
Localizing Multiple Faults in Simulink Models
Bing Liu,∗, Lucia∗, Shiva Nejati∗, Lionel Briand∗, Thomas Bruckmann†

∗ SnT Centre, University of Luxembourg, Luxembourg
Email: {bing.liu, lucia.lucia, shiva.nejati, lionel.briand}@uni.lu

†Delphi Automotive Systems, Luxembourg
Email: thomas.bruckmann@delphi.com

Abstract—As Simulink is a widely used language in the
embedded industry, there is a growing need to support debugging
activities for Simulink models. In this work, we propose an
approach to localize multiple faults in Simulink models. Our
approach builds on statistical debugging and is iterative. At each
iteration, we identify and resolve one fault and re-test models to
focus on localizing faults that might have been masked before.
We use decision trees to cluster together failures that satisfy
similar (logical) conditions on model blocks or inputs. We then
present two alternative selection criteria to choose a cluster
that is more likely to yield the best fault localization results
among the clusters produced by our decision trees. Engineers
are expected to inspect the ranked list obtained from the selected
cluster to identify faults. We evaluate our approach on 240 multi-
fault models obtained from three different industrial subjects.
We compare our approach with two baselines: (1) Statistical
debugging without clustering, and (2) State-of-the-art clustering-
based statistical debugging. Our results show that our approach
significantly reduces the number of blocks that engineers need
to inspect in order to localize all faults, when compared with
the two baselines. Furthermore, with our approach, there is less
performance degradation than in the baselines when increasing
the number of faults in the underlying models.

Keywords—Fault localization, statistical debugging, machine
learning, decision trees, Simulink models.

I. INTRODUCTION

Simulation or design-time testing of system models is be-
coming an indispensable activity when developing complex
systems [1]–[4]. Among the languages that are typically used
for simulation, Simulink [5] is a notable example. Simulink
attempts to combine the benefits of modeling (abstraction)
and programming (executability) to facilitate early system
specification and testing. Despite wide-spread use of Simulink
in embedded system development, there is no automated
support for debugging Simulink models.

Debugging is a cumbersome and time-consuming task.
There is a wide range of techniques in the literature for debug-
ging and fault localization in source code [6]–[18]. However,
none of these techniques have been previously applied to
Simulink models. In our recent work [19], we proposed an ap-
proach based on statistical debugging to automatically localize
individual faults in Simulink models. Statistical debugging is
a light-weight and well-studied approach to fault localization
in code (e.g., C programs [12], [15], [18]). This approach
utilizes an abstraction of program behavior, also known as
spectra (e.g., sequences of executed statements), obtained from
testing. The spectra and the testing results, in terms of failing
or passing test cases, are used to derive a statistical fault

ranking, specifying an ordered list of program elements (e.g.,
statements) likely to be faulty. Engineers consider such ranking
to identify faults in their code.

Statistical debugging often fails to properly deal with mul-
tiple faults because it implicitly assumes that all failures are
caused by the same fault(s). However, in the presence of multi-
ple faults, different failures might be due to different faults and
faults might mask one another. A number of techniques aim to
improve statistical debugging to handle multiple faults [16],
[20]–[28]. Most of these techniques [20]–[25] cluster failures
such that the failures that are grouped together are likely to
have been caused by the same fault(s), and hence, can be used
specifically to localize those faults. For each cluster, a ranked
list of most suspicious elements is generated. Engineers inspect
all these ranked lists to identify faults [20]–[22]. Alternatively,
some techniques [23]–[25] generate a single ranking based on
the clustering results to be inspected by engineers.

In this paper, we propose a statistical debugging ap-
proach that clusters failures to help identify multiple faults in
Simulink models. Simulink models have multiple observable
outputs, each of which can be tested and evaluated indepen-
dently. Hence, a failing test case may result in several failures.
Specifically, we associate a failure with a failing execution
slice denoted by a pair (tc, o) where tc is a failing test case
and o is a model output at which tc fails. This is in contrast to
the existing approaches [20]–[25], [29] that associate a failure
with a failing test case.

Unlike the existing approaches [21], [22], [24], [25] that
use unsupervised learning for failure clustering, we use a
supervised learning technique, namely decision trees [30].
Using decision trees, we group together failing execution
slices that satisfy similar logical conditions on model blocks
and on model inputs. Our decision trees extract the most
relevant information from failing and passing test executions
and, in contrast to unsupervised learning techniques, do not
require similarity measures to be defined a priori. Further, the
approaches based on unsupervised learning should specify a
cut threshold on similarity measures to form clusters. Our
work does not require such thresholds. Instead, we define
a termination criterion based on the size and the degree of
homogeneity of clusters. Finally, the input to our decision
tree-based approach contains both categorical (sets of blocks
covered by execution slices) and numerical variables (model
inputs), while existing approaches focus on either of these
items and have never considered both together.

For each cluster generated by our decision trees, we use
the statistical formula, Tarantula [15], [31], to generate a
ranked list of most suspicious Simulink blocks. Note that
our comparison [19] of alternative statistical formulas applied
to Simulink models revealed no significant difference among
these formulas and Tarantula. Some existing approaches [20]–
[22], [29] for localizing multiple faults require engineers
to inspect all ranked lists obtained from all the clusters to
identify the top-most ranked fault in each list. This approach
to debugging, however, may miss the faults that are masked
by others, and hence, are ranked lower than others in all the
ranked lists. Further, the top-most ranked faults in several
ranked lists may overlap. As a result, requiring engineers to
inspect all the ranked lists may lead to identifying duplicate
faults, hence wasting their effort.

In our work, instead, we adopt a debugging process referred
to as one-at-a-time debugging [32]. That is, our fault localiza-
tion approach is applied iteratively where at each iteration,
engineers identify and resolve one fault. Engineers then re-
test the model to ensure that particular fault is fixed, and to
focus on localizing other faults including those that might
have been masked or were not observable in the previous
round of testing. Note that the one-at-a-time debugging process
matches the practice in the development of Simulink models,
and impacts how we evaluate and compare fault localization
techniques. To be able to utilize our technique in the context of
one-at-a-time debugging, we introduce two selection criteria
to choose a ranked list that is likely to yield the best fault
localization results among other ranked lists. In particular, our
criteria aim to select the most coherent clusters, i.e., those with
the most similar failing execution slices. Engineers inspect the
selected ranked list to localize faults, and re-test the model and
apply our approach until no failures are observed.

In summary, the contributions of this paper are as follows:
(1) We propose a new iterative technique to localize mul-

tiple faults in Simulink models using a supervised learning
technique (decision trees).

(2) We evaluate our approach on 240 multi-fault Simulink
models obtained from three different industrial subjects. We
have further adapted and implemented two baseline tech-
niques for Simulink models: A traditional statistical de-
bugging approach without clustering, and a state-of-the-art
clustering-based statistical debugging that uses unsupervised
learning [22]. We compared our decision tree-based approach
with the two baseline techniques and our results show that:
(I) Our approach is able to significantly reduce the number of
blocks that are required to be inspected to localize all faults
compared with the two baselines. (II) With our approach, there
is less performance degradation than in the baselines when
increasing the number of faults in the underlying models. That
is, our approach is more robust than the baselines when applied
to models containing larger numbers of faults.

II. BACKGROUND

In this section, we briefly describe Simulink models and
statistical debugging for Simulink models.

