
Testing the Untestable∗

Model Testing of Complex Software-Intensive Systems

Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, Domenico Bianculli
SnT Centre - University of Luxembourg, Luxembourg, Luxembourg

{lionel.briand, shiva.nejati, mehrdad.sabetzadeh, domenico.bianculli}@uni.lu

ABSTRACT
Increasingly, we are faced with systems that are untestable,
meaning that traditional testing methods are expensive, time-
consuming or infeasible to apply due to factors such as the
systems’ continuous interactions with the environment and
the deep intertwining of software with hardware.

In this paper we outline our vision to enable testing of
untestable systems. Our key idea is to frame testing on
models rather than operational systems. We refer to such
testing as model testing. Our goal is to raise the level of
abstraction of testing from operational systems to models
of their behaviors and properties. The models that underlie
model testing are executable representations of the relevant
aspects of a system and its environment, alongside the risks
of system failures. Such models necessarily have uncertain-
ties due to complex, dynamic environment behaviors and
the unknowns about the system. This makes it crucial for
model testing to be uncertainty-aware. We propose to syn-
ergistically combine metaheuristic search, increasingly used
in traditional software testing, with system and risk models
to drive the search for faults that entail the most risk.

We expect model testing to bring early and cost-effective
automation to the testing of many critical systems that defy
existing automation techniques, thus significantly improving
the dependability of such systems.

1. OVERVIEW, MOTIVATIONS, AND AIMS
Although testing is arguably the most prevalent verifi-

cation and validation (V&V) technique, for many systems
that we label as untestable, testing is impossible or highly
expensive to automate. An example of untestable systems,
discussed in more detail below, is the control systems in au-
tomobiles. A more complex example is a fleet of autonomous
but communicating vehicles that are integrated into an ur-
ban smart traffic grid. Specific challenges in untestable sys-
tems include automated generation and execution of test

∗This work has been partially supported by the National
Research Fund, Luxembourg (FNR/P10/03).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

cases and identification of failures. In this paper we outline
our vision to bring test automation to untestable systems by
raising the level of abstraction at which testing is performed.

We envision to raise the level of abstraction of testing
by shifting the bulk of testing from implemented systems
to models of such systems. In our context, models represent
relevant aspects of system behavior, environment, structure,
and properties, and are used as the basis for test execution
and analysis. We refer to such testing, that is, test execution
on models, as model testing. Our goal is to bring about
advancements in test case generation, execution, evolution,
and failure detection, to develop a new set of technologies
that reconceptualize the foundations of software testing and
offer a novel testing paradigm.

Automated testing aims to provide confidence about sys-
tem dependability, within reasonable effort, by identifying
and exercising a small fraction of the execution space where
faults are more likely to lie. However, many complex systems
are nearly untestable due to factors such as hardware con-
straints, the lack of a precise understanding of the expected
system behavior and the complex time-dependent properties
that these systems must satisfy. These factors often prevent
the full automation and execution of large numbers of test
scenarios over the implemented system, e.g., when the fac-
tors necessitate that the hardware be manually set up before
each test execution. Model testing tackles the untestability
challenge by enabling software engineers to (1) execute and
validate a much larger number of test scenarios, (2) develop
test strategies that carefully select which scenarios should
be also executed on the deployed system depending on the
level of risk they exhibit, and (3) specify automated oracles,
i.e., mechanisms for detecting failures.

Modeling is by no means new to the V&V community
and is already the cornerstone of a number of well-studied
V&V techniques. Model checking, which is a formal verifi-
cation technique over concurrent finite state models, has a
long history of application in software and hardware quality
assurance [3]. Model-based testing, which relies on models
to generate test scenarios and oracles for implementation-
level artifacts, has also shown promise and is gaining trac-
tion in industry [4]. For many untestable systems such as
Cyber-Physical Systems (CPSs), however, these approaches
suffer from the problems of scale and practicality. Model
checking focuses on exhaustive exploration of model exe-
cutions and is often hindered by the state explosion prob-
lem [3]. This scalability challenge is further exacerbated
when one has to account for the properties of systems involv-
ing physical devices with continuous dynamics and complex,

Controller
(model)

Environment
(model)

FeedbackSt
im

ul
a

X
Y

Z
(x, y, z) Test case

Output

How can we automatically select effective test
cases from the vast space of possible inputs?

