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Abstract

The general form of continuous, symmetric, increasing, idempotent solutions of the
bisymmetry equation is established and the family of sequences of functions which
are continuous, symmetric, increasing, idempotent, decomposable is described.
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1 Introduction

Kolmogoroff [6] and Nagumo [8] established a fundamental result about mean values. In
their definition a mean value is a sequence (M (m))m∈IN0 of functions M (m) : [a, b]m → [a, b]
(where [a, b] is a closed real interval) which are continuous, symmetric, strictly increasing in
each argument, and idempotent (i.e. M (m)(x, . . . , x) = x for all x ∈ [a, b]). These functions
are also linked by a pseudo-associativity called the decomposability property by several
authors (see e.g. [3, Chapter 5]):

M (m)(x1, . . . , xk, xk+1, . . . , xm) = M (m)(Mk, . . . ,Mk, xk+1, . . . , xm)

for all m ∈ IN0, k ∈ {1, . . . , m}, x1, . . . , xm ∈ [a, b], with Mk = M (k)(x1, . . . , xk).
The corresponding result of Kolmogoroff and Nagumo states that these conditions are

necessary and sufficient for the existence of a continuous strictly monotonic real function f
such that

M (m)(x1, . . . , xm) = f−1

[
1

m

m∑

i=1

f(xi)

]
∀m ∈ IN0.

Such an expression is called the generalized mean.
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On the other hand, Aczél [1] (see also [2]) proved that a function M of two variables
defined on [a, b] is continuous, symmetric, strictly increasing in each argument, idempotent
and fulfils the bisymmetry equation

M [M(x11, x12),M(x21, x22)] = M [M(x11, x21),M(x12, x22)] (1)

if and only if

M(x, y) = f−1

[
f(x) + f(y)

2

]
, x, y ∈ [a, b]

with some continuous strictly monotonic function f .
Note that Horváth [5] investigated the connection between the two concepts of bisym-

metry and decomposability.
The aim of this paper is to study nonstrict means in an elementary way. That is, we

investigate means satisfying either the conditions of Aczél’s theorem or the conditions of
Kolmogoroff and Nagumo’s theorem above, except strict monotonicity. We describe the
family of continuous, symmetric, increasing, idempotent, bisymmetric functions (Section
2) and also the family of sequences of continuous, symmetric, increasing, idempotent and
decomposable functions (Section 3). The structure of both families is very similar to that
of ordinal sums well-known in the theory of the associativity functional equation (see e.g.
[7]).

2 Nonstrict solutions of the bisymmetry equation

The bisymmetry equation (1), which can be considered also as a generalization of simulta-
neous commutativity and associativity, has been investigated by several authors. For a list
of references see [2].

A function M : [a, b]2 → [a, b] is called

• symmetric, if M(x, y) = M(y, x) for all x, y ∈ [a, b];

• increasing, if x ≤ x′, y ≤ y′ imply M(x, y) ≤ M(x′, y′);

• strictly increasing, if x < x′ implies M(x, y) < M(x′, y) and the same for y < y′;

• idempotent, if M(x, x) = x for all x ∈ [a, b];

• Archimedean, if M(a, x) < x < M(x, b) for all x ∈ (a, b);

• internal, if x < M(x, y) < y for x, y ∈ (a, b), x < y.

As we said above, our goal is to describe the general form of continuous, symmetric, in-
creasing, idempotent solutions of the bisymmetry equation (1). In their structures, these
solutions are very similar to ordinal sums which are well-known in the theory of semigroups,
see e.g. [7].

Aczél [1] proved the following result.

Theorem 1 M : [a, b]2 → [a, b] is a continuous, symmetric, strictly increasing, idempotent,
bisymmetric function if and only if

M(x, y) = f−1

[
f(x) + f(y)

2

]

(generalized mean) where f is any continuous strictly monotonic function on [a, b].
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We also know that this result still holds for intervals of the form (a, b), [a, b), (a, b] or even
for any unbounded interval of the real line (see [2], pp 250–251, 280).

The following lemma will be useful in the sequel.

Lemma 1 If M : [a, b]2 → [a, b] is a continuous, symmetric, increasing, idempotent, bisym-
metric function then the following conditions are equivalent:

i) M is Archimedean
ii) M is internal

iii) M is strictly increasing on (a, b)2.

