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Abstract 
 

Neuroinflammation is the local reaction of the brain to infection, trauma, toxic 

molecules or protein aggregates. The brain resident macrophages, microglia, are able to 

trigger an appropriate response involving secretion of cytokines and chemokines, resulting 

in the activation of astrocytes and recruitment of peripheral immune cells. The activated 

astrocytes also produce pro-inflammatory molecules that can lead to a vicious inflammatory 

circle in the brain. This toxic environment produced by both cell types seems to be one of 

the causes of neuronal death in neurodegenerative diseases. IL-1 plays an important role 

in this response; yet its expression and mode of action in the brain are not fully understood 

and its precise implication in neurodegenerative diseases needs further characterization.  

Therefore, the aim of this study was to obtain a better understanding of the role of the 

inflammasome-dependent IL-1 signalling within the brain as well as its possible 

implication in neurodegenerative diseases. The main objectives were i) to profile the 

expression and regulation of inflammasome in microglia and astrocytes, ii) to test the 

reactivity of inflammasome to compounds-related to neurodegenerative diseases iii) to 

investigate the implication of inflammasome in Parkinson’s disease (PD). 

Our results indicate that the capacity to form a functional NLRP3 inflammasome and 

to secrete IL-1 is limited to the microglial compartment in the mouse brain. Indeed, we 

were not able to observe IL-1 secretion from astrocytes, nor do they express all NLRP3 

inflammasome components. The capacity of these cells to express others inflammasome 

complexes also seems compromised, contrarily to microglia which exhibit the potentiality to 

express AIM2, NLRC4 or non-canonical inflammasome. 

In addition to IL-1, microglia were able to secrete IL-18, IL-1 and HMGB1 in an 

NLRP3 inflammasome-dependent way and through mechanisms similar to those observed 

in macrophages. Moreover, microglia stimulation with neurodegeneration-related 

compounds, such as amyloid-β peptide, rotenone or ATP resulted in the inflammasome 

activation and IL-1 release, suggesting that the microglial inflammasome can play a role in 

the neuroinflammation observed during neurodegenerative disease. Finally, if NLRP3 is 

linked to Alzheimer’s pathogenesis, our preliminary results tend to indicate that genetic 

ablation of NLRP3 do not exert any significant impact on the neurodegenerative processes 

occurring in an in vivo model of Parkinson’s disease. However, deeper investigations will 

be needed to better define the role of the inflammasome and its targets in PD. 
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Part I: The Central Nervous System 

 

The nervous system is divided into two parts: the Central Nervous System (CNS) 

and the Peripheral Nervous System (PNS). The CNS includes the brain and the spinal 

cord. It integrates the information and coordinates the activity of all parts of the body. The 

PNS includes ganglia (spinal and autonomic) and nerves. It is in charge of the 

communication between the brain and the sensory organs, the muscles, the glands and 

the blood vessels. In this introduction, we will focus our attention on the CNS. 

 

1. Development of the CNS 

 

In mammals, the CNS development begins at the end of the gastrula stage with the 

induction of the neuroectoderm and the neural plate formation. This structure is arising 

from a layer of primary progenitors known as neural stem cells (NSCs). During the CNS 

development, NSCs undergo cellular differentiation which restricts the potentiality of 

progenitor cells to finally give rise to mature neurons, astrocytes and oligodendrocytes    

(Fig. 1; Paridaen & Huttner, 2014). 

 

Two important steps drive CNS development: the neurogenesis and the gliogenesis. 

At the onset of neurogenesis, around embryonic day 12 (E12) in mice, the NSC switches 

from a symmetric to an asymmetric division mode, giving rise to a NSC daughter cell in 

addition to an immature neuron (Miller & Gauthier, 2007). Interestingly, during this phase, 

NSCs also undergo a phenotypic change to become Radial Glial cells (RGCs) which 

support the migration of the neurons (Götz & Huttner, 2005). Once their final location 

reached, the immature neurons integrate the complex neuronal network by developing 

their projections and their neurotransmitter secretion capacity. 

The switch from neurogenesis to gliogenesis occurs around E16-18 (in mice cortex) 

and is controlled by both extrinsic and intrinsic signals. Most of these embryonic 

developmental signals include bone morphogenetic proteins (BMPs), JAK (Janus kinase)/ 

STAT (Signal Transducer and Activator of Transcription), Notch, Noggin and Sonic 

hedgehog signalling pathways (Jiang & Nardelli, 2015). During gliogenesis, NSCs 

successively give rise to astrocyte progenitor (APCs) and oligodendrocyte progenitor cells 

(OPCs ; Xing et al, 2014). As with the development of any cell lineage, astrocyte and 

oligodendrocyte differentiation requires a sequential series of events that result in the 
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generation of a mature cell population that actively participates in CNS physiology, as 

presented hereafter.  

 

 
Fig. 1: Simplistic view of brain cell development. 

Neurons and macroglia derive from a common progenitor, the neural stem cell (NSC), and differentiate trough two 

successive steps: neurogenesis and gliogenesis. RGC = Radial Glial Cell, N= immature neuron, APC = Astrocyte Progenitor 

Cell, OPC = Oligodendrocyte Progenitor Cell. Adapted from (Xing et al, 2014)  

 

2. Cell populations 

 

In the adult brain, three major cell populations compose the CNS: Neurons, 

Macroglia (Oligodendrocytes and Astrocytes) and Microglia. Nowadays, their numerical 

repartition in the adult brain is always debated. A widespread belief is that glia makes up 

more than 80% of the cells in the human brain. However, recent reports suggest that, at 

least in the human brain, this ratio is much closer to 1:1(Lent et al, 2012). In any case, all 

brain cell types deserve attention considering their important roles and specificities. 

 

 
 

Fig. 2: The different cells of the CNS. 

The brain is composed of neurons and glial 

cells. Glia can be divided into two classes: 

macroglia and microglia. The macroglial cells 

comprise astrocytes and oligodendrocytes. 

Astrocytes make the connection between blood 

vessels and neurons, participate to the neuronal 

synaptic communication and contribute to the 

blood brain barrier. Oligodendrocytes form the 

myelin sheath around the axon to speed the 

neuronal signal transmission. Microglia are 

responsible for the monitoring of the brain for 

damage or infections. They are also implicated 

in neuronal development and neural 

connectivity.  

Adapted from (Felten, 2006). 
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2.1. Neurons 

 

Neurons are about 100 billion in the human adult brain (Lent et al, 2012). They are 

the excitable cells that process and transmit the information across the body.  

Neurons represent a heterogeneous cell population. They can differ by their size, by their 

shape (bipolar, multipolar or unipolar) or by their functions. However, all mature neurons 

share common characteristics. They possess a cellular body (or soma), representing the 

metabolic centre, from which extend two different types of processes: dendrites and axons 

(Fig. 2). The dendrites collect and transport the afferent information to the cellular body by 

a modification of the cell membrane polarization. The stimuli, which have traveled down 

the dendrites, converge at the axon hillock where they are summed to determine the 

neuronal response. If the sum of the stimuli reaches a certain voltage, known as the 

threshold potential, depolarization will be transmitted to the axon. Most of the axons are 

insulated at regular intervals by the myelin sheaths produced by oligodendrocytes (see 

below) in view to accelerate signal transmission (Zoupi et al, 2011).  

Each neuron is connected to another one by a structural cleft called synapse. A 

synapse includes the pre-synaptic neuron membrane, the post-synaptic neuron/organ/cell 

membrane and the intercellular space between them. The information exchange taking 

place in the synapse is called neurotransmission (or synapse signalling). It aims to 

propagate information. The neurotransmission can be electrical or chemical. The electrical 

one transmits directly the impulse via gap junctions established between both neurons. 

On the other hand, in the chemical synapse, the pre-synaptic neurons are in charge of the 

release of neurotransmitters into the cleft to spread the information. The neurotransmitters 

will interact with post-synaptic membrane receptors to initiate the membrane 

depolarization and are quickly removed from the synaptic space to avoid excessive 

activation (Nelson, 1993). The most common neurotransmitters are γ-aminobutyric acid 

(GABA – inhibitory) and glutamate (excitatory). However, other neurotransmitters exist 

and determine six main neuronal systems: Noradrenaline/Noradrenergic, 

Adrenaline/Adrenergic, Dopamine/Dopaminergic, Serotonine/Serotonergic, 

Acetylcholine/Cholinergic and Histamine/Histaminergic neurons (Pradhan et al, 2014). 

 

2.2. Oligodendrocytes 

 

Oligodendrocytes are the myelinating glial cells of the CNS: they electrically insulate 

the axons by forming myelin sheaths around them. This myelinisation process is a 

remarkably specialized cellular interaction specific to vertebrates. It enables the saltatory 
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conduction, in which a neuronal action potential is propagated between myelin sheet gaps 

(nodes of Ranvier) to increase both the speed and energy efficiency of nerve conduction. 

A single oligodendrocyte is able to myelinate up to 60 segments of different axons 

(Scholze & Barres, 2012). In addition to the electrically insulation of axons, 

oligodendrocytes also provide them trophic support and promote the neuron viability via a 

metabolic coupling, where oligodendrocytes provide lactate to axons as an energy source 

(Lee et al, 2012). 

 

2.3. Astrocytes 

 

Astrocytes are the major glial cell type in the brain. They represent a heterogeneous 

population of cells that exhibit different structural, functional, chemical and molecular 

characteristics. 

 

2.3.1. Astrocytes: a heterogeneous population 

 

Classically, astrocytes are classified into two major types: the protoplasmic 

astrocytes and the fibrous astrocytes. Protoplasmic astrocytes, found in the grey matter, 

are spongiform and possess a lot of extensive fine branching. They particularly ensure the 

blood-brain barrier (BBB), the homeostatic and the metabolic astrocytic functions (see 

below). The fibrous astrocytes are located in the white matter and are characterized by 

fewer long processes which form an axonal support network. However, over the years, 

studies have revealed that astrocytes are much more heterogeneous than the classical 

and simple distinction between fibrous and protoplasmic astrocytes (Bribian et al, 2015). 

Indeed, the astrocytic population encloses different groups of cells which differ in their 

morphology, developmental, origin, gene expression profile, electrophysiological 

properties, function and response to injury and disease (Zhang & Barres, 2010; Oberheim 

et al, 2012).  

Currently, astrocytes are defined by a the expression of different markers such as 

Glial Fibrillary Acidic Protein (GFAP), the glutamate transporters GLAST/EATT1 and 

GLT-1/EAAT2 or the calcium binding protein S100β among others (Schitine et al, 2015). 

However, the expression of these markers depends on the considered brain structure, 

varies over time and is also observed in others cells, without clear evidence if they are 

astrocytes or not (e.g. radial glial cells, retinal Muller cells or Bergmann glia ; Khakh & 

Sofroniew, 2015; Rossi, 2015). Therefore, deeper investigations are needed to better 



INTRODUCTION 

 
 6 

define the astrocyte notion, especially by the characterization of type-specific markers 

(Bayraktar et al. 2015; A. V. Molofsky et al. 2012).  

 

2.3.2. Astrocyte functions 

 

Consistent with their heterogeneity, astrocytes ensure a large variety of functions in 

order to preserve the brain homeostasis. 

 

The Blood Brain Barrier (BBB). An important characteristic of the brain parenchyma is that 

its communication with the circulatory system is tightly regulated. The BBB, a physical and 

functional separation between the CNS and the peripheral blood circulation, plays this role 

by preventing the diffusion of harmful elements into the brain (Abbott et al, 2006). The 

main members of BBB are the endothelial cells, the pericytes, the astrocytes and the 

extracellular matrix (Obermeier et al, 2013). Astrocytes possess specialized endfeets that 

cover about 99% of the abluminal surface of cerebral vessels. Their role is to surround the 

endothelial cells by providing a structural support (Prat et al, 2001; Abbott et al, 2006). 

Astrocytes also release morphogens and growth factors, such as fibroblast growth factor 

(FGF) 2 and 5, that modulate pathways involved in the regulation of BBB integrity by 

maintaining the endothelial tight junctions (Reuss et al, 2003; Obermeier et al, 2013).  

 

The neurovascular unit is the functional association of neurons and blood vessels by the 

intermediate of astrocytes. Astrocytes are responsible for the energy supply of neurons. 

When neurons increase their energy need, they release some factors sensed by 

astrocytes (such as glutamate). These signals lead astrocytes to modify the blood stream 

in order to upregulate the glucose uptake. Astrocytes can convert this glucose to glycogen 

for storage (major brain energy store) or can transform glucose into lactate which will in 

turn be delivered to neurons to satisfy their increased metabolic demands (Tsacopoulos & 

Magistretti, 1996). 

 

Tripartite synapse. Astrocytes play a fundamental role in the homeostasis of synapses by 

enwrapping the pre- and post-synaptic cleft to form a tripartite system. The main role of 

this organization is to control the water quantity as well as the concentration of 

metabolites and neurotransmitters in the synapse. They ensure, for example, the 

clearance of potassium or glutamate, two substances becoming neurotoxic if present in 

excess (Oliveira Da Cruz et al. 2015; Sibille, Pannash, and Rouach 2013). Astrocytes are 

also able to sense the synaptic activity through the stimulation of their ion channels, 
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neurotransmitter transporters and receptors. Once stimulated, calcium signalling takes 

place in astrocytes with a subsequent uptake or release of gliotransmitters such as 

glutamate, ATP, and D-serine or adenosine. These transmitters can directly act on post-

synaptic neurons or can modulate the release of neurotransmitters by pre-synaptic 

neurons (Halassa et al, 2007; Perea et al, 2014). In addition, astrocytes also play a role in 

synapse maintenance and neurite outgrowth (Allen, 2014; Rossi, 2015). 

 

Reactive astrogliosis. Astrocytes respond to all forms of CNS insult such as infection, 

trauma, ischemia and neurodegeneration by a process called “reactive astrogliosis” 

(Burda & Sofroniew, 2014). The major roles of reactive astrogliosis are to protect the brain 

parenchyma, seal off damaged areas, reconstruct the BBB and promote the correct 

remodelling of the neural circuitry. This aspect of the astroglial function will be detailed in 

the second part of this introduction (Part II: “The neuroinflammation”). 

 

2.4. Microglia 

 

Microglia are the resident macrophages of the CNS. In the mature brain, microglia 

are dispersed throughout the whole CNS, although their density can be higher in some 

brain regions such as in the hippocampus and the substantia nigra (Lawson et al, 1990).  

 

2.4.1. Origin 

 

In contrast to the previously mentioned brain cells, microglia do not have an 

ectodermal origin.  

For decades, microglial cells have been described as having a mesodermal origin, 

derived from hematopoietic stem cells in the bone marrow. This dogma has recently been 

rebutted by elegant experiments demonstrating that microglia derive from primitive 

macrophages produced in the Yolk sack (Fig. 3, Ginhoux et al, 2010; Schulz et al, 2012; 

Lourbopoulos et al, 2015). These progenitors infiltrate the brain through blood vessels 

between E8.5 and E9.5 (Ginhoux et al, 2010; Ransohoff et al, 2015), just before the onset 

of neurogenesis and the BBB implementation (Dahlstrand et al, 1995). Then, the isolation 

of microglia from the periphery contribute to the maintenance of their difference from 

circulating immune cells (Schulz et al, 2012; Ginhoux et al, 2013) and to their unique 

transcriptional signature (Butovsky et al, 2014). Thus, even if microglia are classically 

defined as macrophages of the brain, recent evidence suggests that they differ 

considerably from the macrophages residing in other tissues.  
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Fig. 3: Microglial ontogeny. 

A transient early wave of myeloid cell development called primitive hematopoiesis takes place at E7.5–E8.0 in the yolk sac 

in mice. Around E9, the erythromyeloid progenitors (EMPs) populate the brain parenchyma and give rise to the embryogenic 

microglia. These early microglia reside in the brain throughout life. Adapted from (Prinz & Priller, 2014). 

 

The microglial turnover in the healthy adult brain is ensured by their self-renewal 

capacity and is totally independent from the bone-marrow derived macrophages (Elmore 

et al, 2014). The understanding of microglial origin is experiencing a revolution, and many 

aspects of their physiology are being redefined.  

 

2.4.2. Roles of Microglia 

 

Microglia are often described as the macrophages of the brain as they form the first line of 

defence against pathogen invasion, injury or disease. Their implication in immunity is 

indeed well characterized. Phagocytic microglia can detect and quickly remove 

pathogens, damaged or dying cells and clear the debris. 

However, it is now outdated to consider microglia as being only the brain’s immune cells 

(Fig. 4). There is increasing evidence that resting microglia play an important role during 

brain development and the establishment of neuronal connectivity. Microglia participate in 

removing apoptotic neurons during embryogenesis but also in the adult brain (Caldero et 

al, 2009; Sierra et al, 2010). Microglia may also phagocyte unwanted dendrites and 

synapses, thus participating in the axon pruning process (Nimmerjahn et al, 2005; Wake 

et al, 2009; Tremblay et al, 2010). In addition, they are able to secrete brain-derived 

neurotrophic factor (BDNF), which is implicated in the learning-dependent synapse 

formation (Parkhurst et al, 2013). Microglia also promote the neuron survival and axonal 

growth by providing other growth factors to neurons (Ueno et al, 2013). 
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Fig. 4: Functional roles of microglia in healthy brain. 

The population of microglial cells is maintained by self-renewal. Surveillant microglial cells constantly scan the brain 

microenvironment, in order to detect perturbations of CNS homeostasis. Phagocytic microglia can detect and quickly 

remove damaged or dying neurons, preventing the injury of neighbouring cells. The phagocytic capacity of microglia is 

particularly important in development (pruning microglia), when they can contribute to the removal of supernumerary 

synapses in neuronal pathways. Moreover, it has been suggested that microglia can have a direct or indirect modulatory 

role at the synapse, influencing neuronal activity (neuromodulatory microglia ; Gomez-Nicola & Perry, 2015). 

 

3. Neurodegenerative diseases  

 

Dysfunction of the different brain cell types can lead to neurological disorders, in 

particular to neurodegenerative diseases. These disorders characterized by a strong 

neuronal loss in specific brain areas, include Alzheimer’s disease (AD), Parkinson’s 

disease (PD), Huntington’s disease and Amyotrophic Lateral Sclerosis (ALS). In the 

following sections, we will focus our attention on AD and PD. 

 

3.1. Alzheimer’s disease  

 

AD is characterized by memory loss, progressive cognitive impairment, and 

neuropsychiatric disturbances. The histopathological hallmarks of AD comprise 

amyloid-β (Aβ) plaques, formation of neurofibrillary tangles and neuroinflammation. 

Together, they lead to the death of glutaminergic neurons, cholinergic neurons and 

interneurons in cortical and subcortical regions (Rubio-Perez & Morillas-Ruiz, 2012; 

Heneka et al, 2013).  
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The vast majority of AD cases (95%) are sporadic forms while the remaining cases 

(5%) are caused by mutations conferring an hereditary profile to the disease (Calero et al, 

2015). Interestingly, these AD-linked mutations often lead to an Aβ overproduction. 

The Aβ peptide is formed from the sequential proteolysis of the amyloid precursor 

protein (APP) present on the neuronal cell surface. APP can be processed by two 

different mechanisms: the non-amyloidogenic (physiological) and the amyloidogenic 

(pathological) pathways (Fig. 5). The non-amyloidogenic pathway involves a first cleavage 

of APP by a α˗secretase and a second cleavage within the membrane by a γ-secretase. 

The α-secretase cleaves APP in the Aβ domain, inhibiting the production of the Aβ 

peptide. In contrast, the amyloidogenic pathway is directly responsible for the formation of 

the Aβ peptide. In this case, APP is first cleaved by BACE-1 (β-site amyloid precursor 

protein cleavage enzyme-1), which liberates a sAPPβ fragment. This one is further 

processed by the γ-secretase which releases the 40 or 42 amino acids long Aβ peptides 

into the extracellular compartment (Haass et al, 2012).  

 

 
Fig. 5: Aβ processing. 

The processing of the APP can be achieved through two pathways: amyloidogenic and non-amyloidogenic pathways. The 

non-amyloidogenic pathway is accomplished by the successive action of the α-secretase and γ-secretase. The 

amyloidogenic pathway is performed by the action of BACE-1 followed by the γ-secretase. This pathway leads to the 

production of the A and the sAPPβ fragment. Aβ monomers may then go on to form oligomers, protofibrils, fibrils and 

amyloid plaques in case of pathology (Querfurth & LaFerla, 2010). 

 

In the healthy brain, Aβ is released within synapses to dampen excitatory 

transmission and to prevent neuronal hyperactivity (Kamenetz et al, 2003). The imbalance 

between the production and the clearance of Aβ is one of the causes of the aggregation of 

the peptide. Aβ is able to self-associated and form soluble oligomers which can further 

aggregate and give rise to insoluble fibrillary plaques (Querfurth & LaFerla, 2010).  

Once Aβ peptides accumulated, as observed in AD, they can be further 

proteolytically processed, chemically modified, or cross-linked, thereby modifying their 
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relative insolubility, stability, and toxicity. This is why the Aβ peptides identified in amyloid 

plaques  

vary in their amino acid composition, ranging from the full-length Aβ (1-40/42) to shorter 

carboxy-terminal or amino-terminal Aβ peptides (Wiltfang et al, 2002). Among the shorter 

A peptides, the 25-35 fragment is endogenously found in elderly people and has been 

described to be more toxic form (Millucci et al, 2009). Moreover, the Aβ25-35 affects the 

cognitive processes when injected in rat CNS (Stepanichev et al, 2005; Limón et al, 

2009).  

Currently, it is still debated whether Aβ plaques are part of the neurodegenerative 

process itself or whether they are the consequence of neuronal loss. In both cases, the 

accumulation of Aβ peptide is thought to contribute to the development of the pathology at 

least by enhancing inflammation and neuronal disturbances. 

