
Profiling Household Appliance Electricity Usage
with N-Gram Language Modeling
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Abstract—Household appliance classification, based on elec-
tricity usage patterns, is gaining a momentum in an era where
energy saving has become a priority and connected objects are
leveraged to influence consumers’ behaviors. In this respect,
electricity usage profiling of household appliances is an impor-
tant step for identifying malfunctioning devices and generating
automatic alerts about unusual consumptions. To support the
implementation of such profiling tasks in a practical and scal-
able way, a language modeling approach for classifying time
series representing appliances’ energy consumption readings is
developed in this paper. This approach captures both local
discriminative features of consumption profiles and overall curve
shapes to yield high classification accuracy, even in the presence
of unavoidable noise. Our approach is evaluated against state-
of-the-art approaches, and validated based on a large public
dataset from 27 different households with energy readings during
a one year span. Our experiment findings also show that how the
approach remains efficient even in the presence of noise.

I. INTRODUCTION

Citizens in modern societies are increasingly aware of the
urgent need to make better use of energy resources and move to
more sustainable and greener development paths. The are some
signs that the rate of improvement in energy efficiency has been
increasing slightly in the last few years, but much remains to
be done, especially to turn consumers’ awareness into concrete
and tangible actions. Typically, while one of the major sources
of electric consumption is household appliances, studies show
that inhabitant behaviors have not yet fully shifted [1]. The
introduction of smart meters in households is predicted as a
defining factor to change such behaviors and incur reduction
of energy usage [2], as they are promising means for gaining
insights on energy consumption by mining electricity usage
patterns.

Smart meters measure energy consumption and provide
online readings on electricity usage from households, thus
allowing a fine-grained visualization of real-time consumption.
This data can be leveraged to detect malfunctioning appliances
or discover abnormal situations once usage patterns of appli-
ances have been identified. In order to avoid reluctance and
involve the general public in the usage pattern identification task,
the research community is investigating automated processes
(e.g., to prevent inhabitants being requested to manually
indicate which appliance is generating a given consumption
signal). In this regard, household appliance classification has
become increasingly popular among the research community.
The development of Non-Intrusive Load Monitoring (NILM)
techniques [3] has made it possible, in a non-intrusive manner,

to disaggregate households’ single-point energy consumption
measurements into individual devices’ consumption. Analyzing
the usage patterns of different household devices helps, among
other things, to better predict future consumptions and ease
the macro-management of overall power demand for smart
grids [4].

State-of-the-art research works in this area often apply
time series classification techniques for identifying appliance
electricity usage profiles [5], [6]. However, our research claims
that such approaches are not suitable for large-scale electricity
usage due to their time complexity, and the fact that they
may appear sensitive to noises (leading to inaccuracies in
classification of similar appliances). One research hypothesis of
this study is that electricity usage of a given appliance can be
viewed as unique and recognizable repeating signals that could
be represented as a sequence of sentences. In this respect, our
research aims to develop an innovative time series classification
approach based on language modeling techniques that help to
identify the “language” of each type of appliances. In a more
concrete level, the language modeling approach aims to capture
with its n-grams both local discriminative features and overall
curve shapes. On the one hand, local discriminative features
(e.g., sharp edges) help to distinguish/identify appliances with
different electricity usage patterns during turn-on and turn-off
phases. On the other hand, overall curve shapes are essential to
minimize the impact of noise, which can affect local features.
Existing techniques [7] often focus on detecting whether a given
appliance is on or off, and at what time it has been switched.
As a preliminary investigation in the direction of energy
disaggregation, our study assesses the potential of the proposed
language modeling approach to identify the contributions
of several appliances in a combined electricity usage data,
and particularly to identify whether pairwise combinations of
appliance consumption data can be accurately profiled. Overall,
the paper’s contributions are:

• Proposal and development of an innovative accurate and
practical approach to profiling household appliances based
on their electricity consumption readings.

• Evaluation – using a large dataset – of our approach
against the state-of-the-art approach to time series classi-
fication.

• Presentation of preliminary findings on profiling of electric-
ity consumption of combinations from different household
appliances.

Related work in the literature and the necessary background
for the approach are respectively introduced in Sections II



and III. Section IV provides greater detail on our language
modeling approach, while experiments and evaluation results
are presented in Section V; discussion and conclusion follow
in Sections VI and VII.