Proof.
ii) ⇒ i). For all x ∈ (a, b), there exists u, v ∈ (a, b) such that a < u < x < v < b. From

ii) we have M(a, x) ≤ M(u, x) < x < M(x, v) ≤ M(x, b).
i) ⇒ ii). Assume firstly that there exists x0, y0 ∈ (a, b), x0 < y0 such that M(x0, y0) =

y0. Define
X = {x ∈ [a, b] : x ≤ y0 and M(x, y0) = y0}.

On the one hand, it is clear that X 6= ∅ since x0 ∈ X. On the other hand, because of
continuity of M , X is closed. Introducing x∗ = inf X, we have a < x∗ ≤ x0 < y0 since,
from i), we have a 6∈ X. Moreover, since M is increasing, [x∗, y0] ⊆ X. We should have
x∗ > M(a, y0). Indeed, if x∗ ≤ M(a, y0), then, since M(a, y0) < y0 by hypothesis, we have
M(a, y0) ∈ X, i.e. M(M(a, y0), y0) = y0 and

M(M(a, x∗), y0) = M(M(a, x∗),M(y0, y0)) = M(M(a, y0),M(x∗, y0))

= M(M(a, y0), y0) = y0.

Since M(a, x∗) ≤ x∗ < y0, we have M(a, x∗) ∈ X and, by the definition of x∗, we have
M(a, x∗) = x∗, which contradicts i).

It follows that M(a, y0) < x∗ < y0 = M(x∗, y0) and, by continuity of M , there exists
z ∈ (a, x∗) such that x∗ = M(z, y0). Consequently,

M(M(z, x∗), y0) = M(M(z, x∗),M(y0, y0)) = M(M(z, y0),M(x∗, y0)) = M(x∗, y0) = y0.

Since M(z, x∗) ≤ x∗ < y0, we have M(z, x∗) ∈ X and, by the definition of x∗, we have
M(z, x∗) = x∗. Finally, we have

x∗ = M(x∗, x∗) = M(x∗,M(z, y0)) = M(M(x∗, x∗),M(z, y0))

= M(M(x∗, z),M(x∗, y0)) = M(x∗, y0) = y0,

a contradiction. Consequently, we have M(x, y) < y ∀ x, y ∈ (a, b), x < y. One can prove
in a similar way that x < M(x, y).

ii) ⇔ iii). Aczél has proved that, under the assumptions of this lemma, the condition
ii) is equivalent to

M(x, y) = f−1

[
f(x) + f(y)

2

]
∀x, y ∈ (a, b)

where f is any continuous strictly monotonic function on (a, b) (see [2, pages 281–284]),
which is sufficient.
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Now define Ba,b,θ as the set of functions M : [a, b]2 → [a, b] which are continuous,
symmetric, increasing, idempotent, bisymmetric and such that M(a, b) = θ, θ being a
given number in [a, b]. A general element of a class Ba,b,θ is usually denoted by Ma,b,θ in
the sequel. Before stating the following important result we need to introduce the so-called
median operation. Consider three real numbers x, y, z ∈ IR. Then their median (denoted
as median(x, y, z)) is defined by

median(x, y, z) =





x if min(y, z) ≤ x ≤ max(y, z)
y if min(x, z) ≤ y ≤ max(x, z)
z if min(x, y) ≤ z ≤ max(x, y)

.

Theorem 2 M : [a, b]2 → [a, b] is a continuous, symmetric, increasing, idempotent, bisym-
metric function if and only if there exist two numbers α and β fulfilling a ≤ α ≤ β ≤ b
such that

i) M(x, y) = Ma,α,α(x, y) if x, y ∈ [a, α];

ii) M(x, y) = Mβ,b,β(x, y) if x, y ∈ [β, b];

iii) M(x, y) = f−1

[
f [median(α, x, β)] + f [median(α, y, β)]

2

]
otherwise

with some Ma,α,α ∈ Ba,α,α, Mβ,b,β ∈ Bβ,b,β, and f is any continuous strictly monotonic
function on [α, β].

Proof. “⇐”. Indeed, we can easily show that the functions M defined in the statement
are continuous, symmetric, increasing, idempotent and bisymmetric.

“⇒”. Assume that M : [a, b]2 → [a, b] is a continuous, symmetric, increasing, idempo-
tent and bisymmetric function. Define

Xa = {x ∈ [a, b] | M(a, x) = x} and Xb = {x ∈ [a, b] | M(x, b) = x}.

