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Abstract

A Flash Crowd Effect (FCE) occurs when in the case of non-recurring conges-

tion a large portion of drivers follows similar re-routing advice. Consequently,

congestion is transferred from one road to another. Coping with the FCE is

challenging, especially if the congestion results from a temporary loss of capac-

ity (e.g. due to a traffic incident). The existing route guidance systems do

not address FCE, as they either do not consider the effects of guidance on the

rest of the road network, or predict link travel times based on the number of

vehicles traveling on the link, which in the case of the loss of capacity is un-

reliable. We demonstrate that the FCE can be addressed in a distributed way

with Vehicle-to-Vehicle (V2V) communication provided by Connected Vehicle

(CV) technology. The proposed in-vehicle TrafficEQ system provides vehicles

with mixed route guidance strategy—i.e. a route is autonomously chosen by the

vehicle with a probability that is inversely proportional to the latest reported

travel time on the route. Real-time travel time information is crowd-sourced by

TrafficEQ users. Using realistic simulations of incident-related capacity drops

on a classic two-route highway example and a realistic urban road network,

we demonstrate that TrafficEQ can address the FCE by reducing travel time

oscillations among the alternative routes. The system’s drawbacks—in particu-

lar the occasional necessity of providing incentives to follow the guidance—are

discussed.
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route guidance, connected vehicle technology, flash crowd effect.

1. Introduction

Traffic Informations Systems (TISs) enable better utilisation of road net-

works by providing drivers with real-time information about traffic conditions

and allowing them to make better routing decisions [1]. The future TISs will be

enhanced with Connected Vehicle (CV) technology, allowing vehicles to create5

a wireless vehicular ad hoc network (VANET)—a cost-effective alternative to

the existing traffic sensing technologies such as inductive-loop detectors. The

technology provides various ad hoc communication patterns such as between ve-

hicles (V2V) and between vehicles and road infrastructure (V2I) [2]. However,

provision of traffic information is only the first step in dealing with congestion.10

The second step consists of route selection. This is a challenging task, especially

in cases of unpredictable non-recurring congestion when traffic incidents result

in temporary loss of capacity and when a strong link between routing decisions

of drivers and the travel time exists (e.g. when several vehicles share the same

origin-destination pairs and the number of alternative routes is limited). In the15

literature this is often illustrated by a two-route example, in which the main

route is a two-lane highway with one lane blocked by a stalled vehicle and the

second route is a bypass with a lower speed limit [3]. If everyone uses the same

pure routing strategy (e.g. based on the shortest-time principle) combined with

similar traffic information, the congestion is shifted from one road to another.20

In the literature this is referred to as the Flash Crowd Effect (FCE) [4], similar

advice problem [5], or overreaction [6]. In this case real-time information about

prevailing conditions can be misleading, as it does not include the delayed effect

of vehicles entering the route in its associated travel time. Moreover, it is diffi-

cult to predict travel times based on the number of traveling vehicles when the25

road capacity unpredictably changes [6]. Research literature gives very little

attention to how to cope with the FCE problem in practice. While it is noticed

in [4, 5, 6]—only general indications, such that a mixed route guidance strategy
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should be used instead of the pure shortest-time route guidance [7]—are given.

The exception—work reported by Davies in [3]—explicitly studies the problem.30

By using the two-route example, the authors demonstrate that the FCE can be

mitigated by means of anticipation of delay which is learned over time. However,

the approach of Davies is centralised. It also relies on information about the

exact number of vehicles and their travel times on the route obtained from fixed

sensors. Moreover, practical aspects of system deployment are not addressed.35

CV technology offers new tools to approach the FCE problem. Whereas

most of the V2V-based TISs focus on efficient traffic information dissemination

(e.g. [8, 9, 10, 11]), route guidance is included in several V2I-based systems (e.g.

[12, 13, 14, 15]). Although these systems were not evaluated in situations where

the FCE is likely to develop, they may have potential to cope with the problem40

via route choice coordination. However, this requires an entity dedicated to

coordination (e.g. agents [12, 13] or an online environment [14]). Moreover,

relying on link travel time prediction (e.g. in [13]) in cases of unpredicted road

capacity drops—typically found in FCE—is not trivial.

In this paper we tackle the FCE problem explicitly by proposing an alter-45

native CV technology-based approach (in V2V mode). The proposed method,

hereafter referred to as TrafficEQ is fully distributed and infrastructure-less. It

uses autonomous in-vehicle route guidance relying on traffic information crowd-

sourced by vehicles using V2V communication. Moreover, it does not use travel

time prediction or route selection coordination. Guidance provided by Traf-50

ficEQ is based on a mixed routing strategy where the probability of selecting a

route is inversely proportional to its latest reported travel time. It is compared

to conventional guidance based on the shortest-time principle. System evalu-

ation is carried out using the classic two-route example and a realistic urban

road network, both simulated with traffic (SUMO [16]) and network (NS-3 [17])55

simulators. The main finding is that the FCE can be mitigated by combining

latest travel time information crowd-sourced via V2V communication with au-

tonomous probabilistic routing. Moreover, FCE-related time oscillations among

the alternative routes are significantly reduced even if only a small portion
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of vehicles uses the system, while the rest applies shortest-time routing. The60

main drawback of TrafficEQ is that users are periodically requested to select

a sub-optimal route. In the case of drivers with self-regarding preferences, our

approach needs to be extended with incentives, e.g. based on the road pricing

concept.

The remainder of this paper is organised into five sections. We start with a65

review of the literature. Section 3 introduces the TrafficEQ system. Section 4

contains the description of the simulation setup and the results of our experi-

ments. Section 5 points out system weaknesses and future research directions.

Finally, Section 6 summarises the article.

2. Related work70

First we start with an overview of route guidance in the context of the FCE.

Then, we discuss different traffic information architectures. Finally, guidance

solutions based on CV technology are analysed.

2.1. Route guidance and FCE

Route guidance can be either (i) centralised—i.e. route selection is per-75

formed at some central site (as in the approach proposed by Davies [3]), (ii)

decentralised—i.e. route selection is performed at an autonomous sub-system

(as in the BeeJamA system [12]), (iii) distributed—i.e. route selection is per-

formed in-vehicle (as in the proposed TrafficEQ). The advantage of centralised

and decentralised guidance systems is that they allow coordinated routing de-80

cisions. However, this requires an additional traffic management component.

