the limitation of a uniform array, and whepgacy wireless networks. However, the conventional cahnn
combined with the CS reduces the burden in the design of t8&;mation methods may lead to large pilot overheads and the
array. issue of pilot contamination in large CR networks. In this

A number of joint sparse representation methods specifigntext, CS plays an important role to reduce the estimation

[87], [88], [148]. Some important of these are briefly desed \yorks including the CR networks [4].

below. The wireless channel can often be modeled as a sparse

1) [;-Singular Value Decomposition (;-SVD) recon- channel in which the delay spread could be very large, but the
struction: This method combines the SVD step of th@umber of significant paths is normally very small. The prior
subspace algorithms with a sparse recovery methikdowledge of the channel sparseness can be effectively used
based onl/;-norm minimization [148]. This algorithm to improve the channel estimation using the CS theory. The
can handle closely spaced correlated sources if the nupemmon assumption used in the application of CS for channel
ber of sources is known. However, it suffers from somestimation application is that a sparse multipath charesds
performance degradation when the number of sourced@sa baseband channel model in which most of the channel taps
unknown [88]. are negligible [4]. The sparsity of the time domain chanrel c

2) Joint I, Approximation DOA (JLZA-DOA) method : be exploited by choosing the pilots randomly. In this way, a
In this method, the snapshots of the measuremem@ndom compressive measurement matrix can be constructed,
are represented as some jointly sparse linear combience conserving the available bandwidth [75].
nations of the columns of an array manifold matrix In order to efficiently utilize the available spectral opiper
and subsequently the problem is solved by using rdties in an underlay CR network either by means of resource
mixed approximation approach, which is a member @fllocation or interference mitigation, a secondary traittem
the smoothed, (SLO) approximation methodology [88]. should have the channel state information of multiple PU
These SLO algorithms approximate thenorm using a channels over a wide frequency band towards multiple pgmar
class of Gaussian functions. This algorithm can resolveceivers. In this context, CS can be helpful in reducingethie
the closely spaced and highly correlated sources usitigation overhead as in other wireless networks. Furthegmo
a small number of noisy snapshots, and does not neadcontrast to sparse channel estimation techniques inrgene
the prior knowledge about the number of sources.  wireless communication channels, the pilot design in a CR

3) Aliasing free Sparse Signal Representation (SSR) network can be based on the output of spectrum sensing [76].
recovery method This method is based on the theFor example, in Orthogonal Frequency Division Multiplexin
SSR-based approach which constructs steering matri¢€s=DM)-based CR systems, after spectrum sensing is carried
corresponding to different frequency components of thaut, the OFDM subcarriers occupied by the PUs can be deac-
target signal [87]. The main drawback of SSR basdtvated first, and then among the remaining active subcarrie
approach is that this method is subject to ambiguityome subcarriers can be assigned for pilot transmission and
resulting from not only spatial aliasing as in classicghe others to transmit data symbols for the SUs.
beamforming but also from the over-completeness of In the CR literature, a few works exist in the areas of
the dictionary. To overcome this issue, the aliasing fremparse channel estimation using the CS approach [76]-[78].
SSR recovery method utilized MMVs to alleviate théfThe CS-based pilot design for sparse channel estimation in
ambiguity resulting from an over-complete dictionaryDFDM-based CR networks may help in improving the data
and further uses multiple dictionaries to remove theate and the flexibility of SUs. In this regard, authors in][76

In CR networks, the knowledge of the CSI towards the
s is crucial in order to protect the PUs from the harmful