 

3.2. Parkinson’s disease  

 

PD is the second most frequent neurodegenerative disorder. Similar to AD, PD 

affects predominantly older people and its prevalence increases with age from 428 at 60-

69 years to 1,903 per 100,000 in 80 years old people (Pringsheim et al, 2015). PD is 

mainly characterized by a triad of motor impairments, i.e. bradykinesia, resting tremor and 

rigidity but also by non-motor symptoms such as depression, anxiety and dementia. The 

principal neuropathological hallmark of PD is the progressive loss of dopaminergic 

neurons in the Substantia Nigra pars compacta (SNpc) which is responsible for the motor 

dysfunction. Other PD characteristics are the presence of protein inclusions called Lewy 

Bodies and the chronic neuroinflammation (Phani et al, 2012). 

The aetiology of PD is thought to result from an interaction between aging, 

environmental and genetic factors (Herrero et al, 2015). The exposure to pesticides (i.e. 

rotenone), herbicides (i.e. paraquat), air pollutants or metal iron has been identified as a 

key risk factor to develop sporadic PD (Litteljohn et al, 2010). The genetic forms of the 

disease (5%) are linked to rare mutations which increase the susceptibility to develop the 

disease. To this date, mutations associated to PD have been identified in several genes: 

leucine-rich repeat kinase 2 (Lrkk2), glucocerebrosidase (Gba), Park2 and Parkin7 

(coding respectively for Parkin and DJ-1), Pink1, Mapt genes and more importantly Snca 

gene (Xu & Chan, 2015). In human, six point mutations in Snca have been identified and 

are linked to PD. They are listed in table 1 (Xu & Chan, 2015).  
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Table 1: Missense mutations in Snca gene causing autosomal dominant Parkinson’s disease. 

Point mutations  References 

Ala30Pro  A30P (Jensen et al, 1998) 

Ala53Thr  A53T (Farrer et al, 1998) 

Glu46Lys E46K (Zarranz et al, 2004) 

His50Gln  H50Q (Proukakis et al, 2013) 

Gly51Asp  G51D (Kiely et al, 2013) 

Ala53Glu  A53E (Pasanen et al, 2014) 

 

Snca gene encodes for a small protein named α-synuclein (α-syn). α-syn is an 

abundant protein in the brain, and notably in the substantia nigra. Until now, the precise 

role of α-syn remains unknown. However, consistent with its initial description in neuronal 

nuclei and presynaptic terminals (Maroteaux et al, 1988), it has been proposed that α-syn 

associates with vesicular and membranous structures in order to play a role in 

neurotransmitter management (Bendor et al, 2013). α-syn proteins can adopt an altered 

conformation under pathological conditions, leading to the cytotoxic formation of 

oligomers, amyloid fibrils and finally Lewy bodies (Fig. 6 ; Conway et al, 2000; Fujiwara et 

al, 2002).  

 

 
Fig. 6: Hypothetical model of α-syn toxicity in PD. 

Under physiological conditions, α-syn exists in a soluble random coil state. Under pathological conditions, the native protein 

undergoes misfolding into pathogenic α-syn oligomers that further aggregate into amyloid fibrils. Ultimately, these structures 

are the building blocks for the pathological inclusions of α-syn called Lewy bodies. Adapted from (Irwin et al, 2013). 

 

It is still not well understood how these α-syn aggregates harm neurons. 

Nevertheless, different hypotheses have been proposed such as their ability to induce an 
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oxidative stress, to inhibit the protein degradation system or to impair the normal 

dopamine neurotransmission (Xu & Chan, 2015). In addition, α-syn as well as its mutant 

forms, can activate microglia and thus promote the neuroinflammation (Zhang et al, 2005; 

Lee et al, 2010; Roodveldt et al, 2010).  
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Part II: The neuroinflammation 

 

1. The inflammatory response 

 

1.1. Generalities 

 

Inflammation is a normal, immediate and transient response to external aggressions 

compromising the integrity of the body. It is defined by the four cardinal signs of 

inflammation: redness, heat, swelling and pain described over 2,000 years ago by Celsus. 

However, the inflammation process is much more complex and involves specific 

molecular and cellular responses to infection, injury or stress. It aims to defend the body 

against insults, to clean dead and damaged cells and to restore the homeostasis.  

Inflammation is classically viewed as an immediate and transient response of the 

immune system. However, it happens that inflammation becomes chronic when the injury 

or infection persists or during autoimmune diseases. Both acute and chronic inflammation 

differ by the rapidity of their onset (fast / slow), the types of involved immune cells 

(granulocytes / monocytes and lymphocytes), or the resulting tissue injury (Mild / Severe 

and progressive).  

 

1.2. Inflammatory signalling pathways 

 

Inflammation is classically triggered when immune cells detect the presence of 

specific signals by the germ-line encoded receptors also known as Pattern Recognition 

Receptors (PRRs). PRRs specifically recognize either pathogen-associated molecular 

pattern (PAMPs) or sterile danger/damage-associated molecular patterns (DAMPs). 

PAMPs include for example bacterial- and viral-derived carbohydrates, nucleic acids or 

lipoproteins whereas DAMPs comprise molecules such as ATP (Adenosine tri-

phosphate), uric acid, HMGB1 (High mobility group box 1) or heat-shock proteins (Kigerl 

et al, 2014). Under normal, non-inflammatory conditions, DAMPs exhibit cellular 

compartmentalization preventing a physiological interaction with their specific PRRs. 

Under pathological conditions, however, DAMPs are either passively released from 

injured/inflamed tissues, dying cells or actively secreted (Feldman et al, 2015). 

The most common PRRs family is represented by the Toll-like receptors (TLRs). 

Besides, PRRs also include the intracellular Nod-like Receptors (NLRs, described below), 
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Scavenger receptors (SRs), Mannose Receptors (MRs) and complement receptors 

(Farina et al, 2007; Kigerl et al, 2014). Following the recognition of PAMPs/DAMPs, PRRs 

trigger intracellular signalling pathways including NF-κB (Nuclear Factor-κB), MAP 

(Mitogen-Activated Protein) kinase, JAK/STAT and AP1 (Activator Protein 1) pathways. 

These signalling pathways lead to the production of a large variety of pro-inflammatory 

factors that can induce a positive regulatory loop to amplify their inflammatory responses. 

Among these pro-inflammatory products, the most notable are nitric oxide (NO), 

reactive oxygen species (ROS), cytokines and chemokines. An important group of 

inflammatory mediators is the family of cytokines which are small proteins including 

interleukins, interferons, tumor necrosis factor, adipokines and lymphokines. 

Interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα) are two members of 

cytokines which have gained much attention in the literature and play pivotal roles during 

inflammation. 

 

1.3. Sterile inflammation 

 

Inflammation is often considered as the consequence of an infection. However, this 

process can also be trigger in the absence of pathogen and is then called “sterile 

inflammation”. It can be caused by mechanical trauma, ischemia, stress or environmental 

conditions. These damage-related stimuli induce the release of DAMPs which in turn 

activate the PRRs (e.g. TLRs or NLRs) and drive the sterile inflammatory reaction. Sterile 

inflammation is implicated in disease processes such as gout, atherosclerosis, cancer or 

neuroinflammatory diseases including AD and PD (Tsung et al, 2014; Feldman et al, 

2015). 

2. Neuroinflammation 

 

Even if the access of peripheral immune cells to the CNS is restricted and tightly 

regulated, it is now commonly accepted that the CNS is capable of dynamic immune and 

inflammatory responses to a variety of insults (for review: Heneka, Kummer, and Latz 

2014; Lyman et al. 2014; Rivest 2009). 

Astrocytes and microglia represent the key effectors of the neuroinflammatory 

response. However, additional cell types are also implicated in this process: 1) CNS 

intrinsic neural cells (neurons, oligodendrocytes, NG2+ cells, NSCs progenitors), 2) CNS 

intrinsic non neural cells (pericytes or endothelial cells) and 3) CNS extrinsic non neural 
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cells (monocytes, macrophages, eosinophils, natural killer cells, T and B cells, among 

others ; Ransohoff & Brown, 2012).  

2.1. Reactive Microglia  

 

The on/off system. In the healthy brain, microglia exhibit a highly ramified shape and 

are called “resting microglia”. This term is misleading as these cells are not really 

quiescent. Indeed, microglia constantly scan the brain parenchyma with their long and 

motile processes in order to detect any homeostasis perturbation. This “resting” state is, in 

part, actively maintained by surrounding cells, in particular by healthy neurons which 

provide so called “off signals” such as CX3CL1, CD22, various neurotransmitters or 

neurotrophins (Biber et al, 2007). However, these “off signals” can be altered or missing, 

for example after neuronal loss. In addition, microglia can also detect specific “on” signals 

via its PRRs such as the presence of pathogens, cellular debris, critical concentrations of 

physiological molecules (e.g. glutamate, ATP) or presence of misfolded proteins (e.g. Aβ 

or α-syn peptides ; Long-smith et al, 2009). In case of “off” signals disruption and/or “on” 

signals detection, microglia react promptly and shift toward an “activated state”.  

 

Activation state of microglia. This activated state is characterized by an impressive 

change in proliferation and microglia morphology (i.e. the cells are adopting an amoeboid 

shape). Microglia become also highly motile and migrate to the site of injury. There, they 

phagocyte damaged cells or debris and generate a particular environment by secreting a 

large variety of factors: cytokines, chemokines, NO, ROS or growth factors. They also 

release chemoattractant factors to recruit peripheral immune cells (Prinz et al, 2011).  

Until recently, the profile of microglial activation was essentially characterized by two 

extreme phenotypes: the M1 state, which is highly pro-inflammatory, and the M2 state, an 

alternative activation state rather dedicated to the tissue repair. However, this concept has 

recently been reappraised, because these two phenotypes were not sufficient to 

characterise all the activation states of microglia. It is now evident that they have to be 

considered as a large continuous spectrum of phenotypes with a large variety of functions 

(Heppner et al, 2015). The context, the environment and the surrounding cells (especially 

astrocytes and neurons) influence and determine all these specific phenotypes (Hanisch & 

Kettenmann, 2007). 

Short and moderate activating signals direct microglia toward a neuroprotective 

phenotype (Fig. 7). In this context, microglia clear debris by phagocytosis, secrete growth 

factors and support regeneration. In contrast, intensive acute or chronic activation can 

render microglia neurotoxic. In this case, they produce ROS, NO, proteases but also a 
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large plethora of pro-inflammatory cytokines such as IL-1, IL-6 and TNFα. All these factors 

endanger neuronal activity (London et al, 2013).  

 
Fig. 7: Microglial activation. 

Upon recognition of a danger signal, microglia switch to an activated mode, adopt an amoeboid form and migrate to the 

injury site. There, they phagocyte damaged cells or debris, secrete a large variety of factors, recruit circulating immune cells 

and support regeneration. All these events aim to restore the homeostasis in the brain parenchyma. Adapted from (London 

et al, 2013). 

 

2.2. Reactive astrocytes 

 

In case of CNS insults, astrocytes undergo a process of activation called reactive 

astrogliosis, a hallmark of neuroinflammation. Similarly to microglia, astrocytes can sense 

endogenous danger signals via the expression of PRRs. These signals are diverse but 

they mainly result from the microglial response to injury. 

The basic process of reactive astrogliosis involves cellular hypertrophy, changes in 

gene expression and can include astrocyte proliferation after particularly severe insults 

(Sofroniew & Vinters, 2010). Reactive astrocytes are commonly characterized by an 

increased synthesis of GFAP and a re-expression of the progenitor markers, vimentin and 

nestin (Hamby and Sofroniew 2010; Pekny and Nilsson 2005). They also initiate the 

expression and release of several mediators such as cytokines, chemokines, eicosanoids, 

ROS, NO and excitatory amino acid that influence the microglial activation and potentiate 

the recruitment of immune cells to the inflamed sites (Dong & Benveniste, 2001; Lee, 

2015). 

Accumulating evidence indicates that reactive astrogliosis is not a simple all or none 

response but could vary in a context-specific manner which corresponds to the level of 

injury, the astrocyte subtype and the location of the lesion site. Accordingly, the astrocyte 

phenotypes can be classified into a continuum of progressive activation states from mild 
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astrogliosis to severe astrogliosis leading to the formation of a glial scar. These different 

levels are described in figure 8 (Sofroniew and Vinter 2010; Zamanian et al. 2012). 

 

 
Fig. 8: Reactive astrogliosis. 

(a) In healthy CNS tissue, astrocytes occupy a defined domain without overlapping with other cells. (b) In mild to moderate 

reactive astrogliosis, astrocytes are characterized by anti-inflammatory properties and are found at distal regions from brain 

injury. There are involved in brain regeneration. (c) In severe diffuse reactive astrogliosis, astrocyte morphology is highly 

affected. They are located close to the brain injury and release pro-inflammatory cytokines. (d) Further astrocyte activation 

induces a glial scar formation. This barrier protects the healthy brain region from the spread of inflammation and the 

damaged tissue. However, it could restrict the regeneration processes (Sofroniew & Vinters, 2010). 

 

2.3. Neuroinflammation: detrimental or not? 

 

Neuroinflammation aims to facilitate the recovery from injury by reducing the size of 

a lesion, isolating the damaged zone and facilitating wound repair. However, although 

intended to be beneficial and protective, an excessive inflammation can cause or 

contribute to tissue damage and disease pathology. The main actors of this neurotoxicity 

are the pro-inflammatory cytokines and other factors released by both microglia and 

astrocytes. They can lead to the breakdown of the BBB, the impairment of synaptic 

activity, the inhibition of the neurogenesis and neuronal regeneration and to neuronal cell 

death (Lyman et al, 2014).  

Among the neurotoxic pro-inflammatory factors, the IL-1 family members are 

well-described. Dysregulated production of these cytokines can give rise to inflammatory 

diseases and neuronal injury. This is why the production of IL-1 is regulated at multiple 

levels: transcription, translation, cleavage and cellular release (Allan et al, 2005). A key 

player in this regulation is the inflammasome complex which will be described in the 

following section.  
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Part III: The inflammasome 

 

The inflammasome is a large cytosolic multiprotein complex formed upon detection 

of a large spectrum of infection- or stress-associated stimuli. The assembly of the complex 

leads to the activation of caspase-1 which is in charge of numerous inflammatory 

responses, such as the maturation of the cytokines IL-1β and IL-18, the release of 

alarmins or the initiation of pyroptosis, a characteristic form of caspase-1-dependent cell 

death (de Zoete et al, 2014). 

Martinon and collaborators first described the complex in 2002. They reported the 

identification of a caspase-1-activating complex, which they called “inflammasome” in 

order to highlight its similarity to the apoptosome complex as well as its particular 

implication in inflammation (Martinon et al, 2002).  

1. Inflammasome structure  

 

The inflammasome complex is classically formed of a sensor protein, an adaptor 

protein and a specific caspase (Fig. 9). Upon activation, the different components 

assemble through homotypic domain interactions.  

 

 
Fig. 9: Principal inflammasome components and their domain structure. 

To date, the well-described inflammasomes are the NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes. Their names 

derived from the sensor protein involved in the complex. Sensor proteins recruit the two other components of the 

inflammasome, the adaptor protein ASC and the caspase 1/11, by homotypic domain interactions in order to form the 

inflammasome complex. FIIND = Function to find domain; CARD = Caspase activation and recruitment domain; NBD = 

Nucleotide-binding domain; PYD = Pyrin domain; NR100 = Amino-terminal domain of rodent NLRP1 of about 100 amino 

acids; HIN-200 = DNA-binding domain. 
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1.1 The sensor proteins 

 

Two main protein families act as sensor proteins in inflammasome complexes: the 

NLR-family (nucleotide-binding domain and leucine-rich repeat containing receptor, 

previously named NOD-family) and the PYHIN (Pyrin and HIN domain-containing) protein 

family (Fig.9).  

The NLR family consists of 33 genes in mouse and 22 genes in human (Ting et al, 

2008; Ye & Ting, 2008). All NLRs share a common domain structure: an N-terminal 

leucine-rich repeat (LRR) domain, a central nucleotide-binding domain (NBD) and a C-

terminal effector domain in charge of the direct or indirect recruitment of the caspase. This 

effector domain defines the subfamily classes of NLRs: NLRA (A for acidic transactivating 

domain), NLRB (B for BIR domain), NLRC (C for CARD), NLRP (P for pyrin domain) and 

NLRX (X for no significant homology). So far, the capacity to form an inflammasome has 

been mainly demonstrated for NLRP1, NLRP3, NLRC4, but also AIM2. AIM2 (Absent In 

Melanoma 2) is a member of the PYHIN protein family and not of the NLR family. Its 

domain structure is a N-terminal PYD domain coupled to a HIN-200 DNA-binding domain 

in C-terminus (Fernandes-Alnemri et al, 2009).  

 

1.2 The adaptor ASC 

 

The adaptor protein apoptosis-associated speck like protein (ASC) is responsible for 

the connection between the sensor protein and the caspase in inflammasome complex 

(Martinon et al, 2002; Srinivasula et al, 2002). ASC is encoded by the Pycard gene and 

contains two different death-fold domains (Fig. 9): a PYD domain that engages in 

homotypic interactions with the PYD domain of the sensor protein (NLR or AIM2 ; 

Fernandes-Alnemri et al, 2009; Vajjhala et al, 2012) and a CARD domain that is required 

for the recruitment of caspase-1, again through homotypic protein-protein domain 

interactions (Proell et al, 2013). 

Importantly, ASC is dispensable in certain inflammasome complexes such as in 

NLRP1 and NLRC4 inflammasomes that can directly bind the caspase (Faustin et al, 

2007; Broz et al, 2010). However, some studies propose that ASC might still be required 

for optimal activation of these complexes (Faustin et al, 2007; Case, 2011). 
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1.3 The pro-inflammatory caspases 

 

Caspases (cysteine-aspartic proteases) are proteolytic enzymes largely known as 

regulators of cell death and inflammation. This protease family is composed of 12 different 

members that can be grouped in two distinct classes: apoptotic caspases (casp-2, -3, -7, 

-8, -9 and -10) and inflammatory caspases (casp-1, -4, -5 / -11) (Shi et al. 2014). More 

recently, caspases-12 and -14 have been identified but their respective roles are not yet 

totally understood. 

In 1989, a protease responsible for the cleavage of IL-1β into its active form was 

described for the first time. This protease has been named Interleukin-β Convertase 

Enzyme (ICE ; Kostura et al, 1989). It was rapidly identified as a homolog of the already 

known caspase-1 (Yuan et al, 1993). Caspase-1 is the protease classically involved in the 

inflammasome complexes. However, recent publications show that caspase-11 can be 

implicated in a non-canonical inflammasome pathway (Kayagaki et al, 2011). While 

caspase-1 is constitutively expressed in many cell types, the caspase-11 (murine otholog 

of caspase-4/-5) is inducible. However, both caspases are produced as zymogens, thus 

existing under an inactive pro-form that needs to be cleaved to become active.  

Caspase proenzymes contain three domains: an amino-terminal CARD domain, a large 

subunit that contains the active-site cysteine (p20) and a carboxy-terminal small subunit 

(p10 ; Fig. 10). The cleavage of the zymogen generates two subunits, p20 and p10, which 

associate as a hetero-tetramer to form the active caspase-1. This maturation process 

occurs via a close proximity model of auto-activation. Indeed, the pro-peptide is cleaved in 

case of the apposition of more than two monomers of pro-caspase as is the case when 

inflammasome is assembled (Bauernfeind et al, 2011). However, we have to note that 

caspase-1 seems to exist in two activation states, unprocessed and fully processed, 

depending on the composition of the inflammasome (Broz et al, 2010). 

 

 

 
Fig. 10: Caspase 1/11 activation.  

Caspase proenzymes contain an amino-terminal CARD and two carboxy-terminal subunits: p10 and p20. Two cleavage 

events at aspartate (Asp.) residues could occur. The first divides it into large and small caspase subunits, and the second 

removes the N-terminal prodomain. The resulting functional caspase is a tetramer of two large (p20) and two small (p10) 

subunits. 
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2. NLRP3 inflammasome 

 

2.1 Two-step mechanism of inflammasome activation 

 

The NLRP3 inflammasome is the best-characterized inflammasome. It is composed 

of NLRP3, the adaptor protein ASC and caspase-1. NLRP3 inflammasome activation is 

generally described as a two-step mechanism requiring two different signals (Fig. 11).  
 

 Fig. 11: Activation of the NLRP3 inflammasome requires two signals. 

Signal 1 (or priming) is represented by microbial molecules or pro-inflammatory cytokines. They lead to the activation of the 

NF-κB pathway and to the regulation of the synthesis of NLRP3 and pro-IL-1β. Priming also licenses NLRP3 by inducing its 

deubiquitination. Signal 2 is responsible for the activation of NLRP3. It can be trigger by a large array of factors (DAMPs, 

PAMPs, crystals). Once signal 1 and 2 are engaged, the NLRP3 inflammasome is formed which leads to caspase-1 

activation and, among other events, to IL-1β/IL-18 maturation and secretion. Inspired from (Franchi et al, 2012). 
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“Signal 1” (or priming) is a sine qua non condition for inflammasome assembly. It 

aims to upregulate the protein expression level of NLRP3. Priming is triggered by different 

pro-inflammatory molecules, such as bacterial lipopolysaccharide (LPS) or endogenous 

cytokines. These factors lead to the activation of the NF-κB pathway activation and to the 

subsequent upregulation of NLRP3 and pro-IL-1β (Franchi et al, 2009; Bauernfeind et al, 

2010). Additionally, the signal 1 can non-transcriptionally prime NLRP3 by stimulating its 

deubiquitination (Juliana et al, 2012; Py et al, 2013).  