On the one hand, it is clear that Xa 6= ∅ and Xb 6= ∅ since a ∈ Xa and b ∈ Xb. On the other
hand, by continuity of M , Xa and Xb are closed. Introducing α = sup Xa and β = inf Xb,
we have α ≤ β, otherwise we would have

M(a, b) ≥ M(a, α) = α > β = M(β, b) ≥ M(a, b),

a contradiction.
Let (x, y) ∈ [a, b]2. There are three mutually exclusive cases:

1. If x, y ∈ [a, α], then we have M(x, y) = Ma,α,α(x, y), where Ma,α,α ∈ Ba,α,α.

2. If x, y ∈ [β, b], then we have M(x, y) = Mβ,b,β(x, y), where Mβ,b,β ∈ Bβ,b,β.

3. Otherwise:

• If α = β, then we have

α = M(a, α) ≤ M(x, y) ≤ M(α, b) = α,

that is M(x, y) = α.
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• If α < β, then we have

M(a, y) = M(α, y) ∀y ∈ [α, M(α, b)], (2)

M(x, b) = M(x, β) ∀x ∈ [M(a, β), β]. (3)

Indeed, if y ∈ [α, M(α, b)] then, by continuity of M , there exists z ∈ (α, b) such
that y = M(α, z). So, we have

M(a, y) = M(M(a, a),M(α, z)) = M(M(a, α),M(a, z))

= M(M(α, α),M(a, z)) = M(M(α, a),M(α, z))

= M(α, y),

which proves (2). We can show that (3) is true by using the same argument.

Moreover, we have

M(α, β) = M(α, b) = M(a, β) = M(a, b). (4)

Indeed, setting θ = M(a, b), we have

α = M(a, α) ≤ M(a, β) ≤ θ ≤ M(α, b) ≤ M(β, b) = β

and we can apply (2) and (3). Therefore, we have

θ = M(M(a, b), θ) = M(M(a, θ),M(θ, b)) = M(M(α, θ),M(θ, β))

= M(M(α, β), θ) = M(M(a, α), M(β, b)) = M(α, β),

and

M(α, b) = M(M(a, α), b) = M(M(α, b), θ) = M(M(α, b),M(α, β))

= M(α, β),

and

M(a, β) = M(a,M(β, b)) = M(θ,M(a, β)) = M(M(α, β),M(a, β))

= M(α, β),

which proves (4).

We also have

M(a, x) = M(α, x) ∀x ∈ [α, β], (5)

M(x, b) = M(x, β) ∀x ∈ [α, β]. (6)

By (2)–(4), it sufficies to prove that M(a, x) = M(α, x) for all x ∈ [θ, β], and
M(x, b) = M(x, β) for all x ∈ [α, θ].

M is continuous, thus for any x ∈ [θ, β] there exists z ∈ [a, b] such that x =
M(β, z). Thus we have

M(a, x) = M(a,M(β, z)) = M(M(a, β),M(a, z))

= M(M(α, β),M(a, z)) = M(M(β, z), α)

= M(α, x)
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which proves (5). We can prove (6) similarly.

For any x ≤ α, y ≥ β, M(x, y) = θ holds. Indeed, from (4), we have θ =
M(a, β) ≤ M(x, y) ≤ M(α, b) = θ.

Finally, by Theorem 1 and Lemma 1, it sufficies to show that M(α, x) < x <
M(x, β) for all x ∈ (α, β). Suppose the first inequality is not true. Then, from
(5), there exists x ∈ (α, β) such that M(a, x) = M(α, x) = x, which contradict
the definition of α. We can prove the second inequality in a similar way.

Now, our task consists in describing the two families Ba,b,a and Ba,b,b. Before going on,
we prove a lemma.

Lemma 2 A function M ∈ Ba,b,a (resp. Ba,b,b) is strictly increasing on (a, b)2 if and only
if

M(x, y) = g−1
√

g(x)g(y) for x, y ∈ [a, b],

where g is any continuous strictly increasing (resp. decreasing) function on [a, b], with
g(a) = 0 (resp. g(b)=0).