studied the pilot design problem for sparse channel estimat
in OFDM-based CR systems. It has been shown that the 2°}
proposed spectrum sensing based sparse channel estimatic 25}
can achievell.5 % improvement in spectrum efficiency 2al
while maintaining the same performance as the traditional
least square channel estimation. In the context of digiibu
resource allocation problem for a CR, authors in [77] have % 221§
developed a CS based estimation algorithm in order to aequir =
the channel and interference parameters needed for resourc ,
allocation. Furthermore, authors in [78] proposed a sparsi 27
adaptive matching pursuit algorithm for channel estinmatio
in Non Continuous OFDM (NC-OFDM) systems. However,
the disadvantage of this sparsity adaptive matching pursui  1sf
algorithm is that it requires quite large reconstructiometi
To address this issue, authors in [78] further modified the
proposed algorithm as an adaptive matching algorithm apg o comparison of the CS-based channel estimation techniques in
have shown that the modified adaptive matching algorithf®1i] and [82] in terms of RMSE of the reconstructed channel versus
improves the computing speed and the reconstruction ancur&NR.
as compared to those of the sparsity adaptive matching ipursu
algorithm. Figure 9 depicts the Root Mean Square Error (RMSE) of
The compressive channel estimation has also receiVé§ recovered signal for both models ( [81] and [82]). It can
important attention in the area of Ultra-Wideband (UwB}e observed that when the compression pais high, both
technology, which can be considered as an implementatiBfrform equally well but, as the compression rate decreases
technology for the underlay CR. Due to very low Power Spe#e error obtained with [81] increases faster than the error
trum Density (PSD), this technology facilitates the cotsise ©OPtained with [82] as we move to lower SNR region.
of SUs with the PUs that operate within the UWB'’s wide
spectrum band, i.e., 3.1 to 10.6 GHz [79]. The transmissionV. COMPRESSIVERADIO ENVIRONMENT MAP (REM)
of ultrashort pulses in UWB technology leads to several CONSTRUCTION

desirable characteristics such as the rich multipath slityer In this section, first, we highlight the importance of the
introduced by a large number of propagation paths existing kagio Environment Map (REM) construction utilizing the
a UWB channel. The rich multipath coupled with the fing:g approach, i.e., compressive REM construction, for the
time resolution of the UWB creates a challenging channghsiementation of CR networks. Subsequently, we review the
estimation problem. Fortunately, multipath wireless o8 ayisting related works in the context of compressive REM
tend to exhibit impulse responses dominated by a relativelynstruction highlighting the challenges in heterogeseen
small number of clusters of significant paths, especiallewh ironment. Then we propose a generalized framework for

operating at large bandwidths and signaling d“rationsm”déonstructing the REM in REM settings along with the main
with the numbers of antenna elements [80]. These chanrels @k ,es to be addressed.

often called as “sparse channels”. The conventional cHanne
estimation methods usually provide higher errors becawese t )
ignore the prior knowledge about the sparseness of theegisel A Importance in CR Networks
channel. The REM is an architectural concept for storing envi-
In the above context, the UWB sparse channel estim@nmental information for use in CR networks [149]. This
tion problem has been studied in [81] under a time domafacilitates the geolocation database-assisted CR conwauni
sparse model point of view. In particular, [81] defined #ons which is an alternative spectrum awareness mechanism
suitable dictionary formed by the delayed versions of thte obtain the knowledge of the RF environment. One way
UWB transmitted pulse in order to better match the UWBf constructing the REM is to use the spectrum cartography
signal. However, the spike basis achieves maximal incolvere method which is the process of plotting an attribute of the
with the Fourier basis and due to this reason, it seems m&E environment over a finite geographical area. Spectrum
convenient to work with frequency domain measurementsartography has important applications in network plagnhin
That approach was followed in [82], where the use of CS wasaintenance and optimization, and has been widely used by
examined for the estimation of highly sparse channel by meahe cellular network designers. In CR applications, spectr
of a new sparse channel estimation approach based on ¢heography can be used as a powerful tool to determine the
frequency domain model of the UWB signal. By constructingresence and the range of active PU transmitters [96], [99].
a dictionary that closely matches the received signal €eith  For the effective implementation of CR networks, an REM
in the time or frequency domain), the signal contributionsan be extremely useful for the proper selection of the SU
from the strongest paths of the UWB multipath channel can bhannel and the transmit parameter. The accurate seletftion
recovered from the set of random projections of the receivéltese parameters must be made considering the requirements
pilot signals. of PU interference control and the QoS of the secondary




link, of which the first requirement is the more crucial. This Measurement Sparsity basis Threshold

matrix matrix

interference control can only be guaranteed only if the PU @ ¥ 2
locations and the received powers levels from other PUs are l l l
known by the SUs. Therefore, the locations of the transmitteCompressive oy — Eeimated
and their transmit power levels need to be accurately etgna wssmesurements| -, recovery post- positions
in order to construct an REM. Subsequently, the map of the processing senas processing