In general, recent work demonstrates that route guidance can improve the

overall road network performance [18, 19]. Several commercial TISs (e.g. Tom-

Tom [20] or Waze [21]) provide guidance relying on prediction of traffic condi-

tions. The prediction is based on a combination of prevailing conditions and85

historical values [22]. However, due to low market penetration these systems do

not consider the effects of guidance on the rest of the road network and future
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road conditions [22]. Consequently, they cannot react to the FCE. The ques-

tion of how to best use traffic information in cases of non-recurring congestion,

where the number of alternative paths is low and a capacity drops are observed,90

is much more difficult to address. While there is a consensus that route guid-

ance based on the shortest-time principle leads to the FCE [4, 5, 6, 7], very

little attention has been devoted to how to practically solve the problem. The

exception—work reported by Davies [3]—focuses on the FCE in a two-route

scenario. A hypothetical system in which the route guidance is based on an-95

ticipation (the system learns the maximum number of vehicles that can travel

on each route) is proposed. The authors demonstrate that characteristic os-

cillations in travel time among the alternative routes resulting from the FCE

can be significantly reduced. The solution is implicitly based on a centralised

architecture. Moreover, information about the practical implementation of the100

proposed approach is not given.

2.2. Centralised vs. decentralised vs. distributed traffic data management

In general, systems with centralised traffic-related data processing such as

Waze or TomTom have a greater capability to predict the traffic situation. This

is mainly due to the network-wide traffic awareness and collection of traffic data105

based on the floating cellular data method. In such systems updates are far from

real-time—lag time is typically in the range of 2 to 30 minutes [12] (although

this is system designers’ choice rather than technical restriction). However,

bandwidth limitation, dissemination delays, and communication costs are the

main drawbacks of such systems [23, 24]. These drawbacks can be addressed110

by systems with decentralised (e.g. Claes et al. [13] and BeeJamA [12]) or

distributed (e.g. TrafficEQ) traffic data management. In the former traffic

awareness is provided by dedicated entities via V2I communication with vehicles,

while in the latter traffic information is exchanged directly between vehicles

using V2V communication. Decentralised and distributed systems can easy be115

extended (via V2I communications with signal controllers) with real-time Signal

Phase and Timing (SPaT) information. Access to SPaT has great potential to
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further improve traffic efficiency [25, 26] via additional speed advisory systems

extending route guidance.

2.3. CV technology-based TIS approaches120

Most of the CV technology-based TISs proposed in the literature focus on

message dissemination (e.g. [9]) and estimation of traffic conditions (e.g [27]).

In general, infrastructure-less TISs (i.e. based on V2V communication only)

allow for efficient traffic information crowd-sourcing even with low penetration

rates of the system [8] (for details please refer to [24]). A comparison of selected125

systems is given in Table 1. Some infrastructure-based TISs (i.e. relying on

V2I communication) also include route guidance. For instance, the multi-agent

V2I system introduced by Claes et al. ([13]) uses decentralised traffic data col-

lection combined with distributed route selection. In the system vehicles send

their route intentions to the infrastructure agents, which predict travel times130

based on the received intentions. Next, vehicles—based on the predicted travel

times—select the fastest route, which might lead to the FCE. Sharing of route

intentions allows partial coordination of route selection among vehicles, thus can

reduce the consequences of the FCE. The BeeJamA system [12] is also based on

a multi-agent V2I approach with decentralised traffic data collection, although135

it uses smaller sub-systems. In addition, it relies on decentralised guidance

provided by the agents which allows efficient coordination of route selection.

In [15] the system is extended with guidance based on path reservation com-

bined with marginal pricing. The approach of Du et al. ([14]) uses guidance

with coordination achieved thanks to the iterative negotiation provided by on-140

line communication environment. Similar to the system of Claes et al. ([13]) it

uses distributed guidance. However, the coordination is carried out via iterative

negotiation. This gives better potential to deal with the FCE. The implemen-

tation details, as well as how traffic information is collected are not presented,

as the work focuses on the guidance.145

In this article we introduce an alternative approach explicitly designed to

cope with the FCE (the above-mentioned systems were not evaluated in the
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FCE scenario). Unlike other systems, TrafficEQ has a fully distributed archi-

tecture (for information collection and route selection) with infrastructure-less

communication. That is, routing decisions are made autonomously by vehi-150

cles, while information about traffic conditions is exchanged between vehicles

using V2V communication without agent-based support. Instead of coordina-

tion TrafficEQ uses a simple probabilistic routing which in case of congestion

distributes vehicles among alternative routes. The system is explicitly evalu-

ated in two scenarios where the FCE typically appears—the reference two-route155

highway and a realistic urban road network.

3. The TrafficEQ system

Our system consists of independent TrafficEQ units installed in vehicles. We

assume that a vehicle is additionally equipped with a digital map, a Satellite

Navigation System (SNS), and a radio interface enabling V2V communication.160

The in-vehicle TrafficEQ unit, as illustrated in Fig. 1, has three functional mod-

ules: (i) V2V-based traffic information collection and dissemination, (ii) esti-

mation of current travel times, and (iii) route guidance. They are described in

detail in the next sections.

Travel time
estimation

Route
guidance

satelite navigation system

digital map radio interface

Data collection and
dissemination

Figure 1: Modules of TrafficEQ.
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3.1. Module 1: V2V-based information collection and dissemination165

This module enables a vehicle to collect and share traffic information with

other TrafficEQ-equipped vehicles. Individual information collection is possi-

ble because of a SNS combined with a digital map. Vehicles exchange traffic

information-related messages over a wireless communication channel. The dis-

semination is based on a one-hop broadcasting technique, similar to the ones170

used in [8, 28, 29]. Details of the dissemination method are given below.

3.1.1. Data abstraction

The TrafficEQ system of each vehicle has a local travel time database (TTDB)

in which it stores travel time information (TTI) for each road segment: its

identifier, value of travel time, and a timestamp of the stored travel time. In175

addition, a TTI contains the information about the number of reports received

about the road segment during the last p seconds (the system stores the number

of reports for each of the last p seconds in order to maintain the total count).

The number of reports is referred to as segment popularity counter. Each vehicle

has access to a digital map. The digital map represents a road network as a180

graph of road segments. Each road segment has the following attributes: iden-

tifier, length, and speed limit. A vehicle is interested in estimating the travel

times between two locations: origin (O) and destination (D). We assume that

there exists at least one route for the pair O-D represented as a sequence of n

road segments si, R = [s1, s2, . . . , sn]. In particular we allow for m alternative185

routes R = {R1, R2, . . . , Rm}, where m ≥ 1. The TrafficEQ system can estimate

travel times between O-D by querying the map for available alternative routes

for the given O-D and the TTDB for current travel times on the respective road

segments.