Proof. Let us consider the case Ba,b,a, the other one is symmetric.
“⇐”. Easy.
“⇒”. Let M ∈ Ba,b,a be strictly increasing on (a, b)2. From Theorem 1, there exists a

function f which is continuous and strictly monotonic on (a, b), such that

2f(M(x, y)) = f(x) + f(y) ∀x, y ∈ (a, b). (7)

Replacing f by −f , if necessary, we can assume that f is strictly increasing on (a, b). By
continuity of M , we have

lim
x→a+

M(x, y) = M(a, y) = a ∀y ∈ (a, b).

Then assume that limx→a+ f(x) = θ ∈ IR. From (7), we have f(y) = θ ∀y ∈ (a, b), which
is impossible since f is strictly increasing on (a, b). Therefore, limx→a+ f(x) = −∞.

From (7), we also have limy→b− f(y) ∈ IR. Then let g(x) be the continuous extension of
the function exp f(x) on [a, b], that is, g(a) = 0 and g(x) = exp f(x) on (a, b]. The function
g thus defined is continuous and strictly increasing on [a, b] and (7) becomes

log g[M(x, y)] =
log g(x) + log g(y)

2
∀x, y ∈ (a, b]

and so we have
M(x, y) = g−1

√
g(x)g(y)

on (a, b]2 and even on [a, b]2 since M is continuous.

Now, we present a description of the two families Ba,b,a and Ba,b,b. The next two theorems
deal with this issue.

Theorem 3 M ∈ Ba,b,a if and only if

• either
M(x, y) = min(x, y),
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• or
M(x, y) = g−1

√
g(x)g(y),

where g is any continuous strictly increasing function on [a, b], with g(a) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[min(x, bk)]gk[min(y, bk)] if there exists k ∈ K such that

min(x, y) ∈ (ak, bk),
min(x, y) otherwise,

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0.

Proof. “⇐”. One can easily check that the functions M defined in the statement belong
to Ba,b,a.

“⇒”. Let x, y ∈ [a, b] and M ∈ Ba,b,a. Define a set X ⊆ [a, b] by

X = {x ∈ [a, b] : M(x, b) = x}.

It is clear that X is closed and nonempty. Thus Y = [a, b]\X is open and bounded. In fact
Y = ∅ if and only if M(x, b) = x ∀x ∈ [a, b], i.e.

M(x, y) = min(x, y)

since assuming x ≤ y, x, y ∈ [a, b], we have M(x, y) ≤ M(x, b) = x = M(x, x) ≤ M(x, y).
In the other extreme case we have Y = (a, b), i.e. X = {a, b}, if and only if x <

M(x, b) ∀x ∈ (a, b). However M(a, a) = a and M(a, b) = a imply M(a, x) = a < x ∀x ∈
(a, b). It follows from Lemma 1 that M(x, y) is strictly increasing on (a, b)2 and from
Lemma 2 that

M(x, y) = g−1
√

g(x)g(y),

where g is any continuous strictly increasing function on [a, b], with g(a) = 0.
Consider the remaining case, that is ∅ ⊂ Y ⊂ (a, b). Then there exists a countable index

set K and a class of pairwise disjointed open intervals {(ak, bk) : k ∈ K} of [a, b] such that

Y =
⋃

k∈K

(ak, bk).

For all k ∈ K, we obviously have M(ak, b) = ak and M(bk, b) = bk since ak, bk ∈ X, but
also

M(x, b) > x ∀x ∈ (ak, bk), (8)

M(ak, x) = ak ∀x ∈ [ak, b], (9)

M(bk, x) = bk ∀x ∈ [bk, b], (10)

In order to establish (8), we can notice that x ∈ (ak, bk) implies x 6∈ X. For (9) and (10),
we obviously have

ak = M(ak, ak) ≤ M(ak, x) ≤ M(ak, b) = ak ∀x ∈ [ak, b]

bk = M(bk, bk) ≤ M(bk, x) ≤ M(bk, b) = bk ∀x ∈ [bk, b].
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If min(x, y) ∈ X, then
M(x, y) = min(x, y).

If min(x, y) ∈ Y , i.e. min(x, y) ∈ (ak, bk) for one k ∈ K, then, assuming that x ∈ (ak, bk)
and y ∈ [bk, b], we have

M(x, y) = M(x, bk). (11)

Indeed, since (9) implies M(ak, bk) = ak and since M(bk, bk) = bk, then, by continuity of
M , there exists z ∈ (ak, bk) such that x = M(z, bk). Then, from (10) we deduce

M(x, y) = M(M(z, bk),M(y, y)) = M(M(z, y), M(bk, y))

= M(M(z, y), bk) = M(M(z, y), M(bk, bk)) = M(M(z, bk),M(y, bk))

= M(x, bk).