BPDN, etc.

received power level throughout a two dimensional area can

giv\féf?;\e/glsumlzmg the estimated locations and the transrIT:]ig. 10. The flow chart of CS-based multiple target localization

. L . approach [92]
In practice, it is highly desirable to construct the REM over

a wide coverage area and over a wide spectrum band. However,
this requires a large number of sensors and a high overhéaiets/transmitters utilizing the CS theory. The mudtifsirget
on parameter acquisition and recovery while applying tHecalization problem has been formulated as a sparse matrix
conventional non-CS based approaches. In this context, the discrete spatial domain and an RSS-based algorithm has
following two practical aspects motivate the use of the CS Rgen used to find the location of targets. The flow chart of
REM construction problems. the CS-based multiple target localization approach stldie

1) As mentioned earlier, there is a small number of actild2] i depicted in Fig. 10 and the involved steps are briefly

carriers compared to the total number of carriers us§fmmarized in the following paragraph. .
in the legacy systems, thus creating #prsity in the The M x K input matrix Y in Fig. 10 consists of
frequency domain compressive noisy RSS measurements takenkbyargets

2) There is a small number of active primary transmitte/d M arbitrary reference points. For the considered target

compared to the total number of distributed sensors, thi§salization problem in [92], the sparsity bas& and the
creating thesparsity in the spatial domain measurement matri$e are coherent in the spatial domain and

By utilizing the above sparsity bases, system designers c%ﬁ theory can not be d|re_ctl)_/ applled. In this context, one ap
oach to apply the CS principle is to carry out pre-processi

k f th hod i i he R . . .
take advantage of the CS method in constructing the operation on the measured matf®, which results in the

over a wideband area and a wideband spectrum band. . . )
same effect as in orthogonalizing two matrices. After pre-
processing, the original sparse coefficients can be reedver

B. Related Literature from the compressive noisy measurements using suitable

There exist several spectrum cartography works in tteinimization algorithms such as BP, Basis Pursuit Dengisin
literature [150]-[152], which do not exploit the sparsitf o(BPDN), etc. Then, post-processing operation is required i
the active PUs in space and frequency domains. In mostastler to compensate for the grid assumption error since the
these works, spatial interpolation, which is commonly usdérgets may not be exactly located at these grid points.Hsr t
in Geographic Information Systems (GIS), has been usedplirpose, the dominant coefficients, whose values are above a
refers to any system manipulating geographical referedatal certain threshold\, can be found and then the centroid of
for capture, storage, analysis and management purposes. these grid points, which acts as the location indicator, lwan
main spatial interpolation techniques are the Inverseabist calculated as illustrated in [92].
Weighting (IDW), the Nearest Neighbor Interpolation, Spin Besides the application of CS in spectrum cartography
and Kriging [153]. and target counting/localization, CS is relevant whentarga

Determining the location and power level of the activéhterference maps in various wireless networks such as IEEE
PTs considering the sparsity feature of the primary agtiviB02.22 Wireless Regional Area Networks (WRAN), which
significantly helps in constructing an REM. In this regards the first CR-based wireless standard. In a typical cellula
several researchers have exploited this sparsity in vasetr network like WRAN, user terminals have to communicate via
tings [92], [96], [97], [154]. One of the widely used CS-bdsethe base station and they cannot communicate with each other
REM construction method relies on a location fingerprintindirectly. To address this drawback and to take advantage of
approach [92], [96], [97]. In this approach, PUs and SUsoth centralized control and the sharing of spectrum among
are assumed to be located in a random subset of the guiger terminals, Peer to Peer WRAN (P2PWRAN), which re-
points within a certain discretized geographic area. Th& R§uires the information regarding potential interferenoeng
from the target PUs is measured by each SU and this setflofvs, i.e., interference map, has been proposed in [93]. The
measurements is used to recover the PU locations and triansincuracy of this interference map affects the channel ailoc
power levels. In many cases, the sparsity is exploited aisgumas well as the network performance.
that the number of active PUs is much smaller than the number In the above context, authors in [94] have proposed self-
of grid points. adapting interference mapping protocol in order to copéa wit