 

“Signal 2” consists in an NLRP3 agonist responsible for complex formation (Fig. 11). 

NLRP3 is a broadly activated sensor protein since it can detect a large array of stimuli. 

The table 2 presents few examples of the NLRP3 activators described. It is not fully 

understood how these structurally diverse molecules activate NLRP3. However, we know 

that their presence induces a change in NLRP3 conformation that allows the recruitment 

of ASC and caspase-1 and ultimately the cleavage of its substrates (Mayor et al, 2007; 

Compan et al, 2012).  

 

Table 2: Diversity of NLRP3 activators. 

NLRP3 activators References 

PAMPs  

Bacterial components (Mariathasan et al, 2006; Duncan et al, 2009; He et al, 2010; Toma 

et al, 2010; Shimada et al, 2011) 

Fungal components (Gross et al, 2009; Joly et al, 2009; Hise et al, 2010) 

Viral components (Allen et al, 2009; Thomas et al, 2009; Ichinohe et al, 2010; Rajan 

et al, 2011) 

DAMPs  

ATP (Mariathasan et al, 2006) 

Uric acid crystals (MSU) (Martinon et al, 2006) 

Aβ peptides (Halle et al, 2008) 

Environmental factors  

Silica (Dostert et al, 2008) 

Abestesos (Eisenbarth et al, 2008) 

 

2.2 Different NLRP3 activation models 

 

Regarding the huge diversity of stimuli, it is unlikely that NLRP3 senses each PAMP 

or DAMP directly. Instead, a common molecular event is probably leading to its activation. 

Three main models have been proposed: the ion flux model, the ROS and mitochondrial 
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impairment model and the lysosomal damage model (Fig. 12). However, so far, none of 

these models totally accounts for inflammasome activation, probably because all these 

events are strongly interrelated (Guicciardi et al, 2004; Muñoz-Planillo et al, 2013).  

 

 
Fig. 12: Models for NLRP3 activation. 

Various PAMPs and DAMPs provide the signal 2 required to assemble and activate the NLRP3 inflammasome. Although 

the precise mechanism leading to NLRP3 activation is still controversial, three models have been proposed: the lysosomal 

damage, the ions fluxes and the mitochondrial damage and associated ROS. However, these cellular events are strongly 

correlated and probably act together. Adapted from (Saxena & Yeretssian, 2014). 

 

2.2.1 Ion flux model  

 

Cellular ion fluxes play an important role in NLRP3 activation, in particular 

potassium (K+) efflux and Calcium (Ca2+) mobilization from intracellular stores.  

Several known inflammasome activators are pore-forming toxins (i.e. Nigericin) and are 

described as cause of K+ efflux. Similarly, ATP activates the ionotropic P2X7 receptor 

which results in the opening of potassium channels and the release of K+ in the 

extracellular space. Incubating cells in KCl-enriched medium inhibits the K+ efflux and 

results in reduced IL-1β and IL-18 release (Pétrilli et al, 2007), demonstrating the 

importance of the potassium flux for inflammasome activation.  



INTRODUCTION 

 
 25 

In addition to K+, Ca2+ fluxes have also been studied in the context of NLRP3 

activation. Several recent reports demonstrate that an increase of intracellular calcium is 

indispensable for NLRP3 activation by ATP, Nigericin, but also lysosomotropic peptides 

(T. Murakami et al. 2012; Rossol et al. 2012; Zhong et al. 2013). However, even if calcium 

mobilization is required for NLRP3 activation, it cannot be sufficient, given that calcium 

signalling is triggered in many settings without coincident inflammasome activation. 

Moreover, a recent study showed that extracellular calcium activates NLRP3 only when a 

K+ efflux is permitted (Muñoz-Planillo et al, 2013). This publication also shows that the 

activation of NLRP3 by Ca2+-enriched media was attributed to the formation of insoluble 

calcium phosphate salts, which was previously linked to K+ efflux and NLRP3 activation 

(Jin et al, 2011). Therefore, the current view is that a drop in cytosolic K+ plays a central 

role in the NLRP3 activation. However, it remains to be clarified how K+ efflux are sensed 

by NLRP3. 

 

2.2.2 Mitochondrial damage and ROS  

 

ROS are chemically reactive compounds (free radicals and molecules) derived from 

the oxygen metabolism. While ROS are a by-product of physiological cell function, 

excessive amounts can cause deleterious effects. 

Most inflammasome activators, such as ATP, Nigericin, Alum or uric acid induce a ROS 

production (Tschopp & Schroder, 2010). Experiments using ROS inhibitors have shown 

that this oxidative stress is important for NLRP3 activation. ROS generated by the NADPH 

oxidase 2 were first considered to be direct inflammasome activator (Cruz et al, 2007; 

Dostert et al, 2008). However, later studies have shown that NOX2-deficient cells exhibit 

normal NLRP3 activation upon stimulation (Bruggen et al, 2010; Latz, 2010; Muñoz-

Planillo et al, 2013). Moreover, a deficiency in superoxide dismutase (SOD-1), increasing 

ROS levels in cells, leads to an unexpected inhibition of caspase-1 activity (Meissner et al, 

2010). Therefore, the discrepant results about the role of ROS and antioxidants on 

inflammasome activation are still matters of discussion (Rubartelli et al, 2011).  

Mitochondria, important cellular organelles, are very sensitive to cellular stress. Its 

damage triggers molecular events such as the production of ROS or modifications in Ca2+ 

signalling, two processes already relied to NLRP3 activation. Zhou and colleagues have 

shown that blocking mitophagy induces NLRP3 activation (Zhou et al, 2010). Furthermore, 

mitochondrial DNA, released in case of injury, can directly bind to and activate NLRP3 

(Nakahira et al, 2011; Shimada et al, 2012) similarly to cardiolipin, a phospholipid 

enclosed in the inner mitochondria membrane (Iyer et al, 2013). On the other hand, the 
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protection of mitochondrial integrity also prevents inflammasome activation (Chang et al, 

2014). In addition to these results, many reports have demonstrated that a large variety of 

NLRP3 activators drive mitochondrial damage and subsequent events (Gurung et al, 

2014). All these findings support the mitochondrial dysfunction as another important 

cellular event leading to NLRP3 inflammasome activation. 

 

2.2.3 Lysosomal damage 

 

Several particles and crystalline molecules, such as Alum, MSU, Silica or Aβ, have 

been shown to activate the NLRP3 inflammasome upon “frustrated” phagocytosis and 

disruption of lysosomal membrane. Proteases, such as cathepsin B that are normally 

sequestered in this organelle, can then be released. Treatment with cathepsin B inhibitors 

induce a reduction of NLRP3 activation (Halle et al, 2008; Hornung et al, 2008; Chu et al, 

2009; Duncan et al, 2009; Codolo et al, 2013). However, cathepsin B-deficient mice show 

no reduction in IL-1β release following particle exposure (Dostert et al, 2009; Orlowski et 

al, 2015). Moreover, a recent publication demonstrates that NLRP3 activation by MSU or 

silica could occur in the absence of phagocytosis but was dependent on K+ efflux (Muñoz-

Planillo et al, 2013; Hari et al, 2014). These results indicate once again the complexity to 

construct a unique NLRP3 activation model.  

 

In conclusion, the mechanisms of NLRP3 activation supported by the most studies 

include potassium efflux, the generation of ROS, mitochondrial damage and the lysosomal 

destabilization. However, not all of these events are induced by all NLRP3 agonists and 

some conflicting results on this topic are published. Therefore, the precise mechanism of 

NLRP3 activation is still debated and need clarification. 

 

3. Other inflammasomes 

 

In addition to NLRP3, other inflammasome complexes have been described. Even if 

each of them is specifically activated by particular stimuli (Fig. 13), their assembly all 

triggers caspase-1 activation and the related cellular events.  
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Fig. 13: Distinct stimuli activate different inflammasomes. 

A large variety of stimuli, associated with infection or cellular stress, are able to activate the inflammasomes and 

subsequently the caspase-1. Each of these different triggers preferentially activates one the inflammasome sensor proteins. 

For example, NLRP1 is activated by Anthrax, Bacilllus anthracis or Muramyl dipeptide (MDP) whereas NLRC4 is sensitive to 

fatty acids (palmitate) or different bacterial PAMPs. Moreover, the nature of the stimuli determines the ASC-dependency of 

both NLRP1 and NLRC4 complexes assembly. AIM2 can detect the presence of DNA, either viral, bacterial or self-DNA. 

Inspired from (de Zoete et al, 2014) 

 

3.1. NLRP1 inflammasome 

 

NLRP1 was the first described inflammasome complex. It was defined by the 

spontaneous assembly of NLRP1 protein, ASC and caspase-1 in a cell free system 

(Martinon et al, 2002). Today, we know that ASC is dispensable for NLRP1 inflammasome 

formation even if its presence enhances the complex’s activity (Faustin et al, 2007; Van 

Opdenbosch et al, 2014). Although NLRP1 has been described in both humans and 

mouse, they are encoded by paralog genes. In human, a single genes codes for 

NLRP1whereas in mice three different genes code for NLRP1a, NLRP1b and NLRP1c. 

Accordingly, human and mouse NLRP1 display different structures which might explain 

that they are not sensitive to the same stimuli (Fig. 9). For example, Muramyl dipeptide 
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(MDP), a bacterial proteoglycan fragment, is a natural ligand of human NLRP1 but not of 

murine NLRP1 (Faustin et al, 2007; Kovarova et al, 2012). On the other hand, murine 

NLRP1 seems sensitive to the Bacillus anthracis lethal toxin whereas human NLRP1 is 

not (Fink et al, 2008). More precisely, this sensitivity to anthrax toxin is restricted to 

specific mouse genetic backgrounds such as in the mice strains BALB/c and 129s1 

(Boyden & Dietrich, 2006).  

 

3.2. NLRC4 inflammasome 

 

NLRC4 (formerly called IPAF) is specialized in the detection of bacterial pathogens, such 

as Shigella flexneri (Suzuki & Núñez, 2007), Legionella pneumophila (Amer et al, 2006; 

Lamkanfi et al, 2007) or Salmonella typhimurium (Amer et al, 2006; Miao et al, 2006). 

NLRC4 does not directly recognize these pathogens but indirectly interacts with different 

NLR-family apoptosis-inhibiting proteins (NAIPs) in the cytosol (Kofoed & Vance, 2011). In 

mice, NAIP1 and 2 bind the bacterial type III secretory system (T3SS) whereas both 

NAIP5 and 6 bind bacterial flagellin (Kofoed & Vance, 2011; Rayamajhi et al, 2013). Once 

NAIP proteins bind their ligands, they can oligomerize with NLRC4 and induce the 

recruitment of other NLRC4 inflammasome components. Similar to NLRP1, NLRC4 could 

directly interact with the CARD domain of caspase-1 (Poyet et al, 2001) or indirectly by 

the recruitment of ASC (Broz et al, 2010; Proell et al, 2013). 

 

3.3. AIM2 inflammasome 

 

AIM2 is a member of the PYHIN family and is able to recognize cytosolic viral or 

bacterial double-stranded DNA (Broz et al, 2010; Fernandes-Alnemri et al, 2010; 

Rathinam et al, 2010; Sauer et al, 2010) but also the DNA released by apoptotic cells via 

its HIN200 domain (W. Zhang et al. 2013). The binding to DNA induces a conformational 

change of AIM2 and the oligomerization of AIM2 occurs around this DNA molecule 

allowing the subsequent recruitment of ASC and caspase-1 (Jin et al, 2012, 2013). 

 

3.4. Non-canonical inflammasome pathway 

 

Recently, it was shown that caspase-1-deficient mice are also deficient for caspase-11, 

due to the close proximity of both genes in the mouse genome and the consequent 

difficulty to segregate these genes during homolog recombination (Kuida et al, 1995; 
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Kayagaki et al, 2011). To study the precise role of each caspase, new transgenic mice 

have been designed expressing caspase-11 from a C57BL/6 bacterial artificial 

chromosome transgene. The experiments carried out with these new strains show that 

Casp11-/- cells are still able to process IL-1β and IL-18 in response to ATP or MSU but not 

when infected by some Gram-negative bacteria (Kayagaki et al, 2011). Indeed, further 

investigations have demonstrated that caspase-11 is directly activated after macrophage 

stimulation with Gram-negative bacteria, such as E. coli, Citrobacter rodentium or Vibrio 

cholerae (Fig. 14 ; Kayagaki et al, 2011; Rathinam et al, 2012; Broz & Monack, 2013).  

 

 
Fig. 14. Non-canonical inflammasome pathway. 

Intracellular LPS recognition by caspase-11 triggers its auto-activation. Once activated, caspase-11 triggers pyroptosis and 

HMGB1 secretion, in a caspase-1-independent way. During this process, IL-1β and IL-18 releases are also observed but 

they are dependent on the NLRP3 inflammasome and on the caspase-1 activity. This observation suggests a cross-talk 

between the canonical and non-canonical inflammasome pathways which must be further investigated. 

In fact, caspase-11 can be activated by direct binding to intracellular LPS (Hagar et al, 

2013; Kayagaki et al, 2013; Shi et al, 2014). Once activated, caspase-11 can trigger 

pyroptosis and HMGB1 release in a caspase-1-independent way (Kayagaki et al, 2011) 

but also induce IL-1β and IL-18 releases in a caspase-1-, ASC- and NLRP3-dependent 

way (Kayagaki et al, 2011, 2013). These findings and further investigations have shown 
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that caspase-11 activation is a new way to activate caspase-1 and is therefore called the 

“non-canonical inflammasome”. 

 

3.5. NLRP2, NLRP6, NLRP12, IFI16 and RIG-I inflammasomes 

 

Other sensor proteins have been described to form functional inflammasomes.  

An early study shows that the co-expression of NLRP6 and ASC in fibroblastic cell 

lines triggers caspase-1 activation and IL-1β release (Grenier et al, 2002). Additionally, 

IL-18-deficient mice present an NLRP6-associated alteration of their microbiota, proposing 

a role for NLRP6 in IL-18 release (Elinav et al, 2011).  

NLRP12 closely resembles NLRP6. Its implication in intestinal homeostasis is well 

described (Zaki et al, 2011; Allen et al, 2012) and its co-expression with ASC leads to 

caspase-1 activation and subsequent IL-1β release (Wang et al, 2002). Another study 

showed that Yersinia pestis infection triggers IL-1β and IL-18 release in a 

NLRP12-dependent manner (Vladimer et al, 2012). 

NLRP2, another member of the NLR subfamily, was already known as a potent 

inhibitor of NF-κB pathway via the sequestration of the IKK complexes (Bruey et al, 2004). 

More recently, it has been demonstrated that NLRP2 is able to form a functional 

inflammasome in human astrocytes via assembly with ASC and caspase-1 (Minkiewicz et 

al, 2013). 

Finally, some members of the ALR (AIM2 Like Receptor) family were found to 

colocalize with ASC and generate IL-1β secretion (Brunette et al, 2012). Human 

Interferon-inducible protein 16 (IFI16) has been described to form a functional 

inflammasome in endothelial cells following herpesvirus infection (Singh et al, 2013; 

Monroe et al, 2014). Last but not least, retinoic acid-inducible gene I (RIG-I) seems also 

able to recruit ASC and caspase-1 via the CARDs to form an inflammasome complex 

(Poeck et al, 2010).  

Further studies are needed to validate and complete our knowledge about these 

inflammasome complexes, notably about the assembly-triggering stimuli specific for each 

inflammasome. 

 

4. Inflammasome-mediated cellular events 

 

The main outcome of the different inflammasomes is the activation of caspase-1 

upon assembly of the multimeric complexes. Once activated, this protease will mature the 
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pro-inflammatory cytokines IL-1β and IL-18 and induce of pyroptotic cell death. In addition, 

the inflammasome activation allows the release of alarmins such as IL-1 and HMGB1.  

 

4.1. IL-1β and IL-18 maturation and release  

 

IL-1β and IL-18 are cytokines of the IL-1 family and are expressed as immature 

pro-peptides that have to be cleaved in order to become biologically active.  

 

4.1.1. IL-1β 

 

IL-1β is a powerful pro-inflammatory cytokine primarily produced by cells of the 

myeloid lineage, such as monocytes, macrophages and dendritic cells. It is encoded by 

the Il1b gene and is not expressed under resting conditions. Its transcription must be 

triggered by activation of the NF-κB pathway. Once translated, IL-1β is present in the 

cytoplasm as a 31 kDa inactive pro-form that is subsequently proteolytically processed 

into a 17 kDa active cytokine. This maturation step is mainly performed by caspase-1 

following inflammasome activation. Nevertheless, in 1997, Fantuzzi et al. published the 

first evidence of caspase-1-independent IL-1β maturation (Fantuzzi et al, 1997). 

Subsequent studies have validated that neutrophil- and macrophage-derived proteases 

such as proteinase 3 (Coeshott et al, 1999; Joosten et al, 2009), elastase, chymase 

(Guma et al, 2009), and the two metalloproteinases, Merpin a and Merpin b (Banerjee & 

Bond, 2008; Herzog et al, 2009; Banerjee et al, 2011) are also IL-1β-processing enzymes. 

More recently, caspase-8 has been identified as another enzyme responsible for the IL-1β 

maturation (Bossaller et al. 2012). 

Regardless of the enzymes in charge of the cleavage, the active 17 kDa IL-1β must 

be released from the cell to trigger a strong inflammatory response in surrounding cells. 

Its actual route of secretion is still not entirely clear. The lack of a signal peptide indicates 

however that secretion does not occur via the classical ER-Golgi route (Rubartelli et al, 

1990). Different alternatives have been proposed, from the direct externalization at 

plasma membrane to the implication of vesicles (Piccioli & Rubartelli, 2013). 

Once released, IL-1β acts on other cells by binding to the Interleukin-1 Receptor 

(IL-1R). There are two forms of IL-1R: IL-1R1, which mediates the cellular activation by 

IL-1, and IL-1R2, which regulates the activity of IL-1β. When IL-1β binds IL-1R1, a 

second chain called the IL-1RAcp joins the receptor to form a complex, triggering the 

IL-1β-dependent cellular events: induction of antimicrobial resistance, activation of NF-κB 

and MAPK/JNK pathways or cell polarization into TH17 state (Garlanda et al, 2013). 



INTRODUCTION 

 
 32 

IL-1R2 is a biologically inert receptor that competes IL-1β binding to IL-1R1 to 

negatively regulate cell activation (Hannum et al, 1990). A soluble molecule, called IL-

1Ra, also acts as specific inhibitor of IL-1β pathway. It is structurally very closed to IL-1β 

but a mutation renders it incapable to bind IL-1RAcp, preventing the complex assembly of 

IL-1R1 (Dinarello, 2011). 

The release and activity of IL-1β must be tightly controlled in order to prevent an 

excessive activation of the immune response. 

 

4.1.2. IL-18 

 

IL-18, also called IFNγ-inducing factor, is another cytokine belonging to the IL-1 

family. In opposition to IL-1β, IL-18 is constitutively expressed in myeloid cells, 

keratinocytes and epithelial cells (Puren et al, 1999). It is synthetized as an inactive pro-

peptide of 24 kDa which is further cleaved into 18 kDa and 6 kDa subunits to become 

biologically active. 

Similar to IL-1β, IL-18 is mainly processed by caspase-1 via the inflammasome 

complex. Nevertheless, two other caspases are also able to cleave IL-18: 1) Caspase-3 

but the resulting product seems to be biologically inactive (Akita et al, 1997). 2) caspase-8 

which is able to process IL-1β and IL-18 in macrophages (Bossaller et al, 2012). In 

addition to caspases, other proteases are also competent to cleave IL-18 such as the 

neutrophillic proteinase-3 (Sugawara et al, 2001) , Granzyme b (Omoto et al, 2010) or 

Merpin-b (Banerjee & Bond, 2008). 

The receptor of IL-18 — a heterocomplex of IL-18Ra and b — is formed upon 

bonding of mature IL-18 to IL-18Ra. While most cells express IL-18Ra, IL-18Rb seems 

restricted to T-cells and dendritic cells (Dinarello & Fantuzzi, 2003; Felderhoff-Mueser et 

al, 2005). The IL-18 receptor activation leads to the polarization of T helper cells towards 

a TH1 state and to the induction of IFNγ (Dinarello, 1999).  

As for IL-1β, the downstream effects of IL-18 are strongly controlled by two different 

mechanisms: 1) The IL-18 binding protein (IL18bp) which binds to IL-18 with higher affinity 

than IL-18Ra (Novick et al, 1999; Kim et al, 2000), 2) a truncated form of IL-18Ra that 

prevents the formation of the complete receptor after IL-18 binding to IL-18-Rb (Andre et 

al, 2003; Fiszer et al, 2007; Booker & Grattan, 2014).  

 

4.2. Active IL-1α and HMGB1 alarmin release  
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Alarmins are endogenous molecules that, in normal condition, remain intracellular to 

perform their “daily job”. However, they can also be released outside the cell upon injury 

to alert immune cells. This release can occur passively following cell death or actively, 

generally by using specialized secretion systems. This active secretion is only described 

in immune cells.  

The alarmin family includes a large variety of structurally different endogenous 

molecules. Among them are IL-1α and HMGB1, two molecules linked to inflammasome 

which will be further described below. 

 

4.2.1. IL-1α 

 

IL-1α and IL-1β are encoded by different genes, but share the same receptor (IL-1R) 

and exhibit similar biological effects. In addition, both proteins are synthetized as 

precursors and lack a signal peptide suggesting a non-canonical secretion pathway of 

secretion.  