1

2

3

4

5

[Look-up
Table]

10 � [Switch]

273.15
�

�

1

2

NMOT

Clutch

Bypass

pIn

TIn

pOut

TOut

Pct2Val
-K-

PressRatioSpd

SC_Active
FlapIsClosedFlapPosThreshold

0 C T_C2K

1

2

1

2000

�
max

�

�

Pmax

IncrPres LimitP

CalcT

�

1.2
p_Co

dp

Subsystem1

Subsystem2

�

�-150
pComp pAdjust

[Switch]

IncrP

�

pCheck
1000

pStand

[Look-up
Table]
PreInc

1
2

3

1
�

�

 ÷

1.15

10

TAdjust

Treal

[Look-up
Table]

-K-Coef_N

Coef_Pct

T_K2C

�

�
250
pCh

Calcp

�

�

�0.8

100

N_SC
pEinGain

mK

Fig. 1: A Simulink model example with faulty blocks LimitP
and pStand.

Simulink models. Figure 1 shows an example of a Simulink
model. Simulink models consist of blocks and lines. Blocks
may perform individual operations such as numerical and com-
binatoric operations or they may represent constant values e.g.,
the pStand block. Simulink blocks are connected via lines
that indicate data flow connections. The model in Figure 1 has
five inputs e.g., the position of the Clutch, and two outputs:
the output temperature TOut and pressure pOut. The inputs
are specified by input ports (dashed rounded boxes), and the
outputs are shown using output ports (grey rounded boxes).

Given a Simulink model with multiple outputs (e.g., Fig-
ure 1), any individual test case execution may show failures
in some outputs, while other outputs might be correct for that
particular test case. For example, in Figure 1, there are two
faults in the model: The value of the constant block pStand is
set to 1000 instead of 980, and the LimitP block performs a
max operation instead of a min operation. Given any test case,
failures may be observed at either or both outputs of the model
in Figure 1. Once a failure is observed at a particular output,
engineers require some technique to help with debugging.

Statistical debugging for Simulink. In our previous
work [19], we have shown how statistical debugging can be
extended and adapted to Simulink models. Statistical debug-
ging utilizes an abstraction of program behavior, also known
as spectra, (e.g., sequences of executed statements) obtained
from testing. Since Simulink models have multiple outputs
each of which can be tested and evaluated independently, we
relate each individual Simulink model spectrum to a test case
and an output as opposed to the existing work where each
spectrum is related to a test case. We refer to each Simulink
model spectrum as a test execution slice.

Given a test case that is executed on a Simulink model with
multiple outputs, a test execution slice (or an execution slice
for short) is a set of (atomic) blocks that were executed by the
test case to generate each output. For example, Table I shows
the statistical debugging results obtained based on a test suite
containing six test cases (i.e., tc1 to tc6) for the Simulink
model in Figure 1. The left-most column of Table I lists the

Block
Name

tc1 tc2 tc3 tc4 tc5 tc6 Score Rank
(Min-Max)pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut

SC Active X X X X X X X X X X 0.52 15 - 17
*LimitP X X X X X X X X 0.54 13 - 14
Coef Pct X X X X X 0.32 27 - 30
Pct2Val X X X X X 0.32 27 - 30
Coef N X X X X X 0.32 27 - 30
Pmax X X X X X 0.32 27 - 30
IncrPres X X X 1.00 1 - 1
PressRatioSpd X X X X X X X X 0.54 13 - 14
FlapIsClosed X X X X X X X X X X 0.52 15 - 17
FlapPosThreshold X X X X X X X X X X 0.52 15 - 17
Calcp X X 0.42 18 - 26
pCh X X 0.42 18 - 26
dp X X 0.42 18 - 26
p Co X X 0.42 18 - 26
pEin X X X X X X X X X 0.59 2 - 12
mK X X X X X X X X X 0.59 2 - 12
N SC X X X X X X X X X 0.59 2 - 12
Gain X X X X X X X X X 0.59 2 - 12
pAdjust X X X X X X X X X 0.59 2 - 12
pComp X X X X X X X X X 0.59 2 - 12
CalcT X X X X X X 0.59 2 - 12
IncrP X X X X X X 0.59 2 - 12
pCheck X X X X X X 0.59 2 - 12
PreInc X X X X X X 0.59 2 - 12
*pStand X X X X X X 0.59 2 - 12
T K2C X X 0.42 18 - 26
Tadjust X X 0.42 18 - 26
Treal X X 0.42 18 - 26
T C2K X X 0.42 18 - 26
O C X X 0.42 18 - 26
Pass(P)/Fail(F) P P F P P F P F F F F F

TABLE I: Test execution slices and ranking results for
Simulink model in Figure 1. * denotes the faulty blocks and
Xdenotes the executed blocks.

blocks in the model in Figure 1. The two columns below each
test case tc1 to tc6 represent the two test execution slices
related to each test case. Since the model in Figure 1 has two
outputs, each test case execution generates two execution slices
(one for pOut and one for TOut). We specify the blocks that
are included in each test execution slice using a X. The last
row of Table I shows whether each individual test execution
slice passes (P) or fails (F). Among the 12 execution slices
in Table I, seven are failing and five are passing. We denote
each test execution slice by a tuple (tc, o) where tc is a test
case and o is an output. For example, in Table I, the failing
execution slice (tc5, pOut) contains nine blocks e.g., LimitP.
That is, executing test case tc5 results in execution of the nine
blocks and yields a failure at output pOut.

After obtaining the test execution slices, we use a well-
known statistical ranking formula, i.e. Tarantula [15], [31], to
rank the Simulink blocks. Let b be a model block, and let
passed(b) and failed(b), respectively, be the number of pass-
ing and failing execution slices that execute b. Let totalpassed
and totalfailed represent the total number of passing and
failing execution slices, respectively. Below is the Tarantula
formula for computing the suspiciousness score of b:

Score(b) =
failed(b)
totalfailed

failed(b)
totalfailed +

passed(b)
totalpassed

(1)

Having computed the scores, we now rank the blocks based
on these scores. The ranking is done by putting the blocks with
the same suspiciousness score in the same rank group. Given
blocks in the same rank group, we do not know in which
order the blocks are inspected by engineers to find faults.
Hence, we assign a “min rank” and a “max rank” to each
rank group. The min rank for each rank group indicates the
least number of blocks that would need to be inspected if the
faulty block happens to be in this group and happens to be
the first to be inspected. Similarly, the max rank indicates the

greatest number blocks that would be inspected if the faulty
block happens to be the last to be inspected in that group. For
example, the two right-most columns of Table I respectively
show the scores and the rank groups for the Simulink model
example in Figure 1. Engineers are expected to inspect the
blocks in that list starting from the most top ranked ones.

III. MOTIVATION

In this section, we motivate our approach to localizing
multiple faults in Simulink models.

When models contain multiple faults, statistical debugging
can be imprecise. This is because the multiple faults that
exist in a model may impact one another in unknown ways
causing the impact of some faults to be masked by others.
This may result in faulty blocks to be ranked low in the
rankings obtained by statistical debugging. To improve the
results of statistical debugging in the presence of multiple
faults, researchers have proposed to cluster failures in such
a way that the failures that are caused by the same faults are
put in the same cluster [20]–[25].

Similar to the existing work [20]–[25], we propose an
approach based on failure clustering for identifying faults
in Simulink models with multiple faults. Our approach is,
however, different from the existing techniques in terms of
the notion of failures, the input and the technique used for
clustering, and in the way we use clustering results to localize
faults. We explain each of these distinguishing factors below:

Notion of failures. As mentioned in Section I, we associate
a failure with the incorrect output of a test execution (i.e., a
failing execution slice). Thus, in our work, clustering failures
is equivalent to clustering failing execution slices. While in the
existing techniques [20]–[24], a failure corresponds to a failing
test case and clustering failures is equivalent to clustering
failing test cases without regard to the particular outputs at
which failures are observed.