3.1.2. Dissemination protocol190

The pseudo-code of the dissemination and collection algorithm is presented

in Algorithm 1.
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1: Initialise TTDB

2: {Disseminate}

3: for each broadcasting step do

4: create packet from TTDB

5: broadcast packet

6: end for

7: while traveling do

8: {Collect first-hand TTI}

9: if event of traversing a road segment then

10: create TTI

11: update TTDB with TTI

12: end if

13: {Collect second-hand TTIs}

14: if event of receiving a packet then

15: for TTI ∈ packet do

16: if TTI newer than TTDB.TTI then

17: update TTDB with TTI

18: end if

19: end for

20: end if

21: end while
Algorithm 1: Dissemination algorithm.
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It is a one-hop dissemination protocol combining local broadcast and store-

and-forward mechanisms. Each TrafficEQ module periodically broadcasts pack-

ets with TTIs from its TTDB. Due to bandwidth limitations only selected TTIs195

from TTDB are broadcasted. The selection is based on a utility function, which

is a linear sum of the following two ranks: up-to-dateness—TTIs with the most

recent timestamp are preferred—and scarcity—segments with the lowest seg-

ment popularity counter are preferred. Only k TTIs with the highest value of

the utility function are encoded to a packet (line 4) and broadcasted at every200

broadcasting step (line 5). Vehicles travelling in the opposite directions also par-

ticipate in the dissemination of TTIs. This helps in propagating the information

in low density scenarios.

To address a scenario of low density traffic, a vehicle carries the packet until

it discovers a neighbour in its transmission range (i.e. when it receives a packet205

from another vehicle). TTIs can be classified as either first- or second-hand.

The former come from vehicle’s own experience, i.e. after traversing a road

segment the vehicle creates a TTI about the segment (lines 8–12). Specifically,

for each segment a vehicle records two timestamps—the first one when entering

a segment and the second one when leaving it. This allows for calculating travel210

time on each segment. In this work, the distinction between road segments

is provided by the simulator. In reality, every car would be required to run

a map-matching algorithm in order to identify a road segment it is currently

travelling on [30]. Finally, created TTIs are then shared with the neighbouring

vehicles. The second-hand TTIs are received from other vehicles (lines 13–20).215

A vehicle continuously listens for second-hand TTIs. Information about a given

segment stored in the TTDB is updated either if first-hand TTI is created or if

the timestamp of the received TTI is newer than the one stored in the TTDB.

In both cases the new TTI replaces the old one.
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3.2. Module 2: Estimation of the current travel time220

Travel time T on route Ri is calculated as a sum of travel times on the

route’s segments sj :

T (Ri) =
∑

j∈1,...,n

T (sj), sj ∈ Ri. (1)

Initially the T (sj) is set to a default value called static travel time (STT (sj)),

which is calculated as the time needed to complete segment sj at the maximum

speed allowed on this segment:225

STT (sj) =
length(sj)

max speed(sj)
. (2)

On a straight highway segment, the STT value is close to the free-flow travel

time (FFTT) (i.e. the time needed to travel a segment when the vehicle speed

is not affected by dense traffic conditions). However, for urban roads which

often include turns, intersections and traffic signals, the FFTT value is often

lower that STT. As we cannot assume that the FFTT value is known to Traf-230

ficEQ users, a default TTI value is initially set to STT. Travel time on a road

segment depends on the traffic demand (flow) and the supply (capacity) which

can change dynamically [31]. Whereas fluctuations in demand are rather easy

to predict (increase of flow during rush hour), the fluctuations in supply (e.g.

due to traffic accidents) are often unpredictable. Therefore it is challenging to235

estimate travel times on a road segment knowing only the number of vehicles

(demand). In the case of a traffic accident the estimate would be too optimistic

(as in [13]). For these reasons, the TrafficEQ system describes traffic conditions

by means of the latest travel times of the segments reported by the system

users. Therefore, the newest information about a given segment replaces the240

older one. This approach has the fastest reaction to changes in traffic condi-

tions [18]. Additionally, we developed a method to discard outdated information

in cases where no information about a segment is available for a specific period

of time. We use a time-to-live (TTL) threshold which determines the maximum

age of the information used in the system. If a timestamp of a TTI in TTDB245
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is older than the predefined TTL, the TrafficEQ system resets the value to the

default value (i.e. to STT).

3.3. Module 3: Route guidance

The route guidance problem is modelled as the shortest path problem for

an O-D pair on a weighted graph, where weights represent the cost of travel on250

road segments (expressed as travel times). TrafficEQ finds several alternative

routes for the O-D by using Yen’s algorithm [32], which produces K-shortest and

single-sourced paths. The routes are calculated at the origin (hereafter referred

to as a decision area) until the destination, whereby loops are avoided. Two

routing strategies are defined. The first one, called probabilistic, is the main255

strategy of TrafficEQ designed to mitigate the FCE. According to this strategy

the probability of choosing a route is inversely proportional to its estimated

travel time. This strategy in addition to travel times, takes into consideration

a correlation factor (related to the fact that some segments can be shared)

between the alternative routes. The cost of a route route i (c(Ri)) is the travel260

time on this route T (Ri) penalised by a correlation factor (cf):

c(Ri) = T (Ri) · cfi, (3)

where cf is a correlation factor expressed as:

cfi = β ·Ni, (4)

where Ni is number of common route segments of route i and all alternative

routes. The probability of choosing route Ri is calculated as follows:

p(Ri) =

∑
j∈1,...,m c(Rj)− c(Ri)

(m− 1) ·
∑

j∈1,...,m c(Rj)
, (5)

which causes the route with the smallest cost to be chosen most frequently.265

In selected experiments we extended the probabilistic strategy with an ad-

ditional probability of not following a guidance when it does not suggest the

route with the shortest-time. In this case the probability of not following the

13



route with a longer time (p(st)) is now correlated with time difference between

the proposed route and the route with the shortest-time:270

p(st) =
c(Rp)− c(Rst)

c(Rp)
, (6)

where c(Rp) is a cost (travel time) of the route given by the probabilistic strat-

egy, and c(Rst) is a cost (travel time) of the shortest-time route.

The second strategy, shortest-time, represents the conventional approach

used in current route guidance systems and is defined for comparison purposes.

Drivers choose the route (among m alternatives) with the shortest current travel275

time:

Rst = arg min
Ri∈R

{T (R1), T (R2), . . . , T (Rm)}. (7)

4. Simulation experiments

In this section the probabilistic strategy is compared with the conventional

shortest-time strategy in terms of how well it mitigates the FCE. First, in

Sec. 4.1 we describe the types of drivers and the performance measures. Next,280

in Sec. 4.2 details about the simulation model are given. In particular, the

two scenarios—highway and urban—are explained and preliminary experiments

analysing general route properties are given. Finally, simulation results are given

in Sec. 4.3.

4.1. Driver types and performance measures285

We define three classes of drivers. The first one, called Uninformed, refers to

drivers who do not use a route guidance system, i.e. they do not modify their

routes. In the second one, called TrafficEQ-P, drivers use the TrafficEQ system

with the probabilistic route guidance. The third class of drivers—TrafficEQ-

ST—assumes that drivers use the TrafficEQ system with the shortest-time route290

guidance. In order to evaluate the performance of the road network under differ-

ent distributions of driver classes, we measure the throughput (N), i.e. the num-

ber of completed trips within the simulation time. The trips are characterised

14



by the following performance measures: Tsum—total travel time (i.e. summed

travel time of all trips), Tavg—average trip travel time; Tmin—minimum trip295

travel time, Tmax—maximum trip travel time, and Tstddev—standard devia-

tion of travel times. These metrics are compared at two levels: global-level—

describing the average performance of all vehicles—and route-level—describing

the performance related to individual routes.