Now, we can show that if x, y ∈ (ak, bk), then

M(x, y) = g−1
k

√
gk(x)gk(y)

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0. It is
sufficient, from Lemma 1 and Lemma 2, to show that

M(ak, x) < x < M(x, bk) ∀x ∈ (ak, bk).

The first inequality comes from (9). For the second one, we notice that if x = M(x, bk) for
one x ∈ (ak, bk), then, from (11), we would have x = M(x, bk) = M(x, b), which contradicts
(8).

Theorem 4 M ∈ Ba,b,b if and only if

• either
M(x, y) = max(x, y),

• or
M(x, y) = g−1

√
g(x)g(y),

where g is any continuous strictly decreasing function on [a, b], with g(b) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[max(ak, x)]gk[max(ak, y)] if there exists k ∈ K such that

max(x, y) ∈ (ak, bk),
max(x, y) otherwise,

where gk is any continuous strictly decreasing function on [ak, bk], with gk(bk) = 0.

Proof. Similar to the previous one.
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3 Extended Kolmogoroff-means

We show now that the results obtained in the previous section can be extended to the mean
values by replacing bisymmetry by decomposability. According to Fodor and Roubens [3],
we may view any mean value M as an aggregation operator:

M : Λ =
∞⋃

m=1

[a, b]m → [a, b] , (x1, . . . , xm) 7→ M (m)(x1, . . . , xm)1.

Such an operator M is said to be

• continuous, if for all m ∈ IN0, M (m) is a continuous function on [a, b]m;

• symmetric, if for all m ∈ IN0, M (m) is a symmetric function on [a, b]m:

M (m)(x1, . . . , xm) = M (m)(xσ(1), . . . , xσ(m))

where σ is a permutation of {1, . . . , m} and (x1, . . . , xm) ∈ [a, b]m;

• increasing, if for all m ∈ IN0, M (m) is increasing in each argument:

xi < x′i ⇒ M (m)(x1, . . . , xi, . . . , xm) ≤ M (m)(x1, . . . , x
′
i, . . . , xm), i = 1, . . . , m;

• strictly increasing, if for all m ∈ IN0, M (m) is strictly increasing in each argument:

xi < x′i ⇒ M (m)(x1, . . . , xi, . . . , xm) < M (m)(x1, . . . , x
′
i, . . . , xm), i = 1, . . . , m;

• idempotent, if for all m ∈ IN0, M (m) satisfies

M (m)(x, . . . , x) = x, ∀x ∈ [a, b];

• decomposable, if for all m ∈ IN0 and all k ∈ {1, . . . , m}, the following equality holds:

M (m)(x1, . . . , xk, xk+1, . . . , xm) = M (m)(Mk, . . . , Mk, xk+1, . . . , xm)

where Mk = M (k)(x1, . . . , xk).

Kolmogoroff [6] established the following two results.

Lemma 3 If M is an aggregation operator defined on Λ, continuous, symmetric, increas-
ing, idempotent and decomposable, then there exists a function ψ which is continuous on
(0, 1) and increasing on [0, 1], with ψ(0) = a and ψ(1) = b, such that, for all m ∈ IN0, we
have

M (m)(ψ(t1), . . . , ψ(tm)) = ψ

(
1

m

∑

i

ti

)

for all (t1, . . . , tm) ∈ [0, 1]m.

1We will often write M(x1, . . . , xm) instead of M (m)(x1, . . . , xm).
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Theorem 5 An aggregation operator M , defined on Λ, is continuous, symmetric, strictly
increasing, idempotent and decomposable if and only if for all m ∈ IN0,

M (m)(x1, . . . , xm) = f−1

[
1

m

∑

i

f(xi)

]

(generalized mean) where f is any continuous strictly monotonic function on [a, b].

Theorem 5 still holds for sets Λ of the form
⋃∞

m=1(a, b)m,
⋃∞

m=1[a, b)m,
⋃∞

m=1(a, b]m, even if
a = −∞ and/or b = +∞.