II. RELATED WORK

A set of techniques for appliance classification and profiling
have been introduced in the literature. For example, NILM
systems break summarized appliance usage information into
individual appliance usage patterns. Typically, household appli-
ances can be divided into four categories: 1) permanent devices
that work constantly with steady active and reactive power
consumption; 2) on-and-off devices that could be either on or
off at any point of time (e.g., lights, toasters. . . ); 3) appliances
with many states where energy consumption may switch from
one state to another (those appliances can be modeled as Finite
State Machines – FSM); and 4) continuously variable devices,
which exhibit no usage patterns. Given these categories, only
categories 2) and 3) can be detected using NILM techniques [7].
Indeed, the main NILM research effort has been on appliance
signature extraction, which is often viewed as a pattern
recognition task. Numerous techniques have been applied
for that purpose, including k Nearest Neighbors (kNN) [8]
that looks for the most similar patterns from the existing
pattern pool, Naı̈ve Bayes classifier [5] that is a probabilistic
classifier modeling patterns as feature vectors (assuming feature
independence within vectors), and Powerlets [6] that uses sharp
edges in appliance usage patterns as discriminative features. It is
important note that some recent NILM research takes advantage
of features other than appliances’ real and reactive power (e.g.,
transients and harmonics) [9], however, such techniques require
very high sampling frequency leading to expensive measurement
hardware.

Regarding appliance usage representation, many research
efforts have adopted the time series model, which is the “natural”
representation of device energy consumption data. Lines et al.
[5] classify household devices by electricity usage profiles using
a time series classification approach, and compare classification
results using different algorithms such as kNN, Naı̈ve Bayes,
Random Forest, etc.. Similarly, Basu et al. [10] adapted a time
series model by introducing a multi-label classifier approach
to predict appliance usage in the near future.

Time series classification is an active research field in the
machine learning community, where a number of approaches
and algorithms have been proposed, including neural net-
works [11], decision trees [12] and SVM [13], while empirical
studies have shown that kNN works exceptionally well [14].
To perform best, kNN classifiers leverage the Dynamic Time
Warping (DTW) distance, thus mitigating problems by warping
the time axis [15]. Another line of research – shapelets-based
classifiers [16] – focuses on finding the most discriminative
features. Shapelet algorithms are proven to be accurate for
time series classification tasks, but they are generally time
consuming due to the exhaustive process searching for the best
features. As a result, latest research efforts focus on reducing
the time complexity of these algorithms [17], [18].

III. BACKGROUND

In this study, household appliance electricity consumption
is also modeled as time series, which consist of ordered

data sequences. The grey curve in Fig. 1 illustrates a time
series sample representing the energy consumption pattern of a
fridge (over a period of time of 200 minutes). From a human
being perspective, the corresponding pattern can be identified:
30-minute low consumption, followed by 10-minute medium
consumption, then another 30-minute low consumption, etc.
However, from a computer perspective, the real-valued data
may cause confusions and noises since minor variations may not
be relevant to the overall picture. As a result, we use Symbolic
Aggregate approXimation (SAX) [19] to both remove noises
and reduce the length of the series, which strongly reduces
the processing complexity. SAX reduces the dimension of
the time axis to a fraction of the original series (dimension
reduction), and the dimension of the vertical axis from infinite
to a discrete and finite number depending on the user-specified
alphabet size (numerosity reduction). The black dashed curve in
Fig. 1 illustrates the approximated representation of the original
data, and the alphabets represents the numerosity reduction
results: the 200-minute fridge consumption data is reduced into
a string of 20 alphabet letters: aaacbabdddcaaceedbdd.
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Fig. 1: Original electricity consumption data of from a fridge (grey
curve) and corresponding SAX representation using a five-letter
alphabet. Note that the gap between d and e is much bigger than that
the one between a and b, because SAX works on value distributions
instead of arbitrary ranges.

After obtaining the string representations of time series,
strings of a same class – i.e., string representations of electricity
consumption data from the same household appliance – can
be incorporated into one set, based on which we generate n-
gram language models. A language model can be defined as
a statistical distribution of all words in a corpus [20]. Given
a sequence S = s1, s2, ..., sn, it has a probability score of
P (S) = P (s1, s2, ..., sn), which is calculated as in Equation 1.
A unigram model approximates this score by assuming complete
independence among all subsequences, which can be formalized
as in Equation 2.

