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Abstract. The well-known equation of associativity for binary operations may
be naturally generalized to variadic operations. In this talk, we illustrate different
approaches that can be considered to study this extension of associativity, as well
as some of its generalizations and variants, including barycentric associativity
and preassociativity.

1 Introduction

Let X and Y be arbitrary nonempty sets. We regard tuples x in Xn as n-strings over
X . We let X∗ =

⋃
n>0X

n be the set of all strings over X , with the convention that
X0 = {ε}, where ε is called the empty string. We denote the elements of X∗ by bold
roman letters x, y, z. If we want to stress that such an element is a letter of X , we use
non-bold italic letters x, y, z, etc. The length of a string x is denoted by |x|. We endow
the set X∗ with the concatenation operation, for which ε is the neutral element, i.e.,
εx = xε = x (in other words, we consider X∗ as the free monoid generated by X).
Moreover, for every string x and every integer n > 0, the power xn stands for the string
obtained by concatenating n copies of x. In particular we have x0 = ε.

Let Y be a nonempty set. Recall that, for every integer n ≥ 0, a function F : Xn →
Y is said to be n-ary. Similarly, a function F : X∗ → Y is said to have an indefinite ar-
ity or to be variadic. A variadic function F : X∗ → Y is said to be a variadic operation
on X (or an operation for short) if ran(F ) ⊆ X ∪{ε}. It is standard if F (x) = F (ε) if
and only if x = ε, and ε-standard if ε ∈ Y and we have F (x) = ε if and only if x = ε.

The main functional properties for variadic functions that we present and investigate
in this talk are given in the following definition (see [2, 4, 6]).

Definition 1. A function F : X∗ → X∗ is said to be associative if, for every x,y, z ∈
X∗, we have

F (xyz) = F (xF (y)z).

It is said to be barycentrically associative (or B-associative) if, for every x,y, z ∈ X∗ ,
we have

F (xyz) = F (xF (y)|y|z).

A variadic functionF : X∗ → Y is said to be preassociative if, for every x,y,y′, z ∈
X∗ , we have

F (y) = F (y′) =⇒ F (xyz) = F (xy′z).



It is said to be barycentrically preassociative (or B-preassociative) if for every x,y,y′, z ∈
X∗ , we have

F (y) = F (y′)
|y| = |y′|

}
=⇒ F (xyz) = F (xy′z).

The following results show that preassociativity is a weaker form of associativity,
and that B-preassociativity is a weaker form of B-associativity.

Proposition 1 ([2]). A function F : X∗ → X∗ is associative if and only if it is preas-
sociative and satisfies F ◦ F = F .

Proposition 2 ([6]). A function F : X∗ → X∗ is B-associative if and only if it is B-
preassociative and satisfies F (x) = F (F (x)|x|) for all x ∈ X∗.

Throughout this note, we focus on the associativity and preassociativity properties,
leaving the discussion on the properties of B-associative and B-preassociative functions
to the oral presentation.

2 Factorization of preassociative functions

Recall that an equivalence relation θ on X∗ is called a congruence if it satisfies

(x1θy1 & x2θy2) =⇒ x1x2θy1y2.

The definition of preassociativity and B-preassociativity can be restated as follows. As
usual, for any function F : Z → Y , we denote by ker(F ) the equivalence relation
defined by ker(F ) = {(x, y) ∈ Z2 | F (x) = F (y)}.

Lemma 1. A variadic function F : X∗ → Y is preassociative if and only if ker(F ) is
a congruence on X∗.

If F : Z → Y and if g : Y → Y ′ is an injective function, then ker(F ) = ker(g ◦F ).
Hence, we have the following easy corollary.

Corollary 1 ([3, 4]). Let F : X∗ → Y be a variadic function. If F is preassociative
and g : ran(F )→ Y ′ is constant or one-to-one, then g ◦ F is preassociative.

In general, given a preassociative function F : X∗ → Y , characterizing the maps
g : Y → Y ′ such that g ◦ F is preassociative is a difficult task since it amounts to
characterizing the congruences above ker(F ) on X∗.

It is easily seen that the only one-to-one associative function F : X∗ → X∗ is the
identity. The next result shows that an associative function which is non-injective is in
some sense highly non-injective.

Proposition 3 ([2]). Let F : X∗ → X∗ be an associative function different from the
identity. Then there is an infinite sequence of associative functions (Fm : X∗ → X∗)m≥1
such that ker(id)  · · ·  ker(F 2)  ker(F 1) ⊆ ker(F ).

By carefully choosing g in Corollary 1 we can give the following characterization
of preassociative functions (see [2, 4, 6]).



Proposition 4 (Factorization of preassociative functions). Let F : X∗ → Y be a
function. The following conditions are equivalent.