Given θ ∈ [a, b], Da,b,θ is the set of aggregation operators M : Λ =
⋃∞

m=1[a, b]m → [a, b]
which are continuous, symmetric, increasing, idempotent, decomposable and such that for
all k1, k2 ∈ IN0,

M (k1+k2)(a, . . . , a︸ ︷︷ ︸
k1 times

, b, . . . , b︸ ︷︷ ︸
k2 times

) = θ.

Then we have the following result:

Theorem 6 An aggregation operator M , defined on Λ, is continuous, symmetric, increas-
ing, idempotent and decomposable if and only if there exists two numbers α and β fulfilling
a ≤ α ≤ β ≤ b, such that, for all m ∈ IN0, (x1, . . . xm) ∈ [a, b]m

i) M(x1, . . . , xm) = Ma,α,α(x1, . . . , xm), if maxi xi ∈ [a, α];

ii) M(x1, . . . , xm) = Mβ,b,β(x1, . . . , xm), if mini xi ∈ [β, b];

iii) M(x1, . . . , xm) = f−1

[
1

m

∑

i

f [median(α, xi, β)]

]
otherwise,

where Ma,α,α ∈ Da,α,α, Mβ,b,β ∈ Dβ,b,β, and f is any continuous strictly monotonic function
on [α, β].

Proof. First of all, consider the following practical notation

M(n1 · x1, . . . , nm · xm) = M(x1, . . . , x1︸ ︷︷ ︸
n1 times

, . . . , xm, . . . , xm︸ ︷︷ ︸
nm times

), n1, . . . , nm ∈ IN0.

“⇐”. Indeed, we can easily show that M satisfies the announced properties.
“⇒”. According to Lemma 3, there exists a function ψ which is continuous on (0, 1)

and increasing on [0, 1], with ψ(0) = a and ψ(1) = b, such that, for all m ∈ IN0, we have

M (m)(ψ(t1), . . . , ψ(tm)) = ψ

(
1

m

∑

i

ti

)

for all (t1, . . . , tm) ∈ [0, 1]m. Define α and β in the following way:

a ≤ α = lim
t→0+

ψ(t) ≤ lim
t→1−

ψ(t) = β ≤ b.

Then, for all k1, k2 ∈ IN0, we have

M(k1 · a, k2 · α) = α, (12)

M(k1 · β, k2 · b) = β. (13)
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Indeed, according to Lemma 3 and since ψ and M are continuous, we have

M(k1 · a, k2 · α) = lim
t→0+

M(k1 · ψ(0), k2 · ψ(t)) = lim
t→0+

ψ

(
k2t

k1 + k2

)
= α

and

M(k1 · β, k2 · b) = lim
t→1−

M(k1 · ψ(t), k2 · ψ(1)) = lim
t→1−

ψ

(
k1t + k2

k1 + k2

)
= β.

Then let m ∈ IN0 and (x1, . . . , xm) ∈ [a, b]m. There are three mutually exclusive cases:

1. If maxi xi ∈ [a, α], then, from (12), we have M(x1, . . . , xm) = Ma,α,α(x1, . . . , xm),
where Ma,α,α ∈ Da,α,α.

2. If mini xi ∈ [β, b], then, from (13), we have M(x1, . . . , xm) = Mβ,b,β(x1, . . . , xm), where
Mβ,b,β ∈ Dβ,b,β.

3. Otherwise, we have:

• If α = β, then, from (12) and (13), we have

α = M((m− 1) · a, α) ≤ M(x1, . . . , xm) ≤ M(α, (m− 1) · b) = α,

i.e. M(x1, . . . , xm) = α.

• If α < β, then ψ is strictly increasing on [0,1]. Suppose it is not true and there
exists t1, t2 ∈ (0, 1), t1 < t2, such that ψ(t1) = ψ(t2). Then, for all p, q ∈ IN, p ≤
q, q 6= 0,

M(p · ψ(t1), (q − p) · ψ(0)) = M(p · ψ(t2), (q − p) · ψ(0)),

i.e. from Lemma 3,

ψ

(
p

q
t1

)
= ψ

(
p

q
t2

)
.