P (s1, s2, ..., sn) = P (s1)P (s2|s1)...P (sn|s1, ..., sn−1) (1)

P (S) = P (s1, s2, ..., sn) ≈
n∏

i=1

P (si) (2)

Bigram models take into account the likelihood of one sub-
sequence followed by another (i.e., the conditional probabilities
of one subsequence given the previous one). Bigram models are
more accurate than unigram models at the expense of storing
more probability entries. In English eat and drink are unigram
examples that may have similar probabilities, but eat bread
should have a much higher probability than drink bread. The
probability score of a sequence following a bigram model is
computed by Equation 3.

P (S) = P (s1, s2, ..., sn) ≈
n∏

i=1

P (si|si−1) (3)



IV. INNOVATIVE APPROACH FOR HOUSEHOLD APPLIANCE
PROFILING

As previously stated, our approach is based on the research
hypothesis that different household appliances exhibit different
electricity consumption profiles in similar ways as how people
speak different languages. That is, each natural language has
its own corpus and grammar information, which roughly corre-
sponds to the unigram and bigram language models acquired
from the symbolized electricity consumption readings. Unlike
powerlets [6] that builds a dictionary containing discriminative
consumption signatures for different devices (i.e., definitive
sharp edges in electricity consumption curves), our approach
considers both local discriminative features and overall curve
shapes. Thus our approach differs from powerlets in the
following aspects:

• Powerlets is, in essence, an application of shapelet al-
gorithms to appliance classification tasks, thus suffering
from the same shapelets algorithm issues (notably time-
consuming due to exhaustive search for discriminative
features). As a result, powerlets may not be suitable for
large-scale industrial applications.

• Powerlets can be too fine-grained and not resistant to
noises due to the lack of global contexts. For example,
powerlets may not be able to classify/cluster two hair
driers of different power draws in a same category since
they will have different height in sharp edges.

• Powerlets requires a high data sampling rate for the
reason that sharp edges would get the same (or similar)
sharpness and/or steepness. This requires more expensive
measurement hardware and limits powerlets’ application
scope.
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Fig. 2: Illustrative steps for learning appliance profiles and classifying
an instance from an unknown category.

Fig. 2 provides insight into the overall process underlying
our approach. The final output of the training process is a
unigram and bigram model linked to each category, whose
respective steps to obtain those models (i.e., profiles) are:

1) Transform all real-valued electricity consumption readings
into strings in order to reduce data dimension and
processing complexity. SAX is used for this purpose.

2) Extract subsequences from each consumption string and
build unigram and bigram language models for each
appliance category. Since these strings have no word
boundaries, we extract subsequences based on a sliding
window mechanism. For instance, using a sliding window
of size 3, the string acbbc can be broken down as follows:
acb, cbb and bbc. Then we count each subsequence’s
number of occurrences and convert them into probabilities
to build unigram models. Likewise, the probabilities of
bigrams and build bigram models are extracted.

3) Finally, step 2) is repeated to build language models for
each appliance category.

Profiles obtained from the training phase are stored into a
database, so that they can be retrieved later when assigning
profiles to unlabeled consumption readings. To be precise,
the following steps are followed when classifying an energy
consumption data from an unknown type of appliance:

1) Transform this piece of data into a string following the
same settings as in step 1) of the profile acquisition phase.

2) Test the string against all available appliance category
models (profiles) to produce a fitness score with respect
to each model. Such a fitness score is calculated as the
maximum probability of dividing this sample using the
language model.

3) Compare fitness scores with respect to all profile models.
Generally, the maximum probability from all models
implies the best fitness, thus the appliance represented
by this specific model is the most likely appliance that
has produced the electricity consumption footprint.

The fitness score of one piece of symbolized data D1→n =
d1, d2, ..., dn, with respect to a profile model M , is calculated
by recursively finding possible candidates to split the data
according to M , as formalized in Equation 4 (with 1 < k <
n and D1→k ∈ M ). This process is repeated for all other
segments. The fitness score can therefore be defined as the
maximum probability score, as formalized in Equation 5.

C(D,M) = D1→k ∪ C(Dk+1→n,M) (4)

F (D,M) = max
c∈C(D,M)

|c|∏
i=1

P (ci|ci−1) (5)

It is worth noting that the recursive process for enumer-
ating possible ways of splitting data samples can become
time-consuming. However, our approach leverage dynamic
programming to store recurring segments and to reduce the
computational complexity to roughly O(n), similar to or better
than state-of-the-art approaches.