On the other hand, IL-1α and IL-1β are differently regulated: 1) While IL-1β is always 

induced, IL-1α can be constitutively expressed in some cell types such as keratinocytes or 

epithelial cells (Hachiya et al, 2001; Garlanda et al, 2013). 2) Even if IL-1α is also 

synthetized as a precursor, this latter has been shown to be already active (Mosley et al, 

1987). 3) The cleavage of IL-1α is not mediated by caspase-1 but by calpaïn-like 

proteases (Howard et al. 1991; Gross 2012), which is thought to enhance the IL-1α 

activity (Miller et al, 1994).  

The secretion mechanism of IL-1α is still not well established. Until recently, it was 

broadly admitted that it is only passively released after necrotic cell rupture (Chen et al, 

2007; Eigenbrod et al, 2008). Nevertheless, recent publications have demonstrated that 

IL-1 is also actively secreted by myeloid cells and keratinocytes after exposure to 

NLRP3, NLRP1 and AIM2 inflammasome-activating stimuli (Guarda et al. 2011; Keller et 

al. 2008; Yazdi et al. 2010; Gross et al. 2012; Fettelschoss et al. 2011). Initially, it was 

hypothesised that IL-1β is necessary for the secretion of IL-1α. Accordingly, a model was 

proposed in which IL-1 directly binds to IL-1β using it as a shuttle for co-secretion (Yazdi 

& Drexler, 2013). However, some arguments are not in line with this idea. First, the 

requirement of an inflammasome for IL-1α release seems to be stimuli dependent, at least 

in case of the NLRP3 inflammasome. Indeed, IL-1α secretion triggered by particles occurs 

independently of NLRP3, whereas nigericin or ATP lead to IL-1α release in an NLRP3-, 

ASC- and Caspase-1-dependent manner (Gross et al, 2012). Remarkably, such a stimuli-

dependency has not been described for IL-1β. Secondly, another refuting argument is that 
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inhibiting caspase-1 activity does not affect nigericin-induced release of IL-1α, while totally 

abolishing IL-1β secretion (Gross et al, 2012). Finally, and determinately, the active 

release of IL-1α after inflammasome activation is unchanged in IL-1β knockout mice 

(Yazdi & Drexler, 2013). 

In summary, the inflammasome might participate in the active IL-1α secretion but 

more investigation is needed to understand by which exact mechanism. 

 

4.2.2. HMGB1 

 

HMGB1 is a non-histone chromatin-binding protein that is highly conserved and 

ubiquitously expressed. HMGB1 is located in the nucleus where it stabilizes the chromatin 

structure and controls the expression of genes important for mitochondrial quality control 

and autophagy (Kashayar et al, 1978; Tang et al, 2011). 

In addition, HMGB1 plays a second role once it is translocated out of the cell, for 

example upon cell injury. Once outside of the cell, HMGB1 turns into a powerful 

pro-inflammatory alarmin cytokine (Wang et al, 1999). HMGB1 acts on surrounding cells 

via a different receptors, for example TLRs and RAGE (receptor for advanced glycation 

end-products ; Bianchi & Manfredi, 2009; Yang et al, 2011). According which receptor it 

binds to, HMGB1 will trigger distinct immune responses such as activation of 

pro-inflammatory pathways, migration or proliferation (Venereau et al, 2012; Keyel, 2014).  

In addition to its “alarmin” function, HMGB1 shares other common characteristics 

with IL-1α. First, even if HMGB1 can be released passively – for example during necrosis 

– some cell types, such as macrophages, monocytes, hepatocytes, natural killer cells, and 

dendritic cells, are also able to secrete HMGB1 actively (Tsung et al, 2014). Second, this 

active HMGB1 secretion mainly occurs in an inflammatory context (Lamkanfi et al, 2010; 

Andersson & Tracey, 2011). Finally, HMGB1 also lacks a classical signal peptide required 

for the transport through the classical secretory pathway, indicating that an alternative 

mechanism is responsible for its active release (Gardella et al, 2002).  

Interestingly, several reports suggest a role for the inflammasome in HMGB1 

release. For example, Willingham and colleagues showed that macrophages exposed to 

bacteria release HMGB1 in an NLRP3 and ASC-dependent manner (Willingham et al, 

2009). These results were rapidly supported by another publication demonstrating that 

NLRP3, NLRC4 and ASC are required for HMGB1 release (Lamkanfi et al, 2010). 

However, it is still unclear, how the inflammasome regulates the HMGB1 release. 
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4.3. Pyroptosis 

 

Pyroptosis is a rapid lytic form of cell death, classically defined as the terminal 

response of cells with active pro-inflammatory caspase-1 or -11. Currently, it remains to 

be clarified whether pyroptosis truly constitutes a cell death pathway on its own or whether 

it represents a particular case of caspase-dependent apoptosis (Galluzzi et al, 2012).  

An argument to liken pyroptosis to apoptosis is the proteolytic cleavage of 

caspase-7 by caspase-1, one of the classical apoptotic caspases (Lamkanfi 2008). 

However, caspase-7 activation, as well as caspase-3 activation, are dispensable for 

pyroptosis (Lamkanfi 2008), indicating that death by pyroptosis occurs independently of 

the apoptosis program. Moreover, pyroptosis is characterized by some specific hallmarks 

digressing to classical apoptotic definition (Fig. 15). 

 

 
Fig. 15: Pyroptosis: main features and differences from apoptosis. 

(A) Caspase-1/11 activation is the defining feature of pyroptosis and mediates this form of cell death. Pyroptosis is 

characterized by the formation of membranous pores, water entry, cell swelling and following membrane rupture. The 

secretion of pro-inflammatory factors is also an important pyroptosis feature and contributes to its inflammatory nature.            

(B) Pyroptosis differs in several aspects from apoptosis. Adapted from (Lamkanfi, 2011) 

 

 

A proximal event in pyroptosis is the caspase-1-dependent formation of small 

cationic pores in the plasma membrane. They appear following cell exposure to numerous 

inflammasome activators, such as Salmonella or anthrax lethal toxin (Fink, Bergsbaken, 

and Cookson 2008). The subsequent osmotic variations lead to water entry, cell swelling 
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and finally cell lysis (Fink & Cookson, 2006). Interestingly, the release of pro-inflammatory 

molecules after caspase-1 activation, such as IL-1β, IL-18, IL-1α and HMGB1 does not 

directly lead to cell death but contributes to the inflammatory nature of pyroptosis. 

During this lytic process, caspase-1 also induces nuclear condensation and DNA 

fragmentation (via currently unknown DNAses ; Fink & Cookson, 2006) with maintenance 

of nuclear membrane integrity (Molofsky et al, 2006).  

 

5. Inflammasome and diseases 

 

The importance of inflammasome research was underlined by the discovery of its 

implication in autoinflammatory hereditary syndromes called Cryopyrin-Associated 

Periodic Syndromes (CAPS). In 2001, Hoffman and colleagues have shown that the 

hereditary diseases Muckle-Wells syndrome (MWS) and the Familial Cold 

Autoinflammatory syndrome (FCAS) are both caused by mutations in the Nlrp3 gene 

(Hoffman et al, 2001). In addition to CAPS, a large variety of diseases are linked to 

inflammasome perturbation: gout (Martinon et al, 2006), osteoarthritis (Denoble et al, 

2011), atherosclerosis (Duewell et al, 2010), Alzheimer’s diseases (Heneka et al, 2013; 

Tan et al, 2014), multiple sclerosis (Jha et al. 2010) and Type 2 diabetes (Larsen et al, 

2007; Donath & Shoelson, 2011). Some of these inflammasome-associated diseases are 

treated with endogenous recombinant proteins targeting IL-1. Among them, the most 

widely used is Anakinra, a recombinant IL-1R antagonist. However, some antibody-based 

treatments, such as Canakinumab, a neutralizing IL-1β antibody or the soluble decoy IL-1 

receptor Rilonacept, are also used. These molecules have been tested in the treatment of 

CAPS and other IL-1β-associated diseases, such as type II diabetes (Dinarello et al, 

2012; Dinarello & van der Meer, 2013). 

In the meantime, therapeutic researches were focused on finding a molecule that 

would directly target the inflammasome complex, in order to gain in specificity. Different 

pharmacologic inhibitors of inflammasome function have already been described, such as 

glyburide (Lamkanfi et al, 2009), CRID3 (Coll & O’Neill, 2011), Bay 11–7082 (Juliana et al, 

2010) parthenolide (Juliana et al, 2010), 3,4-Methylenedioxy-β-nitrostyrene (He et al, 

2014) or dimethyl sulfoxide (DMSO, Ahn et al. 2013). However, while all these products 

have been tested in vitro, some in vivo reports are missing. Recently, a new NLRP3 

inhibitor called MCC950 has been described and tested in vivo, in an experimental 

autoimmune encephalomyelitis (EAE) model and in a CAPS model. In EAE, MCC950 

limits the disease severity and in CAPS the treatment protects mice from neonatal lethality 
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(Coll et al, 2015). Further investigations are awaited to confirm this inflammasome 

inhibitor as a treatment for other inflammatory diseases (de Rivero Vaccari et al, 2015). 

 

In conclusion, the inflammasome plays a pivotal role in numerous inflammatory 

diseases and it seems to be a potential therapeutic target to limit the development of 

these pathologies. In regard to these observations, studying the inflammasome represents 

a promising avenue to understand and cure neuroinflammatory diseases. 
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Part IV: The Inflammasome in CNS 

 

1. Inflammasome function in CNS diseases 

 

IL-1β, IL-18, IL1α and HMGB1 are known for the many functions they play in healthy 

or injured brain. In the CNS, IL-1 cytokines induce fever, increase slow wave sleep, 

amplify hypothalamic-pituitary-adrenal activation but also promote the neuroinflammation 

(Rothwell & Luheshi, 2000; Simi et al, 2007). For its part, extracellular HMGB1 is depicted 

as facilitator of neurite outgrowth and cell migration during early brain development and as 

neuroinflammatory compound after injury (Fang et al, 2012).  

All these inflammasome-related factors are also associated to the pathogenesis of 

several neurological diseases including AD, PD, traumatic brain injury, epilepsy and 

stroke (Alboni et al, 2010; Fang et al, 2012; Walsh et al, 2014). Both neuroprotective and 

detrimental effects are described, depending on the timing, the context and the disease.  

As IL-1β, IL-18, IL1α and HMGB1 secretions are all linked to the inflammasome 

activation, one expectation could that, depending on the context, they play similar 

beneficial or deleterious roles on the brain parenchyma. The reality is far more complex. 

For example, Il18 knockout mice are not protected from CNS ischaemic injury (Wheeler et 

al, 2003) while mice lacking IL-1, IL-1β or HMGB1 present a resistance to the pathogenic 

effects of ischemia (Boutin et al, 2001; Kim et al, 2006). Another illustration is the 

divergent effects of IL-1β and IL-18 on remyelination after cuprizone treatment, where IL-

1 is protective (Mason et al, 2001) and IL-18 detrimental (Jha et al, 2010).  

In light of these differences, it seems judicious to investigate how their production is 

regulated and, therefore explore the inflammasome implication in CNS diseases. Indeed, 

this field of research is currently deeply studied (for review see, Singhal et al, 2014; Walsh 

et al, 2014).  

These last years, a lot of publications have depicted the inflammasome as an important 

player in different neurological disorders such as CNS infections, acute sterile injuries or 

chronic neurodegenerative diseases. An overview of these findings is summarised in 

table 3. 
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Table 3:  Inflammasome in neurological diseases. 

 Disease context Inflammasome involvement References 

In
fe

c
ti
o

n
 

Turberculous meningitis M. tuberculosis induces NLRP3- and ASC-dependent IL-1 secretion from microglial cultures. (Lee et al, 2013) 

Pneumococcal meningitis 
ASC- and NLRP3-deficiency decrease the neuroinflammation and the scores of disease severity via reduction 

of IL-1 and IL-18 secretion. 

(Hoegen et al, 2011; Mitchell 

et al, 2012) 

Brain abcesses S. aureus infection activates microglial NLRP3 and IL-1β secretion in vitro. (Hanamsagar et al, 2011) 

Viral encephalitis 

West Nile virus activates NLRP3 inflammasome in vivo. NLRP3- and ASC-deficiency reduce the survival after 

mice were infected with the virus. 

Murine Encephalitis virus activates caspase-1 and subsequent IL-1 and IL-18 secretion, in vitro and in vivo. 

(Kaushik et al, 2012; Ramos 

et al, 2012; Jha et al, 2013) 

A
c
u

te
 a

n
d

 c
h

ro
n
ic

 s
te

ri
le

 i
n
fl
a
m

m
a

ti
o

n
 

Traumatic brain injury (TBI) 

TBI induces NLRP1 inflammasome assembly, caspase-1 activation and IL-1 release in rat neurons. The 

antibodies against ASC or NLRP1 are neuroprotective in this model. 

Patients with cranial trauma exhibit higher CSF levels of NLRP1 and ASC. 

(de Rivero Vaccari et al, 2009; 

Adamczak et al, 2012) 

Spinal cord injury (SCI) 
Processing of IL-1 and IL-18 by active caspase-1 is observed in SCI rat model. Anti-ASC neutralizing 

antibodies promote tissue integrity and functional improvement. 
(de Rivero Vaccari et al, 2008) 

Thromboembolic stroke 
NLRP1 inflammasome, IL-1 and IL-18 are implicated in a mouse model of thromboembolic stroke. 

Neutralising antibodies against NLRP1 act as anti-inflammatory compound after ischemia. 
(Abulafia et al, 2009) 

Ischemic stroke NLRP3 deficiency improves cerebral injury after ischemic stroke. (Yang et al, 2014) 

Demyelinating autoimmune 

inflammatory disease 

The experimental autoimmune encephalomyelitis (EAE) and the cuprizone models, two model of multiple 

sclerosis are linked to inflammasome. 

The ASC- and NLRP3-deficiency reduce the disease progression in both models, at least to a certain extent. 

(Gris et al, 2010; Jha et al, 

2010) 

Prion disease 

 

In vitro exposure of microglia to prion protein peptides induces NLRP3 inflammasome-depend release of IL-1β. 

However, mice lacking NLRP3 or ASC do not survive better in an in vivo prion pathogenesis model. 

(Hafner-Bratkovič et al, 2012; 

Shi et al, 2012; Nuvolone et 

al, 2015) 

Amyotrophic Lateral Sclerosis 
Mutant SOD-1 triggers IL-1β secretion in an ASC-dependent manner. Caspase-1- and IL-1β-deficient mice 

expressing the mutant form of SOD-1 show better survival compared to the wild-type mice. 

(Meissner et al, 2010; Johann 

et al, 2015) 

Alzheimer’s disease 
Different forms of Aβ are implicated in the formation of the NLRP3 and NLRP1 inflammasomes. 

NLRP3- and caspase-1-deficiency are protective in an APP/PS1 transgenic AD model. 

(Halle et al, 2008; Heneka et 

al, 2013; Tan et al, 2014) 

Adapted from Walsh et al, 2014 
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All these studies suggest an important role of inflammasomes in CNS diseases and lead 

to the emergence of new research avenues. However, most of these studies were 

descriptive and based on tissue analysis and did not identify the respective role of each 

cell type in the inflammasome signalling. In the next section, we will review the actual 

knowledge of the expression and regulation of inflammasomes in the different brain cells. 

 

2. Inflammasome expression in the brain 

 

2.1. Inflammasome in neurons  

 

Studies addressing the inflammasome function within neurons have particularly 

focused on the NLRP1 complex. They have been performed in different neuronal cell 

types (cortical and spinal motor neurons), as well as in different models of CNS disorders 

(traumatic brain injury, spinal cord injury, age-related cognitive impairment or stroke), in 

both rat and human (de Rivero Vaccari et al, 2008, 2009; Abulafia et al, 2009; Mawhinney 

et al, 2011; Adamczak et al, 2012). More recently, new in vitro and in vivo reports have 

shown the importance of the neuronal NLRP1 inflammasome in AD, ischemic stroke, 

Rasmussen’s encephalitis and neuropathic pain (Fann et al, 2013; Li et al, 2013; 

Ramaswamy et al, 2013; Tan et al, 2013).  

It has been shown for instance that the activation of neuronal NLRP1 inflammasome 

depends on Pannexin-1 (Silverman et al, 2009). In summary, high extracellular K+ lead to 

the opening of pannexin-1 channels, allowing a strong ATP efflux, which in turn stimulates 

the P2X7 receptor and finally activates the NLRP1 inflammasome (de Rivero Vaccari et 

al, 2015). 

In addition to NLRP1, neurons express AIM2 inflammasome components, which 

could be assembled in presence of aberrant DNA (Adamczak et al, 2012, 2014; Kaushal 

et al, 2015). Similarly for NLRP1, the activation of AIM2 seems to be pannexin-

1-dependent and leads to the secretion of IL-1β as well as to pyroptotic cell death 

(Adamczak et al, 2014).  

The ability of neurons to express other inflammasome components, and in particular 

NLRP3, is less clear. It has been for example reported that mouse cortical neurons, 

placed in ischemia-like conditions, overexpress NLRP1 and NLRP3 and increase their 

secretion of IL-1β and IL-18 (Fann et al, 2013). However, other studies suggest that 

NLRP3 is expressed neither in mice nor in human neurons (Kummer et al, 2007; 

Ramaswamy et al, 2013; Yang et al, 2014; Kaushal et al, 2015). Similarly, the presence of 
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an active NLRC4 inflammasome in neurons is also controversial. One report suggests that 

neurons exposed to flagellin express and form a NLRC4 inflammasome (Kaushal et al, 

2015) whereas another study failed to detect any NLRC4 mRNA in these cells 

(Ramaswamy et al, 2013). 

  

2.2. Inflammasome in astrocytes  

 

The presence of activated caspase-1 in astrocytes growing in K+-enriched medium 

raised the question if an inflammasome complex could be present in these cells 

(Silverman et al, 2009).  

Several reports analysed the expression patterns of NLR and other inflammasome 

components in astrocytes. They commonly showed that human and murine astrocytes 

express NLRP1, NLRC4, AIM2, ASC and caspase-1 proteins, albeit at lower levels than in 

other cell types (Ramaswamy et al, 2013; Alfonso-Loeches et al, 2014; Kaushal et al, 

2015; Zeis et al, 2015).  

Regarding the expression of NLRP3, the reports diverge. On the one hand, some 

authors claim that NLRP3 protein is upregulated in cortical astrocyte cultures after 

exposure to LPS, ethanol or MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; Zou & 

Crews, 2012; Alfonso-Loeches et al, 2014; Lu et al, 2014; Zeis et al, 2015). This has been 

strengthened by in vivo observations showing that, in different neuropathological 

conditions, NLRP3 could be upregulated in astrocytes (Tezel et al, 2012; Kawana et al, 

2013). On the other hand, other recent publications fail to detect any NLRP3 mRNA in 

human and murine astrocytes (Ramaswamy et al, 2013; Kaushal et al, 2015; Nuvolone et 

al, 2015). Thus, additional studies are still required to determine if astrocytes express 

NLRP3 and whether they can form a functional NLRP3 inflammasome. 

More interestingly, the existence of a functional inflammasome has only been 

described in human astrocytes. This inflammasome assembles after treatment with ATP 

and is composed of NLRP2, ASC and caspase-1 (Minkiewicz et al, 2013). However, this 

finding needs confirmation and in particular with regard to the existence of such an 

inflammasome in mice. 

 

2.3. Inflammasome in microglia 

 

It is well known that microglia express different inflammasome-related proteins such 

as NLRP1, NLRP3, NLRC4, AIM2, ASC and Caspase-1 (Halle et al, 2008; Hanamsagar 
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et al, 2011; Kaushik et al, 2012; Jamilloux et al, 2013; Cox et al, 2015). At first glance, 

their expression profile seems equivalent to the one of macrophages. However, a recent 

publication shows that there are differences between microglia and macrophages, 

especially in regard to the expression level of inflammasome components in primates 

(Burm et al. 2015).  

To date, the NLRP3 inflammasome remains the most studied inflammasome 

complex in microglia. A great number of reports demonstrate that activated microglia can 

form a functional NLRP3 inflammasome in sterile or infectious conditons. ATP, MSU and 

pathogens, representing different classical NLRP3 inflammasome activators, are able to 

trigger the release of IL-1β and IL-18 in microglia (Halle et al, 2008; Hanamsagar et al, 

2011; Kaushik et al, 2012; Savage et al, 2012; Burm et al, 2015). In addition, the 

microglial NLRP3 inflammasome can be activated after in vitro exposure to different 

neuropathology-related proteins, such as prion protein (Shi et al, 2012) or the AD-related 

proteins Aβ and Chromogranin A (Halle et al. 2008a; Parajuli et al. 2013; Terada et al. 

2010; Wu et al. 2013). The mechanisms leading to NLRP3 inflammasome activation in 

microglia and in macrophages have been described to be very similar (Halle et al. 2008a; 

Wu et al. 2013; Parajuli et al. 2013; Murphy et al. 2014).  

All these studies confirm that microglia express a functional NLRP3 inflammasome. 

However, it has been poorly investigated if other inflammasomes need to be implicated in 

the secretion of IL-1β by microglia. Indeed, a single report described a NLRC4 

inflammasome-dependent caspase-1 activation after brain infiltration by Legionella 

pneumophila (Jamilloux et al, 2013).  

 

In conclusion, microglia, astrocytes and neurons have all been reported to express 

functional inflammasomes. However, some of the cited publications have to be confirmed 

by others. Moreover, little is known about the conditions under which inflammasome 

activation occurs in these cells as well as how these cell-specific inflammasome 

participate to CNS pathologies. 
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Since 2008, several research groups started to investigate whether the 

inflammasome is active in the CNS. The first published results were very encouraging 

since they demonstrated an important implication of the inflammasome signalling in 

diverse neuroinflammatory conditions. For example, recent evidences highlighted a role of 

the inflammasome in the development of two neurodegenerative diseases: Amyotrophic 

Lateral Sclerosis and Alzheimer’s disease (Heneka 2013, Meissner 2010).  