Input for clustering failures. Some existing techniques
[20], [22], [24], [25] take as input sequences of program
elements executed by failing test cases, while other tech-
niques [21]–[23] use sequences of program elements executed
by both passing and failing test cases. The inputs to our
approach are sequences of blocks executed by each test case
for each output, i.e., all test execution slices, as well as the
test input data used to generate these slices. Our intuition is
that failures are more likely to have been caused by the same
fault, not only if they execute similar blocks, but also when
they use similar test inputs.

Techniques for clustering failures. Most existing ap-
proaches [21], [22], [24], [25] rely on clustering techniques
(i.e., unsupervised learning techniques) where they group
failures based on some similarity measure defined over the
data that characterizes failures. Instead of relying on similarity
measures, in this work, we use a supervised learning technique
that can learn from failing and passing test executions to
determine how to group the failures. Specifically, we use
Decision trees [30] (see Section IV-A). A decision tree is
built by partitioning the set of test execution slices such

that homogeneity is maximized across the resulting partitions,
within certain constraints, in terms of passing and failing test
execution slices. Decision trees also allow us to distinguish
input data and execution trace characteristics that statistically
determine failures.

Usage of clustering results. Similar to existing techniques
[20], [22], we generate a single ranked list of most suspicious
blocks per each cluster. However, instead of requiring engi-
neers to inspect all ranked lists [20]–[22], our approach aims
to select the most fault revealing ranked lists (i.e., those that
rank faulty blocks higher), and requires engineers to inspect
those selected ranked lists only (see Section IV-C). In our
work, we assess the level of consistency of failing execution
slices in clusters and we assume that the most consistent one
will yield the best ranking.

Motivating example. We illustrate the benefits of our
statistical debugging approach that relies on clustering and is
used in a one-at-a-time debugging process using the faulty
model example in Figure 1 that contains two faults: in blocks
pStand and LimitP. Table I shows that testing this model
produces seven failures, three of which are caused by the
fault in LimitP and the rest are due to the fault in pStand
The block ranking computed based on Tarantula is shown in
the left-most column of Table I. In this ranking, the rank of
pStand and LimitP are 12 and 14, respectively. Assuming
engineers debug one fault at a time, they first locate the faulty
block pStand by inspecting up to 12 blocks. After fixing
this fault and re-applying the statistical debugging technique,
engineers can locate the faulty block LimitP by inspecting at
most three blocks. Thus, engineers need to inspect 15 blocks
in total to locate both faults when they do not use clustering.

When we use our decision tree-based clustering, we obtain
two clusters as follows: Cluster1 consisting of the failing
execution slices that are caused by the fault in LimitP;
Cluster2 consisting of the failing execution slices that are
caused by the fault in pStand. For each cluster, we generate
a ranked list of the most suspicious blocks using Tarantula.
We then select the most fault revealing ranked list to be
inspected by engineers. For this example, our approach selects
the ranked list generated from Cluster1 because it contains
the most similar failing execution slices. By inspecting the
ranked list from Cluster1 , engineers can find the faulty
block LimitP by inspecting at most three blocks. We then
re-apply our technique after fixing the fault at block LimitP.
This time, our approach produces one cluster containing all
the failing execution slices. Using the ranked list generated
from this cluster, engineers can find the faulty block pStand
by inspecting at most five blocks. Thus, engineers localize all
faults by inspecting at most eight blocks which is significantly
smaller than that of without clustering (i.e., 15 blocks).

IV. PROPOSED APPROACH

In this section, we present our approach to localize multiple
faults in Simulink models. Our approach (shown in Figure 2)
takes as input a faulty Simulink model, a test suite, and test
oracles to determine the pass/fail information for each model

Test suites
Step	
 1:	
 Failure	
 clustering	

Clusters of failures

Step	
 2:Ranked	
 list	
 genera6on	

Ranked lists of
suspicious blocks

Test oracle

Test execution
slices

Test executions

Pass/fail results

Step	
 3:Ranked	
 list	
 selec6on	

Selected ranked list

Any	

failures?	

Yes

No
Stop

debugging

An	
 engineer	
 inspects	
 the	
 selected	

list,	
 locates	
 and	
 fixes	
 one	
 fault	

Simulink Model

Fig. 2: Overview of our approach to identify multiple faults
in Simulink models.

output and for each test execution. We describe the three steps
of our approach in Sections IV-A to IV-C.

A. Step 1. Failure Clustering

The goal of this step is to cluster failures such that the
failures that are likely to have been caused by the same
fault(s) are put in the same cluster. We cluster failures using
decision trees [30], a supervised learning technique. We apply
the decision tree technique to a set of test execution slices.
Each test execution slice contains the following information:
(a) the blocks that are covered by the test execution slice;
(b) the model input variables related to each test execution
slice and the values of these model input variables. Each
test execution is further labeled with passing (P) and failing
(F) values. Consider our model example in Figure 1. Table I
shows the blocks that are covered by each execution slice,
and Table II shows the model input variables and values that
are used by each execution slice. For example, the execution
slice (tc3,TOut) covers 18 blocks (e.g., pAdjust), and is
generated by two model inputs, i.e., Bypass and pIn with
values 5 and 1500, respectively. Further, the execution slice
(tc3,TOut) is labeled with F, indicating that the execution of
tc3 results in a failure at TOut .

Decision trees are composed of leaf nodes, which repre-
sent partitions, and non-leaf nodes, which represent decision
variables. Given a set of failing and passing test execution
slices, a decision tree is built by partitioning these slices in
a stepwise manner with the aim of generating increasingly
homogeneous partitions. A partition of test execution slices is
fully homogeneous if the slices in that set are either all passing
or all failing. The larger the gap between the number of failing
and passing slices in a partition, the more homogeneous that
partition is. A partition is labeled by Failed (respectively
Passed) when the majority of the test execution slices in
that partition are failing (respectively passing).

Decision variables in our decision trees either represent
blocks or input variables. Given a decision variable (i.e., non-
leaf node) labeled by block b, one branch (i.e., included
branch) emanating from b leads to partitions (leaf nodes)
containing slices all of which include b, and the other branch
(i.e., not included branch) leads to partitions containing
slices none of which include b. Given a decision variable
labeled by an input variable i, the two associated branches
may be labeled as included/not included similar to

Input block
tc1 tc2 tc3 tc4 tc5 tc6

pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut

NMOT 4500 4500 6000 - - - 4500 4500 3000 - 6000 6000
Clutch 40 40 50 - - - 40 40 50 - 50 50
ByPass 20 20 20 - 5 5 20 20 20 - 20 20
Pin - 2000 500 500 1500 1500 - 1500 - 1000 1500 1500
Tin - - - 10 - - - - - 10 - -
Pass(P)/Fail(F) P P F P P F P F F F F F

TABLE II: Model inputs and input values that are used to
compute pOut and Tout for each test execution slice. Note
that ”-” denotes that the corresponding input value is not used
to compute the corresponding output.

Clutch
>=45 <45

Failed
F/P: 3/0

Passed
F/P: 0/5

(a) A Decision tree for pOut.

CalcT
Not Included Included

Failed
F/P: 4/0

Passed
F/P: 0/1

Passed
F/P: 0/3

Pin
>=750 <750

Passed
F/P: 0/1

Pin
<1750 >=1750

(b) A Decision tree for TOut.
Fig. 3: Decision trees generated for clustering failures at pOut
and TOut.

the above, or alternatively, the branches may be labeled by
conditional expressions on i (e.g., i < 750, i ≥ 750).
Formally, let P be a partition, and let n1n2 . . . nkP be the path
to partition P from the root such that every ni(1 ≤ i ≤ k)
is a non-leaf node representing a block or an input variable.
As discussed above, every two consecutive nodes ni and ni+1

are connected by a branch that is labeled by included, not
included, or a conditional expression. The test execution
slices in P consistently include (or exclude) the blocks and
variables represented by nodes ni(1 ≤ i ≤ k), and further,
they satisfy the conditions indicated by the path n1n2 . . . nkP .
Hence, the execution slices in P are likely to overlap, and are
likely to have executed similar faulty blocks.