(i) F is preassociative.
(ii) There exists an associative function H : X∗ → X∗ and a one-to-one function

f : ran(H)→ Y such that F = f ◦H .

For any variadic function F : X∗ → Y and any integer n ≥ 0, we denote by Fn the
n-ary part ofF , i.e., the restrictionF |Xn ofF to the setXn. We also letX+ = X∗\{ε}
and denote the restriction F |X+ of F to X+ by F+.

Corollary 2. Let F : X∗ → Y be a standard function. The following conditions are
equivalent.

(i) F is preassociative and satisfies ran(F1) = ran(F+).
(ii) There exists an associatve ε-standard operation H : X∗ → X ∪ {ε} and a one-

to-one function f : ran(H+)→ Y such that F+ = f ◦H+.

Corollary 2 enables us to produce axiomatizations of classes of preassociative functions
from known axiomatizations of classes of associative functions. Let us illustrate this
observation on an example. Further examples can be found in [5]. Let us recall an
axiomatization of the Aczélian semigroups.

Proposition 5 ([1]). Let I be a nontrivial real interval, possibly unbounded. An opera-
tionH : I2 → I is continuous, one-to-one in each argument, and associative if and only
if there exists a continuous and strictly monotone function φ : I→ J such that

H(x, y) = φ−1(φ(x) + φ(y)),

where J is a real interval of the form ] − ∞, b[, ] − ∞, b], ]a,+∞[, [a,+∞[ or R =
] −∞,+∞[ (b ≤ 0 ≤ a). For such an operation H , the interval I is necessarily open
at least on one end. Moreover, φ can be chosen to be strictly increasing.

Corollary 2 leads to the following characterization result.

Theorem 1 ([5]). Let I be a nontrivial real interval, possibly unbounded. A standard
function F : I∗ → R is preassociative and satisfies ran(F+) = ran(F1), and F1 and
F2 are continuous and one-to-one in each argument if and only if there exist continuous
and strictly monotone functions φ : I→ J and ψ : J→ R such that

Fn(x) = ψ

(
n∑

i=1

φ(xi)

)
, n ≥ 1,

where J is a real interval of one of the forms ] − ∞, b[, ] − ∞, b], ]a,+∞, [a,+∞[
or R =] − ∞,∞[ (b ≤ 0 ≤ a). For such a function F , we have ψ : F1 ◦ φ−1 and
I is necessarily open at least on one end. Moreover, φ can be chosen to be strictly
increasing.



3 Preassociativity and transition systems

As illustrated below, preassociative functions F : X∗ → Y can be characterized as
functions that can be computed through some special transition systems. In this note,
a transition system is a triple A = (Q, q0, δ) where Q is a set of states, q0 ∈ Q is an
initial state and δ : Q×X → Q is a transition map. As usual, the map δ is extended to
Q×X∗ by setting for any q ∈ Q,

δ(q, ε) = q

δ(q,xy) = δ(δ(q,x), y), y ∈ X,x ∈ X∗.
We say that a function F : X∗ → Y is right-preassociative if it satisfies F (x) =

F (y) =⇒ F (xz) = F (yz) for every xyz ∈ X∗.

Definition 2. Assume that F : X∗ → Y is an onto right-preassociative function. We
define the transitions system A(F ) = (Y, q0, δ) by

q0 = F (ε) and δ(F (x), z) = F (xz).

We call A(F ) the transitions system associated with F .

The language of transition systems give an elegant way to characterize preassocia-
tivity. Indeed, transition systems that arise from preassociative functions can be charac-
terized in the following way. For any transition system A = (Q, q0, δ) and any q ∈ Q,
let LA(q) = {x ∈ X∗ | δ(q0,x) = q} and LA = {LA(q) | q ∈ Q}.

Theorem 2. Let A = (Q, q0, δ) be a transition system. The following conditions are
equivalent.

(i) There is a preassociative function F : X∗ → Q such that A = A(F ).
(ii) For every z ∈ X , the map defined on LA by L 7→ zL = {zx | x ∈ L} is valued

in {2L | L ∈ LA}.
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1949.

2. E. Lehtonen, J.-L. Marichal, B. Teheux. Associative string functions. Asian-European Jour-
nal of Mathematics, 7(4):1450059 (18 pages), 2014.

3. J.-L. Marichal and B. Teheux. Associative and preassociative functions. Semigroup Forum,
89(2):431–442, 2014.

4. J.-L. Marichal and B. Teheux. Associative and preassociative functions (improved version).
Working paper (arXiv:1309.7303v3).

5. J.-L. Marichal and B. Teheux. Preassociative aggregation functions. Fuzzy Sets and Systems,
268:15–26, 2015.

6. J.-L. Marichal and B. Teheux. Barycentrically associative and preassociative functions. Acta
Mathematica Hungarica, 145(2):468–488, 2015.