Parkinson’s disease (PD) is another well described neurodegenerative disease, 

which also presents an important inflammatory component but, surprisingly, little is known 

about the implication of the inflammasome in this pathology. However, many PD reports 

suggest such a link: i) the detection of IL-1 in the CSF of patients, ii) ROS production and 

mitochondrial damage implicated in the neuronal death, or iii) the presence of misfolded 

proteins in Lewy bodies and their capacity to activate microglia. According to these 

considerations, we aim to investigate the possible involvement of inflammasome in 

Parkinson’s pathology. 

 

In order to correctly study the link between the inflammasome and PD, we first 

decided to clarify the expression profile and activation of the inflammasome in microglia 

and astrocytes. While different publications already addressed this topic, some critical 

questions remains. For example, it is admitted that microglia express a functional NLRP3 

inflammasome but there is no evidence of such an expression in astrocytes. It is also 

unknown whether microglia and astrocytes are able to actively secrete IL-1α and HMGB1 

or to trigger the pyroptosis after inflammasome activation. In addition, the expression of 

alternative inflammasome complexes by both cell types is, until now, largely under 

investigated. In respect with these observations, the first part of this work will be to 

characterize the detailed in vitro capacities of murine microglia and astrocytes in term of 

inflammasome expression, activation and regulation. 

 

In the second part of the project, we will focus our attention on the implication of the 

inflammasome in Parkinson’s disease. For this purpose, we will first test the reactivity of 

the glial inflammasome to products-related to neurodegenerative diseases in vitro. Then, 

we will study the effect of the NLRP3 deficiency on the neurodegenerative process 

occurring during PD, via an in vivo 6-hydroxydopamine (6-OHDA) PD model. 

 

A summarized view of these objectives  is depicted in the figure 16. 
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Fig. 16: Aims of the work. 

Aim 1: Characterization of inflammasome components expression and regulation in mouse astrocyte and microglia. Aim 2: 

Study of the implication of inflammasome in Parkinson’s disease. 
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1. Mice 

 

1.1 Mice strains 

 

C57BL/6JOlaHsd mice (WT) were from Harlan (The Netherlands). Nlrp3-/- mice were 

provided by the University of Lausanne (Martinon, 2002). Casp1-/-/Casp11-/- (hereafter 

referred to as Casp1-/-) and P2rx7-/- mice were obtained from The Jackson Laboratory (Bar 

Harbor, USA) (see Table 4). All mouse strains were housed and bred in our animal house 

facility approved by the National Veterinary Inspection. The cages were maintained 

around 22°C with a 12:12 hour light:dark cycle and food and water were available ad 

libitum. All animal stabulation/procedures were conducted in accordance with European 

regulations. 

 

Table 4. Knockout mice information. 

Common name Strain name Background Origin 

Nlrp3-/-  / C57BL/6JOla University of Lausanne 

Casp1-/-/11-/-  B6.129S2Casp1tm1Flv/J C57BL/6NJ Jackson Laboratory (# 016621) 

P2rx7-/-  B6.129P2P2rx7tm1Gab/J C57BL/6J Jackson Laboratory (# 005576) 

 

1.2 Genotyping 

 

DNA was extracted from mouse tail biopsies digested with 20 mg/mL proteinase K 

(Invitrogen) in Direct PCR buffer (Viagen Biotech, USA). After a 5 h incubation at 55°C 

under orbital shaking (550 rpm), the proteinase K was inactivated by heating the sample 

at 85°C during 45 min. The presence of each gene of interest was detected by performing 

a polymerase chain reaction (PCR). The primer sequences used for each strain are 

summarized in Table 5.  

 

Table 5. Primer sequences for genotyping. 

Mice Primer sequences 

Nlrp3-/-  Forward: 5’ -TCAAGCTAAGAGAACTTTCTG-3’  

Reverse: 5’-ACACTCGTCATCTTCAGCA-3’ 

Reverse (EGFP cassette): 5’-AAGTCGTGCTGCTTCATGT-3’ 

Casp1-/- /11-/- Reverse: 5‘-GAGACATATAAGGGAGAAGGG–3' 

Forward (WT): 5’-GAGACATATAAGGGAGAAGGG-3' 

Forward (KO): 5’-TGCTAAAGCGCATGCTCCAGACTG-3' 
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P2rx7-/- Reverse (WT): 5’-TGGACTTCTCCGACCTGTCT-3’ 

Forward (WT): 5’-TGGCATAGCACCTGTAAGCA-3’ 

Reverse (KO): 5’-CTTGGGTGGAGAGGCTATTC-3’ 

Forward (KO): 5’-AGGTGAGATGACAGGAGATC-3’ 

 

Subsequently, the PCR samples were migrated on a 1.2% agarose gel (E-gel 

double comb 1.2% agarose, Invitrogen). The presence of amplicon bands were revealed 

on a ChemiDoc MP system and its ImageLab software (BioRad, Belgium), as shown in 

the example presented in figure 17. 
 

 
Fig. 17: Genotyping of Nlrp3 +/+, Nlrp3 -/-, Nlrp3 -/+.mice. 

 

2. Cell cultures 

 

2.1 Mouse primary cultures 

 

2.1.1 Mixed glial cell cultures 

 

Mixed glial cell cultures (MGC P0) were prepared from newborn C57BL/6 mice 

brains (Fig. 18 ; Losciuto et al, 2012). Briefly, after removing meninges, large blood 

vessels and the diencephalon, the brains were pooled and minced in cold phosphate-

buffered saline (PBS, Sigma, Diegem, Belgium) solution by mechanical dissociation. Cell 

suspensions were centrifuged (10 min, 1100 rpm, 4°C), washed and plated in Dulbecco’s 

Modified Eagle Medium (DMEM, Sigma) supplemented with 10% fetal bovine serum 

(FBS, Life Technologies), 100 U/mL penicillin and 100 U/mL streptomycin (Lonza, 

Verviers, Belgium) at 37°C, in a humidified atmosphere containing 5% CO2. The culture 

medium was changed after three days and new fresh medium was added after 10 days. 

Mixed glial cultures had reached confluence after 2 weeks and were ready for passage or 

purification. 
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Fig. 18. Workflow for glial primary cultures achievement. 

 

2.1.2 Microglial cultures 

 

Microglia were positively sorted out from MGC P0 by the MACS (Magnetic Cell 

Sorting) technique (see Fig. 18). Before to start, the supernatant of MGC P0 cultures was 

collected to be further used as “mixed glial cell culture conditioned medium”. Then, cells 

were washed with PBS and subsequently incubated with Trypsin/EDTA 

(Ethylenediaminetetraacetic acid) for 5 min at 37°C. After trypsin inactivation by FBS, cells 

were collected and centrifuged at 1100 rpm during 10 min. Then, the cells were washed 

by adding 10 mL of MACS buffer (PBS, 2 mM EDTA, 0.5% BSA ; all from Sigma) and 

counted. After an additional centrifugation step, the cells were resuspended in 90 μL of 

MACS buffer per 107 cells and complemented with anti-CD11b antibody coated magnetic 

nanoparticules, following the manufacturer’s instructions (10 µl /107 cells, Miltenyi Biotec). 

CD11b is widely used as marker for microglial identification. Following 20 minutes of 

incubation at 4°C, the cells were washed again with 2 mL of buffer by 107 cells. After a 

final centrifugation step, the cells were resuspended in 500 µl of buffer and transferred on 

a LS column (Miltenyi Biotec) placed in a strong magnetic field (MidiMACS magnetic 

separation unit, Miltenyi Biotech). CD11b expressing microglia were trapped in the column 

due to their binding to magnetic nanoparticules. The remaining cells flowed through the 
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column and were harvested to constitute astrocyte-enriched cultures (see section 2.1.3.1). 

Afterwards, microglia were harvested by removing the column from the magnetic field and 

flushing it with 5 mL of MACS buffer. The cell suspension was centrifuged at 1100 rpm 

during 10 min and resuspended in DMEM supplemented with 20% of “mixed glial culture 

conditioned medium” and plated at a density of 2000 cells/mm² in MW96 plates and 

1300 cells/mm² in MW6 plates. Microglia were treated twenty-four hours later. 

 

2.1.3 Astrocyte cultures 

 

2.1.3.1. Primary astrocytes 

 

Astrocytes were negatively sorted during the MACS procedure dedicated to the 

microglia isolation and described above (Losciuto et al, 2012). The obtained 

“astrocyte-enriched cultures” (AEC-M1) were plated in complete medium (DMEM 

containing 10% FBS and 1% antibiotics) in 75 cm2 flasks. After 3 days, medium was 

renewed and after seven days cultures reached confluence. At this time, the MACS 

procedure was repeated in order to reduce the microglial contamination of the astrocyte 

population. Cells were plated at a density of 800 cells/mm² in MW6 plates and were ready 

to use 7 days later. 

 

2.1.3.2. Neurosphere-derived astrocytes 

 

Neurospheres were obtained from embryonic murine NSCs derived from the 

ventricular zone of C57BL/6 mouse embryos at E14, as described previously (Grandbarbe 

et al, 2003; Crocker et al, 2008).  

Neurospheres were cultured in Neurobasal medium supplemented with 2mM glutamine, 

penicillin (100 U/mL), streptomycin (100 U/mL), mouse recombinant Epidermal Growth 

Factor (EGF, 20 ng/mL) and 2% B27 without Vitamin A (All from Invitrogen, Belgium). 

Neurospheres were plated in 75 cm² flasks. After 4-7 days of proliferation, cells were 

dissociated with an enzyme-free cell dissociation buffer (Invitrogen), and reseeded as a 

single cell suspension after a 1:2 dilution. 

Neurospheres were differentiated into astrocytes as previously described (Crocker 

et al, 2008). Briefly, non-dissociated neurospheres were plated on poly-L-ornithine 

(Sigma) coated multiwell plates. The cells were grown in DMEM containing 10% FBS with 

1% Penicillin-Streptomycin (Invitrogen) until they reached confluence. The medium was 

renewed after 1, 2 and 7 days of differentiation and then, once a week. Mature astrocytes 

were submitted to treatment after 8 weeks of differentiation. 



MATERIALS AND METHODS 

 
 51 

2.1.5. Bone marrow-derived macrophages (BMDM) 

 

Bone marrow-derived macrophages (BMDM) were generated as previously 

described (Guarda et al, 2009). Bone marrow cells were isolated from tibia and femur of 

mice. To differentiate the cells into macrophages, primary bone marrow cells were 

cultured for 6 days in DMEM supplemented with 100 U/mL penicillin, 100 U/mL 

streptomycin, 10% FBS and 30% of L929 cells conditioned medium providing M-CSF 

(Macrophages colony-stimulating factor) among other factors. Cells were plated at a 

density of 2000 cells/mm² in MW96 plates and 1300 cells/mm² in MW6 plates. 

 

2.2 Cell lines 

   

2.2.1. MMGT12 

 

MMGT12 are a murine cell line and are a subclone of the MMGT1, a murine cell line 

established after transfection of primary microglial cell cultures with a v-myc-containing 

plasmid. MMGT12 were provided by Dr. Vanmechelen (Innogenetics, Belgium; Briers et 

al, 1994). Cells were cultured in DMEM/F12 (Life Technologies) supplemented with 2% 

FBS, 1% Insulin-Transferrin-Selenium (ITS, Life Technologies) and 15% filtered WEHI 

conditioned medium (WEHI 3, WEHI3B and WEHI 3D, producers of interleukin-3 and 

granulocyte-macrophage-colony stimulating factor). Cells were passaged twice a week by 

mechanical dissociation (scrapping). For the experiments, MMGT12 cells were seeded at 

a concentration 1000 cells/mm² in MW6 plates and cultured in DMEM/F12 supplemented 

with 10% FBS and 1% ITS. 

 

2.2.2. BV2 

 

BV-2 cells were derived from raf/myc-immortalised murine neonatal microglia and 

were provided by Prof. Blasi (University Medical School, Perugia, Italy ; Blasi et al, 1990). 

Cells were maintained in DMEM with 10% FBS and passaged twice per week after 

mechanical dissociation (scrapping). For the experiments, cells were plated on 

poly-L-lysine coated-plate, at a density of 1200 cells/mm² in MW96 and grown in DMEM 

with 5% FBS. Any antibiotic was added to the medium. 
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2.3 Reagents 

 

2.3.1 Pro-inflammatory agents 

 

Cells were primed for 6 h or 24 h with ultrapure liposaccharide (LPS, 10 ng/mL), 

Pam3CSK4 (10 ng/mL) (both from Invivogen, Toulouse, France) or cytokines IL-1β 

(10 ng/mL), TNFα (10 ng/mL) or IFNγ (20 ng/mL) (all from R&D, Abingdon, UK), alone or 

in combination in case of the Complete Cytokine Mix (CCM: 10 ng/mL IL-1β, 10 ng/mL 

TNFα and 20 ng/mL IFNγ). 

 

2.3.2 Inflammasome activators  

 

Classical inflammasome activation was performed by Adenosine 5’-triphosphate 

(ATP, 1 mM, 30 min, Sigma). Other inflammasome activators used were Nigericin (1.34 

M, 2 h, Sigma), Aluminium hydroxide (100 μg/mL, 5 h, Pierce) or Ultra-pure flagellin (2.5 

µg/mL, 5 h, Invivogen). Poly(dA:dT) (Invivogen) and highly concentrated ultrapure LPS 

(Invivogen) were delivered to the cytoplasm by transfection with Lipofectamine 2000 (Life 

technologies). Briefly, activators were mixed with lipofectamine in Opti-MEM medium 

during 5 min at room temperature. After the incubation, the mix was added to the wells at 

a final concentration of 2.5 µg/mL for poly(dA:dT), 1 µg/mL for LPS and 10 μg/mL for 

Lipofectamine. The cells were then incubated during 5 h poly(dA:dT) and 16 h for LPS. 

 

2.3.3 Others activators 

 

The amyloid beta peptide 25-35 (Aβ25-35), its reverse form Aβ35-25 and rotenone (all 

from Sigma) were used as indicated in the figure legends. 

Aβ1-42 peptide (from Sigma or Anaspec, Fremont, Canada or Bachem, Weil am Rhein, 

Germany) was resuspended following manufacturer’s instructions, aliquoted and stored at 

-20°C. The fibrillar form was obtained by heating a 1:10 dilution (DMEM) of the peptides at 

37°C during 7 days. 

WT and A53T mutant α-synuclein were purchased from rPeptide (Bogart, USA). Aliquots 

were resuspended in H2O to obtain a 100 µM solution. For an activation by oligomeric 

α-synuclein, the preparation was used directly. To obtain a fibrillar α-synuclein 

preparation, oligomeric form was diluted twice with Tris-HCl buffer and then incubated for 

4 days at 57°C with shaking. 
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The fibrillar Aβ and α-synuclein preparations were characterized by western blotting (see 

section 3.3) using 6E10 anti-Aβ antibody (Eurogentec SIG-39320, Belgium) and 4D6 

anti-α-synuclein antibody (Abcam, ab1903). 

Nucleotides (ATP, ADP and Adenosine) were purchased from Sigma and used at 

1 mM during 30 min to 6 h. The ATP contamination was controlled by the ATP 

Determination Kit (Life Technologies).  

All these products have been tested for endotoxin contamination using the LAL 

PYROGENTTM Plus Single Test Vials (Lonza). 

 

2.3.4. Inhibitors 

 

The following molecules have been tested to inhibit the inflammasome activation: 

Potassium Chloride (KCl; 130, 75 or 25 mM), N-acetyl-L-cysteine (NAC, 5mM, antioxidant) 

and Cytochalasin D (cytoD, 2µM, inhibitor of actin polymerization) (all from Sigma) but 

also (L-3-trans-(Propylcarbamoyl)oxirane-2- Carbonyl)-L-Isoleucyl-L-Proline Methyl Ester 

(CA074-Me, 10 μM, inhibitor of cathepsin B, PeptANOVA). All inhibitors were added 30 

min before the inflammasome activation except KCl which, was added in the same time 

than LPS priming. 

Z-YVAD-FMK, a specific caspase-1 inhibitor (SantaCruz, Heidelberg, Germany) had also 

been used at a concentration of 20 μM and was added 15 min prior priming step. 

3. Analytical techniques 

 

3.1 Cell death/viability measurement 

 

3.1.1 MTT assay 

 

Cell viability was assessed after treatment by the mitochondria-dependent reduction 

of Thiazolyl Blue Tetrazolium Bromide (MTT) assay (Mosmann, 1983). MTT assay is 

based on the MTT (Sigma) reduction into the water-insoluble formazan by mitochondrial 

succinate dehydrogenase. Since the reduction of MTT can only occur in metabolically 

active cells, its measure reflects the viability of the cells. After treatment, cells were 

incubated with a 5 mg/mL MTT solution diluted 1:10 in DMEM during 30 min to 4 h, at 

37°C. Then, medium was removed and the formazan was solubilized by 10 min incubation 

in DMSO at 37°C. The absorbance was read at 540 nm using a microplate reader 
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(TECAN, Austria). The viability was estimated by comparison to untreated cells (100% 

viability). 

3.1.2 Lactate dehydrogenase release assay 

 

Cell death and cell lysis were quantified by the colorimetric assay based on 

measurement of lactate dehydrogenase (LDH) released into the cell supernatant. LDH is 

a stable cytoplasmic enzyme released in case of membrane damage. Quantity of LDH in 

supernatant was determined following the assay protocol of Cytotoxicity Assay kit 

(Roche). Briefly, cells were submitted to treatment of interest or to medium containing 2% 

Triton 100x, which induced 100% of cell lysis. The cell-free culture supernatant were 

collected and incubated with the commercial reaction mixture (freshly prepared; 25 μL of 

solution 1 + 1.125mL of solution 2), during 30 min. The absorbance was read at 490 nm 

with a microplate reader. The determination of the cytotoxicity was calculated by 

comparison to untreated cells (= low control) and lysed cells (high control). 
 

                 
                     

                        
      

 

3.2 Real-Time PCR gene expression analysis 

 

3.2.1 Total RNA extraction and quantification 

 

Total RNA was isolated using the InvisorbTM Spin Cell RNA mini Kit (Invitek) or 

InnuPREP RNA mini Kit (Analytik Jena AG, Jena, Germany) according to the 

manufacturer’s protocol. Briefly, cell lysates were loaded on a first column to remove 

DNA. The filtrate was mixed with a 70% ethanol solution and loaded on a second column. 

After two washing steps with provided buffer, RNA was eluted with H2O. RNA samples 

were then stored at -80°C. 

Total RNA concentration was quantified by reading the absorbance at 260 nm of 

each sample using a Nanodrop 2000 spectrophotometer (Thermo Scientific). The sample 

contamination by protein, phenol or other contaminants was estimated by the absorbance 

ratio 260/280 that should be greater than 2. 

 

3.2.2 Reverse transcription  

 

Complementary DNA (cDNA) was synthetized from RNA samples using the 

ImProm-II Reverse Transcription System (Promega, Leiden, The Netherlands). Two mixes 
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were prepared (see Table 6): the primer-sample mix and the reverse transcription mix. 

The secondary structures of RNAs were denaturated by heating the primer-sample mix at 

70°C for 5 min followed by a flash cooling step on ice. Then, the two mixes were pooled 

together to obtain a final volume of 40 μL. Samples were then incubated for 5 min at 25°C 

(annealing), 1 h at 42°C (extension) and 15 min at 70°C (reverse transcriptase 

inactivation) and subsequently stored at -20°C until use. 

 

Table 6. Reverse transcription mixes. 

Primers sample mix  Reverse transcription mix 

Oligo(dT) 1µl  ImProm-II 5x Reaction buffer 8µl 

Total RNA 0,1µg to 2µg  MgCl2 (25mM) 6µl 

Nuclease free water qs 10µl  dNTP mix (10mM) 2µl 

Final volume 10µl  Recombinant RNAsin Ribonuclease inhibitor 1µl 

   ImProm-II reverse transcriptase 2µl 

   Nuclease free H2O 11µl 

   Final volume 30µl 

 

3.2.3 Real-time polymerase chain reaction 

 

Gene expression was analysed using Bio-Rad Thermal Cyclers (iQ5 and CFX Real-

Time PCR Detection System, Bio-Rad Laboratories) with SYBR Green Supermix 

(Promega). Expression was normalized to the housekeeping genes (Rpl27). Primer 

sequences were designed using the Beacon Designer Software (Bio-Rad) and are listed 

in Table 7. Analysis of gene expression was performed using the comparative 2-dCt 

method:  

 

dCt = (Ct, target – Ct, Rpl27)     2-dCt = Relative expression  

 

Table 7. Mouse primers sequences. 