In this article, among the above three levels, we focus on the
MiL level testing. MiL testing is the primary level intended for ver-
ification of the control behavior and ensuring the satisfaction of
their requirements. Development and testing at this level is con-
siderably fast as the engineers can quickly modify the control
model and immediately test the system. Furthermore, MiL testing
is entirely performed in a virtual environment, enabling execution
of a large number of test cases. Finally, the MiL level test cases can
later be used at SiL and HiL levels either directly or after some
adaptations.

Currently, in most companies, MiL level testing of controllers is
limited to running the controller-plant Simulink model (e.g.,
Fig. 1(a)) for a small number of simulations, and manually inspect-
ing the results of individual simulations. The simulations are often
selected based on the engineers’ domain knowledge and experi-
ence, but in a rather ad hoc way. Such simulations are useful for
checking the overall sanity of the control behavior, but cannot be
taken as a substitute for systematic MiL testing. Manual simula-
tions fail to find erroneous scenarios that the engineers might
not be aware of a priori. Identifying such scenarios later during
SiL/HiL is much more difficult and expensive than during MiL test-
ing. Also, manual simulation is by definition limited in scale and
scope.

Our goal is to develop an automated MiL testing technique to
verify controller-plant systems. To do so, we formalize the proper-
ties of continuous controllers regarding the functional, perfor-
mance, and safety aspects. We develop an automated test case
generation approach to evaluate controllers with respect to these
properties. In our work, the test inputs are signals, and the test out-
puts are measured over the simulation diagrams generated by
MATLAB/Simulink plant models. The simulations are discretized
where the controller output is sampled at a rate of a few millisec-
onds. To generate test cases, we combine two search algorithms:
(1) An explorative random search that allows us to achieve high
diversity of test inputs in the space, and to identify the most critical
regions that need to be explored further. (2) An exploitative search
that enables us to focus our search and compute worst-case sce-
narios in the identified critical regions.

3. Problem formulation

Fig. 1(a) shows an overview of a controller-plant model at the
MiL level. Both the controller and the plant are captured as models
and linked via virtual connections. We refer to the input of the con-
troller-plant system as desired or reference value. For example, the
desired value may represent the location we want a robot to move
to, the speed we require an engine to reach, or the position we
need a valve to arrive at. The system output or the actual value rep-
resents the actual state/position/speed of the hardware compo-
nents in the plant. The actual value is expected to reach the
desired value over a certain time limit, making the Error, i.e., the
difference between the actual and desired values, eventually zero.
The task of the controller is to eliminate the error by manipulating
the plant to obtain the desired effect on the system output.

The overall objective of the controller in Fig. 1(a) may sound
simple. In reality, however, the design of such controllers requires
calculating proper corrective actions for the controller to stabilize
the system within a certain time limit, and further, to guarantee
that the hardware components will eventually reach the desired
state without oscillating too much around it and without any dam-
age. A controller design is typically implemented via complex dif-
ferential equations known as proportional-integral-derivative (PID)
[2]. Fig. 1(b) shows the generic (most basic) formulation of a PID
equation. Let eðtÞ be the difference between desiredðtÞ and
actualðtÞ (i.e., error). A PID equation is a summation of three terms:

(1) A proportional term KPeðtÞ, (2) an integral term KI
R

eðtÞdt, and
(3) a derivative term KD

deðtÞ
dt . Note that the PID formulation for real

world controllers are more complex than the formula shown in
Fig. 1(b). Fig. 2 shows a typical output diagram of a PID controller.
As shown in the figure, the actual value starts at an initial value
(here zero), and gradually moves to reach and stabilize at a value
close to the desired value.

Continuous controllers are characterized by a number of gen-
eric requirements discussed in Section 3.1. Having specified the
requirements of continuous controllers, we show in Section 3.2
how we define testing objectives based on these requirements,
and how we formulate MiL testing of continuous controllers as a
search problem.

