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Theorems 3, 4, 7, and 8 are incorrectly stated. The correct versions are as follows.

Theorem 3. M ∈ Ba,b,a if and only if

• either
M(x, y) = min(x, y), ∀x, y ∈ [a, b],

• or
M(x, y) = g−1

√
g(x)g(y), ∀x, y ∈ [a, b],

where g is any continuous strictly increasing function on [a, b], with g(a) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[min(x, bk)]gk[min(y, bk)] if there exists k ∈ K such that

min(x, y) ∈ (ak, bk),
min(x, y) otherwise,

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0.

Theorem 4. M ∈ Ba,b,b if and only if

• either
M(x, y) = max(x, y), ∀x, y ∈ [a, b],

• or
M(x, y) = g−1

√
g(x)g(y), ∀x, y ∈ [a, b],

where g is any continuous strictly decreasing function on [a, b], with g(b) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[max(ak, x)]gk[max(ak, y)] if there exists k ∈ K such that

max(x, y) ∈ (ak, bk),
max(x, y) otherwise,

where gk is any continuous strictly decreasing function on [ak, bk], with gk(bk) = 0.
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Theorem 7. M ∈ Da,b,a if and only if

• either, for all m ∈ N0,

M(x1, . . . , xm) = min
i

xi, ∀ (x1, . . . , xm) ∈ [a, b]m,

• or, for all m ∈ N0,

M(x1, . . . , xm) = g−1
m

√∏

i

g(xi), ∀ (x1, . . . , xm) ∈ [a, b]m,

where g is any continuous strictly increasing function on [a, b], with g(a) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that, for all m ∈ N0,

M(x1, . . . , xm) =





g−1
k

m

√∏
i gk[min(xi, bk)] if there exists k ∈ K such that

mini xi ∈ (ak, bk),
mini xi otherwise,

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0.

Theorem 8. M ∈ Da,b,b if and only if

• either, for all m ∈ N0,

M(x1, . . . , xm) = max
i

xi, ∀ (x1, . . . , xm) ∈ [a, b]m,

• or, for all m ∈ N0,

M(x1, . . . , xm) = g−1
m

√∏

i

g(xi), ∀ (x1, . . . , xm) ∈ [a, b]m,

where g is any continuous strictly decreasing function on [a, b], with g(b) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that, for all m ∈ N0,

M(x1, . . . , xm) =





g−1
k

m

√∏
i gk[max(ak, xi)] if there exists k ∈ K such that

maxi xi ∈ (ak, bk),
maxi xi otherwise,

where gk is any continuous strictly decreasing function on [ak, bk], with gk(bk) = 0.

It is noteworthy that, in each of the above theorems, the third case includes the first two.
Indeed, we get the first case when no subinterval (ak, bk) is considered and we get the second
case when only one subinterval is considered and if it coincides with (a, b). Consequently,
only the third case could have been stated, the first two cases being merely degenerations
of the third one.
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