In a sparse target localization problem, the main objectitiee unexpected events in P2PWRAN networks without consid-
is to determine the locations of the targets, i.e., acti@edmit- ering CS aspects. In practice, it's not realistic to captine
ters, simultaneously using a relatively small number ofpoi global information about the spectrum usage in its surrognd
Received Signal Strength (RSS) measurements. In thisxdpntenvironment using a single CR transmitter. The problem of
authors in [92] present a framework for localizing multipleeconstructing the spectrum map using incomplete infdonat



becomes interesting since a CR transmitter can acquire otdyaccount for different radio types, propagation envirents,

the local data from a limited number of cooperative nodeand sensor densities as well as sparse receiver measusement
Due to ability of the CS technique to sample and compreBsirther, the system must be scaled based on the number of
simultaneously, it can serve the requirement of fast sgnisin users that must be supported [98].

a CR. Furthermore, a spectrum map facilitates the defindfon  In a practical heterogeneous environment which may con-
the QoS constraint based on Signal to Interference pluseNoisst of heterogeneous sensor devices, there exist thevintio
Ratio (SINR), thus enabling the simultaneous operatioef tchallenges for creating a reliable dynamic spectrum mappin
routing and cooperative spectrum sensing [95]. Subselyuensystem [98].

it is applicable in creating interference maps with the heflp
CR sensors. In contrast to the statistical power spectraitje
map creation for spatial frequency reuse in [154], authors
in [95] have proposed aggregated interference-based-deter
ministic power-level maps for routing using significantgs$
measurements compared with the traditional non-CS methods

Furthermore, authors in [154] proposed a Least Absolute®
Shrinkage and Selection Operator (LASSO) based distidbute
algorithm which exploits sparsity to construct PU Power
Spectral Density (PSD) and to reveal the unknown positiéns o
the active PUs. The following two forms of sparsity are used
in [154]: (i) the sparsity introduced by the narrow-bandunat
of transmit-PSDs relative to the broad range of the usable
spectrum, and (ii) the sparsity emerging from sparselytéata
active radios in the operational space. It has been denadedtr
that exploiting sparsity in the distributed CR sensing oegu
spatial and frequency spectrum leakagel1bydB relative to
the least square alternatives.

In the similar context, authors in [96] propose an OMP
algorithm-based technique [155] considering the carjgnya
process as a CS problem. The proposed Orthogonal Matching
Pursuit Spatial Extension (OMPSE) algorithm exploits the
spatial correlation between two nearby reference points in
a neighbourhood and provides better performance over the
traditional OMP technique. Additionally, the authors iro]9  In the context of heterogeneous environment, authors in
investigated the performance of CS-based cartographyepsod98] have studied a method, called PRISM (Precise Radio-
in a fading environment where real time channel estimatidtropagation Interpolation from Sparse Measurements)s Thi
may not be available. The well-known iteratively reweightemethod takes the sparse spatial measurements and uses spars
I, minimization approach has been extended by exploitiggnal reconstruction techniques in order to determine the
spatial correlation between two points in space in order &mplest arrangement of virtual sources consistent with th
accommodate the lack of channel information. observations. Furthermore, Kanerva’'s sparse distribuorteih-