V. EMPIRICAL EVALUATION

Our approach has been implemented in order to evaluate the
classification performance against state-of-the-art approaches.
The set of experiments has been conducted using the computing
platform presented in [21], and considering several datasets
and scenarios. Unless otherwise specified, we extracted – for
all datasets – subsequences of lengths ranging from 2 to 20.
Furthermore, data samples longer than 100 are reduced to 100
using SAX in order to speed up experiments.The evaluation
results and findings are presented and discussed through the



TABLE I: Characteristics of appliance electricity usage data from the UCR archive and classification accuracy comparison between the
performance of 1NN with Euclidean and DTW distance and our approach. Best classification accuracy results are highlighted in bold font.

Characteristics Classification Accuracy
Dataset Name # Classes # Training Instances # Testing Instances Instance Length 1NN (Euclidean) 1NN (DTW Best Warping) Our Approach

Computers 2 250 250 720 0.576 0.62 0.668
ElectricDevices 7 8,926 7,711 96 0.55 0.624 0.651
LargeKitchenAppliances 3 375 375 720 0.493 0.795 0.72
RefrigerationDevices 3 375 375 720 0.395 0.44 0.528
ScreenType 3 375 375 720 0.36 0.411 0.448
SmallKitchenAppliances 3 375 375 720 0.341 0.672 0.659

sections V-A to V-C. The source code of our prototype is
released to the public1 to increase reproducibility.

A. Evaluation against normalized datasets

Our approach is compared against state-of-the-art ap-
proaches with an openly accessible dataset archive (the UCR
archive [22]), which is widely adopted in the research com-
munity. Besides, it comes with classification results for state-
of-the-art classification algorithms for benchmark comparison,
namely Euclidean- and DTW-distance based Nearest Neighbor
as shown in TABLE I. This archive contains many different
datasets from interspecies images to medical applications such
as electrocardiograms.

In this research, only datasets related to household appliance
electricity usage profiles are tested since our main interest is
on classifying electric devices. The characteristics of these
datasets are summarized in TABLE I, where performance of
our approach is compared with Euclidean-based 1NN and DTW-
based 1NN (best accuracy varying the warping size from 0 to
100 percent of the series length, while best accuracy varying
SAX alphabet size parameter from 3 to 20). Although our
approach performs well with regard to these datasets, a more
in-depth study should be conducted due to the fact that data that
compose these datasets have already been normalized, adding
that each dataset contains only a small number of samples
as well as classes. Furthermore, the training sets and testing
datasets have been roughly equally divided in terms of number
of instances.

B. Evaluation against real-world readings

To test our approach with real-world data, the dataset
obtained from the UK Household Electricity Usage Survey
(HEUS) project [23] has been used, which contains electric
appliance usage readings from 251 households (monitoring
periods: 2010 to 2011). In our study, a subset containing
more than 50 million appliance electricity usage readings from
27 discting household have been considered (readings being
sampled at two-minute intervals). As a first step, from this
subset the ten appliances that have the most recorded readings
has been extracted, along with their electricity consumption
patterns as depicted in Fig. 3.

Afterwards, readings are clustered into time series with size
of 100, which corresponds to appliances’ electricity readings
during a 200-minute period. Note that readings that are roughly
constant during each that period have been removed, leading
to 25, 652 time series. A ten-fold cross-validation is then
performed to classify these time series. More specifically, this

1https://github.com/serval-snt-uni-lu/profiling-appliances
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Fig. 3: Electricity consumption patterns of ten most recorded
appliances from 27 households surveyed in the HEUS project.

dataset is firstly divided into ten portions, nine of them being
used for training and the remaining one being used for testing.
This process is repeated ten times and the average classification
accuracy is reported at 77.4%. Compared with [5], where data
is sampled with a 15-minute interval and clustered into weekly
and daily series, the best results obtained are 61.34% and
55.81% respectively. In addition, since we have mixed appliance
usage data across households, the good classification results
suggests that certain kinds of household appliances exhibit
similar profiles. Thus, it is sensible to build a profile repository
for different appliances so that, later, unknown appliances can
potentially be matched with profiles in the repository, without
the need of setting up monitoring devices in each household
and learning device profiles from scratch.

TABLE II presents the confusion matrix from the ten-fold
cross-validation experiment. The standard F-measure scores
(the harmonic mean of precision and recall calculated following
Equation 6) are also reported in order to present the performance
of our approach in a more interpretable manner.