In our work, for each output that fails at least once, we
build a decision tree that takes as input the failing test
execution slices related to that output and all the pass-
ing test execution slices. Consider our faulty model exam-
ple in Figure 1. We build the two decision trees in Fig-
ures 3(a) and (b) that, respectively, relate to the failing
outputs pOut and TOut. For example, the decision tree for
pOut is built by using the three failing execution slices
related to pOut (i.e., (tc2 , pOut), (tc5 , pOut)), (tc6 , pOut))
and all the passing execution slices (i.e., (tc1 , pOut),
(tc1 ,TOut),(tc2 ,TOut),(tc3 , pOut), (tc4 , pOut)). Note
that F/P shown in Figure 3 indicates the number of failing
and passing execution slices at each leaf node. Considering the
decision tree for pOut, when the value of Clutch is greater
than equal to 45, the test execution slices are likely to fail at
output pOut. Otherwise, these slices are likely to be passing
for pOut.

Note that decision trees do not require the number of
partitions to be known a priori. Instead, to build such
trees, we need to have precise criteria on when to terminate
the partitioning, and on how decision variables should be
selected to generate new partitions at each step. Given a

partition, decision trees split the partition if the partition
size is not smaller than a defined threshold (i.e., minimum
split parameter) and if splitting the partition can reasonably
reduce the miss-classification error [30]. Further, decision trees
rely on data homogeneity measures for selection of decision
variables. In our work, we use the following termination and
selection criteria to build our decision trees: We set the value
of minimum split parameter to 50. This is because splitting
partitions with size smaller than 50 would produce partitions
with too few failing execution slices for statistical debugging
to be able to distinguish faulty blocks from non-faulty ones.
Moreover, we require that splitting a partition reduces the
miss-classification error of decision trees by at least 1%.
Finally, our decision trees use a well-known data homogeneity
measure, namely Gini Index [30].

Having built the decision trees, we create one cluster
for each partition (leaf node) if that partition contains at
least one failing execution slice. Each cluster contains only
the failing execution slices (and not the passing slices) of
their corresponding partitions. For example, using decision
trees shown in Figure 3, we obtain two clusters: Cluster1=
{(tc2 , pOut), (tc5 , pOut)), (tc6 , pOut)} and Cluster2 =
{(tc3 ,TOut),(tc4 ,TOut),(tc5 ,TOut),(tc6 ,TOut)}.

B. Step 2. Ranked-List Generation

In this step, our approach generates a ranked list of most
suspicious Simulink (atomic) blocks for each cluster produced
in Step 1. Each ranked list indicates the blocks that are more
likely to cause failures in the corresponding cluster.

To generate a ranked list for a cluster, we compute sus-
piciousness scores for Simulink blocks using the Tarantula
formula [15], [31] (see Equation 1). Specifically, the totalfailed
corresponds to the number of failing execution slices in a given
cluster and the totalpassed is the total number of all passing
execution slices. We then rank the blocks in descending order
of their suspiciousness scores. As several blocks can obtain
the same score, we assign min and max ranks for each block
as described in Section II.

Example. Using our example, we generate a ranked list
for Cluster1 and a ranked list for Cluster2 . To generate the
ranked list for Cluster1 , we analyze failing execution slices in
Cluster1 and all the (five) passing execution slices. To gener-
ate the ranked list for Cluster2 , we analyze failing execution
slices in Cluster2 and all the (five) passing execution slices. In
the ranked list obtained from Cluster1 , the faulty block LimitP
obtains the highest rank (i.e., 3) with the score of 0.63, while
in the ranked list obtained from Cluster2 , the faulty block
pStand obtains the highest rank (i.e., 6) with the score of 0.71.

C. Step 3. Ranked-List Selection

In this step, we aim to select a ranked list that is more
likely to yield the best fault localization results among the
rankings generated in step 2. We introduce a ranked-list
selection criterion namely, quality-of-cluster criterion. Prior to
applying our selection criterion, we exclude the ranked lists
obtained based on small clusters (i.e., the clusters that contain

a few failing execution slices) from our selection pool. This is
because a small number of failing execution slices might not
provide enough information to identify faults. In this work, a
cluster is considered to be small if its size is smaller than 10.

The quality-of-cluster selection criterion aims to select the
ranked lists that are generated from the most coherent cluster
(i.e., clusters that contain similar failing execution slices). The
rationale is that the more similar the failing execution slices,
the more likely that they have executed the same faulty blocks.
To measure the degree of similarity between slices inside a
given cluster c, we define intra-cluster distance as the average
of distances between the failing execution slices inside c. Let
D(Si ,Sj) be the distance between a pair of failing execution
slices Si and Sj . Given a cluster c, the quality of c (i.e.,
QC (c)) is the inverse of the intra-cluster distance of c denoted
by DIntra(c), i.e., QC (c)=1/DIntra(c). We define DIntra(c)
as follows:

DIntra(c) = 2×
∑

Si,Sj∈c∧Si 6=Sj
D(Si,Sj)

|c|×(|c|−1) (2)

The key to the quality-of-cluster criterion is the definition of
distance D(Si ,Sj) between pairs of failing execution slices. In
our work, we provide two alternative definitions for D(Si ,Sj)
discussed as follows: (1) The intuition behind the first defini-
tion is that two failing execution slices are more similar (i.e.,
their pairwise distance D(Si ,Sj) is small), if they execute
similar sequences of blocks and are generated by similar model
input variables with similar values. To capture this intuition,
we associate to each failing execution slice Si a vector Sv

i

such that Sv
i has one element for each model block and one

element for each model input variable. Specifically, the length
of Sv

i is equal to the total of the number of model blocks and
the number of input variables. Each element in vector Sv

i gets
the following value: For each element of Sv

i related to a block
b, we assign the element to one if Si covers b, and otherwise,
we assign zero. For each element of Sv

i related to an input
value v, we assign v to the element and if that input is not
covered by Si, we assign NaN to the element.

(2) Based on the second definition, two failing execution
slices are more similar (i.e., their pairwise distance D(Si ,Sj)
is small), if the sets of suspicious blocks that are produced
based on those slices are more similar [21], [22]. To formalize
this definition, we associate to each failing execution slice Si

a vector Sv
i such that Sv

i has one element for each model
block (i.e., the size of Sv

i is equal to the number of model
blocks). We then create a set of slices S containing Si and
all the passing execution slices, and use Tarantula to generate
a ranking R based on the set S. Then we obtain the top N
elements fromR. In our work, we typically set N to be 10% of
the model blocks. For each element of Sv

i related to a block b,
we assign one to the element if b is among the top N elements
obtained from R. Otherwise, we assign zero to that element.
Note that, this way of generating a ranking R for a failing
execution slice Si has been first proposed in [22] where the
goal was to obtain a ranking for a failing test case.

We compute the pairwise distance D(Si ,Sj) between failing
execution slices based on each of the above two different

definitions separately. Having computed vectors Sv
i (based on

either of the two above definitions), for each failing execution
slice Si, we compute the distance D(Si ,Sj) as the Euclidean
distance between their corresponding vectors Sv

i and Sv
j . A

small Euclidean distance indicates that two failing slices are
similar. Note that when the first definition is used for Sv

i

and Sv
j , the values of the vector elements representing input

variables are equal to NaN or some values within the input
variable ranges. Otherwise, the values of other elements of
the vectors Sv

i and Sv
j are either one or zero by definition.