Therefore, for any rational number r ∈ [0, 1], we have ψ(rt1) = ψ(rt2), which
still holds, because of the continuity of ψ, for all real number r ∈ [0, 1]. Choosing
r = t1/t2 ∈ (0, 1), the previous equality becomes ψ(rt1) = ψ(t1) = ψ(t2). By
iteration, we get ψ(rnt1) = ψ(t2), ∀n ∈ IN0, and because of the continuity of ψ,
α = limn→+∞ ψ(rnt1) = ψ(t2). One can show, in a similar way, that ψ(t1) = β.
Indeed we have, for all p, q ∈ IN, p ≤ q, q 6= 0,

M(p · ψ(t1), (q − p) · ψ(1)) = M(p · ψ(t2), (q − p) · ψ(1)),

that is, from Lemma 3, ψ(1 − r(1 − t1)) = ψ(1 − r(1 − t2)) for all r ∈ [0, 1].
Choosing r = (1− t2)/(1− t1) ∈ (0, 1), the previous equality implies

ψ(1− (1− t1)) = ψ(t1) = ψ(t2) = ψ(1− r(1− t1)).

By iteration, we get ψ(t1) = ψ(1 − rn(1 − t1)), ∀n ∈ IN0, and because of the
continuity of ψ, ψ(t1) = limn→+∞ ψ(1− rn(1− t1)) = β. Finally, we have α = β,
a contradiction. Consequently, ψ is strictly increasing on (0,1) and thus on [0,1].
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Since ψ is continuous on (0,1), its inverse ψ−1 is defined on (α, β)∪{a, b} and is
continuous on (α, β). Now, investigate the following expression

M(x1, . . . , xm1 , y1, . . . , ym2 , z1, . . . , zm3), m1 + m2 + m3 = m,

with 



x1, . . . , xm1 ∈ [a, α], m1 < m,
y1, . . . , ym2 ∈ (α, β),
z1, . . . , zm3 ∈ [β, b], m3 < m.

Since M is continuous, we have

M(m1 · a, y1, . . . , ym2 ,m3 · β)

= lim
t→1−

M
[
m1 · ψ(0), ψψ−1(y1), . . . , ψψ−1(ym2),m3 · ψ(t)

]

= lim
t→1−

ψ

[
m1

m
0 +

1

m

m2∑

i=1

ψ−1(yi) +
m3

m
t

]
(lemma 3)

= ψ

[
m1

m
0 +

1

m

m2∑

i=1

ψ−1(yi) +
m3

m
1

]
(since m3 < m)

Since m1 < m, this last expression is also equal to M(m1 · α, y1, . . . , ym2 ,m3 · b)
and thus finally to M(x1, . . . , xm1 , y1, . . . , ym2 , z1, . . . , zm3) because, since M is
increasing, we have

M(m1 · a, y1, . . . , ym2 ,m3 · β) ≤ M(x1, . . . , xm1 , y1, . . . , ym2 , z1, . . . , zm3)

≤ M(m1 · α, y1, . . . , ym2 ,m3 · b).

Then, let f(x) be the continuous extension on [α, β] of the function ψ−1(x),
i.e. f(α) = 0, f(β) = 1 and f(x) = ψ−1(x) on (α, β). The function f is thus
continuous and strictly monotonic on [α, β] and we have

M(x1, . . . , xm1 , y1, . . . , ym2 , z1, . . . , zm3)

= f−1

[
m1

m
f(α) +

1

m

m2∑

i=1

f(yi) +
m3

m
f(β)

]
.

The next lemma, due to Nagumo [8], will be very useful in the sequel.

Lemma 4 If M is an aggregation operator which is symmetric, idempotent and decompos-
able, then (1) holds. Moreover, for all m ∈ IN0, m ≥ 3, we have

M (m)(x1, . . . , xm) = M (m)(x′1, . . . , x
′
m),

where x′i = M (m−1)(x1, . . . , xi−1, xi+1, . . . , xm), i = 1, . . . ,m (the argument xi being omit-
ted).

Now, we describe the two families Da,b,a and Da,b,b.

Theorem 7 M ∈ Da,b,a if and only if
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• either, for all m ∈ IN0,

M(x1, . . . , xm) = min(x1, . . . , xm),

• or, for all m ∈ IN0,

M(x1, . . . , xm) = g−1
m

√∏

i

g(xi),

where g is any continuous strictly increasing function on [a, b], with g(a) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that, for all m ∈ IN0,

M(x1, . . . , xm) =





g−1
k

m

√∏
i gk[min(xi, bk)] if there exists k ∈ K such that

mini xi ∈ (ak, bk),
mini xi otherwise,

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0.

Proof. “⇐”. One can easily check that the operators M defined in the statement belong
to Da,b,a.