4.1.1. Quality of V2V-based traffic information300

The proposed system uses a purely distributed V2V-based data dissemina-

tion protocol. As described in Sec. 3.1.2 the proposed dissemination protocol is

designed to handle both types of networks—sparse by using store-and-forward

technique, and dense by controlling the number of forwarded packets. In order

to test the quality of the information crowd-sourced by vehicles we define a Mean305

Absolute Percent Error (MAPE). It measures the error between the estimated

travel time from the local database and the ground truth, known directly from

the simulator:

MAPE =
∑
s∈S

| T̂ (s)− T (s)

T (s)
|, (8)

where T (s) is the actual travel time on the segment (given by the micro-

simulator) and T̂ (s) is the estimated travel time on the segment provided by310

the TrafficEQ system.

4.1.2. Comparison with alternative sources of traffic information

Additionally, we evaluate the impact of the VANET-based information on

the route guidance performance. That is, we compare the performance of both

route guidance strategies in two cases where the TrafficEQ system uses only315

local travel time estimates crowd-sourced from a VANET to two cases in which

the system uses other sources of information:

• TMC-based—equivalent to information provided via the Traffic Message

Channel (TMC) technology [33]. In our implementation, as in [13], the
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average travel time on a segment is calculated during five minutes intervals320

and with a five minute delay.

• Perfect—the most recent travel time information is available to drivers

without any delays (a hypothetical perfect real-time information).

4.2. Simulation setup

We developed an open source simulation platform especially for testing325

VANET-based applications [34]. Its overview is shown in Fig. 2. The platform

is composed of (a) a microscopic traffic simulator SUMO (version 0.18), (b) a

network simulator NS-3 (version 3.16), (c) a bi-directional coupling between the

simulators, and (d) an application layer.
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Figure 2: Overview of our simulation platform.

SUMO’s microscopic traffic flow model is based on the Krauss car-following330

model [35]. NS-3 models the wireless communications according to the IEEE

802.11p standard [36]. We also programmed a Traffic Control Interface (TraCI)

to create a bidirectional connection between NS-3 and SUMO. This allowed us

to obtain parameters of simulated vehicles as well as to influence their behaviour

given the information exchanged over the wireless network. The specification of335

the 802.11p protocol in NS-3 is given in Table 2.

The simulation settings are given in Table 3. Each experiment lasted one

hour and was repeated ten times. TrafficEQ broadcasts packets (with a fre-

quency of one per second) containing traffic information from the last two min-

utes. We run simulations in two scenarios (urban and highway, described below),340

each of them having a flow of 1000 vehicles/hour/lane traveling in the same di-

rection. The parameter values of the dissemination method (broadcasting step,
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Table 2: Parameter values for IEEE 802.11p.

Parameter Value

Transmission Power 21.0206 / 16.02 dBm

Transmission/Reception Gain 0/0

Energy Detection Threshold -96.0dBm

CAC Model Threshold -99.0dBm

OFDM Rate 6Mbps

Bandwidth 10MHz

Propagation Loss Model m-Nakagami Model

m for m-Nakagami 1.5 ifdistance < 80m, 0.75 otherwise

Propagation Delay Model Constant Speed Model

history of TTDB, number of TTIs in the packet and TTL) were obtained in

preliminary experiments.

Table 3: TrafficEQ simulation settings.

Simulation time 3600 seconds (1 hour)

Number of independent runs 10 for each experiment

Communications standard IEEE 802.11p

Maximum wireless communication range 500 meters

Broadcasting step 1 second

Penetration rate 0-100%, every 5%

History of TTDB (p) 120 seconds

Number of TTI in a packet (k) 10

Time-to-live (TTL) 120 seconds

Input flow 1000 vehicles/hour/lane (one direction only)

4.2.1. Highway scenario345

We use the highway scenario from [3] consisting of a two-lane highway—also

referred to as the main route—and a one-lane bypass as illustrated in Fig. 3.

The accident (marked with the dot) happens at a distance of 1.5 kilometres from

the decision area. During the accident, one lane of the main route is closed so

vehicles need to merge onto the second lane. In the decision area (marked with350
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the rectangle) drivers can choose whether or not to exit the highway and take

the bypass. Table 4 specifies the length and speed limits of the routes, as well

as STT and FFTT values (FFTT were obtained using simulations). As there

are no turns or intersections in this scenario, the FFTT is close to the STT for

both routes.355

decision area

destination

accident

orginO

D

D

D
O

L = 2.5 km

x = 1.5 km
Main route

Bypass route

Figure 3: The highway scenario.

Table 4: Highway road network settings.

Route Length [m] Speed [m/s (km/h)] STT [s] FFTT [s]

Main 3492 31.94 (115) 93.72 97.10

Bypass 3497.57 25 (90) 115.52 119

To empirically define the critical flow, we run preliminary simulations with

flows ranging from 500 to 1200 vehicles/lane/hour. A rapid increase in travel

times was observed for the flow equal to 900 vehicles per lane per hour (transition

of the traffic state from free-flow to congested [3]). Above this critical flow

vehicles start queuing up before the area of the accident and the congestion360

propagates. In the experiments the flow is set to 1000 vehicles/hour/lane (which

is above the critical flow).

4.2.2. Urban scenario

The urban scenario represents a part of a real road network from Kirch-

berg (neighbourhood in north-eastern Luxembourg City) exported from Open-365

StreetMap [37]. The scenario consists of three routes: a main route Kennedy

(K), and two alternative routes: Adenauer (A) and Thuengen (T) as presented
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in Fig. 4. This scenario is an example of a typical urban road network which

includes signalised intersections and overlapping routes (route Kennedy and

Thuengen have common segments). Based on real observations, the default370

split was set to 0.9, 0.05, and 0.05 for Kennedy, Adenauer and Thuengen re-

spectively. The accident (marked with the dot) happens on the Kennedy route

and causes a decrease of the maximum speed at which vehicles can pass the acci-

dent point from 19.44 m/s (70 km/h) to 2 m/s (7.2 km/h). In the decision area

(marked with the rectangle) drivers can choose which of the three alternative375

routes to take.

destination

accident

traffic signal

orginO

D

D

O

K

A

T

x = 550 m decision area

Kennedy (K)
Adenauer ( )A
Thuengen ( )T

Figure 4: The urban scenario (Kirchberg, Luxembourg).