In our Euclidean distance computation, instead of applying
a subtraction operator to the elements representing input
variables, we perform a matching that yields one if the values
of these elements do not match and zero if their values match.

We denote the quality-of-cluster selection criterion by
QCTrace(c) when the first definition above is used, and by
QCRank (c) when the second alternative definition is used. In
either case, we select the ranked list that is obtained from clus-
ters with the highest value of QCTrace(c) or QCRank (c) (i.e.,
the clusters with smallest intra-cluster distance). If there are
more than one cluster having the same quality, we randomly
choose one of them.

Example. For Cluster1 and Cluster2 in our example, we
have QCTrace(Cluster1) = 0.48 and QCTrace(Cluster2) =
0.29. Using the second definition of distance with N = 5,
we have QCRank (Cluster1) = 1.19 and Cluster2 = 0.49.
Hence, both QCTrace and QCRank select the ranked list
obtained from Cluster1 where the faulty block LimitP is
ranked among the top three blocks.

V. EMPIRICAL EVALUATION

In this section, we describe our research questions (Sec-
tion V-A), experiment settings (Section V-B), evaluation met-
rics (Section V-C), and experiment results (Section V-D).

A. Research Questions

RQ1. [Fault Localization Accuracy] Can our decision tree-
based clustering approach help localizing faults by ranking
the faulty blocks in the top most suspicious blocks? How does
the fault localization ability of our approach compare with
that of the non-clustering approach and the existing clustering
approaches? We investigate the accuracy of our approach in
identifying faults in Simulink models with multiple faults.
Specifically, we evaluate the maximum number of blocks
inspected to identify faults at different debugging iterations.
We compare our results with those obtained by two alterna-
tive debugging techniques for Simulink models with multiple
faults: (1) Statistical debugging without using clustering (2)
Statistical debugging combined with the pairwise clustering
technique. The latter is a state-of-the-art clustering technique
based on statistical debugging previously proposed for iden-
tifying multiple faults in source code [22]. We implemented
and adapted this technique for Simulink models to use it as a
baseline clustering technique for comparison with our work.
RQ2. [Fault Localization Cost] Can our decision tree-based
clustering approach significantly lower the cost of identifying

all faults compared to the pairwise clustering and the non-
clustering approaches? We investigate the total cost of fault
localization when our approach is used to identify several
faults in Simulink models. We measure the total cost based on
the total number of blocks that need to be inspected to make
models fault-free. We then compare the total fault localization
cost of our decision tree-based clustering approach with that
of the non-clustering and the pairwise clustering approaches.
RQ3. [Robustness] Does the fault localization ability of our
approach remain robust when it is applied to models with an
unknown (and potentially large) number of faults? How does
our approach compare with the pairwise clustering and the
non-clustering approaches in terms of robustness? In order
for our approach to be effective in localizing multiple faults,
its fault localization ability should remain robust (i.e., show a
graceful degradation) when the number of faults in the model
grows. We study the changes in the fault localization ability
of our approach when applied to models containing different
numbers of faults and compare those changes with the changes
in the fault localization ability of the non-clustering and the
pairwise clustering approaches applied to the same models.

B. Experiment Settings

In this section, we describe the industrial subjects, test
suites, and test oracles that are used for our experiments.
Industrial Subjects. We use three Simulink models developed
by Delphi Automotive in our experiments. We refer to these
three models as MS, MC, and MGL. Table III shows the
number of subsystems, atomic blocks, links, and inputs and
outputs of each model. Note that the models that we chose
are representative in terms of size and complexity among the
Simulink models developed at Delphi. Further, these models
include about ten times more blocks than the publicly available
Simulink models from the Mathworks model repository [33].
Fault Seeding. We requested a senior Delphi engineer to
provide realistic faults for Simulink models based on his
domain expertise and his years of experience in the automotive
sector. We categorize the seeded faults into the following three
groups: (1) Wrong Function such as using > instead of >=.
(2) Wrong Connection such as a wrong link between two
blocks. (3) Wrong Value such as a wrong value in a constant
block or a wrong threshold in a control block.

Based on the above set of faults, we seeded 19 faults into
MS, 20 faults into MC, and 20 faults into MGL such that
each fault is controlled by a switch allowing us to activate
or deactivate each specific fault. Utilizing the fault activat-
ing/deactivating mechanism, we automatically created, for
each model, 80 faulty versions containing different numbers
of faults. Specifically, for each model, we created four sets of
faulty versions of that model such that each set contains 20
faulty versions with n faults activated where n was set to two
for the first set, to three for the second set, to four for the third
set, and to five for the fourth set. We made sure to activate the
faults in different parts of the models and of different types,
and further, to cover all the originally seeded faults into each

Model name #Subsystem #Blocks #Links #Inputs #Outputs # Fautly Versions
MS 37 646 596 12 8 80
MC 64 819 798 13 7 80

MGL 35 716 721 19 13 80

TABLE III: Key information about industrial subjects.
model. Overall, we created 240 faulty versions containing 840
faults in total.
Test suite and test oracle. We generated three test suites,
each of which with 200 test cases for MS, MC, and MGL
using Adaptive Random Testing [34]. Adaptive random testing
is a black box and lightweight test generation strategy that
distributes test cases evenly within valid input ranges, and thus,
helps ensure diversity among test cases. Note that the size of
the test suites was based on typical practice at Delphi given
test budget constraints and the oracle costs. Further, we used
the fault-free versions of our industrial subjects for test oracles.
Experiment design. To answer our research questions, we
applied our approach (in a one-at-a-time debugging process)
on our 240 faulty models. The number of debugging iterations
for each faulty model is at most equal to the number of
faults activated for that faulty model. This is because, at each
iteration, we resolve all the faults located in the same rank
as that of the top most ranked faulty block. For each faulty
model and at each iteration, we run our approach outlined
in Figure 2 by applying a test suite with 200 test cases
to obtain test execution slices. We then subsequently apply
the three steps in Figure 2 to generate a selected ranked
list of suspicious blocks which is used by engineers to find
one fault. We inspect the ranking manually to identify the
first faulty block and we remove that fault by deactivating
its corresponding switch. We then re-iterate the approach in
Figure 2 until all faults are removed. We repeated the above
experiment for the 240 faulty models twice: One time for
the QCTrace selection criterion, and the second time for the
QCRank selection criterion. We denote our decision tree-based
clustering approach that uses QCTrace and QCRank by DT-
QCTrace and DT-QCRank, respectively.

As specified in the research questions, in our experiment, we
consider two baseline techniques for comparison: A traditional
statistical debugging technique without clustering (denoted by
NC), and a statistical multi-fault debugging approach [22]
that uses a pairwise clustering technique that we adapted to
Simulink models. We repeated the above experiment for the
NC and the pairwise approaches. Our implementation of the
pairwise approach uses the setting used by Jones et al. [22]
except that we consider the top 10% of the blocks to build
the clusters as opposed to the top 20%. This is because in
our previous work [19], we have shown that the top 10% of
the Simulink blocks in a ranking are likely to contain most
faults. As for the pairwise approach, since several clusters
are generated, we use our two selection criteria discussed in
Section IV-C to select a ranking with the highest fault reveal-
ing ability. Specifically, we denote the pairwise approach that
uses QCTrace and QCRank by PW-QCTrace and PW-QCRank,
respectively. In summary, we repeated our experiment 682,
679, 621, 673, and 659 times for DT-QCTrace, DT-QCRank,

PW-QCTrace, PW-QCRank, and NC, respectively. Note that, at
each iteration, we resolve all the faults located in the same rank
as that of the top most ranked faulty block. Thus, different fault
localization techniques require different numbers of iterations
to resolve all the faults. We ran our experiment on a high
performance computing platform with 2 clusters, 280 nodes,
and 3904 cores. Our experiment were executed on different
nodes of a cluster with Intel Xeon L5640@2.26GHz processor.
The total computation time for our experiment (using a single
node) is 15548 hours. Most of the experiment time is used to
generate test execution slices. In total, we generated 1744000,
1503600, and 3000400 test execution slices for MS, MC, and
MGL, respectively.