Gene Accession number Sequences 

Aif1 NM_019467 F: 5’-TTCCCAAGACCCACCTAG-3’ 

R: 5'-TCCTCATACATCAGAATCATTC-3’ 

Aim2 NM_001013779 F: 5’-ATAGGAGGAACAACAACAT-3’ 

R: 5'-GCCATCTTCTGCTACATA-3’ 

Casp1 NM_009807 F: 5’-AGGAATTCTGGAGCTTCAATCAG-3’ 

R: 5'-TGGAAATGTGCCATCTTCTTT-3’ 
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Casp4 NM_007609 F: 5’-GCTCTTACTTCATCACTA-3’ 

R: 5'-AATATCTCGTCAAGGTTG-3’ 

Cxcl10 NM_021274 F: 5’-TTCTGCCTCATCCTGCTG-3’ 

R: 5'-AGACATCTCTGCTCATCATTC-3’ 

Gfap NM_010277 F: 5’-GGTTGAATCGCTGGAGGAG-3’ 

R: 5'-CTGTGAGGTCTGGCTTGG 

Hmgb1  NM_010439 F: 5’-TGGCAAAGGCTGACAAGGCTC-3’ 

R: 5'-GGATGCTCGCCTTTGATTTTGG-3’ 

Il18 NM_008360 F: 5’-ACCAAGTTCTCTTCGTTGAC-3’ 

R: 5'-TCACAGCCAGTCCTCTTAC-3’ 

Il1a NM_10554 F: 5'-GTATCAACTCTAAGAACTACT-3’  

R: 5'-ATATCTGGAAGTCTGTCATA -3’ 

Il6 NM_031168 F: 5'-ACCGCTATGAAGTTCCTCTC-3’ 

R: 5'-CTCTGTGAAGTCTCCTCTCC-3’ 

Itgam NM_008401 F: 5’-TGGACGCTGATGGCAATACC-3’ 

R: 5'-GGCAAGGGACACACTGACAC-3’ 

Nlrc4 NM_001033367 F: 5'-GTCAAGTGTTATCCAAGTTA-3’ 

R: 5'-CGCTAATATCATAGTCATCAA-3’ 

Nlrp1 NM_001004142 F: 5'-GGTGTGCTGGTTGGTCTGC-3’ 

R: 5'-GTGCTGTGGTGGTCTGTGAG-3’ 

Nlrp12 NM_001033431 F: 5'-AAGAGATGAGATGCTACCTTGAGAG-3’ 

R: 5'-ATGCCAACACTTCCTCCTTCAC-3’ 

Nlrp2 NM_177690 F: 5'-AAGCCTGTAGAGGTCTTACTG-3’ 

R: 5'-ACTGTGTCCGTGTGGTTAC-3’ 

Nlrp3 NM_145827 F: 5'-GCTCCAACCATTCTCTGACC-3’ 

R: 5'-AAGTAAGGCCGGAATTCACC-3’ 

Nlrp6 NM_001081389 F: 5'-GGACGAGAGGAAGGCAGAG-3’ 

R: 5'-GCACACGAAGGGCACAAAG-3’ 

Nos2 NM_010927 F: 5'-AGCCCTCACCTACTTCCTG-3’ 

R: 5'CAATCTCTGCCTATCCGTCTC-3’ 

Ptgs2 NM_011198 F: 5’-GCCTGGTCTGATGATGTATGC-3’ 

R: 5'-GAGTATGAGTCTGCTGGTTTGG-3’ 

Pycard NM_023258 F: 5’-AGGAGTGGAGGGGAAAGC-3’ 

R: 5'-AGAAGACGCAGGAAGATGG-3’ 

Rpl27 NM_011289 F: 5'-ACATTGACGATGGCACCTC-3’ 

R: 5'-GCTTGGCGATCTTCTTCTTG-3’ 

Tlr4 NM_021297 F: 5'-TTCACCTCTGCCTTCACTAC-3’ 

R: 5'-CACTACCACAATAACCTTCCG-3’ 

Tnf NM_013693 F: 5'-GGTTCTGTCCCTTTCACTCAC-3’ 

R: 5'-TGCCTCTTCTGCCAGTTCC-3’ 
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3.3 Immunoblotting 

 

3.3.1 Protein extraction 

 

Cell extracts were harvested after direct cell lysis by 100μL of SB3x buffer 

(187.5 mM Tris-HCl, 6% w/v SDS, 0,012% w/v bromophenol blue, 30% w/v glycerol and 

50 mM DTT (dithiothreitol, added freshly), pH 6.8). 

Proteins from supernatant were precipitated following a Chloroform-Methanol 

precipitation protocol (Wessel, 1984). Briefly, supernatants were collected, centrifuged 

and mixed with 1:1 methanol and 1:5 chloroform. After centrifugation (13 000 rpm, 5 min), 

the upper aqueous phase was removed and 1:1 methanol was added. Samples were 

newly centrifuged (13 000 rpm, 5 min), and the liquid phase discarded. The pellets were 

resuspended in 60 μL of SB3x buffer.  

All protein samples were denaturated by a heating step (95°C for 5 min) and then 

stored at -20°C. 

 

3.3.2 Western Blot 

 

Cell lysates were separated by a denaturing SDS-PAGE (Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis). The samples were migrated at 100 V during 120 min 

(47 mA). The proteins were transferred onto a nitrocellulose membrane at 400 mA during 

50 min (5-7 V). To avoid aspecific protein interactions, the membranes were blocked with 

a 3% milk PBS-0.1% Tween solution during 1 hour, at room temperature. The blots were 

then incubated overnight (4°C) with a specific primary antibody diluted in blocking buffer 

(see Table 8). The next day, the membranes were washed with PBS-0.1% Tween solution 

and subsequently incubated with Horseradish Peroxidase (HRP)-linked secondary 

antibody for 2 hours at room temperature. After washing, the presence of labelled protein 

bands was revealed with the SuperSignal West Femto Chemiluminescence Substrate 

(Life Technologies) and the pictures were acquired on the Bio-Rad ChemiDoc XRS 

Imager and its Image Lab Software (Bio-Rad Laboratories). 
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Table 8. Immunoblotting antibodies. 

Primary antibody Host Dilution  Origin 

Anti-ASC Rabbit 1:1000 AdipoGen (AG_25B-0006) 

Anti-Caspase-1 Mouse 1:1000 AdipoGen (AG-20B-0042) 

Anti-HMGB1 Rabbit 1:1000 Abcam (Ab18256) 

Anti-IL-1α Goat 1:500 R&D systems (AF-400-NA) 

Anti-IL-1β Goat 1:500 R&D systems (AF-401-NA) 

Anti-NLRP3 Mouse 1:1000 AdipoGen (AG-20B-0014) 

Anti-α-tubulin Mouse 1:1000 Abcam (Ab7291) 

 

Secondary antibody Host Dilution  Origin 

HRP-conjugated anti-rabbit Donkey 1:5000 Amersham (NA934) 

HRP-conjugated anti-mouse Sheep 1:2000 Amersham (NA931) 

HRP-conjugated anti-goat Bovine 1:1000 Jackson ImmunoResearch (205-035-108) 

 

 

3.4 Immunocytochemistry 

 

Cells dedicated to an immunocytochemistry analysis were cultured on poly-L-lysine 

coated coverslips, stimulated and then fixed with paraformaldehyde (4% in PBS) for 20 

min. After 3 washing steps with PBS (5 min), the cells were permeabilized during 5 min in 

PBS containing 0.3% Triton X-100 (Sigma). The blocking step was done during 30 min 

using a PBS solution containing 3% BSA (Bovine Serum Albumin, buffer is named BSA 

buffer) (Sigma). A double immunostaining was performed by simultaneously incubating 

the coverslips with primary antibodies of interest overnight at 4°C. The used primary 

antibodies are listed in Table 9. After 3 additional washing steps in PBS (5 min each), the 

cells were incubated with the secondary antibodies during 2 h at room temperature (for 

dilutions in BSA buffer, see Table 9). Cells were then washed and mounted with DAPI-

Fluoromount G (SouthernBiotech, USA). The picture acquisition was performed with a 

LSM 510 META inverted confocal microscope (Carl Zeiss Micro Imaging, Göttingen, 

Germany). 
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Table 9. Immunocytochemistry antibodies. 

Primary antibody Host Dilution  Origin 

Anti-Iba1 Rabbit 1:200 Biocare medical (CP290) 

Cy3-labelled anti-GFAP Mouse 1:800 Sigma (C9205) 

 

Secondary antibody Host Dilution  Origin 

Alexa-Fluor 555 anti-rabbit Donkey 1:1000 Life Technologies (A-31572) 

 

3.5 Protein release quantification 

 
 

3.5.1 IL-1α, IL-1β, IL-18, TNFα, HMGB1 and CXCL10 quantification. 

 

After treatment, cell culture supernatants were harvested and assayed for the 

presence of IL-1α, IL-1β, TNFα and CXCL10 by Enzyme Immunoassay’s according to the 

manufacturer’s instructions. Briefly, 96-well microplates (NUNC immuno plate Maxisorb, 

Thermo Scientific) were coated overnight with the appropriate “Capture antibody”. On the 

next day, the plates were washed and incubated with a blocking buffer (specific to each 

ELISA). After 1 h and additional washing steps, the samples and standards were 

incubated in the capture antibody-coated plates for 2 h. Then, after additional washing 

steps, a biotinylated “Detection antibody” recognizing the protein of interest was incubated 

for 2 h. Exceeding antibodies were removed by several washing steps and 

peroxidase˗conjugated streptavidin was added in each wells for 20 min. The incubation of 

the peroxidase with its substrate produced a colorimetric reaction. After 20 min of 

incubation, the reaction was stopped by adding sulfuric acid. The absorbance was 

measured at 450 nm with a reference wavelength of 540 nm using an absorbance 

microplate reader. A standard curve was generated by plotting the optical density of 

standards. On this base, the sample optical density values were converted into 

concentrations.  

The IL-18 and HMGB1 ELISA kits used the same principle than exposed before. 

However, IL-18 ELISA kit contains a 96-wells microplate already coated with two 

monoclonal antibodies against two different epitopes of IL-18. In the case of HMGB1 

quantification, the wells of the provided microtiter strips were already coated with purified 

anti-HMGB1 antibody and the detection antibody was directly bind to peroxidase, 

suppressing one step of the previous protocol. 
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Table 10. Enzyme linked Immunobsorbent assay’s list. 

Target Kit name Reference Origin 

IL-1β Mouse IL-1 beta/IL-1F2 DuoSet DY401 R&D systems 

IL-1α Mouse IL-1 alpha/IL-1F1 DuoSet DY400 R&D systems 

IL-18 Mouse IL-18 ELISA Kit 7625 MBL 

CXCL10 Mouse CXCL10/IP-10/CRG-2 DuoSet DY466 R&D systems 

TNFα Mouse TNF-alpha DuoSet DY410 R&D systems 

HMGB1 Mouse HMGB1 ELISA ST51011 IBL international 

 

3.5.2 PGE2 quantification 

 

The PGE2 EIA kit (ADI-900-001, Enzo Life Sciences) is a competitive 

immunoassay.  

In a MW96 plate, 50 μL of cell supernatant were added to 50 μL of “PGE enzyme 

conjugate”. The plate was then shaking at 500 rpm during 2 h. After washing, 150 μL of 

substrate solution were added for 30 min. Then, the reaction was stopped by adding of 

50 L of trisodium phosphate solution to each well. The absorbance was immediately 

measured at 405 nm using a microplate reader (TECAN). Sample concentrations were 

determined with a PGE2 standard curve. 
 

4. 6-OHDA Parkinson’s disease mouse model 

 

The 6-hydroxydopamine (6-OHDA) is an organic compound derived from dopamine 

by addition of a 6-hydroxyl group (Fig. 19). It is known to be neurotoxic as it selectively 

causes the death of the dopaminergic and noradrenergic neurons. 6-OHDA enters into 

neurons via the dopamine reuptake transporter. Once in the cytosol, 6-OHDA (or its 

metabolite) induces an oxidative stress resulting in dopaminergic neuron cell death. The 

administration of 6-OHDA into the striatum cause a retrograde degeneration of 

dopaminergic neurons within the substantia nigra (Schober, 2004; Dooley et al, 2012).  

 

                 
Fig. 19. Dopamine and 6-hydroxydopamine structures. 

Dopamine (DA) 6-OHDA 
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4.1 Reagents and Solutions 

 

The 6-OHDA solution was prepared under sterile conditions at a final concentration 

of 2 μg/μL. To this end, an ascorbic acid solution was prepared by dissolving 2 mg of 

ascorbic acid (Sigma) in 10 mL of 0.9% saline solution. 10 mg of 6-OHDA hydrochloride 

(Sigma) was dissolved in 4 mL of the ascorbic acid solution to obtain a 2 μg/μL solution. 

The 6-OHDA and vehicle (ascorbic acid) solutions were sterilized through a 0.22 μm filter. 

As 6-OHDA oxidized rapidly, the solutions were aliquoted into 100 µl tubes, stored on ice, 

protected from light and were always freshly prepared. 

 

4.2 Surgery 

 

12 weeks (for transcripts analysis) or 18 weeks old (for immunohistochemistry) 

wild-type and Nlrp3-/- mice were used. Mouse anaesthesia was induced under 3% 

isoflurane. Mice were then transferred into the stereotaxic frame (Kopf) and the skin was 

incised with a scalpel. After revelation of sutures by a 3% H2O2 solution, the skull was 

pierced with a 0.7 mm drill at following coordinates: ML: +2.3 mm; AP: +0.5 mm. The 

needle of the Hamilton syringe, previously loaded with either the vehicle or the 6-OHDA 

solution, was introduced down into the striatum, to the +3.3 mm dorso-ventral (DV) 

coordinates for 10 seconds and then withdrawn back to +3.2 mm DV (Fig. 20).  
 

 
Fig. 20. Theoretical coordinates for the injection site. From Franklin and Paxinos, 2007. 
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After 2 min, 6-OHDA or vehicle was injected at a rate of 2 μL/5 min. After 2 additional 

minutes, the needle was withdrawn, the skull hole sealed with bone wax and the wound 

clipped. In order to avoid any post-operative pain we locally administered 2% lidocaine gel 

onto the wound (Astra Zeneca 2% Xylocaine gel). After the surgical procedure, the mice 

were housed at 2 animals per cage and monitored during the following days. 

 

4.3 Sacrifice and brain sampling 

 

Prior perfusion, the anesthetic solution was prepared by mixing 550 μL of ketamine 

solution (Nimatek 100 mg/mL) together with 323.4 μL of Dorbene Vet (1mg/mL) and 2.2 

mL of PBS. The mice were anesthetized with a 200 µL intra-peritoneal injection. Once 

sedated, the skin was incised below the sternum and after cutting, the heart and liver were 

exposed. A 25 gauge needle was introduced into the left ventricle and after the PBS flow 

was turned on, the right atrium was incised. After 7 minutes, the brain was extracted and 

processed according to the following analyses.  

 

4.4 Immunohistochemistry 

 

4.4.1 Brain fixation 

 

After extraction, the brain was placed into a 50 mL falcon tube containing 7.5 mL of 

a 4% formaldehyde solution and cooled at +4°C. After 2 days of fixation, the brains were 

washed 3 times in PBS and stored in a 0.02% PBS–azide solution at +4°C. 

 

4.4.2 Brain sections 

 

Thick sections (40μm) were realized on a Leica VT1000S vibratome. The brain was cut 

into two hemispheres, which were glued onto the object holder with cyanoacrylate 

adhesive. The dorsal parts of both hemispheres (cortices) were oriented toward the razor 

blade. The buffer tray was filled with PBS and the cutting speed as well as the frequency 

set to 5. The first 1 mm of the brain were cut into 100 μm thick slices and discarded. After 

discarding two additional 40 μm thick sections, the further sections (40 μm) were serially 

collected into eight 2 mL tubes containing 1.8 mL of cryoprotective medium (PBS – 

Ethylene glycol V/V supplemented with 1% PVP40). The tubes were stored at -20°C until 

use for immunohistochemical analysis. 
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4.4.3 Floating sections immunohistochemistry 

 

The free-floating sections were first removed from the cryoprotective medium and washed 

twice with PBS containing 0.1% Triton X-100. Next, the permeabilization was performed 

by a 20 min incubation in PBS with 3% H202 and 1% Triton X-100. Once again, sections 

were washed twice and incubated during 1 h in PBS with 0.1% triton X-100 and 5% BSA. 

After new washing steps, slices were incubated overnight with primary antibodies (see 

Table 11) diluted in PBS with 0.1% triton X-100 and 0.5% BSA. On the next day, slices 

were newly washed and then incubated for 90 min, at room temperature and under 

shaking, with the secondary antibodies (see Table 11) diluted in PBS containing 0.1% 

Triton X-100 and 0.5% BSA. Then, sections were washed 10 min and stained with DAPI 

(Molecular probes, The Netherlands) diluted 1:5000 in PBS containing 0.1% Triton X-100 

to label the nuclear DNA. Finally, after twice washing steps, slices were transferred into 

TBS (pH 7.4) before being mounted onto slides with fluoromount-G (Southern Biotech). 

 

Table 11. Immunohistochemistry antibodies. 

Primary antibody Host Dilution  Origin 

Anti-Iba1 Rabbit 1:2000 Wako (019-19741) 

Anti-CD68 Rat 1:2500 AbDserotec (MCA1957) 

Anti-GFAP Mouse 1:2000 Cell Signalling (3670S) 

Anti-TH Rabbit 1:2000 Millipore (AB152) 

    

Secondary antibody Host Dilution  Origin 

Alexa-Fluor 488 anti-rat Goat 1:1000 Life Technologies (A11006) 

Alexa-Fluor 647 anti-rabbit Donkey 1:1000 Life Technologies (A31573) 

Cy3 anti-rat Donkey 1:2000 Jackson ImmunoResearch (712-165-153) 

Cy3 anti-mouse Donkey 1:2000 Jackson ImmunoResearch (715-165-151) 

 

4.4.4 Picture acquisition and analysis 

 

Pictures were acquired by using a LSM 510 META inverted confocal microscope 

(Carl Zeiss Micro Imaging, Göttingen, Germany). Striatum and midbrain pictures were 

acquired with 20x and 10x objectives respectively. For each animal, the striatum was 

analysed at 4 different medio-lateral levels (3, 2.7, 2.4 and 2.1 mm from midline) and the 
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midbrain at 5 different medio-lateral levels (1.8, 1.64, 1.48, 1.32, and 1.16). After 

acquisition, the pictures were imported in the ImageJ software and binarized. The regions 

of interest were delimited and the stained surface measured. For each hemisphere the 

integrated value were used for the subsequent analysis (sum of 4 values for the striatum 

or 5 values for the midbrain). 

 

4.5 Transcript analysis 

 

4.5.1 Sampling 

 

Once removed, the brain was dissected in order to recover the midbrain and 

striatum regions. These biopsies were immediately dry frozen at -80°C until the RNA 

extraction. 

 

4.5.2 RNA extraction 

 

Total RNA were extracted following a phenol-chloroform protocol using RNA NOW 

reagent (Biogentex, Seabrook, USA), according to the manufacturer’s protocol. Briefly, 

tissues were mechanically lysed and homogenized in the RNA NOW solution. After 

addition of chloroform, samples were frozen overnight at -80°C. Following defrosting and 

centrifugation, the homogenate layers were into two phases. The upper phase, containing 

RNA, was carefully collected and transferred to a new tube. Then, isopropanol was added 

to the samples, which were subsequently placed overnight at -80°C. The next step 

consisted in a centrifugation in order to obtain RNA precipitated pellets. After 2 ethanol 

washing steps, pellets were air dried and finally dissolved in water. 

 

4.5.3 Quantification, Reverse Transcription and RT-PCR 
 

Please refer to the section 3.2. 

 

5. Statistical analysis 

 

The significance of multiple treatments was analysed by a non-parametric analysis 

of variance Kruskal–Wallis test followed by Dunn’s multiple comparisons test or by a 

parametric One-way analysis of variance (ANOVA) followed by Dunnett’s multiple 
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comparisons tests.  

ANOVA on gene expression was performed on the delta-Ct values (Ctgene of interest -  

Cthousekeeping gene) and the analysis of protein quantification (ELISA) was performed on 

log-transformed concentrations (if present, zero values were removed by adding an offset 

to the dataset equal to half the smallest non-zero concentration).  

All statistical analyses were performed using GraphPad Prism 6 software and 

differences with p-values less than 0.05 were considered significant. All experiments have 

been performed at least three times.  
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Part I: Characterization of inflammasome expression in glial cells . 

 

Until now, the inflammasome signalling in glial cells has only been partially 

addressed. This is why the main focus of this thesis was to characterize the expression 

and regulation of inflammasome components in glial cells. We turned our attention to all 

inflammasome complexes expressed in both microglia and astrocytes but with a special 

regard to the NLRP3 inflammasome.  

 

1. Inflammasome expression and regulation in microglia. 

 

1.1 The NLRP3 inflammasome in microglia. 

 

1.1.1 Primary culture is the best model to study NLRP3 inflammasome in microglial 

cells. 

 

In order to investigate the expression and regulation of the NLRP3 inflammasome in 

microglia, we first tried to identify the best-suited model. We tested three different 

microglial models: the MMGT12 and BV2 cell lines as well as the mouse primary microglia 

(hereafter simply referred as microglia). In addition, we used bone marrow-derived 

macrophages (BMDM) as a positive control for NLRP3 inflammasome expression and 

activation. All cells were submitted to the classical protocol of NLRP3 inflammasome 

activation, consisting in a priming step of 6 h with LPS (signal 1) followed by a 30 min ATP 

stimulation (signal 2 ; Fig. 21A).  

First, we analysed, in all cell types and by RT-PCR, the gene expression of the 

NLRP3 inflammasome components NLRP3, ASC and Caspase-1. We observed that the 

constitutive expression levels (Ctrl) of all these genes were, on average, 30-fold lower in 

both microglial cell lines compared to primary microglia and BMDM (Fig. 21B). However, 

an exposure to LPS could upregulated the Nlrp3 and Casp1 genes in all cells (Fig. 21B). 

In addition to the inflammasome components, we also studied the expression level of the 

Il1b gene. Its expression was upregulated in all cell types (161-fold for MMGT12, 70-fold 

for BV2, 49-fold for microglia and 43-fold for BMDM ; Fig. 21C). This result was confirmed 

at the protein level by Western blot (WB) analysis. All studied microglial cells were able to 

upregulate the expression of the pro-IL-1 protein after LPS priming (Fig. 21D).  