F −measure = F1 = 2 · Precision ·Recall

Precision+Recall
(6)

It can be observed that our approach provides good results
for certain appliance categories such as Fridge Freezer and



TABLE II: Confusion matrix from ten-fold cross-validation experiment on the most recorded appliances.

Classified As F-Measure
Fridge Freezer Kettle Microwave Dishwasher Washing Machine Shower TV LCD Light 1 Light 2 Vacuum Cleaner

A
ct

ua
l

Fridge Freezer 9,380 1 7 97 58 1 509 40 16 1 0.931
Kettle 3 4,343 215 21 90 109 6 0 6 267 0.831
Microwave 36 885 936 64 171 242 29 7 6 164 0.482
Dishwasher 20 23 35 895 203 28 12 9 3 32 0.660
Washing Machine 46 22 58 159 1,302 48 53 7 3 32 0.676
Shower 0 36 16 27 35 246 2 5 4 29 0.408
TV LCD 476 20 24 99 186 37 2,174 116 106 22 0.699
Light 1 52 5 13 27 28 13 101 341 40 10 0.575
Light 2 16 8 8 18 15 34 70 32 227 2 0.540
Vacuum Cleaner 1 52 33 46 32 48 3 0 0 45 0.104

Kettle. Furthermore, our approach tends to perform better for
appliances with larger number of reading records, indicating
that good performance can be achieved with sufficiently large
training dataset.

C. Combining appliance consumption readings

So far, the evaluation focused on exclusive energy readings
for specific appliances. Unfortunately, in many cases, it is often
difficult to get such readings. Instead, it is likely that some
appliances (e.g., a fridge) stay on the ON mode, while others
more occasionally used appliance (e.g., a microwave) is turned
ON or OFF. Thus, a deeper investigation is carried out in this
section in order to classify the combinations of appliances’
energy consumptions. This study will help us to gain insights
on the potential of the language modeling approach to support
energy disaggregation schemes.

To this end, we first find out the ten most recorded
appliances within the dataset following the same precedures
mentioned previously. Then, we investigate which of these
ten appliances are found in each household and sum up the
power consumption data based on timestamps. In this way
we are able to keep the original appliance usage patterns –
i.e., which two appliances are used within the same period –
from each household. Afterwards, we find out the most frequent
consumption sums representing appliance usage patterns and set
to classify them using our language modeling based approach.
All the combination samples are mixed in order to create a
suffciently large dataset. Finally, a ten-fold cross-validation
experiment is conducted in order to differentiate various
appliance usage consumption combinations.

TABLE III presents the most frequently found appliance
combinations and classification results. As shown, it is possible
to differentiate combinations of appliance usage, e.g., the Fridge
Freezer and Light 1 combination can be differentiated from the
Kettle and Microwave combination. This can be explained by
the fact that each appliance has a different usage patterns(Fridge
Freezer and Light 1 tend to be constant while Kettle and
Microwave both exhibit burst patterns). On the other hand, some
combinations such as the Fridge Freezer and Light 1 vs. Fridge
Freezer and Washing Machine are difficult to differentiate,
whose possible reasons may be:

• Appliance usage data are sampled at a low frequency (a
2 minute interval may not be enough to pertain appliance
usage characteristics, or to sum up the usage data).

• Our approach reduces real-valued power consumption into
alphabets, and this numerosity reduction process may have
incurred inaccurate data representation for combinations.

TABLE III: Classification results for ten-fold cross-validation between
two appliance energy consumption combinations. Columns P, R and
F stand for Precision, Recall and F-Measure respectively.