C. Evaluation Metrics

Since we experiment with faulty models with multiple faults
and fault localization is applied iteratively until models are
fault-free, we provide two new metrics: maximum rank of
faulty blocks and fault localization cost. In our work, at each
iteration, we identify the faulty block that is ranked highest in
the ranked list generated at that iteration. For each identified
faulty block, the maximum rank of faulty blocks is the max
rank of the rank group containing that faulty block. The fault
localization cost is the total number of blocks that need to be
inspected to localize all the faults in a given faulty model over
all the iterations and making the model fault-free. Note that
when several faults are in the same rank group in a ranked
list, we assume that all of them are localized when engineers
inspect that ranked list. Thus, the total iterations for obtaining
a fault-free model can be smaller than the number of faults in
that model. Note that the fault localization cost is an adaptation
of the absolute number of blocks inspected metric used in the
literature for single-fault localization in code [11], [12], [14],
[17], [31], [35].

D. Experiment Results

1) RQ 1. Fault Localization Accuracy: To answer this
question, we compute the number of faults and the proportion
of faults that are ranked among the top blocks in some
ranked list generated at some iteration by each of the DT-
QCTrace, DT-QCRank, PW-QCTrace, PW-QCRank, and NC
fault localization techniques. Figure 4 shows the number of
faults that are ranked among the top blocks when these
techniques are applied to our 240 faulty versions containing,
in total, 840 faults. In this figure, the X-axis shows the number
of top N (N = {10, 20, ..., 200}) blocks and the Y-axis shows
the number of faults located among the top N blocks at some
rank list produced at some fault localization iteration by each
of the above five techniques. Based on Figure 4, when we use
DT-QCTrace and DT-QCRank, 95 out of the total of 840 faults
are ranked among the top 10 blocks in some ranked list at some
iteration. In contrast, by using NC, PW-QCTrace and PW-
QCRank, 23, 82, and 86 faults are ranked among the top 10
blocks at some iteration, respectively. In general, DT-QCTrace
is able to rank more faults among the top ranked blocks
compared to the other four techniques. After DT-QCTrace,

0 20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

600

700

800

The maximum rank of faulty blocks

Th
e

nu
m

be
r o

f f
au

lts

NC
DT-QCTrace
DT-QCRank
PW-QCTrace
PW-QCRank

Fig. 4: The number of faults vs. the maximum rank of faulty
blocks for all the 840 faults.

DT-QCRank is the best. Further, both DT-QCTrace and DT-
QCRank are better than PW-QCTrace and PW-QCRank. NC
is worse than PW-QCTrace and PW-QCRank when we are
interested in faults ranked among the top 50 blocks.

Figures 5(a) to (d) show the proportion of faults that are
ranked among the top blocks when our five fault localization
techniques are, respectively, applied to the 120 faults seeded
into our two-fault models, the 180 faults seeded into our
three-fault models, the 240 faults seeded into our four-fault
models, and the 300 faults seeded into our five-fault models,
respectively. Note in Figures 5(a) to (d), the X-axis is the same
as the X-axis in Figure 4, but the Y-axis shows the proportion
(instead of the absolute number) of faults ranked high, because
the numbers of faults seeded into two-fault to five-fault models
are different form one another. Based on Figure 5(a), using
DT-QCTrace, 61 out of the 120 faults (i.e., more than 50% of
the faults) seeded into the two-fault models are ranked among
the top 50 blocks. In contrast, using DT-QCRank, NC, PW-
QCTrace, and PW-QCRank, the 61 faults are ranked among
the top most 70, 60, 90, and 90 blocks, respectively.

In general, the results in Figure 5 show that DT-QCTrace
and DT-QCRank always perform better than PW-QCTrace and
PW-QCRank. Further, DT-QCTrace always performs better
than NC for three-fault to five-fault models, and also for two-
fault models when we consider the faults that are ranked
among the top 60 blocks. DT-QCRank always performs better
than NC when we consider the faults that are ranked among the
top 50 blocks. Note that it is expected for NC to eventually
converge to the same performance as that of our clustering
technique (DT-QCTrace and DT-QCRank) when the number
of faults in our models are small (e.g., two-fault models).
This is because faults are less likely to mask one another,
and hence, the rankings generated by NC are less impacted
when the number of faults are small (e.g. two faults).

In summary, the answer to RQ1 is that our decision tree-
based clustering approach is able to rank the faulty blocks
among the top most suspicious blocks. Specifically, our tech-
niques (i.e., DT-QCTrace and DT-QCRank) always outperform
the statistical debugging with pairwise clustering (i.e., a state-
of-the-art fault localization clustering technique). Further, DT-
QCTrace always performs better than NC (i.e., the baseline
non-clustering technique) except when the number of faults
in models are small (i.e., two). For two-fault models, DT-
QCTrace always perform better that NC when we consider
the faults that are ranked among the top 60 blocks.

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

P
ro

po
rt

io
n

of
 fa

ul
ts

(%
)

NC
DT-QCTrace
DT-QCRank
PW-QCTrace
PW-QCRank

(a) Two-fault models.

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

P
ro

po
rt

io
n

of
 fa

ul
ts

(%
)

NC
DT-QCTrace
DT-QCRank
PW-QCTrace
PW-QCRank

(b) Three-fault models.

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

P
ro

po
rt

io
n

of
 fa

ul
ts

(%
)

NC
DT-QCTrace
DT-QCRank
PW-QCTrace
PW-QCRank

(c) Four-fault models.

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

P
ro

po
rt

io
n

of
 fa

ul
ts

(%
)

NC
DT-QCTrace
DT-QCRank
PW-QCTrace
PW-QCRank

(d) Five-fault models.
Fig. 5: Proportion of faults vs. the maximum rank of faulty blocks for two-fault to five-fault models.

NC DT−QCTrace PW−QCTrace

0
20

0
40

0
60

0
80

0

Techniques

Fa
ul

t l
oc

al
iz

at
io

n
co

st

Techniques
 NC DT-QCTrace DT-QCRank PW-QCTrace PW-QCRank

F
a

u
lt

 l
o

c
a

li
za

ti
o

n
 c

o
s

t
0

2
0

0

4

0
0

6
0

0

 8
0

0

(a) Two-fault models.

NC DT−QCTrace PW−QCTrace

0
20

0
40

0
60

0
80

0

Techniques

Fa
ul

t l
oc

al
iz

at
io

n
co

st
F

a
u

lt
 l
o

c
a

li
z
a

ti
o

n
 c

o
s

t

Techniques
 NC DT-QCTrace DT-QCRank PW-QCTrace PW-QCRank

0

2

0
0

4
0

0

6

0
0

 8

0
0

(b) Three-fault models.

NC DT−QCTrace PW−QCTrace

0
20

0
40

0
60

0
80

0

Techniques

Fa
ul

t l
oc

al
iz

at
io

n
co

st
F

a
u

lt
 l
o

c
a

li
za

ti
o

n
 c

o
s

t

Techniques
 NC DT-QCTrace DT-QCRank PW-QCTrace PW-QCRank

0

2

0
0

4
0

0

6

0
0

 8

0
0

(c) Four-fault models.