Table 5 specifies the length, speed limits, and SST. Table 6 shows the route

performance (without accident) with default split (90% for Kennedy and 5%

for Adenauer and Thuengen). The value of Tavg approximates FFTT. Table 6

shows that FFTT on the Adenauer route is shorter than on Thuengen route380

despite the fact that SST on the Adenauer route is longer. This difference

between STT and FFTT shows the importance of considering the actual travel

times even if the road capacity is not reduced.
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Table 5: Static urban road network settings.

Route Length [m] Speed [m/s (km/h)] STT [s]

K (Kennedy) 2069.63 19.44 (70) 97.96

A (Adenauer) 2598.22 13.89 (50) 156.02

T (Thuengen) 2460.76 13.89 (50) 142.34

Table 6: FFTT performance for the 0.9, 0.05, and 0.05 split.

Route N Tavg [s] StdT [s] Tmin[s] Tmax[s]

K 1735 127.43 10.40 104.29 150.87

A 93 196.90 13.57 178.58 223.00

T 96 200.81 18.99 167.87 232.88

Global 1924 134.45 24.01 104.29 232.88

In all figures presenting time series, the value of travel time is calculated

including the decision area, whereas the number of vehicles on segments does385

not include the decision area. This enables distinguishing between causes of the

increased travel times. In our preliminary experiments we discovered that the

critical flows for the Kennedy route are 500 (with an accident) and 1000 (without

the accident) vehicles per lane/hour. In the rest of simulations reported in this

work we used the flow equal to 1000 vehicles per lane/hour.390

4.3. Simulation results

First the TrafficEQ guidance is evaluated in the highway scenario (Sec. 4.3.1),

and the urban scenario (Sec. 4.3.2). In each experiment all drivers belong to

one of the three groups (uninformed, TrafficEQ-ST, or TrafficEQ-P). Results

of the study with different groups coexisting within the same experiment are395

reported in Sec. 4.3.3. In Sec. 4.3.4, we analyse the quality of V2V-based traffic

information dissemination. Finally, in Sec. 4.3.5 we study how different sources

of traffic information influence performance of TrafficEQ.
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4.3.1. Highway scenario

Table 7 compares performance of the road network for the three groups of400

drivers. The values in parentheses represent the standard deviation of ten differ-

ent runs of the experiment. The use of traffic information with the shortest-time

strategy (represented by TrafficEQ-ST) significantly improves network perfor-

mance compared to the case where drivers did not modify their original routes

(i.e. the uninformed group). The average travel time drops by around 52%405

(from 284.3 to 135.22 seconds). This means that approximately 65 hours of to-

tal driving hours are saved if the uninformed group switches to the shortest-time

strategy. In addition, throughput of the network (number of traveling vehicles)

is increased by approximately 10% (from around 1744 to 1924 vehicles). The use

of the probabilistic strategy (TrafficEQ-P) further improves the average travel410

time (decreases by 6% compared to TrafficEQ-ST drivers).

Table 7: Global-level performance (highway scenario), std. dev. in parenthesis.

Uninformed TrafficEQ-ST TrafficEQ-P

N 1744.6 (34.2) 1924.3 (0.90) 1928 (1.00)

Tsum[h] 137.77 (4.10) 72.28 (0.07) 70.10 (0.01)

Tavg [s] 284.30 (3.04) 135.22 (0.08) 130.89 (0.07)

Tavg [s] with confidence interval 99% 284.11–284.49 135.22–135.23 130.89–130.89

Tmin[s] 124.47 (0.14) 123.5 (0.40) 123.21 (0.09)

Tmax[s] 441.98 (5.77) 147.05 (0.31) 138.38 (0.31)

Tstddev 90.64 (1.70) 4.81 (0.05) 5.10 (0.01)

Table 8 presents travel times on each of the routes individually. In case of

TrafficEQ-ST only 31.4% of drivers chose the bypass route. The average travel

time is slightly lower on the main route (134.47 vs. 136.87 seconds). In the case

of TrafficEQ-P the share of the bypass route increases to 45.9%. TrafficEQ-P415

users have a lower standard deviation of travel times (especially on the main

route—1.23 vs. 5.6).

The decrease in travel time variability can be seen when comparing Fig. 5a

with Fig. 5b. With the shortest-time routing all vehicles initially take the main
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Table 8: Route-level performance (highway scenario), std. dev. in parenthesis.

Uninformed TrafficEQ-ST TrafficEQ-P

Main

N 1744.60 (34.20) 1320.90 (68.60) 1044.00 (54.10)

Tsum[h] 137.80 (4.10) 49.34 (0.63) 36.63 (0.46)

Tavg [s] 284.30 (3.04) 134.47 (0.08) 126.30 (0.00)

Tmin[s] 124.47 (0.14) 123.5 (0.40) 123.21 (0.09)

Tmax[s] 441.98 (5.77) 147.04 (0.30) 131.55 (0.31)

Tstddev 90.64 (1.70) 5.60 (0.03) 1.23 (0.01)

Bypass

N NA 603.40 (31.4) 884 (45.9)

Tsum[h] NA 22.94 (0.70) 33.47 (0.46)

Tavg [s] NA 136.87 (0.01) 136.31 (0.01)

Tmin[s] NA 135.09 (0.02) 135.03 (0.00)

Tmax[s] NA 138.98 (0.01) 138.38 (0.32)

Tstddev NA 0.98 (0.01) 0.86 (0.01)

route (having the shortest STT). Because of the accident, vehicles start report-420

ing longer travel times which at some point become longer than that of the

bypass route making all vehicles in the decision area choose the bypass route.

Since no vehicles select the main route anymore, after the TTL period the travel

time on that route is set to the default STT value and vehicles start selecting

the main route again. This situation—traffic switch from the main route to425

the bypass and vice versa—repeats several times until the full capacity of the

main route is restored (i.e. the accident is removed). The visible reductions

of oscillations in travel times and numbers of traveling vehicles on both routes

indicates that the probabilistic strategy copes with the FCE more effectively

than the shortest-time strategy.430

4.3.2. Urban scenario

Analogously to the highway scenario, drivers using the TrafficEQ-ST or

TrafficEQ-P routing strategy improve the overall network performance—throughput
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Figure 5: Trip durations reported by individual vehicles and the number of

vehicles on each route (highway scenario): TrafficEQ-ST (a), TrafficEQ-P (b).

Table 9: Global-level performance (urban scenario), std. dev. in parenthesis.