Combination 1 Combination 2 P R F

Fridge Freezer + Kettle Kettle + Light 1 0.941 0.941 0.941
Fridge Freezer + Kettle Kettle + Microwave 0.959 0.958 0.958
Fridge Freezer + Light 1 Fridge Freezer + Microwave 0.551 0.549 0.549
Fridge Freezer + Light 1 Fridge Freezer + Kettle 0.647 0.637 0.638
Fridge Freezer + Light 1 Kettle + Light 1 0.977 0.977 0.977
Fridge Freezer + Light 1 Kettle + Microwave 0.990 0.990 0.990
Fridge Freezer + Light 1 Fridge Freezer + Washing Machine 0.472 0.469 0.470
Fridge Freezer + Microwave Fridge Freezer + Kettle 0.620 0.617 0.617
Fridge Freezer + Microwave Kettle + Light 1 0.975 0.975 0.975
Fridge Freezer + Microwave Kettle + Microwave 0.987 0.987 0.987
Fridge Freezer + Washing Machine Fridge Freezer + Microwave 0.538 0.538 0.538
Fridge Freezer + Washing Machine Kettle + Microwave 0.990 0.990 0.990
Fridge Freezer + Washing Machine Kettle + Light 1 0.977 0.977 0.977
Fridge Freezer + Washing Machine Fridge Freezer + Kettle 0.600 0.599 0.598
Kettle + Light 1 Kettle + Microwave 0.618 0.596 0.587
Kettle + Washing Machine Kettle + Microwave 0.625 0.573 0.558
Kettle + Washing Machine Kettle + Light 1 0.585 0.576 0.574
Kettle + Washing Machine Fridge Freezer + Microwave 0.979 0.979 0.979
Kettle + Washing Machine Fridge Freezer + Light 1 0.986 0.986 0.986
Kettle + Washing Machine Fridge Freezer + Washing Machine 0.961 0.961 0.961
Kettle + Washing Machine Fridge Freezer + Kettle 0.949 0.948 0.948
Microwave + Light 1 Fridge Freezer + Washing Machine 0.965 0.965 0.965
Microwave + Light 1 Fridge Freezer + Light 1 0.961 0.961 0.961
Microwave + Light 1 Fridge Freezer + Kettle 0.947 0.947 0.947
Microwave + Light 1 Fridge Freezer + Microwave 0.955 0.955 0.955
Microwave + Light 1 Kettle + Microwave 0.839 0.833 0.829
Microwave + Light 1 Kettle + Washing Machine 0.863 0.850 0.847
Microwave + Light 1 Kettle + Light 1 0.798 0.795 0.792

• The size of training data may not be sufficiently large, thus
leading to insufficient training process and misclassified
testing instances.

VI. DISCUSSIONS

The approach proposed in this paper relies on a mechanism
to transform household appliance electricity usage data into
a string, where strings of a same appliance category forms a
appliance-specific dictionary. The results from our empirical
experiments showed how performant our approach is, and made
it possible to validate the analogy between appliance energy
consumption patterns and natural language sentences. Besides
classification accuracy, this approach has a few other advantages.
For example, our approach is able to handle data samples of
different length. This is helpful in that it eases data preparation
and segmentation in practice. Furthermore, this approach makes
it easy to store data samples as well as learned profiles/models
in a distributed manner, so that existing distributed and cloud
computing techniques can be easily taken advantage of and
further boost the efficiency of our approach.

Nonetheless, some limitations of our approach can be dis-
cussed. First, the model-based nature underlying our approach
demands a large training set so as to achieve a high performance.
Then, with our current settings, T1 = [1, 1, 4, 4, 10, 10] and
T2 = [100, 100, 300, 300, 600, 600] will be transformed into
the same string (aabbcc) when SAX alphabet size is set to 3



and string length set to keep the original series length, which
can be an issue and cause mis-profiling of appliances. On the
opposite, this issue can benefit our approach when profiling a
same category of appliances having different power draws. For
example, a 1000 KW and 1500 KW hair dryer should indeed
have same consumption patterns, while a 1000 KW dishwasher
should exhibit different profiles compared with the 1000 KW
hair dryer. For the same reason, when combining appliance
consumption readings, data from one appliance with small
power draw may be dwarfed by an appliance with a much
larger power draw, so that the former becomes noises and the
overall curve shape is dominated by the latter.

VII. CONCLUSIONS AND FUTURE WORK

Electricity usage profiling of household appliances is becom-
ing an important step for identifying malfunctioning devices
and generating automatic alerts about unusual consumptions.
In this context (i.e., household appliances profiling context),
this paper investigates the capability of a language modeling
approach for time series classification. To this end, an innovative
approach is proposed in this paper, which aims to first transform
energy consumption readings – which consist of real-valued
time series data – into texts, and then to build per-class language
models (i.e. profiles) from these texts. Such class models can
therefore be used for new electricity usage readings in order
to predict the corresponding appliance category. The proposed
approach has been implemented and evaluated through a set
of experiments considering both normalized datasets from the
research community and real world datasets from the UK
Household Electricity Usage Survey project (27 households
monitored over one year). These experiments show that our
approach performs generally better than state-of-the-art time
series classification approaches.
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