“⇒”. Let m ∈ IN0, (x1, . . . , xm) ∈ [a, b]m and M ∈ Da,b,a. From Lemma 4, M (2) ∈ Ba,b,a

and we can use Theorem 3.

• If M(x, y) = min(x, y) then M(x1, . . . , xm) = mini xi. Indeed, suppose the result is
true for m− 1 (m ≥ 3) and x1 ≤ . . . ≤ xm. So, from Lemma 4, we have

M (m)(x1, . . . , xm) = M (m)(x2, x1, . . . , x1) = M (m)(x1, . . . , x1) = x1 = min
i

xi,

and the result is still true for m.

• If M(x, y) = g−1
√

g(x)g(y), where g is any continuous strictly increasing function on

[a, b], with g(a) = 0, then M(x1, . . . , xm) = g−1 m

√∏
i g(xi). Indeed, suppose the result

is true for m− 1 (m ≥ 3). Since M is decomposable, the operator F defined by

F (q)(z1, . . . , zq) = f [M (q)(f−1(z1), . . . , f
−1(zq))], ∀q ∈ IN0,

where f(x) = log g(x) on (a, b], is also decomposable and, since it is also symmetric
and idempotent, we have, from Lemma 4,

F (m)(z1, . . . , zm) = F (m)(z′1, . . . , z
′
m)

where, from the induction hypothesis,

z′j = F (m−1)(z1, . . . , [zj], . . . , zm) =
1

m− 1

(
m∑

i=1

zi − zj

)
j = 1, . . . , m.

Consequently, we get (see [8]) F (m)(z1, . . . , zm) = (1/m)
∑

i zi. From that, we have

M (m)(x1, . . . , xm) = f−1
[
F (m)(f(x1), . . . , f(xm))

]
= g−1

m

√∏

i

g(xi)

on [a, b]m. Thus, the result is still true for m.
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• In the last case, there exists a countable index set K and a family of disjoint subin-
tervals {(ak, bk) : k ∈ K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[min(x, bk)]gk[min(y, bk)] if there exists k ∈ K such that

min(x, y) ∈ (ak, bk),
min(x, y) otherwise,

where gk is any continuous strictly increasing function on [ak, bk], with gk(ak) = 0.
Suppose that there exists k ∈ K such that mini xi ∈ (ak, bk), then

M (m)(x1, . . . , xj, xj+1, . . . , xm) = M (m)(x1, . . . , xj, bk, . . . , bk)

if x1, . . . , xj ∈ (ak, bk) and xj+1, . . . , xm ∈ [bk, b], j ∈ {1, . . . , m},m ∈ IN0. Indeed, if
m = 2, and if x ∈ (ak, bk) and y ∈ [bk, b] then M(x, y) = M(x, bk). Suppose the result
is true for m − 1 (m ≥ 3) and also x1, . . . , xj ∈ (ak, bk) and xj+1, . . . , xm ∈ [bk, b],
j ∈ {1, . . . , m}. So, from Lemma 4, we deduce

M (m)(x1, . . . , xj, xj+1, . . . , xm)

= M (m)(M (m−1)(x2, . . . , xj, bk, . . . , bk), . . . , M
(m−1)(x1, . . . , xj, bk, . . . , bk))

= M (m)(x1, . . . , xj, bk, . . . , bk)

Thus, the result is still true for m.

Eventually we use induction to show that, if x1, . . . , xm ∈ (ak, bk), then

M(x1, . . . , xm) = g−1
k m

√∏

i

gk(xi).

Theorem 8 M ∈ Da,b,b if and only if

• either, for all m ∈ IN0,
M(x1, . . . , xm) = max

i
xi,

• or, for all m ∈ IN0,

M(x1, . . . , xm) = g−1
m

√∏

i

g(xi),

where g is any continuous strictly decreasing function on [a, b], with g(b) = 0,

• or there exists a countable index set K and a family of disjoint subintervals {(ak, bk) :
k ∈ K} of [a, b] such that, for all m ∈ IN0,

M(x1, . . . , xm) =





g−1
k

m

√∏
i gk[max(ak, xi)] if there exists k ∈ K such that

maxi xi ∈ (ak, bk),
maxi xi otherwise,

where gk is any continuous strictly decreasing function on [ak, bk], with gk(bk) = 0.

Proof. Similar to the previous one.
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