Measure Uninformed TrafficEQ-ST TrafficEQ-P

N 885.2 (119.4) 1560.45 (24.06) 1722.09 (9.74)

Tsum[h] 176.10 (29.33) 162.01 (1.41) 107.10 (29.44)

Tavg [s] 711.27 (36.47) 373.83 (5.18) 221.22 (14.16)

Tavg [s] with conf. interval 99% 708.11–714.43 373.49–374.17 220.34–222.1

Tmin[s] 155.68 (0.09) 156.68 (0.17) 136.47 (2.88)

Tmax[s] 968.46 (1.19) 588.91 (27.93) 336.73 (43.58)

Tstddev 246.77 (3.14) 77.82 (3.76) 36.13 (9.66)

is almost doubled (see Table 9). The average travel time decreases from 717.27

seconds for uninformed drivers to 373.83 for TrafficEQ-ST drivers and 221.22435

for TrafficEQ-P drivers. Contrary to the highway scenario, the improvement in

the average travel time observed for TrafficEQ-P strategy is much greater—it

is about 40% shorter that of TrafficEQ-ST. Similar observations can be made

when looking at the performance of the individual routes presented in Table 10.

With TrafficEQ-ST the distribution of trips was as follows: 42.3% of traffic to440

Kennedy, 29.8% to Adenauer, and 27.9% to Thuengen. For TrafficEQ-P the val-

ues were 42.6, 39.7, and 17.7 respectively. This change of the ratio for Adenauer

and Thuengen routes resulted in a significant improvement of road network per-
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Figure 6: Trip durations reported by individual vehicles and the number of

vehicles on each route (urban scenario): TrafficEQ-ST (a), TrafficEQ-P (b).

formance. TrafficEQ-P drivers saved 54.91 hours over TrafficEQ-ST drivers. In

terms of individual routes, the performance also improved as the average travel445

times drop by 40.1% for Kennedy, 39.9% for Adenauer, and 43.7% for Thuen-

gen in comparison with the TrafficEQ-ST strategy. Reductions in oscillations

in the experienced travel times due to the TrafficEQ-P strategy are shown in

Fig. 6—see TrafficEQ-ST (a) vs. TrafficEQ-P(b).

4.3.3. Analysis of different penetration rates of the probabilistic strategy450

In the experiments reported so far, all informed vehicles within a single

experiment used the same strategy—either the probabilistic (TrafficEQ-P) or

the shortest-time (TrafficEQ-ST). However, in reality some users would deviate

from systems’ guidance, especially if a route with longer travel time is advised.

In this section we analyse this case by mixing the two strategies within a sin-455

gle experiment. TrafficEQ-ST represent users with route advice based on the

shortest-time principle, while TrafficEQ-P corresponds to drivers who follow the

probabilistic guidance. Fig. 7 and Table 11 show the average travel times for

different penetration rates of TrafficEQ-ST users.

In the highway scenario the average travel time of all vehicles first decreases,460

reaches a minimum for approximately 50% of TrafficEQ-P penetration rate and
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Table 10: Route-level performance (urban scenario), std. dev. in parenthesis.

Route Routing strategy

Kennedy (K) Uninformed TrafficEQ-ST TrafficEQ-P

N 776.40 (106.84) 665.91 (42.30) 733.73 (42.60)

Tsum[h] 160.70 (27.11) 71.51 (1.82) 48.24 (14.36)

Tavg [s] 739.95 (37.79) 386.61 (3.77) 231.63 (30.63)

Tmin[s] 155.68 (0.09) 156.68 (0.17) 136.47 (2.88)

Tmax[s] 968.46 (1.19) 587.15 (29.89) 328.72 (54.62)

Tstddev 739.95 (37.79) 88.44 (2.43) 40.74 (13.94)

Adenauer (A)

N 50.00 (6.00) 465.64 (29.80) 683.82 (39.70)

Tsum[h] 7.17 (1.07) 46.43 (0.82) 41.16 (11.03)

Tavg [s] 513.41 (23.15) 359.17 (8.96) 215.87 (4.82)

Tmin[s] 189.56 (0.22) 187.85 (3.47) 178.59 (0.68)

Tmax[s] 696.25 (4.19) 507.34 (18.71) 286.85 (16.53)

Tstddev 176.90 (2.98) 58.89 (6.73) 21.73 (2.71)

Thuengen (T)

N 58.80 (6.60) 428.91 (27.90) 304.55 (82.37)

Tsum[h] 8.23 (1.15) 44.08 (0.81) 17.70 (4.83)

Tavg [s] 501.64 (19.78) 369.99 (5.23) 208.16 (6.06)

Tmin[s] 163.66 (0.30) 162.80 (0.32) 161.00 (2.08)

Tmax[s] 682.60 (0.17) 553.83 (19.17) 280.79 (21.45)

Tstddev 184.68 (5.32) 74.83 (3.53) 25.36 (3.14)

then increases slightly. The grey area in Fig. 7 illustrates where the system

may be considered inefficient, because the mean travel time for all drivers is not

at its minimum. In fact, by looking at the users of TrafficEQ-ST (blue line)

and TrafficEQ-P (red line) separately, we observe that their average travel time465

decreases monotonically for the increasing number of TrafficEQ-P users. This is

because maximum travel times experienced by both groups of drivers decrease

(due to the reduction of the oscillations). Fig. 9a also demonstrates that the

more TrafficEQ-P drivers are present in the network, the lower the standard

deviation is in the experienced travel time, which increases the reliability of the470
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inefficiency

Figure 7: Average travel time vs. penetration rate of TrafficEQ-P drivers (high-

way scenario).

estimated travel times.

Fig. 8 and Table 12 present the results for the urban scenario. Unlike in

the highway scenario, the average travel time of all vehicles decreases almost

until the maximum penetration rate of TrafficEQ-P vehicles (95%). The grey

area where the average travel time is not at its minimum is observed only for475

the remaining 5% of the penetration. However, as in the highway scenario,

the more TrafficEQ-P users are present in the network, the lower the average

travel time of TrafficEQ-ST and TrafficEQ-P users is, and in most cases lower

standard deviation of travel times is observed (see Table 12 and Fig. 9). In

contrast to the highway scenario, TrafficEQ-P users are always better off than480

TrafficEQ-ST drivers and the minimum total time travelled is observed for the

rate of 100% (107.10 hours, see Table 12). Worth noticing also, is the fact that

travel times on the alternative routes are close to each other for any composition

of drivers which indicates that the system reaches a type of a user equilibrium

state (only the travel time on Thuengen route is usually longer than on the two485
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Figure 8: Average travel time vs. penetration rate of TrafficEQ-P drivers (urban

scenario).

other routes).