3.1. Testing continuous controller requirements

To ensure that a controller design is satisfactory, engineers
perform several simulations, and analyze the output simulation
diagram (Fig. 2) with respect to a number of requirements. After
careful investigations, we identified the following requirements
for controllers:

Liveness (functional): The controller shall guarantee that the
actual value will reach the desired value within t1 seconds. This
is to ensure that the controller indeed satisfies its main func-
tional requirement.
Stability (safety, functional): The actual value shall stabilize at
the desired value after t2 seconds. This is to make sure that the
actual value does not divert from the desired value or does not
keep oscillating around the desired value after reaching it.
Smoothness (safety): The actual value shall not change
abruptly when it is close to the desired one. That is, the differ-
ence between the actual and desired values shall not exceed v2,
once the difference has already reached v1 for the first time.
This is to ensure that the controller does not damage any phys-
ical devices by sharply changing the actual value when the error
is small.
Responsiveness (performance): The difference between the
actual and desired values shall be at most v3 within t3 seconds,
ensuring the controller responds within a time limit.

The above four requirement templates are illustrated on a typ-
ical controller output diagram in Fig. 3 where the parameters
t1; t2; t3;v1;v2, and v3 are represented. The first three parameters
represent time while the last three are described in terms of the
controller output values. As shown in the figure, given specific con-
troller requirements with concrete parameters and given an output
diagram of a controller under test, we can determine whether that
particular controller output satisfies the given requirements.

Having discussed the controller requirements and outputs, we
now describe how we generate input test values for a given

time

D
es

ire
d

&
Ac

tu
al

 V
al

ue

Desired Value

Actual Value

Fig. 2. A typical example of a continuous controller output.

R. Matinnejad et al. / Information and Software Technology 57 (2015) 705–722 707

Space of inputs

How can we automatically distinguish
faulty from non-faulty system output?

System Under Test

Figure 1: Key test automation needs for an
untestable system from the user’s perspective

concurrent interactions between the system and its environ-
ment (networks, devices, and people). As for model-based
testing, the shortcomings are largely due to the fact that
testing implementation-level software in fully realistic condi-
tions and over actual hardware may be infeasible (e.g., when
the hardware is developed in tandem or after the software),
extremely expensive (e.g., when the hardware may quickly
wear out or sustain damage during testing) or highly time-
consuming (e.g., when the hardware or the environment re-
acts at a much slower rate than software). Having learned
from the successes and drawbacks of both model checking
and model-based testing, our vision is to introduce and op-
erationalize the paradigm of model testing. Specifically, our
goals are to:

• enable software engineers, in the context of untestable
systems, to validate large numbers of test execution scenar-
ios by means of model executions;

• help engineers define testable models, i.e., models that
enable the selection and execution of test scenarios at an
adequate level of detail for failure detection while accounting
for uncertainty in the system and environment behavior;

• develop techniques that combine metaheuristic search
techniques (such as evolutionary computing) with testable
models, to automate the identification of cost-effective test
scenarios;

• provide means to select execution scenarios that should
be replicated on the system implementation depending on
the level of risk they exhibit, i.e., the probability and level
of damage.

2. USER’S PERSPECTIVE
To illustrate untestable systems, we use a highly-simplified

example of a controller system from the automotive domain.
Figure 1 provides an overview of this controller and its en-
vironment in a feedback loop. The large majority of con-
trollers in the automotive domain, including the one in our
example, are designed using differential equations over con-
tinuous time. They are typically developed as executable
MATLAB/Simulink [6] models (a de facto industry stan-
dard) allowing engineers to simulate the controllers, analyze
their outputs and eventually generate code from the con-
troller models.

Such controllers are untestable because of the character-
istics of their inputs and outputs. Specifically, the con-
troller input, which is comprised of several time-continuous

variables and calibration parameters, gives rise to multi-
dimensional and large input spaces containing in the order
of 10100 individual input points even for the simplest con-
trollers. The controller output is a function over time (sig-
nal). To verify the controller’s behavior, engineers have to
evaluate several aspects of the output signals, particularly
whether the signal reaches appropriate values at the right
time instants, whether the time period that the controller
takes to change its values is within acceptable limits, and
whether the signal shape is free of erratic and unexpected
changes that violate continuous dynamics of physical pro-
cesses or objects. To perform such evaluation, engineers
have to evaluate the changes in the output over a continu-
ous time period. In contrast, existing software testing ap-
proaches focus on discrete outputs, evaluating outputs at
a few discrete time instances (states) and essentially ignor-
ing the output changes in between the states. As a result,
the current practice on testing controllers is highly manual,
both on test generation and detection aspects, thus entailing
incomplete and highly-expensive testing.