As IL-1 secretion is commonly used as a read out for inflammasome activation, we 

analysed the ability of the different microglial cells to release IL-1 upon inflammasome 
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stimulation. To this end, we performed WB assays (Fig. 21D) and ELISAs (Fig. 21E). The 

WB analysis showed that, while all microglia models produced pro-IL-1 after LPS priming 

(Fig. 21D), the primary microglia were the sole to secrete detectable mature IL-1 into the 

supernatant (Fig. 21D). Moreover, this microglial IL-1 secretion, which we quantified by 

ELISA (2172±359 pg/mL), was in the same order of magnitude as for BMDM                      

(4636±1163 pg/mL, Fig. 21E). In line with these observations, we selected primary 

microglia to further investigate NLRP3 activation and regulation in microglial cells. 

 

 

 

 

 

 

and bone marrow-derived macrophages (BMDM). Data are normalized to Rpl27. (D, E) Cells were activated following the 

classical activation protocol by LPS and/or ATP. (D) Cell-free culture supernatant (Sup) and cell lysates (Xt) were 

analysed by WB for the expression of IL-1β after activation with LPS and/or ATP. (E) IL-1β released in culture 

supernatant was quantified by ELISA. Data are mean ± SEM of at least three independent experiments, *=p<0.05 

compared to Ctrl. Kruskal-Wallis test followed by Dunn’s multiple comparisons test 

Fig. 21: NLRP3 inflammasome expression and activation in 

different models of microglial cells. 

 (A) The classical activation protocol of the NLRP3 

inflammasome activation is composed of two steps. Cells were 

first primed with LPS (10 ng/mL) during 6 h and subsequently 

treated with ATP (1 mM) for 30 min. mRNA expression levels of 

inflammasome components (Nlrp3, Pycard and Casp1) (B) and 

inflammasome substrate Il1b (C) were analysed by RT-PCR, in 

untreated (Ctrl) or LPS-primed MMGT12, BV2, primary 

microglia  
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1.1.2 Microglia secrete IL-1 in an NLRP3 inflammasome-dependent way. 

 

In macrophages, NLRP3 inflammasome is known to be activated by a large variety 

of factors including PAMPs and DAMPs (see Introduction, Part II. 2.1). Here, we wanted 

to investigate if the microglial NLRP3 inflammasome also responds to ATP, Nigericin and 

Alum. To this end, we treated LPS-primed microglia with these NLRP3 activators. WB 

assays and ELISA analysis revealed that these treatments induced caspase-1 cleavage 

as well as IL-1 secretion in microglia (Fig. 22A and Fig. 22B). It is noteworthy that the 

priming step is prerequisite for these events, as we were not able to observe any IL-1 

secretion without LPS treatment (Fig. 22B). Moreover, we noted that ATP and Nigericin 

treatments induced a stronger IL-1 release (respectively 2945±638 pg/mL and 4260±994 

pg/mL) than particulate stimuli (Alum, 457±112 pg/mL ; Fig. 22B). In addition to IL-1 

production, a trend in an increase of LDH release was observed in the supernatant after 

inflammasome activation (Fig. 22C).  

 
 

 

 
Fig. 22: ATP, Nigericin and Alum induce caspase-1 cleavage and IL-1 release by LPS-primed microglia. 

Untreated or LPS-primed microglia were stimulated with ATP (1 mM, 30 min), Nigericin (Nig, 1.34 µM, 2 h), or Aluminium 

hydroxide (Alum, 300 µg/ml, 5 h). (A) Cell-free culture supernatants (Sup) and cell lysates (Xt) were analysed by WB for 

IL-1 and caspase-1 expressions. (B). IL-1 secretion in the supernatant was analysed by ELISA. (C) LDH release in the 

supernatant was analysed by LDH cytotoxicity test. LDH results are shown as percentage of LDH release by cells treated 

with Triton-X100 (100%). Data are mean ± SEM of at least three independent experiments, except for WB (one 

representative experiment of at least 3 independent experiments). *=p<0.05 compared to Ctrl. Kruskal-Wallis test followed 

by Dunn’s multiple comparisons test.  
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In order to analyse whether this IL-1 production depends on the NLRP3 

inflammasome, we submitted Nlrp3-/- and Casp1-/- microglia to the same activation 

protocol. We observed a dramatic decrease of IL-1 secretion in both deficient cell types 

and in response to all tested stimuli (ATP, Nigericin or Alum ; Fig. 23A). Similarly, the 

treatment with z-YVAD, a caspase-1 inhibitor, reduced the release of IL-1β subsequent to 

the inflammasome activation (Fig. 23B). In contrast, the NLRP3- or Caspase1-deficiency 

did not affect LPS-mediated TNFα secretion (Fig. 23C).  

 

 
Fig. 23: Microglia secrete IL-1 in an NLRP3 inflammasome-dependent way. 

LPS-primed microglia were stimulated with ATP (1 mM, 30 min), Nigericin (Nig, 1.34 µM, 2 h), or Aluminium hydroxide 

(Alum, 300 µg/ml, 5 h). (A) Secretion of IL-1β in the supernatant of wild-type (WT), Nlrp3-/- and Casp1-/- microglia was 

quantified by ELISA. (B) IL-1β secretion in the supernatant of microglia exposed to z-YVAD-FMK, a specific caspase-1 

inhibitor, was quantified by ELISA. The inhibitor was added 15 min before the LPS-priming. (C) Secretion of TNFα into the 

supernatant of microglia was quantified by ELISA. The bars represent the mean ± SEM of at least three independent 

experiments, *=p<0.05 KO compared to WT, #=p<0.05 compared to ø, ns= not significant. Kruskal-Wallis test followed by 

Dunn’s multiple comparisons test.  

 

To determine if Nigericin and Alum directly trigger the inflammasome assembly or if 

they act indirectly by inducing the intermediate release of ATP, we quantified the ATP 

concentration in the supernatant following Nigericin or Alum treatment. In these 

conditions, no intermediate ATP release was detected (0.08 mM ATP for Nigericin 

treatment ; Fig. 24A), suggesting that Nigericin and Alum directly activate IL-1 

production. Accordingly, we observed no statistical difference in IL-1 secretion upon 

Nigericin or Alum treatment between wild-type and P2xr7-/- cells (Fig. 24B). The P2X7 
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receptor was only required for IL-1 release in response to the stimulation with ATP 

(1969±502 pg/mL in wild-type vs        39±22 pg/mL in P2rx7-/-, Fig. 24B). 
 

 

 
Fig. 24: Microglia secrete IL-1 in a P2X7R-independent-way. 

LPS-primed microglia were stimulated with ATP (1 mM, 30 min), Nigericin (Nig, 1.34 µM, 2 h), or Aluminium hydroxide 

(Alum, 300 µg/ml, 5 h). (A) ATP release was quantified in cell supernatant upon treatment using a luminescent assay (B) 

IL-1β secretion was assessed by ELISA in wild-type (WT) and P2rx7-/- microglia. Data are mean ± SEM of at least three 

independent experiments, *=p<0.05 compared to Ctrl, #=p<0.05 KO compared to WT. One-way ANOVA followed by 

Dunnet’s multiple comparisons test. 

 

1.1.3 Microglia secrete IL-18, IL-1α and HMGB1 after NLRP3 inflammasome activation. 

 

IL-1 is not the sole molecule to be released after inflammasome activation. IL-18 or 

alarmins, such as IL-1α and HMGB1, are also secreted following inflammasome assembly 

in macrophages. We investigated the expression and secretion profile of these factors in 

microglia. 

First, primary microglia constitutively expressed the Il18 gene (CtIl18=25.1, 

CtL27=22.3). However, LPS priming significantly increased by 10.4-fold its expression      

(Fig. 25A). In order to investigate the release of IL-18 in microglia, we activated LPS-

primed cells with either ATP, Nigericin or Alum. We quantified the IL-18 released in the 

culture supernatant by ELISA. Similar to IL-1, the priming of cells by LPS was required to 

detect any release of IL-18 after ATP, Nigericin or Alum exposure (187±71 pg/mL, 

297±87 pg/mL and 47±18 pg/mL respectively, Fig. 25B). In addition, the production of IL-

18 occurred in an NLRP3 inflammasome-dependent manner, as its secretion was 

significantly decreased in supernatants of NLRP3- and Caspase-1-deficient microglia (Fig. 

25C). Similarly, the caspase inhibitor z-YVAD-FMK almost completely abrogated the IL-18 

secretion (Fig. 25D).  
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We further investigated the expression and secretion of both alarmins IL-1α and 

HMGB1. We analysed whether IL-1α was constitutively expressed by RT-PCR and WB. 

Since the basal Il1a mRNA level was low (CtIl1a=30.7, CtL27=22.1) and that we were not 

able to detect the protein, we considered that IL-1α was not constitutively expressed in our 

microglia (Fig. 26A and Fig. 26B). However, stimulating the cells with LPS induced 

1744-fold the Il1a gene expression (Fig. 26A) and upregulated the IL-1α translation          

(Fig. 26B). While the treatment with LPS alone was not sufficient to trigger the release of 

IL-1α into the supernatant, subsequent stimulation with either ATP, Nigericin or Alum led 

to the release of IL-1α (at respectively 435±259 pg/mL, 622±314 pg/mL and 121±64 

pg/mL ; Fig. 26C).  

In order to investigate whether the release of IL-1 was dependent on the NLRP3 

inflammasome, we compared the IL-1α protein levels in the supernatant of wild-type, 

Nlrp3-/- and Casp1-/- stimulated microglia. The results showed that ATP or Nigericin 

treatment required the presence of the NLRP3 inflammasome to induce IL-1α release, 

whereas Alum did not (Fig. 26D). Moreover, while the ATP- and Nigericin-mediated IL-1 

release required the presence of caspase-1, its activity was dispensable, since the 

Fig. 25: IL-18 is expressed in microglia and released 

after NLRP3 inflammasome activation. 

(A) Expression level of Il18 was analysed by RT-PCR 

in untreated or LPS-primed microglia. Data are 

normalized to Rpl27. *=p<0.05 compared to Ctrl. Mann 

and Whitney test (B, C, D) Untreated or LPS-primed 

microglia were stimulated with ATP (1 mM, 30 min), 

Nigericin (Nig, 1.34 µM, 2 h), or Aluminium hydroxide 

(Alum, 300 µg/ml, 5 h). IL-18 secretion was assayed by 

ELISA in supernatant of wild-type (WT) (B), Nlrp3-/- and 

Casp1-/- microglia (C) and in supernatant of WT 

microglia exposed to z-YVAD-FMK, a specific 

caspase-1 inhibitor. The inhibitor was added 15 min 

before the LPS-priming (D). Data are mean ± SEM of 

at least three independent experiments, *=p<0.05 

compared to Ctrl, #=p<0.05 KO compared to WT, 

$=p<0.05 compared to ø. One-way ANOVA followed 

by Dunnet’s multiple comparisons test. 
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treatment with the caspase-1 inhibitor z-YVAD-FMK did not significantly alter the levels of 

IL-1α release (292 vs 198 pg/mL for ATP, 582 vs 601 pg/mL for Nigericin and 126 vs 

69 pg/mL for Alum; Fig. 26E). 

 

 
Fig. 26: NLRP3 activators induce IL-1α secretion in LPS-primed microglia, but display differential requirement for the 

inflammasome components.  

(A, B) Microglia were stimulated with 10 ng/mL LPS during 6 h. (A) Expression level of Il1a was analysed by RT-PCR. Data 

are normalized to Rpl27. *=p<0.05 compared to Ctrl. Mann and Whitney test. (B) Cell lysates (Xt) were analysed by WB for 

the expression of IL-1α in untreated or primed condition. α-Tubulin was used as a loading control. (C, D, E) Untreated or 

LPS-primed microglia were stimulated with ATP (1 mM, 30 min), Nigericin (Nig, 1.34 µM, 2 h), or Aluminium hydroxide 

(Alum, 300 µg/ml, 5 h). IL-1α secretion was assayed by ELISA in the supernatant of wild-type (WT) (C), Nlrp3-/- and Casp1-/- 

microglia (D) and in the supernatant of WT microglia exposed to z-YVAD-FMK, a specific caspase-1 inhibitor. The inhibitor 

was added 15 min before LPS-priming (E). Data are mean ± SEM of at least three independent experiments, except for WB 

(one representative experiment of at least 3 independent experiments). *=p<0.05 compared to Ctrl and #=p<0.05 KO 

compared to WT. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

 

A recent report showed that microglia actively secrete HMGB1 in response to acute 

stress (Weber 2015). However, the authors did not study whether the inflammasome was 

implicated in this process. Thus, we wanted to study if microglia could be able to secrete 

HMGB1 following NLRP3 inflammasome activation. As expected, HMGB1 was 

constitutively expressed in microglia (CtHmgb1=22.1, CtL27=22.3 ; Fig. 27A and Fig. 27B). 

However, we could not detect its secretion, neither in the control condition nor after 

stimulation with LPS. In fact, we were only able to detect HMGB1 in the supernatant of 

LPS primed cells once the cells were treated with either ATP (6.4 ng/mL) or Nigericin 

(18.8 ng/mL; Fig. 27C). Interestingly, Alum treatment was not able to trigger the release of 

HMGB1 by LPS-primed microglia (Fig. 27C). Consistently with a role for the NLRP3 
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inflammasome, ATP- and Nigericin- mediated HMGB1 release were abrogated in 

NLRP3-deficient (2.4±0.7 ng/mL with ATP and 4.3±1.6 ng/mL with Nigericin) or 

Caspase-1-deficient microglia (3.7±1.2 ng/mL with ATP and 5.6±1.9 ng/mL with Nigericin) 

compared to wild-type microglia (13.8±4.9 ng/mL with ATP and 32±9 ng/mL with 

Nigericin, Fig. 27D). Similar to our observation with IL-1α, we were still able to detect 

HMGB1 in the supernatant of the cells treated with the caspase-1 inhibitor z-YVAD (Fig. 

27E). Yet, in both cases, we were able to confirm the efficacy of the caspase-1 inhibitor by 

quantifying IL-1 on the same supernatants. 

 

 
Fig. 27: LPS-primed microglia actively released HMGB1 after inflammasome activation by ATP and Nigericin. 

(A, B) Microglia were stimulated with 10 ng/mL LPS during 6 h. (A) Expression level of Hmgb1 was analysed by RT-PCR. 

Data are normalized to Rpl27.*=p<0.05 compared to Ctrl. Mann and Whitney test. (B) Cell lysates (Xt) were analysed by WB 

for the expression of HMGB1 in untreated or primed condition. α-Tubulin was used as a loading control. (C, D, E) Untreated 

or LPS-primed microglia were stimulated with ATP (1 mM, 30 min), Nigericin (Nig, 1.34 µM, 2 h), or Aluminium hydroxide 

(Alum, 300 µg/ml, 5 h). HMGB1 secretion was assayed by ELISA in supernatant of wild-type (WT) (C), Nlrp3-/- and Casp1-/- 

microglia (D) and in supernatant of WT microglia exposed to z-YVAD-FMK, a specific caspase-1 inhibitor. The inhibitor was 

added 15 min before the LPS-priming (E). Data are mean ± SEM of at least three independent experiments, except for WB 

(one representative experiment of at least 3 independent experiments). *=p<0.05 compared to Ctrl and #=p<0.05 KO 

compared to WT. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

 

1.1.4 Inflammasome-dependent IL-1β production in microglia occurred through similar 

mechanisms than described in macrophages. 

 

We wanted to investigate whether the mechanisms underlying inflammasome 

activation in microglia are similar to those described in macrophages. To this purpose, we 
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studied the implication of potassium efflux, ROS and lysosomal damage in microglial 

NLRP3 inflammasome activation. 

First, we stimulated the cells in a potassium-enriched medium (25 to 130 mM KCl) in 

order to investigate the importance of potassium efflux for inflammasome activation. We 

tested whether the potassium-enriched conditions affect the viability of microglia by using 

a MTT assay. We found that KCl seemed not toxic despite a slight decrease in viability 

when its concentration reached 130 mM (86.4% of viability, Fig. 28A). When we treated 

microglia with increasing concentrations of KCl (25 mM, 75 mM and 130 mM), we 

observed a dose-dependent reduction in ATP-mediated IL-1 release (Fig. 28A). The 

concentration decreased from 1362 pg/mL in the control condition to 114 pg/mL with 25 

mM KCl, 12 pg/mL with 75 mM KCl and 1.7 pg/mL with 130 mM KCl (Fig. 28B). Similarly, 

we observed that the presence of 25 mM KCl also inhibited the release of IL-1 following 

Nigericin (3674 pg/mL to 1207 pg/mL) or Alum treatment (571 pg/mL to 118 pg/mL, Fig. 

28C).  

 

 
Fig. 28: High extracellular concentration of KCl inhibits Il1b and Nlrp3 expression as well as IL-1 release. 

(A) Microglia were cultured in classical medium or in 25 mM, 75 mM, or 130 mM KCl-enriched medium. Cell viability was 

tested by MTT assay. Data are shown in percentage of the non-treated cells viability (Ctrl). (B, C) LPS-primed microglia 

were stimulated with ATP (1 mM, 30 min), Nigericin (Nig, 1.34 µM, 2 h), or Aluminium hydroxide (Alum, 300 µg/ml, 5 h) in 

presence of KCl-enriched medium. IL-1 secretion in supernatant was quantified by ELISA after exposure to ATP (B) and 

Nigericin or Aluminium hydroxide (C). (D, E). LPS-primed microglia were cultured in classical medium or in 25 mM, 75 mM, 

or 130 mM KCl-enriched medium. (D) Expression levels of Il1b and Nlrp3 were analysed by RT-PCR and normalized to 

Rpl27. The expression ratio of these genes was calculated for “LPS+KCl” vs “LPS” conditions. (E) Cell lysates (Xt) were 

analysed by WB for the expression of IL-1β and NLRP3. α-Tubulin was used as a loading control. Data are mean ± SEM of 

at least three independent experiments, except for WB (one representative experiment of at least 3 independent 

experiments) *=p<0.05 compared to Ctrl. One-way ANOVA followed by Dunnet’s multiple comparisons test. 
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Surprisingly, we noted that adding KCl not only affected the activation of NLRP3 but also 

the priming step (Fig. 28D and Fig. 28E). Indeed, when we analysed the transcripts by 

RT-PCR, we observed that KCl was able to downregulate the LPS-induced Il1b 

expression in a dose-dependent manner (Fig. 28D). Il1b expression decreased of 53.2% 

with 25 mM KCl, 67.6% with 75 mM KCl and 97.9% with 130 mM of KCl. Interestingly, the 

expression of Nlrp3 was only affected in presence of the highest concentration of KCl 

(130 mM) and dropped down by 96.3% in this condition (Fig. 28D). Our WB analysis 

confirmed these observations at the protein level (Fig. 28E). 

 

ROS have previously been proposed as being crucial for NLRP3 activation. Thus, 

we analysed their implication in microglial inflammasome activation by testing the effect of 

the antioxidant molecule N-Acetyl-L-Cystein (NAC) on IL-1β secretion. As a prerequisite, 

we performed an MTT assay which showed that NAC did not exhibit any adverse effect on 

the cell viability (Fig. 29A). Our experiments indicated that the exposure to NAC impaired 

the IL-1 secretion induced by either ATP (from 3933±952 pg/mL to 2091±89 pg/mL) or 

Alum (from 283±42 pg/mL to 71±7 pg/mL ; respectively Fig. 29B and Fig. 29C). In 

addition, the effect of NAC on the release of IL-1β was priming-independent, as the RT-

PCR analysis showed no variation in the expression of either Il1b or Nlrp3 gene in 

presence of NAC      (Fig. 29D). 

 

 

 
Fig. 29: IL-1 release is decreased in presence of NAC antioxidant. 

(A) Microglia were treated for 330 min with the antioxidant N-Acetyl Cysteine (NAC, 5 mM). Cell viability was tested by MTT 

assay. Data are shown in percentage of non-treated cells viability (Ctrl). (B and C). IL-1 secretion was quantified by ELISA 

performed on supernatant of LPS-primed microglia stimulated with ATP (1 mM, 30 min) (B), or Aluminium hydroxide (Alum, 

300 µg/ml, 5 h) (C) and exposed to NAC (added 30 min prior to the inflammasome activator). (D) LPS-primed microglia 

treated for 330 min with NAC were submitted to transcripts analysis. Expression levels of Il1b and Nlrp3 were analysed by 

RT-PCR and normalized to Rpl27. The expression ratio of these genes was calculated for “LPS+NAC” vs “LPS” conditions 

(D). Data are mean ± SEM of at least three independent experiments, *=p<0.05 compared to Ctrl. One-way ANOVA 

followed by Dunnet’s multiple comparisons test. 
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It has also been reported that, in macrophages, particulates could induce lysosomal 

damage and subsequent release of cathepsin B, which are responsible for the activation 

of the NLRP3 inflammasome. To study whether particulates act in the same way on 

microglia, we first inhibited their phagocytosis capacity by using Cytochalasin D (Cytod), 

an inhibitor of actin polymerization. Then, we also blocked cathepsin B activity by using 

the inhibitor CA074-Me. These compounds did not give rise to significant cell death (Fig. 

30A). As expected, both inhibitors did not affect the IL-1β secretion observed in response 

to ATP (Fig. 30B), whereas Cytod and CA074-Me induced a decrease of Alum-triggered 

IL-1 secretion of respectively 98.6% and 86.3% (Fig. 30C). Moreover, this effect was 

priming-independent, as RT-PCR analysis showed no difference in the expression of 

either Il1b or Nlrp3 gene in presence of CA074-Me or Cytod (Fig. 30D). 

 

 

 
Fig. 30: Phagocytosis and cathepsin B activity are required for IL-1 release following Alum exposure. 