The results of an alternative evaluation, where there is a certain probability

that a vehicle will not follow the alternative in case if it is not the one with

shortest travel time (according to Equation 6) are shown in Table 13. Among

all 1876 vehicles, 65% were provided with a route with longer travel time, hence,490

they were tempted to select the route with a shorter travel time. Among those

drivers, 21% decided to deviate, which resulted in shorter average travel time

(198.91 seconds). The average travel time is 210.88 seconds. Therefore, this

corresponds to a situation, were the percentage of TrafficEQ-P is between 70–

90%.495

4.3.4. Quality of V2V-based traffic information

Table 14 shows the MAPE values in the highway and urban scenarios. Two

cases are analysed. In the first one, the population is composed entirely of

TrafficEQ-ST, while in the second case only TrafficEQ-P users are present in

the network. One can notice that errors are greater in the urban scenario. For500

instance, in the highway scenario the error on all segments is lower than 20%. In

the urban scenario this is true only for the 75% and 84% cases, for TrafficEQ-ST

and TrafficEQ-P respectively. The reason is that in the highway scenario the

two routes are close to each other and vehicles traveling on both routes take part
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Table 11: Performance for different penetration rates of TrafficEQ-P (highway

scenario). Tavg ST and Tavg P denote the average travel times for TrafficEQ-ST

and TrafficEQ-P users, respectively.

PR Tsum[h] Tavg [s] Tstddev [s] Tavg ST [s] Tavg P [s]

0 72.28 135.22 4.81 135.22 NA

10 71.71 134.03 4.21 134.09 133.45

20 70.83 132.24 4.08 132.06 132.93

30 69.89 130.50 3.58 129.64 132.47

40 69.81 130.28 3.69 129.10 132.18

50 69.50 129.70 3.91 127.71 131.70

60 69.62 129.89 4.27 127.36 131.53

70 69.70 130.03 4.47 127.07 131.32

80 69.82 130.26 4.72 126.80 131.18

90 69.96 130.62 4.95 126.53 131.11

100 70.10 130.89 5.10 NA 130.89

in data dissemination, whereas in the urban scenario distances between the al-505

ternative routes are larger than the communication range. Another observation

is that in both scenarios TrafficEQ-P results in lower traffic information error

than TrafficEQ-ST. This is because the probabilistic strategy distributes drivers

more evenly over the road network. TrafficEQ-ST causes vehicles to travel in

more compact groups and thus creates larger gaps in V2V communication.510

In the results reported so far we used the m-Nakagami propagation loss

model. Now, we briefly compare these results with more realistic propaga-

tion models: the Two-Ray Ground Propagation (TRGP) model and the TRGP

model extended with the Obstacle Shadowing Propagation model according to

[38] (TRGP-OSP). In both cases antennas had heights set to 1.5 meters with515

radio propagation via two paths—one ray received directly, the other one re-

flected on the ground. The TRGP-OSP model adds the shadowing effect of

buildings (i.e. propagation loss is higher when a transmission ray goes through

a building). The average transmission distance using m-Nakagami model was

the longest (97 meters), followed by TRGP (92 meters) and TRGP-OSP (88520
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Table 12: Performance for different penetration rates (PR) of TrafficEQ-P (ur-

ban scenario). Tavg SP and Tavg P denote the average travel times of TrafficEQ-

ST and TrafficEQ-P users, respectively.

PR Tsum[h] Tavg [s] Tstddev [s] Tavg ST [s] Tavg P [s]

0 162.01 373.83 77.82 373.83 NA

10 144.75 350.51 72.41 351.52 341.39

20 157.16 348.54 76.29 350.36 341.32

30 155.93 333.90 66.74 335.92 329.04

40 149.93 309.27 64.86 313.45 302.83

50 128.39 265.12 55.66 269.59 260.68

60 118.21 228.11 38.70 232.91 224.86

70 111.49 213.06 31.12 217.17 211.31

80 109.33 209.12 27.28 211.42 208.56

90 107.49 205.62 24.22 203.40 205.88

100 107.10 221.22 36.13 NA 221.22

meters). In addition, the TRGP-based models had higher number of dropped

packets than the m-Nakagami due to modelling of ray reflection. Nevertheless,

this did not impact the performance of TrafficEQ. The results of the system

performance were comparable for each of the three propagation loss models,

with the average travel times around 222 seconds.525

4.3.5. Alternative sources of traffic information

So far we have studied the TrafficEQ system with traffic information crowd-

sourced using V2V communication. In this section we analyse what happens if

TrafficEQ relies on traffic information from two alternative non-V2V sources—

TMC and perfect (see Sec. 4.1.2 for details). The comparative results are given530

in Tables 15 and 16 (highway and urban scenarios respectively). Each scenario

has two cases. In the first one, the network is composed of TrafficEQ-ST users

only and in the second one everyone uses TrafficEQ-P strategy.

In the highway scenario performance of TrafficEQ-ST users is sensitive to

traffic information type. While very similar performance is observed when per-535
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Figure 9: Standard deviation of travel times with various distributions of

TrafficEQ-ST and TrafficEQ-P users: highway scenario (a), urban scenario (b).

Table 13: Performance when drivers selectively do not follow the probabilistic

guidance, urban scenario. Davg is an average difference between the suggested

travel time by the probabilistic strategy and the shortest route time.

Group N Tavg [s] Tstddev [s] Davg [s]

All vehicles 1876 210.88 35.65 -

Vehicles tempted to deviate (TD) 1218 (65%) 216.93 36.74 38.39

Vehicles that did not deviate 959 (79% of TD) 221.79 36.38 34.59

Vehicles that did deviate 259 (21% of TD) 198.91 32.26 52.60

Table 14: Mean absolute percent error (MAPE).

Percentage of segments with

Routing MAPE MAPE < 10% MAPE < 20%

Highway

TrafficEQ-ST 0.04 83.33% 100%

TrafficEQ-P 0.02 91.67% 100%

Urban

TrafficEQ-ST 0.29 61.36% 75.00%

TrafficEQ-P 0.12 68.18% 84.09%
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fect and V2V are used, the use of TMC increases the average travel time from

approximately 135 (for V2V) to 147 seconds (for TMC). In the case of the

TrafficEQ-P strategy similar results are observed for all information sources.

The five minute delay related to TMC does not influence network performance,

because we assume that TMC is aware of the accident from the beginning of540

the simulation.

In the urban scenario, similarly to the highway case, TMC significantly de-

grades the overall network performance when the TrafficEQ-ST strategy is used.

Surprisingly, the V2V information results in better guidance performance than

when perfect information is used (regardless of the routing strategy). The rea-545

son is that when perfect information is used, more vehicles are routed to the

Kennedy route, which decreases the overall performance (see Figs. 6 and 10).

The use of V2V information results in higher variation of traffic information

among vehicles (when perfect information is used all vehicles have the same

information). Hence, the use of such information further contributes to route550

choice diversification.

Table 15: Comparison of information sources (highway scenario).