Although computation and software are integral parts of
continuous controllers, such controllers lie in unchartered
territory as far as software V&V is concerned, primarily
because existing V&V methods do not adequately address
the scalability issues and the physical and timing aspects of
these systems.

For untestable systems such as the controller in Figure 1,
we envision model testing to provide automated support for
two key tasks, among others, that engineers have to han-
dle on a recurring basis: (1) selecting effective test cases
from the vast space of possible inputs and (2) automatically
distinguishing faulty from non-faulty system outputs. As a
result, model testing will enable much more effective fault
detection, higher dependability, and lower operational risks.

3. BACKGROUND & STATE OF THE ART
The notion of untestable (non-testable) system was orig-

inally coined by Elaine Weyuker [10] to refer to systems
where test oracles cannot be defined. Nevertheless, there
are several other factors driving untestability that need to
be addressed, such as the size of the input space, the com-
plexity of inputs and outputs, and the complex interaction
with the physical environment. Metaheuristic search has
been applied to deal with large system input spaces [8] but
most of the existing work focuses on unit testing. Scalability
remains an open issue for large systems since, in practice,
there are limits to the amount of testing that can be per-
formed on the implemented system [4].

Other contributions have relied on modeling to simulate
the system environment [5], or to perform model-in-the-
loop testing [9], where both the system and its environment
are simulated. The executable modeling languages used for
design-time simulation so far do not rely on standardized
modeling languages, thus preventing software engineers from
exploiting existing design artifacts and industry-strength de-
sign tools. Furthermore, when such exploitation is possible
(e.g., in the case of approaches [9] based on Simulink mod-
els), the supporting technology fails to address the system-
level testing of heterogeneous software systems because it
lacks the capability of handling complex properties like con-
tinuous behaviors [7] or uncertainty [1].

Partial oracles, which do not guarantee the correctness
of an execution but simply detect the presence of specific

failures, are useful when systems are untestable [10]. One
important category of partial oracles are metamorphic rela-
tions among test outputs [2]. Despite their usefulness, they
are limited in scope and can mostly be applied in the context
of mathematical functions.

To summarize, what is missing from the state of the art
is a comprehensive solution for test automation in the con-
text of untestable systems, such that cost-effective testing
strategies can be devised and test oracles, whether exact or
heuristic, can be defined for failure detection and analysis
over such systems. Model testing will tackle this gap and
expand the scope of application of automated testing to new
domains and systems.

4. RESEARCH CHALLENGES
Fulfilling our vision for model testing requires addressing

the following challenges.
Definition and execution of testable models. We

refer to a model as “testable” if it enables (1) the execution
of test case scenarios, (2) the selection of such scenarios ac-
cording to cost-effective strategies, and (3) the automated
detection of failures or the evaluation of risks during exe-
cution. As an example, when dealing with CPSs, test au-
tomation necessarily has to consider the interaction between
these systems and their (physical) environment. This envi-
ronment must also be modeled to some extent in order to
enable its simulation. Failure detection and cost-effective
test scenario generation are possible only by checking the
environment’s dynamics during and after test executions.
Developing proper formalisms for expressing testable model
and suitable simulation algorithms depends on the system
under test, the nature of the environment the system in-
teracts with, and the types of failures targeted by testing.
One challenge to this end is in providing precise guidance
to software engineers, based on rigorous scientific investiga-
tion, in the selection of modeling methodologies to use for
enabling model testing. The execution of a testable model
in many large-scale systems is also complicated by the het-
erogeneity of the system components. The heterogeneity
may be caused by the components having been modeled in
different formalisms (e.g., differential equations, state ma-
chines or automata) or the need to account for legacy and
third-party components whose implementation is not avail-
able (e.g., commercial off-the-shelf components). Another
challenge is then to enable effective model testing when we
have only a partial understanding of the system components,
and are thus uncertain about their behavior.