NC DT−QCTrace PW−QCTrace

0
20

0
40

0
60

0
80

0

Techniques

Fa
ul

t l
oc

al
iz

at
io

n
co

st
F

a
u

lt
 l
o

c
a

li
z
a

ti
o

n
 c

o
s

t

Techniques
 NC DT-QCTrace DT-QCRank PW-QCTrace PW-QCRank

0

2

0
0

4
0

0

6

0
0

 8

0
0

(d) Five-fault models.
Fig. 6: Distributions of fault localization cost for two-fault to five-fault models.

2) RQ2. Fault Localization Cost: To answer this question,
we compute the fault localization cost values for all the 240
faulty models and for each of the DT-QCTrace, DT-QCRank,
PW-QCTrace, PW-QCRank, and NC fault localization tech-
niques. Figures 6(a) to (d) show the distributions of the fault
localization cost values for our two-fault to five-fault models,
respectively. Specifically, each box-plot consists of 60 points
corresponding to the 60 faulty versions in each of the two-
fault to the five-fault model groups. In each of these figures,
the X-axis shows the five fault localization techniques, and the
Y-axis shows the fault localization cost.

To statistically compare the fault revealing ability of dif-
ferent fault localization techniques, we performed the non-
parametric pairwise Wilcoxon Pairs Signed Ranks test [36],
and calculated the effect size using Cohen’s d [37]. The level
of significance (α) was set to 0.05, and, following standard
practice, d was labeled “small” for 0.2 ≤ d < 0.5, “medium”
for 0.5 ≤ d < 0.8, and “high” for d ≥ 0.8 [37].

Based on the statistical test results, for two-fault to five-fault
models, the fault localization cost of our decision tree-based
approaches (DT-QCTrace and DT-QCRank) is always signifi-
cantly lower (better) than that of the other three techniques
(NC, PW-QCTrace, and PW-QCRank) (p-values < 0.01).
Further, the fault localization cost of DT-QCTrace is always
significantly lower (better) than that of DT-QCRank. The
effect size, when comparing DT-QCTrace and NC, is “small”
for two-fault and three-fault models, “medium” for four-fault
models, and “large” for five-fault models. In addition, when
comparing DT-QCTrace with PW-QCRank and PW-QCTrace,
the effect sizes are “medium” and “large”, respectively.

In summary, the answer to RQ2 is that our decision tree-
based techniques significantly improve the fault localization
cost compared to NC, PW-QCTrace, and PW-QCRank. Fur-
ther, on average, DT-QCTrace reduces the fault localization

cost by 59 blocks (25%) compared to NC, and by 62 blocks
(26%) compared to PW-QCRank.

3) RQ3. Robustness: For this question, we consider DT-
QCTrace, PW-QCRank and NC because based on our results
in RQ1 and RQ2, DT-QCRank, PW-QCTrace underperform
DT-QCTrace and PW-QCRank, respectively. To answer this
question, we evaluated the changes in the proportion of faults
that are ranked among the top blocks as we vary the number
of faults seeded in the underlying faulty models. Figures 7(a)
to (c) show the results for DT-QCTrace, PW-QCRank, and NC,
respectively. In each figure, we show how the performance of
each of these three techniques is impacted when that technique
is applied to the two-fault, the three-fault, the four-fault, and
the five-fault models separately.

The data in Figure 7 was already shown in Figure 5 where
we showed that DT-QCTrace outperforms other techniques.
Figure 7, however, compares the robustness of these tech-
niques as the number of faults changes. As this figure shows,
DT-QCTrace is the most robust technique since its perfor-
mance changes the least as the number of faults increases from
two to five. The maximum deviation for DT-QCTrace is 7.9%
and the average deviation is 3.7%. PW-QCRank is less robust
than DT-QCTrace but more robust than NC with maximum and
average deviations of 10.3% and 5.5%, respectively. Finally,
NC is the least robust technique with maximum and average
deviations of 21.2% and 11.9%, respectively.

In summary, compared to PW-QCRank and NC, the fault
localization ability of DT-QCTrace is more robust as the
number of faults in models increases from two to five faults.
The least robust technique among these three is NC.

VI. RELATED WORK
In this section, we compare our work with the existing fault

localization techniques that aim to localize multiple faults in
programs [16], [20]–[29], [38], [39].

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

Pr
op

or
tio

n
of

 fa
ul

ts
 (%

)

2Faults
3Faults
4Faults
5Faults

(a) DT-QCTrace.

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

Pr
op

or
tio

n
of

 fa
ul

ts
 (%

)

2Faults
3Faults
4Faults
5Faults

(b) PW-QCRank.

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

Pr
op

or
tio

n
of

 fa
ul

ts
 (%

)

2Faults
3Faults
4Faults
5Faults

(c) NC.
Fig. 7: Proportions of faults (y-axis) among the top-N ranks
(x-axis) obtained by DT-QCTrace, PW-QCRank, and NC.

Several techniques [20]–[22], [29] cluster failures and re-
quire engineers to inspect either failures in all the clusters or all
rankings obtained from the clusters. Multidimensional scaling
has been used for clustering failures based on similarities
between execution profiles in [29] and between statistical
rankings in [21]. Jones et al. [22] cluster failures using
hierarchical clustering and pairwise clustering. They, further,
propose a parallel debugging process to inspect all the ranked
lists obtained from all the clusters. Steimann et al. [20] use
integer linear programming to cluster failures and generate
statistical rankings for the clusters. These approaches have not
been evaluated nor adapted to one-at-a-time debugging. Hence,
they require engineers to inspect all the clusters (or all the
ranked lists) at once, potentially missing the masked faults or
wasting effort by identifying the same faults more than once.
Further, none of these techniques use both input values and
execution slices (traces) as the input for clustering. Our work
uses a supervised learning technique applied to heterogeneous
input data, and is designed and evaluated for a one-at-a-time
debugging process, matching how Simulink models are often
debugged in practice.

Instead of generating several rankings, the following tech-
niques generate one ranking. Zheng et al. [24] cluster failing
test executions and predicates. Jiang and Su [25] cluster pred-
icates using a k-mean technique, identify the most predictive
predicates, and generate one ranking in terms of a control-flow
graph. Abreu et al. [26], [27] combine statistical debugging
with logical reasoning to rank sets of program elements.
Brun and Ernst [40] build predictor models based on program
revisions to produce a subset of program properties that might
be faulty. Cellier et al. [38] cluster failures using association
rules to obtain a single ranking and propose a mechanism
based on formal concept analysis to guide ranking inspection.
These techniques aim to find multiple faults using a single
ranking. Only the work in [38] provides guidelines on when
an inspection can be stopped, but no evaluation is reported. In

contrast, our approach aims to identify one ranking in which at
least one fault is top-ranked. Further, our approach is iterative,
so that faults that are ranked low in the first iterations, can be
ranked higher in subsequent iterations. Finally, our work is
evaluated using industrial case studies.

Liblit et al. [16], [28] iteratively re-rank predicates using
only the execution traces that do not execute the top-ranked
predicates identified in the previous iterations. As they do not
re-generate execution traces after fixing faults, the masked
faults may remain undetected. In our earlier work [23], we
have also used decision trees based on input equivalence
classes to cluster failures in the context of black-box testing.
Our current work uses both execution traces and test inputs
for clustering. Further, we assume a one-at-a-time debugging
process and select one ranking per iteration, while in [23],
clusters are combined together to generate a single ranking
and the approach is not iterative. Finally, we have applied our
technique to industrial Simulink models with multiple faults.
None of the above have been applied to Simulink models.