TMC Perfect V2V

Shortest-time (only TrafficEQ-ST used)

N 1921 (0) 1925.5 (2.06) 1928 (1.67)

Tsum[h] 78.57 (0.01) 72.77 (0.15) 72.28 (0.07)

Tavg [s] 147.25 (0) 136.06 (0.16) 135.22 (0.08)

Tmax[s] 189.85 (0.10) 147.73 (1.2) 147.05 (0.31)

Tstddev 15.71 (0) 4.28 (0.11) 4.81 (0.05)

Probabilistic (only TrafficEQ-P used)

N 1928 (1.67) 1929.5 (0.5) 1928 (1)

Tsum[h] 70.15 (0.08) 70.21 (0.04) 70.10 (0.01)

Tavg [s] 130.98 (0.07) 130.99 (0.05) 130.89 (0.07)

Tmax[s] 138.73 (0.2) 138 (0) 138.38 (0.31)

Tstddev 5.12 (0.03) 5.12 (0.01) 5.1 (0.01)
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a)                                                                                                            b)

Figure 10: Trip durations for the drivers provided with perfect knowledge (urban

scenario): TrafficEQ-ST (a), TrafficEQ-P (b).

Table 16: Comparison of information sources (urban scenario).

TMC Perfect V2V

Shortest-time (only TrafficEQ-ST used)

N 1193 (0) 1386 (12.63) 1560 (24.06)

Tsum[h] 179.65 (0) 168.29 (1.20) 162.01 (1.41)

Tavg [s] 542.12 (0) 437.07 (3.50) 373.83 (5.18)

Tmax[s] 1148.6 (0.26) 755.76 (16.52) 588.91 (27.93)

Tstddev 162.12 (0) 118.39 (3.2) 77.82 (3.76)

Probabilistic (only TrafficEQ-P used)

N 1193 (0) 1865 (9.46) 1722 (9.74)

Tsum[h] 115.94 (7.72) 119.17 (3.59) 107.10 (29.44)

Tavg [s] 226.72 (17.93) 230.01 (7.58) 221.22 (14.16)

Tmax[s] 391.26 (86.37) 335.06 (24.01) 336.73 (43.58)

Tstddev 46.75 (20) 38.73 (6.69) 36.13 (9.66)

5. Weaknesses of TrafficEQ and future research directions

In this paper we demonstrate that a distributed V2V-based approach can

address the FCE. However, reported results indicate that there are several as-

pects that need further research. Below, we discuss weaknesses of our system555

and point out potential research directions that could address them.
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5.1. Traffic information

The use of the latest reported travel time information may lead to stability

and reliability issues. Hence, it requires further attention. For simplicity, we

rely on a simple V2V model which could be improved. For instance, instead of560

using a fixed TTL, a dynamic value proportional to the distance from a vehicle

to the related segment could be used. This would allow keeping information

about more distant segments for longer. The proposed TrafficEQ system can

also use other sources of information, including advanced V2V-based techniques

proposed in the literature (e.g. [8, 9, 10, 11]).565

5.2. User behaviour

The work presented in this article demonstrates how probabilistic route guid-

ance can address the FCE. Like other CV technology-based TISs mentioned in

this article we do not model behavioural processes involved in route choice, but

rather focus on the control aspect of routing. In preliminary experiments (not570

reported in this article) we analysed guidance under the C-logit model [39]. It

resulted in only slight improvement over our base TrafficEQ-ST routing, i.e. the

percentage of drivers following the non-fastest route was much lower than in the

probabilistic guidance. This suggests that in order to be realistic, the proba-

bilistic route selection needs to be extended with incentives (e.g. based on road575

pricing as in [15]). Using gamification approaches [40] as an alternative to pric-

ing is also worth investigating. Another way to influence collective behaviour

of vehicles is to use artificial information perturbation [41]. Nevertheless, for

the future work we believe that behavioural processes should be included in the

route choice modelling in the FCE case (see e.g. [42] for potential directions).580

Even if we assume that drivers comply with the guidance provided by our sys-

tem, the probabilistic approach could be improved to provide more efficient dis-

tribution of vehicles among the alternative routes. The network with TrafficEQ-

P users (regardless of their number) was more efficient than the network with

only TrafficEQ-ST users. However, in the highway scenario presence of more585
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than 50% of TrafficEQ-P vehicles had a negative influence on the average travel

time (see the grey area in Fig. 7).

Currently, guidance provided by TrafficEQ is autonomous, which makes the

system simple and easy to implement in practice. There are two obvious ex-

tensions are: i) V2V-based negotiations (similar to [14]), and ii) V2V-based590

dissemination of information indicating whether or not a vehicle selected the

route advised by the system.

5.3. FCE problem quantification

The metrics used in our study are highly related to our two scenarios. Design-

ing additional scenario-independent metrics that can quantify the FCE problem595

from the system and an individual user perspectives should be developed. More-

over, an analytical model giving theoretical insights on the impacts of various

parameters would be desirable.

6. Conclusion

This work tackles the problem of routing guidance in non-recurring conges-600

tion caused by temporary loss of capacity. The problem is challenging when

there is a strong link between link travel time and routing decisions of drivers.

Typical route guidance based on the shortest-time principle will simply transfer

congestion from one road to another. We argue that in such a situation travel

time prediction is difficult, especially due to capacity loss and the uncertainty605

related to routing decisions of vehicles. The existing route guidance systems do

not cope with the FCE as they either do not consider the effects of guidance

on the rest of the road network, or they predict link travel times based on the

number of vehicles traveling on the link, which in case of the loss of capac-

ity is unreliable. As demonstrated in the paper, the use of guidance based on610

the shortest-time principle leads to the FCE, expressed in strong oscillations in

travel times on available routes.
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The main goal of this article is to demonstrate how a distributed approach

based on V2V communications provided by CV technology can be used to mit-

igate the FCE. Our distributed TrafficEQ system combines traffic information615

crowd-sourcing via V2V communication with autonomous route guidance, in

which a route choice is made with a particular probability. The probabilis-

tic approach distributes traffic among alternative routes using only informa-

tion about prevailing conditions. Performance of such guidance was compared

with conventional routing based on the shortest-time principle. Realistic sim-620

ulations of vehicular traffic and wireless communication were carried out in

highway and urban scenarios. We demonstrated that the probabilistic strategy

significantly reduces oscillations in travel times and the numbers of traveling

vehicles on alternative routes compared to when the shortest-time strategy is

used. Overall road network performance was improved by reducing the average625

travel times as well as their standard deviation. However, some shortcomings of

our approach—constituting our future work—were observed. For instance, the

network performed better when some users applied the probabilistic strategy,

compared to the case of all vehicles using conventional shortest-time guidance.

However, the system’s optimal performance was achieved when only a fraction630

of vehicles use probabilistic guidance—approximately 50% for highway and 90%

for urban. Moreover, in some cases, nodes with self-regarding preferences had

no reason to use the probabilistic approach. Consequently, a social dilemma

leading to a situation where everyone was worse-off was created. Therefore,

extension of our system with incentives (e.g. based on road pricing) should be635

provided. Also, designing larger-scale scenarios with the FCE effect, and using

them to test guidance strategies is desirable. Experimental work reported in

this article provides a support for the development of theoretical work in the

future.
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