Automated detection of failures. Automated test-
ing is significantly hampered by the oracle problem, i.e., the
capability to automatically detect execution failures. For
untestable systems, this problem is often exacerbated by
the dynamic and physical properties of the environment over
time, and by the fact that engineers are typically unable to
conclusively distinguish correct from incorrect system be-
haviors at the time of testing. This entails particular chal-
lenges for test automation. First, test oracles are not as
clear-cut as in other systems because they also involve as-
sessing a probability of failure and the risks involved, based
on the extent of deviation from what is targeted with respect
to dynamic and physical properties. Further, test oracles
must take into account the effects of possible uncertainty
in the models, and therefore raising the need for probabilis-
tic oracles. In other words, the challenge is to devise clear

methodologies and guidelines for defining different kinds of
oracles for continuous and discrete systems properties, ac-
counting for different types of uncertainties, and mechanisms
to rank test executions according to risk models.

Automated test selection and generation. The space
of possible test scenarios and interactions with the environ-
ment is usually far too large to be amenable to simple test
strategies. Since many untestable systems are safety- or
business-critical, any effective test strategy has to be geared
towards the identification of worst-case scenarios or scenar-
ios that entail the highest level of risk. Developing test
strategies of such nature presents certain challenges. First,
there must be a domain-specific risk model associating a
level of risk with any feasible test scenario — a problem
that has received little attention so far. Second, search-
ing for worst-case scenarios usually requires evaluating, in a
quantitative fashion, how “bad” test scenarios are. This is in
many cases extremely expensive from a computational angle
as such quantitative analysis involves repeated model execu-
tions. A challenge is therefore to find effective heuristics for
test selection and generation to scale. A final challenge is
about devising strategies, based on the above risk analysis,
to select test cases to run on the implemented system.

Regression testing. Many systems are subject to fre-
quent changes in hardware, regulations, or assumptions about
the environment in which the system will operate. Changes
entail, among other things, expensive re-testing which needs
to be minimized. Regression testing aims at ensuring that
changes do not lead to undesirable side effects in the un-
changed parts of the system. For untestable systems, re-
gression testing is more challenging because of more com-
plex dependencies (e.g., captured by differential equations),
heterogeneity, and thus increased uncertainty in determining
the impact of changes on regression test cases.

Assessing the cost-effectiveness of model testing.
With testing strategies being heuristic in nature, one ques-
tion is how to evaluate their cost-effectiveness. In the con-
text of model testing, we need to determine, through empiri-
cal studies, how to make testing affordable and the extent to
which we can rely on model testing results as an indicator of
the dependability of the implemented system. Such empiri-
cal studies are crucial for establishing a roadmap to support
the adoption of research results in practical settings. A chal-
lenge is therefore to define appropriate empirical methods to
assess, in a credible manner, the benefits of model testing in
realistic contexts, where models cannot be expected to be
fully complete or accurate.

5. OBJECTIVES
To address the challenges discussed above, a fundamental

shift is needed in the way we address test automation. Our
overall vision for model testing is to move the bulk of sys-
tem testing to a higher level of abstraction where automated
testing is performed on executable models of the system un-
der test and its environment. Our rationale is that, with
executable models of the system and its environment, one
can run a large number of test scenarios in a completely au-
tomated fashion, while accounting for uncertainty, and at
a chosen level of details for detecting specifically-targeted
faults. This enables us to explore the system input space
to a much larger extent than when testing the implemented
system, thus increasing our chances of detecting high-risk
scenarios, e.g., triggering highly damaging failures. In addi-

tion, models are expected to contain information that can
help guide the test selection and generation process, along
with test execution results and the derivation of test oracles.
Finally, model testing offers opportunities for performing
early testing, concurrently with the system implementation,
and for guiding later stages of testing on the implemented
system.

We plan to realize our vision by achieving the following
objectives:

Executable and testable models of the system and
its environment. Appropriate methodologies to build ex-
ecutable and testable models of systems and their environ-
ment are necessary. Models should be detailed enough to ex-
ecute test scenarios at a level of detail required to check key
properties acting as test oracles, for example time-dependent
state changes. At the same time, modeling should remain
as simple and cost-effective as possible by focusing on what
is required for checking the properties of interest. Facili-
ties to define test oracles should be provided to help the
testers choose appropriate properties based on the models.
Different types of systems and domains will require differ-
ent methodologies fitting the types of properties that are
relevant in their context.