In practice, Wireless Sensor Networks (WSNs) can &y model has been used to address system scaling challenges
used to acquire the information about the surrounding rehich represents thév-dimensional binary vectors without
dio environment in order to construct an REM. In WSNgggard to the semantic interpretation of the data.
the following two problems can be addressed by the CS Moreover, target counting and localization are the key as-
approach [156]. First, there are a very limited number qfects in order to construct the REM using the sensor networks
active sensors, i.e., the active PU transmitters, compaied Although there exists much literature in the field of non-CS
the total number of sensors in the network. Moreover, thmsed target counting, only a few recent contributions have
number of events is much less compared to the number of faitussed on CS-based target counting and localization [97]
sources. Second, different events may happen simultalyeodi$56], [157], [159]-[164]. Among these contributions, B]5
and cause interference to detect them individually. As altes [157] have focussed on CS-based target counting, [97],][159
the received signals are superimposed all together, and have focussed on both target counting and localizationlzad
efficient algorithm is required to separate the superimgposeest have focussed CS-based localization. The contrifuiio
signals. [157] proposed a CS-based approach for sparse target sgunti

Besides, it's highly costly to deploy a WSN over a largand positioning in wireless sensor networks by employing a
geographical area solely for the purpose of constructimg thovel Greedy Matching pursuit (GMP) algorithm. Recently,
REM. To address this issue, the network operators can oppawthors in [158] studied the problem of target counting and
tunistically use the heterogeneous RF devices in the dksitecalization by exploiting the joint sparsity feature of iV
area that are deployed for functions other than spectrunodel and demonstrated that the performance of the proposed
mapping. In this context, the spectrum cartography systesn MMV approach is superior than that of the conventional gngl

» Dedicated resources may not be available for the sensing
tasks and we may need to rely on the opportunistic use
of the devices deployed for other purposes. Besides, due
to several structural, operational, and economic prdctica
constraints, we have to rely on the sparse measurements.
The spectrum awareness has to be carried out over a
wide frequency band that may be heavily occupied with
a large number of heterogeneous sources/PU transmitter
types. Although current methods utilize multiple, identi-
cal, broadband, high performance spectrum analyzers in
the vicinity of the sensors, this solution is neither cost-
effective nor easily scalable.

o The WSNs deployed for the purpose of gathering the RF
information should operate in a dynamic RF environment
with diverse propagation constrained network infrastruc-
ture with the minimal impact on the main objective of the
sensors. Further, as the number of devices and the rate of
data collection increase, scalable solutions are needed to
store, process, retrieve, and disseminate the information
The sensor network may consist of heterogeneous RF
devices over a large geographical area. The coordination
between these heterogeneous devices is highly desirable
from the practical perspective.



measurement vector method in terms of target counting asuch asC can be applied in such a way that the received
localization accuracies. sample vectov becomes
, : v = Cw. 17
C. Framework for Compressive REM Construction and Re-
lated Issues Based on the above formulation, we highlight the main

As stated earlier, the main objectives of compressive REgSUeS to be considered for future investigation below.
construction over a wideband coverage area are o How to estimate the parameters without completely re-
« To recover the active carriers within the area of interest ~ constructing the signal and with lower complexity?
« To create an REM for each active carrier based one How to designB in order to satisfy the incoherency with
compressive measurements A and the RIP property?

Thus constructed REM can be used to implement carriers How to designC which is practically implementable?
assignment and power control for secondary devices of thet Aré multiple sample vectors helpful to improve perfor-
CR networks. mance in the above setting?

Let us consider a grid of. sensors spanning a coverage
area of interest. Within the same area, there is usually anVIl. CHALLENGES AND FUTURE RECOMMENDATIONS
unknown small number of active Txs, i.elf << L. In
general, the following parameters have to be recovered
reconstruct the REM: (i) number of active T%S, (ii) position
of Txs, and (iii) radiated power for each Tx. The Txs are
assumed to be collocated with one of the sensors. If this Alleviating Existing Assumptions