VII. CONCLUSION

In this paper, we propose an approach to localize multiple
faults in Simulink models. Our approach clusters failures (i.e.,
failing execution slices) that are likely to have been caused by
the same fault(s) by using decision trees. Decision trees group
together failures that satisfy similar (logical) conditions on
model blocks and test inputs. For each cluster, our approach
generates a ranked list of most suspicious blocks. We then
select a ranked list that is the most likely to have a faulty
block ranked high. Engineers then inspect this list to find
at least one fault, fix the fault, and re-test the models. Our
approach iterates until no failures are observed. We have
evaluated our approach on 240 multi-fault models obtained
from three different industrial subjects. Our experiment results
show that our approach, on average, reduces the number of
blocks inspected to localize all faults by 59 blocks (25%)
compared to statistical debugging without clustering and by 62
blocks (26%) compared to a state-of-the-art pairwise clustering
approach. These reductions are statistically significant with p-
values less than 0.01. Furthermore, our approach exhibits less
performance degradation than the baselines when we increase
the number of faults in the underlying models. In future, we
plan to provide effective visualization mechanisms to help
engineers debug Simulink models.

In our paper, we studied these fault types: wrong function,
wrong value, and wrong connection. In future, we plan to
consider other fault types, e.g., missing blocks or missing
connections. Further, we plan to localize multiple faults in
Stateflow [41] (state machine) models.

ACKNOWLEDGMENTS

Supported by the Fonds National de la Recherche, Luxem-
bourg (FNR/P10/03 - Verification and Validation Laboratory,
and FNR8003491), and Delphi Automotive Systems, Luxem-
bourg.

REFERENCES

[1] R. Reicherdt and S. Glesner, “Slicing matlab simulink models,” in Pro-
ceedings of the 34th International Conference on Software Engineering,
ser. ICSE ’12, 2012, pp. 551–561.

[2] A. Sridhar and D. Srinivasulu, “Slicing matlab simulink/stateflow mod-
els,” in Intelligent Computing, Networking, and Informatics. Springer,
2014, pp. 737–743.

[3] P. Skruch, M. Panek, and B. Kowalczyk, “Model-based testing in
embedded automotive systems,” Model-Based Testing for Embedded
Systems, pp. 293–308, 2011.

[4] A. Thums and J. Quante, “Reengineering embedded automotive soft-
ware,” in Proceedings of the 28th IEEE International Conference on
Software Maintenance, ser. ICSM ’12, 2012, pp. 493–502.

[5] MathWorks, “Simulink,” http://www.mathworks.nl/products/simulink/.
[6] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause:

localizing errors in counterexample traces,” in Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’03, 2003, pp. 97–105.

[7] H. Cleve and A. Zeller, “Finding failure causes through automated test-
ing,” in Proceedings of the Fourth International Workshop on Automated
Debugging, ser. AADEBUG 00, 2000.

[8] A. Groce, D. Kroening, and F. Lerda, “Understanding counterexamples
with explain,” in Computer Aided Verification. Springer, 2004, pp.
453–456.

[9] R. Hildebrandt and A. Zeller, “Simplifying failure-inducing input,” in
Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA ’00, 2000, pp. 135–145.

[10] A. Orso, J. A. Jones, M. J. Harrold, and J. T. Stasko, “Gammatella:
Visualization of program-execution data for deployed software,” in Pro-
ceedings of the 26th International Conference on Software Engineering,
ser. ICSE ’04, 2004, pp. 699–700.

[11] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 20th International Sym-
posium on Software Testing and Analysis, ser. ISSTA ’11, 2011, pp.
199–209.

[12] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of the 18th IEEE International Conference on
Automated Software Engineering, ser. ASE ’03, 2003, pp. 30–39.

[13] X. Zhang, R. Gupta, and Y. Zhang, “Precise dynamic slicing algorithms,”
in Proceedings of the 25th International Conference on Software Engi-
neering, ser. ICSE ’03, 2003, pp. 319–329.

[14] H. Cleve and A. Zeller, “Locating causes of program failures,” in Pro-
ceedings of the 27th International Conference on Software Engineering,
ser. ICSE ’05. ACM, 2005, pp. 342–351.

[15] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE ’02, 2002, pp. 467–477.

[16] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” ACM SIGPLAN Notices, vol. 40, no. 6, pp.
15–26, 2005.

[17] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 5, pp. 286–295, 2005.

[18] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Testing: Academic and Indus-
trial Conference Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007. IEEE, 2007, pp. 89–98.

[19] B. Liu, Lucia, S. Nejati, and L. Briand, “Simulink fault localization:
an iterative statistical debugging approach,” Interdisciplinary Centre for
Security, Reliability and Trust, University of Luxembourg, Tech. Rep.TR-
SnT-2015-8, 2015.

[20] F. Steimann and M. Frenkel, “Improving coverage-based localization of
multiple faults using algorithms from integer linear programming,” in
Software Reliability Engineering (ISSRE), 2012 IEEE 23rd International
Symposium on. IEEE, 2012, pp. 121–130.

[21] C. Liu and J. Han, “Failure proximity: a fault localization-based
approach,” in Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering. ACM, 2006, pp.
46–56.

[22] J. A. Jones, J. F. Bowring, and M. J. Harrold, “Debugging in parallel,”
in Proceedings of the 2007 international symposium on Software testing
and analysis. ACM, 2007, pp. 16–26.

[23] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in Software Reliability, 2007. ISSRE’07. The
18th IEEE International Symposium on. IEEE, 2007, pp. 137–146.

[24] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
debugging: simultaneous identification of multiple bugs,” in Proceedings
of the 23rd international conference on Machine learning. ACM, 2006,
pp. 1105–1112.

[25] L. Jiang and Z. Su, “Context-aware statistical debugging: from bug
predictors to faulty control flow paths,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 184–193.

[26] R. Abreu, P. Zoeteweij, and A. Gemund, “Localizing software faults
simultaneously,” in Quality Software, 2009. QSIC’09. 9th International
Conference on. IEEE, 2009, pp. 367–376.

[27] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based
multiple fault localization,” in Automated Software Engineering, 2009.
ASE’09. 24th IEEE/ACM International Conference on. IEEE, 2009,
pp. 88–99.

[28] P. Arumuga Nainar and B. Liblit, “Adaptive bug isolation,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 255–264.

[29] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,” in
Software Engineering, 2003. Proceedings. 25th International Conference
on. IEEE, 2003, pp. 465–475.

[30] L. Olshen, C. J. Stone et al., “Classification and regression trees,”
Wadsworth International Group, vol. 93, no. 99, p. 101, 1984.

[31] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05, 2005, pp. 273–282.

[32] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis. ACM, 2013, pp. 314–324.

[33] MathWorks, “Simulink Examples,” http://nl.mathworks.com/help/
simulink/examples.html.

[34] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making. Springer, 2005, pp. 320–329.

[35] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14, 2014, pp. 127–138.

[36] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, pp. 80–83, 1945.

[37] R. J. Grissom and J. J. Kim, “Effect sizes for research,” A broad practical
approach. Mah, 2005.

[38] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux, “Multiple fault
localization with data mining.” in SEKE, 2011, pp. 238–243.

[39] J. Röβler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure causes
through test case generation,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ACM, 2012, pp. 309–
319.

[40] Y. Brun and M. D. Ernst, “Finding latent code errors via machine learn-
ing over program executions,” in Proceedings of the 26th International
Conference on Software Engineering. IEEE Computer Society, 2004,
pp. 480–490.

[41] MathWorks, “Stateflow,” http://www.mathworks.nl/products/stateflow/.