Finding, executing, and analyzing high-risk test
scenarios. Assuming that a large number of test scenarios
can be executed at the required level of detail to identify
relevant violations of key system and environment proper-
ties, we can explore the system input space to the extent
permitted by the computational power at our disposal. To
be effective at finding high-risk scenarios in a large input
space, we first need a clear, context-dependent definition of
risk, which assesses some relevant form of expected dam-
age or loss due to failure. We then need efficient search
algorithms to explore the input space and converge towards
higher-risk areas. Test execution results should also be an-
alyzed to aid fault localization in models as a way to ensure
that engineers can quickly identify the cause of failures.

Modeling, uncertainty and risk. There are typically
many sources of uncertainty in what we know about a sys-
tem and its environment, at early stages of development and
even at system-testing time. In addition, there may be a de-
gree of non-determinism to contend with. Such uncertainty
needs to be modeled by associating probability distributions
with critical events, their time of occurrence, and the results
of system operations. The resulting distributions then need
to be used by the test execution engine to produce, e.g.,
probability distributions of outputs and key property val-
ues, instead of exact values. These would in turn lead to
fitness value distributions during the search, which would
have to be handled by the search algorithms. Risk analysis
of test results would also have to account for their probabil-
ity distributions when assessing test scenarios.

Guiding testing on the implemented system. As-
suming a certain test budget for testing the implemented
system, we would like to use the results of model testing to
select an optimal subset of test scenarios that need to be
executed on the implemented system to further assess its
level of risk in fully realistic conditions. A strategy could be
to select, based on a careful risk analysis of model testing
results, the optimal subset of test scenarios that together
capture the largest level of system risk.

Change impact analysis and regression testing. In
addition to supporting test automation, models are essential

for automatically assessing what test cases are affected and
need to be re-run when a change occurs, e.g., in the sys-
tems requirements or environmental assumptions. We can
achieve this by analyzing model changes, and the dependen-
cies between model elements, test results and oracles. Such
analysis can be static and based on analyzing the models
themselves, or dynamic and based on analyzing the model
execution traces resulting from model testing.

6. EXPECTED IMPACT
The vision proposed in this paper is expected to have a

significant impact on both the state of the art and the state
of the practice. Model testing will enable the application
of automated testing to systems that would otherwise be
untestable. The domains where the project outcomes will
be directly applicable are numerous and include automotive
(e.g., collision avoidance systems), healthcare (e.g., medi-
cal devices), manufacturing (e.g., robotic assembly lines),
telecommunications (e.g., satellite communication systems)
and electronic finance (e.g., credit card transaction process-
ing). We anticipate that model testing, and the guidance
that it will provide for later stages of testing over imple-
mented systems, will contribute significantly to reducing
overall V&V costs and improving the dependability of large-
scale software-intensive systems. Such a research direction
will greatly expand the scope of software testing research,
which, to date, has focused almost exclusively on imple-
mented systems, with an over-representation of techniques
for testing-in-the-small.

7. REFERENCES
[1] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and

R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Commun. ACM,
55(9):69–77, 2012.

[2] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based
testing without the need of oracles. Information and
Software Technology, 45(1):1–9, 2003.

[3] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2001.

[4] H. Hemmati, A. Arcuri, and L. Briand. Achieving
Scalable Model-Based Testing through Test Case
Diversity. ACM Trans. Softw. Eng. Methodol.,
22(1):6:1–6:42, 2013.

[5] M. Z. Iqbal, A. Arcuri, and L. Briand. Empirical
investigation of search algorithms for environment
model-based testing of real-time embedded software.
In Proc. of ISSTA 2012, pages 199–209. ACM, 2012.

[6] MathWorks. Mathworks MATLAB Simulink.
http://www.mathworks.com/products/simulink/.

[7] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann,
and C. Poull. Search-based automated testing of
continuous controllers: Framework, tool support, and
case studies. Information and Software Technology,
57:705–722, 2015.

[8] P. McMinn. Search-based software test data
generation: A survey. Softw. Test. Verif. Reliab.,
14(2):105–156, 2004.

[9] H. Shokry and M. Hinchey. Model-based verification
of embedded software. Computer, 42(4):53–59, 2009.

[10] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