is not the case, appropriate interpolation techniques @n b, Requirement of Channel Occupancy KnowledgeIn
employed. In a centralized setting, the sensors measure the most of the contributions using the CS approach, it is
received energy over a number of samples and relay these assumed that the sparsity of a signal to be acquired is
measurements to the FC. The reporting links from the sensors known. However, in the context of CR networks, the prior
to the FC are usually bandwidth limited and need to be jnformation about the PU channel occupancy may not
utilized effectively. In this context, it can be assumedttha  peen known to the CR sensor. This creates a great barrier
the received measurements are relayed to the FC thr6ugh  to the practical usage of CS in CR scenarios. The possible
number of wireless collectors. Further, due to the limatati way forward for this would be to investigate suitable
in the backhaul link bandwidth, only> out of C' wireless sparsity order estimation method in order to estimate
collectors can be accessed simultaneously at each timdtslot  the sparsity order of the wideband spectrum accurately
can be assumed that this access pattern is randomly geherate [91]. Further, the sparsity order of the wideband signal
Let z;,7 = 1...L denote the locations of sensors, while  generally varies over the time and it may be difficult to
yi,i =1... K the locations of active transmitters apgdi = estimate it in practice due to the dynamicity of the pri-
1... K the transmit power of the PU Txs. In vectorial form, mary spectrum usage or the time-varying fading channels
we can define thé. x 1 vectorx and the spars& x 1 vector between CRs and the PUs [104]. Moreover, the required
s =y © p. To construct the compressive REM in the above  sampling rate changes proportionally with the sparsity
setting, the objective is to estimate the following paraereet order of the wideband signalherefore, it's an important
() the number of non-zero points (sparsity ordéf) (b) the research challenge to investigate adaptive sparsity order
positions of non-zero pointg;, and (i) the values of non-zero  estimation methods to capture the dynamicity of the
points p;. spectrum usage in time-varying wireless environments,
Assuming that the sensor locations are known through GPS gnd subsequently to choose an appropriate sampling rate
feedback, the following relation can be applied to be applied at the CS-based CR transceiver
x = As, (15) « Investigation of Suitable Sparsity Basis On the one
hand, most existing CS works in the context of CR com-
where A is a K x K channel matrix including the transmit, ~ munications assume the sparsity of the radio spectrum in
receive antenna gains and the path loss calculated based on the frequency domain due to its lower utilization. On the
distances between sensors. This can also be target energy other hand, the main objective of CR communications is
decay matrix as considered in [157]. Similarly, assumireg th to enhance the usage of the spectrum. In this regard, the
the locations of the collectors is known, the output at thevec consideration of sparsity in the frequency domain may
collectors can be expressed a®ax 1 vectorw, given by be relevant for the current scenario but the situation may
W — Bx — BAs + 2, (16) chqnge in the future due to th(? enha.nced. usage of the
radio spectrum [166]Therefore, it's crucial to investigate

In this section, we highlight the main challenges and
§ngest future recommendations to address them.

whereB is a D x K power law path loss matrix calculated

based on the distances between the collector and sensos, an

is additive white Gaussian noise vector. Since the selecifo
active collectors is random, the matiiX is also random with

positive elements. Finally, at the FC, arbitrary CS masice

suitable sparsity bases/domains in order to apply CS in
CR applications. One solution would be to exploit the
sparsity in different features of the primary signals such
as spectral correlation function which is sparse in both
cyclic and angular frequency domains.



« Basis Mismatch in Compressive Estimation/Detection

In many CS problems, the field/signal to be acquired
is assumed to be sparse in some basis. However, in
practice, the signal may not be sparse in any a priori
known basis, resulting in the basis mismatch [44]. In
this context,it is important to analyze the sensitivity
of CS to mismatch between the assumed and the actual
sparsity bases and to investigate suitable approaches to
reduce this mismatch. Moreover, developing robust CS
approaches with unknown basis is an important research

network infrastructure, scalability with the future senso
nodes etc. Furthermore, the issues mentioned in Section
V-C should be considered in the future research towards
implementing the compressive REM construction. In this
context, the application of CS for REM construction by
exploiting the sparsity in the frequency and spatial do-
mains can be considered as an interesting future research
problem

Furthermore, in the spectral coexistence scenario of-satel
lite and terrestrial networks [11], elevation angle pr@&d

an additional degree of freedom in enabling this coex-
istence [167]. However, the existing REM construction
methods do not take into account of the elevation angle.
In this context,it's an important future topic to explore

a suitable construction method for three dimensional
(3D) REM considering elevation angle as an additional
dimension

challenge.

o Evaluation under Realistic Signal Model In most
of the existing contributions, a random signal model is
considered in numerical experiments. However, it does
not provide an adequate description of real signals, whose
frequencies and phases significantly differ from that of
the random signal [59]. In this context, is crucial to
investigate the performance of CS algorithms for real

signals in the considered CR scenariéairthermore, in ¢ performance Limits under Practical Imperfections

most of the CR related CS research, finite-length and Most existing CS techni . del
discrete-time signals have been considered [104]. In this ost existing echniques assume system models con-

context,investigating low-complex solutions to implemeﬁ?m'nated with enhgr Guassian noise with the known vasanc
the CS-based signal processing techniques in the analBt the bounded noise. Furthermore, most CS-based works in

domain should be one of the focus areas in the futu % context of CR communications assume ideal operating

research conditions in terms of noise, channel and transceiver harelw

' components and there exist only a few works investigating

CS-based techniques in the presence of practical imperfec-

tions such as interference [168], and noise uncertaint9][16

o Design of a Practical Measurement Matrix Another However, in. practice, there may occur variqus imp.erfeciion
issue in designing practical CS-based receivers is §8Ch as noise uncertam_ty, channel unc_ertalnty, T‘O'S“"‘ma
investigate suitable practical sensing matrices. The Coﬁgrrelatlon, and transceiver hgrd\{vare imperfections _s_amh
pression of a non-sparse signal depends on the pro C errors (quantization and clipping errors), synchratian

grors, amplifier non-linearity, multicarrier distortiooalibra-

selection of the measurement matrix. Furthermore, t 1221 F le. th tralized viabol
costs for CS encoding and decoding significantly depen n etc [22]. For example, the centralized compressiviabe

on the type of measurement matrix [50]. The WeII—knowﬂratiVe approach (Fig. 4) studied in [64], [129] considelsal

family of CS matrices is a random projection or a matri;_'(eporting_channels, which i_s not the case in practice_. These
of i.i.d. random variables from a sub-Gaussian distribt'f-nperfecuonS may Ieaq o sgmﬁcant_performance deg.raﬂgt

tion such as Gaussian or Bernoulli since this family igf a CS—bgsed tgchnlques in practical .CR cqmmumcaﬂons.
universally incoherent with all other sparsifying basegherefore, it's an important future step to investigate pisac-

[165]. However, in practical applications, the unstruetlir tical gains that can be achieved with CS-based approaches
' ' in the presence of practical imperfections and to develop a

nature of random matrices make their realizations high| : Kt bat thei te effect in & CS
complex and the memory requirement also increas mmon framework to combat their aggregate efiect in a &.o-

In this context,it is an open challenge to investigate ased CR transceiver.
practical sensing matrices required for compressive de-
tection/estimation applications VII. CONCLUSIONS

o Compressive REM Construction in Heterogeneous CS has been well motivated for CR communications due to
Networks: REMs are useful for the implementation ofthe sparse nature of the radio spectrum occupancy in paactic
database-based cognitive communication over a witdreless systems. In this context, this paper has provided
coverage area and wide bandwidth. They can be ci@-comprehensive review on the applications of CS in CR
ated with the help of distributed sensor measurement@mmunications. Starting with the basic principles and the
However, due to the constraints on the sensor hardwamain aspects of the CS technique, this paper has identified
and energy, it is necessary to keep the number of sensarious application areas such as wideband SS, enviroament
measurements low. As highlighted in Section V, thernparameter estimation and REM construction based on the
exist several practical issues while constructing REMRF parameter to be acquired. Subsequently, dynamic range
with the help of compressive measurements. Some of taed sampling rate issues for wideband SS have been dis-
important issues are diverse propagation characteristicassed and the existing related works have been reviewed.
no or imperfect knowledge about the primary networkiurthermore, the existing works on compressive estimation
practical constraints on the sensor placement, constraire various parameters such as SNR, sparsity order, DoA and

B. Tackling Implementation Aspects



channel have been detailed in the context of a CR. Moreovep4]
the state of the art approaches on the compressive REM
construction have been discussed and a generalized fratews™
has been presented. Finally, some open issues which need4g
be considered in the future research have been identified.

[27]
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