(A) Microglia were treated for 330 min with Cytochalasin D (Cytod, 2 μM) or CA074-Me (10 μM). Cell viability was tested by 

MTT assay after inhibitor exposure. Data are shown in percentage of non-treated cells viability (Ctrl). (B and C) The IL-1 

secretion in supernatant of LPS-primed microglia stimulated with ATP (1 mM, 30 min) (B), or Aluminium hydroxide (Alum, 

300 µg/ml, 5 h) was quantified by ELISA (C) in presence of Cytod or CA-074Me. (D) LPS-primed microglia treated for 

330 min with Cytod or Ca-074Me were submitted to transcripts analysis. Expression levels of Il1b and Nlrp3 were analysed 

by RT-PCR and normalized to Rpl27. The expression ratio of these genes was calculated for “LPS+inhibitor” vs “LPS” 

conditions (D). Data are mean ± SEM of at least three independent experiments, *=p<0.05 compared to Ctrl. One-way 

ANOVA followed by Dunnet’s multiple comparisons test. 
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1.2 Preliminary results: Other functional inflammasomes in microglia.  

 

Even if NLRP3 inflammasome is the best characterized, other inflammasome 

complexes have been described (see Introduction, Part II, section 3). As some of them 

have been linked to neuroinflammation, we further investigated the expression of the 

inflammasome-related proteins in microglia. To this purpose, we performed RT-PCR on 

cDNA derived from untreated or LPS-primed microglia. The different expression levels are 

reported in figure 31 as a heat map representing the -dCt (-Ctgene of interest – CtRpl27) values. 

The expression data of all genes are provided in supplemental table 1. We detected the 

constitutive expression of Nlrp1 (Ct = 30.2±1.9), Nlrp6 (Ct = 26.9±1.5), Aim2                            

(Ct = 20.5±0.6) and Nlrc4 (Ct = 27.5±1.5) genes in microglia (Fig. 31). In addition, we 

observed that Casp4 (caspase-11) mRNA could be upregulated 240-fold when microglia 

were primed with LPS (Fig. 31).  

 

 
 

Fig. 31: Expression profile of inflammasome-related genes in microglia. 

Microglia were primed with LPS (10 ng/mL) during 6 h. RNA were extracted and analysed for gene expression of Nlrp1, 

Nlrp2, Nlrp3, Nlrp6, Nlrp12, Aim2, Nlrc4, Pycard, Casp1 and Casp4 by RT-PCR. Results were normalized to Rpl27. The 

Heat map represents the normalized expression values (-dCt). Blue represents low level of expression (-dCt = -12) and red 

represents high level of expression (-dCt = -2). Data are the mean of at least three independent experiments. 

 

Based on these results, we started a functional analysis of AIM2 and NLRC4 

inflammasome complexes in microglia, since this question has, until now, been poorly 

addressed.  

As AIM2 is able to sense cytosolic double stranded DNA, we transfected LPS-

primed cells with the synthetic double-stranded DNA poly(dA:dT). After the transfection, 

we were able to observe that microglia released a highly variable but significant amount of 

IL-1  (729±423 pg/mL ; Fig. 32A). As expected, this release was NLRP3-independent 

since the level of IL-1β was not significantly altered in NLRP3-deficient microglia (Fig. 

32B).  
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Fig. 32: The AIM2 inflammasome ligand, poly(dA:dT), induces IL-1 release by LPS-primed microglia. 

Microglia were primed for with LPS (10 ng/mL, 6 h) and transfected with Poly(dA:dT) (2.5 μg/mL, 5 h) by using 

Lipofectamine (10 μg/mL). IL-1 production in culture supernatant was assessed by ELISA in wild-type (WT) (A) or Nlrp3-/- 

microglia (B). Data are mean ± SEM of at least three independent experiments, *=p<0.05 compared to Ctrl, ns= not 

significant. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

Next, we investigated the functionality of the NLRC4 inflammasome, which is 

classically assembled after detection of bacterial flagellin. Thus, we stimulated LPS-

primed microglia with flagellin during 5 h. We could indeed observe a significant release of 

IL-1β (244±161 pg/mL), but only after 24 h of LPS priming (Fig. 33A). Here again, we 

further used NLRP3-deficient microglia to show that this flagellin-mediated IL-1 release 

was NLRP3-independent (Fig. 33B).  

 

 

 
 

Fig. 33: LPS-primed microglia release IL-1 following flagellin exposure. 

Microglia were primed with LPS (10 ng/mL, 24 h) and stimulated with ultra-pure flagellin (2.5 μg/mL, 5 h). IL-1 production in 

culture supernatant was assessed by ELISA in wild-type (WT) (A) or Nlrp3-/- microglia (B). Data are mean ± SEM of at least 

three independent experiments, *=p<0.05 compared to Ctrl, ns= not significant. Kruskal-Wallis test followed by Dunn’s 

multiple comparisons test. 

 

We have previously mentioned that LPS was able to induce the upregulation of 

Casp4 (Fig. 31). In fact, this gene encodes mouse caspase-11, which is implicated in the 

“non-canonical inflammasome” pathway after binding to intracellular LPS (see the section 

3.4 in Part II of the introduction). This observation led us to study the microglial capacity to 
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trigger this non-canonical inflammasome pathway. To this purpose, we used lipofectamine 

to transfect a high dose of LPS (1 µg/ml) into microglial cells. This transfection induced the 

release of IL-1 (461±254 pg/mL), as revealed by ELISA (Fig. 34A), but also led to an 

increase in LDH release (13.5-fold compared to Ctrl, Fig. 34B). Surprisingly, when we 

treated the cells with high LPS concentration (1 µg/ml), without transfection agent, we 

were nevertheless able to detect a significant release of IL-1β into the supernatant                        

(239±82 pg/mL, Fig. 34A) as well as a release of LDH (16%, Fig. 34B). We further noted 

that the release of IL-1β tended to decrease in Nlrp3-/- mice (467±359 pg/mL vs                     

228±183 pg/mL, Fig. 34C) whereas the LDH release remained similar in wild-type and 

NLRP3-deficient cells (respectively 23% and 28%, Fig. 34D). 

 

 

 

Fig. 34: High dose of LPS triggered IL-1β release by microglia.  

Microglia were stimulated for 16 h with a high dose of LPS (1 μg/mL), transfected by using Lipofectamine (10 μg/mL). IL-1β 

production and LDH release in culture supernatant were assessed respectively by ELISA and LDH cytotoxicity test in 

wild-type (WT) (A, B) or Nlrp3-/- microglia (C, D). LDH results are shown as percentage of LDH release by Triton-X100 

treated cells. Data are mean ± SEM of at least three independent experiments, *=p<0.05 compared to Ctrl, ns= not 

significant. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

 
 81 

2. Inflammasome expression in astrocytes. 

  

Even if astrocytes physiology is currently an important field of research, their direct 

contributions under inflammatory conditions is still controversial. For example, it is still 

debated if astrocytes are able to produce IL-1. Moreover, only few studies tried to 

characterize inflammasomes in astrocytes. Therefore, we aimed to investigate 

inflammasome expression and activation in astrocytes. 

 

2.1 Astrocyte culture purity is crucial. 

 

First, we wanted to emphasize the importance to work with astrocyte cultures devoid 

of microglia in inflammatory studies. Primary mixed glial cultures (MGC P0) contain at 

least both glial cell types (astrocytes and microglia). As microglia are extremely reactive 

immune cells, it is important to deplete them as much as possible from astrocyte 

cultures-derived from MGC P0.  

In order to obtain highly astrocyte-enriched cultures in vitro, we performed a MACS 

isolation where microglia were positively selected during the sorting. The resulting 

astrocyte-enriched cultures were named AEC-M1. To characterize the purity of this type of 

culture, we realized an immunocytochemistry staining using antibodies against GFAP and 

Iba1 in order to label astrocytes or microglia respectively (Fig. 35A). Cell counting 

revealed that AEC-M1 contained less than 2% of Iba1 positive microglial cells. While this 

level of purity is often described as being acceptable in the literature, our preliminary 

experiments have demonstrated that the remaining microglial cells were still introducing a 

bias during inflammatory studies. Indeed, experimental results were not reproducible as 

the pro-inflammatory gene expression was highly variable, probably due to different 

amounts of microglial contamination. For example, the Ct value obtained by RT-PCR for 

Il1b varied from 32 to 38. In order to fix this issue, we decided to perform a second MACS 

sorting to reduce even more the remaining microglial cells. The thereby obtained cultures 

were called AEC-M2. In these cultures, we were not able to detect Iba1-positive cells 

anymore             (Fig. 35A), indicating a purity close to 100%. To confirm these results by 

an alternative method, we characterized the gene expression levels of relevant cell type 

specific markers, i.e. Aif1 (Allograft inflammatory factor 1), Itgam (Integrin alpha M) and 

Gfap in AEC-M1, AEC-M2, microglial cultures and MGC P0. Itgam and Aif1 are the genes 

respectively coding for CD11b and Iba1 proteins and expressed in microglia. Figure 35B 

shows that Aif1 and Itgam were expressed at higher levels in microglia cultures than in 

MGC P0 (respectively 14-fold and 4-fold) and in AEC-M1 (respectively 14-fold and 6-fold). 
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Moreover, these genes were less expressed in AEC-M2 than in AEC-M1 cultures (3-fold 

for Aif1 and 2-fold for Itgam).  

Based on these observations, we decided to use AEC-M2 to investigate 

inflammasome expression and regulation in astrocytes in vitro. 

  

 
Fig. 35: AEC-M2 contain less contaminant microglia than AEC-M1 or MGC P0. 

(A) Immunocytochemistry was performed on non-treated mixed glial cultures (MGC P0) and on astrocyte-enriched cultures 

(AEC) sorting once (AEC-M1) or twice (AEC-M2) by MACS technique. Astrocytes are detected using anti-GFAP antibody 

(red). Microglia were detected using anti-Iba1 antibody (green). DAPI staining identifies nucleus (blue). Pictures are one 

representative experiment of at least three independent experiments. (B) Gene expressions of Aif1, Itgam (microglia 

markers) and Gfap (astrocyte marker) were analysed in untreated MGC P0, AEC-M1, AEC-M2 and microglial cultures by 

RT-PCR. Results were normalized to Rpl27. Data are mean ± SEM of at least three independent experiments, *=p<0.05 

compared to MGC P0. Kruskal-Wallis test followed by Dunn’s multiple comparisons test.  

 

2.2 Astrocytes do not express all NLRP3 inflammasome components. 

 

As astrocytes do not strongly respond to LPS stimulation (Henn 2011), probably due 

to their weak Tlr4 expression (Suppl. Fig. 1), we tried to setup an alternative priming 

method. To this aim, we tested the TLR2 ligand Pam3CSK4 (P3C, 10 ng/mL) or the 

cytokines IL-1 (10 ng/mL), TNFα (10 ng/mL) and IFNγ (20 ng/mL) separately or in 

combination (CCM: IL-1β + TNFα + IFNγ). Untreated and LPS-primed microglia were 

used as positive controls even if P3C and CCM were also able to efficiently prime NLRP3 

in these cells (Suppl. Fig. 2).  

After 6 h of astrocytes priming by the cited activators, we performed a RT-PCR to 

monitor the expression levels of selected pro-inflammatory genes (i.e. Il6, Nos2, Ptgs2 

Cxcl10 and Tnf) but also of NLRP3 inflammasome-related genes (i.e. Il1b, Il1a, Il18, 

Hmgb1, Nlrp3, Pycard and Asc ; Fig. 36A). The obtained data are represented as a heat 

map representing the -dCt values for each genes. The exhaustive expression values are 

provided in supplemental Table 2. 
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Fig. 36: Astrocytes weakly expressed Il1b, Il1a, Nlrp3 and Pycard genes and do not respond to inflammasome activation, 

even after an efficient priming.  

(A) Primary astrocytes (AECM2) were primed for 6 h with LPS (10 ng/mL), P3C (10 ng/mL), IL-1β (10 ng/mL), TNF-

(10 ng/mL), IFNγ (10 ng/mL) or CCM (10 ng/mL IL-1β + 10 ng/mL TNFα + 20 ng/mL IFNγ). Primary microglia were primed 

with LPS (10 ng/mL, 6 h) and served as control. RNA were extracted and analysed by RT-PCR for expression of the pro-

inflammatory genes Il6, Nos2, Ptgs2, Cxcl10 and Tnf) and expression of NLRP3 inflammasome-related genes (i.e. Il1b, Il1a, 

Il18, Hmgb1, Nlrp3, Pycard and Asc). Results were normalized to Rpl27. The Heat map represents these normalized 

expression values (-dCt). Blue represents low level of expression (-dCt = -12) and red represents high level of expression 

(-dCt = -2). Data are mean of at least three independent experiments. CXCL10 (B) and PGE2 (C) secretions were assessed 

after 6 h of CCM exposure. (D) Primary astrocytes (AEC M2) were primed for 6 h with LPS (10 ng/mL) or CCM. LPS-primed 

microglia served as control. IL-1β, HMGB1, NLRP3, ASC and Caspase-1 protein levels were analysed by WB. α-Tubulin 

was used as a loading control. IL-18 (E) and HMGB1 (F) secretions were assayed by ELISA on supernatant of primed 

astrocytes and microglia treated with ATP (1 mM, 30 min) or Nigericin (Nig, 1.34 µM, 2 h). Data are mean ± SEM of at least 

three independent experiments, except for WB (one representative experiment of at least 3 independent experiments). 

*=p<0.05 compared to Ctrl. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

 

By looking at the expression levels of Il6, Nos2, Ptgs2, Cxcl10 and Tnf in astrocytes, 

we observed that, among the tested activators, CCM was the most potent one (108-, 675-, 

38.5-, 3777- and 25-fold inductions respectively for Il6, Nos2, Ptgs2, Cxcl10 and Tnf ;        

Fig. 36A). We further confirmed the capacity of CCM to activate astrocytes by measuring 

the secretion of CXCL10 or PGE2 by ELISA. We were able to detect a 78-fold increase of 

CXCL10 in the supernatant after CCM stimulation (0.12±0.01 ng/ml in Ctrl and                       
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9.4±6.7 ng/ml with CCM, Fig. 36B), as well as an upregulation of 2.3-fold of the PGE2 

release (0.85±0.19 ng/ml in Ctrl and 1.96±0.45 ng/ml with CCM, Fig. 36C).  

We also analysed the expression levels of inflammasome-related genes in untreated 

or inflammatory conditions. Surprisingly, we failed to detect any Il1a and Il1b transcripts in 

astrocytes, in both unprimed and primed conditions. In addition, the Nlrp3 and Pycard 

genes were poorly expressed in untreated astrocytes, compared to microglia (Fig. 36A). 

Nevertheless, Nlrp3 was significantly upregulated after CCM exposure (332-fold, Fig. 

36A). The heat map also illustrates that astrocytes constitutively expressed Il18 

(Ct = 24.7±2.3), Hmgb1 (Ct = 20.5±1.8) or Casp1 (Ct = 29.3±1.7) and that treating the 

cells with CCM was able to upregulate Casp1 expression by 12.8-fold (Fig. 36A). We 

attempted to confirm these observations at the protein level by WB assays. Interestingly, 

we failed to detect pro-IL-1β, NLRP3 and ASC proteins in primed or unprimed astrocytes 

(Fig. 36D). However, we noted that these cells expressed HMGB1 and caspase-1 in both 

conditions, with an upregulation of caspase-1 expression after priming, consistently with 

our transcripts results (Fig. 36D). 

Although we failed to detect the expression of all NLRP3 inflammasome 

components in astrocytes, we have tested the effects of the inflammasome activators ATP 

and Nigericin on CCM-primed astrocytes. As expected, we did not detect any IL-18 (Fig. 

36E) or HMGB1 (Fig. 36F) release after treatment, even if they are expressed by 

astrocytes. IL-1β release was also undetectable in the supernatant (Suppl. Fig. 3). 

In order to confirm our results, these experiments have been repeated on another 

model of astrocytes devoid of microglia: neurosphere-derived astrocyte cultures (Crocker 

et al, 2008). Similar to primary astrocytes, these cells exhibited a very low expression of 

Asc and Nlrp3 but expressed Casp1 which was upregulated after CCM-priming 

(Suppl. Fig. 4). On another hand, Il1b and Il18 genes were not expressed by the 

neurosphere-derived astrocytes, either in unstimulated or in CCM-primed conditions 

(Suppl. Fig. 4). 

 

2.3 Astrocytes do not express other functional inflammasomes.  

 

As we failed to detect a functional NLRP3 inflammasome in astrocytes, we further 

investigated the expression of other inflammasome-related proteins in these cells. To this 

purpose, we performed RT-PCR on RNA extracted from untreated or primed astrocytes. 

Figure 37 shows a heat map representation of the normalized expression levels. The 

expression data of all genes are provided in supplemental table 3. We found that 

astrocytes and microglia contained similar transcript levels of the intracellular sensors 
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Nlrp6 (respectively Ct = 29.9±1.9 and 29.6±1.5) and Aim2 (respectively Ct = 22±0.7 and             

20.5±0.6 ; Fig. 37 and Suppl. Table 3). On the contrary, Nlrp1, Nlrp2, Nlrp12 and Nlrc4 

genes were poorly expressed in astrocytes (Fig. 37) as demonstrated by their respective 

Ct values: 32.6, 34.2, 33.2 and 35.3 (Suppl. Table 3). Interestingly, we were able to 

observe a 27-fold upregulation of Casp4 (Caspase-11) gene expression after CCM-

priming in astrocytes, although the expression levels remain much lower than in LPS-

primed microglia (Ct=30.2±3.1 in primed astrocytes vs 21.1±0.2 Ct in primed-microglia; 

Fig. 37 and Suppl. Table 3).  

 

 
 

Fig. 37: Expression profile of other inflammasome-related genes in astrocytes. 

Primary astrocytes were untreated or primed with CCM (10 ng/mL IL-1β + 10 ng/mL TNFα + 20 ng/mL IFNγ, 6 h). Primary 

microglia were untreated or primed with LPS (10ng/mL, 6 h) and served as comparison. RNA were extracted and analysed 

for gene expression of Nlrp1, Nlrp2, Nlrp6, Nlrp12, Aim2, Nlrc4 and Casp4 by RT-PCR. Results were normalized to Rpl27. 

The Heat map represents these normalized expression values (-dCt). Blue represents low level of expression (-dCt = -12) 

and red represents high level of expression (-dCt = -2). Data are the mean of at least three independent experiments.  

 

In view of these results we tried to activate the AIM2 inflammasome complex as well 

as the non-canonical inflammasome pathway in astrocytes. As for LPS-primed microglia 

(Results section 1.2), we transfected CCM-primed astrocytes with the AIM2 

inflammasome activator poly (dA:dT) or with LPS. Both stimulations failed to induce the 

release of IL-1β, IL-18 and HMGB1 (data not shown). 
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Part II: The inflammasome in neurodegenerative diseases. 

 

The development of Parkinson’s disease (PD) is accompanied by chronic 

inflammation in which IL-1β plays an important role. However, a possible implication of the 

inflammasome in the pathogenesis of PD remains poorly addressed. In order to 

investigate this relation, we developed in vitro assays to study inflammasome activation in 

microglia, in response to neurodegenerative diseases-associated stimuli. In a second 

time, the in vivo significance of NLRP3 deficiency in Parkinson’s disease physiopathology 

was addressed. 

 

1. In vitro NLRP3 inflammasome activation in response to 

neurodegenerative diseases-related signals.  

 

As our previous results demonstrated the capacity of microglia to form a functional 

NLRP3 inflammasome, we aimed to explore the reactivity of this complex to three different 

types of factors that have been associated with the neurodegenerescence: the 

neurodegenerative diseases-related proteins, the purine metabolites and the pesticide 

rotenone. 

 

1.1 Differential microglial inflammasome activation in response to the 

neurodegenerative disease-related peptides A and -synuclein. 

 

Before the onset of this project, in 2011, a single report suggested that the 

stimulation of microglia with Amyloid-β (A) was able to induce an NLRP3-dependent 

release of IL-1 (Halle et al, 2008). Thus, we wanted to confirm these observations but 

also to investigate the inflammasome activation capacity of -synuclein, the principal 

constituent of the Lewy bodies. To this end, we exposed microglia to these both peptides 

and analyzed their potential to prime (signal 1) or activate NLRP3 (signal 2). 

We tested two different fragments of the amyloid-β protein: Aβ25–35 and Aβ1-42 (see 

Introduction, Part I, section 3).  

First, we study the effect of the A25-35, as it is endogenously found in elderly people 

and has been described to be a more toxic form (Millucci et al, 2009). To explore the 

priming capacity of this Aβ25–35 peptide, we activated microglia for 6 h with 50 μM of the 

peptide as well as with its reverse form (Aβ35–25, negative control) and LPS (positive 
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control). The gene expression analysis performed by RT-PCR indicated that the Aβ25–35 

was unable to prime microglia, as Nlrp3 and Il1b were not upregulated after treatment 

(Fig. 38A).  

 

 
Fig. 38: Aβ25-35 induces caspase-1 cleavage and IL-1β release in an NLRP3-dependent and P2X7R-independent way. 

(A) Microglia were stimulated with Aβ25-35 (20 or 50 μM, 5 h), Aβ35-25 (50 μM, 5 h) or LPS (10 ng/mL, 6 h). Transcripts were 

analysed for expression of Nlrp3 and Il1b by RT-PCR. Data were normalized to Rpl27. (B, C, D) Untreated or LPS-primed 

microglia were stimulated with Aβ25-35 (20 or 50 μM) or Aβ35-25 (50 μM) for 5 h. (B) Cell free culture supernatants (SN) and 

cell lysates (XT) were analysed by WB for the expression of caspase-1 and IL-1. α-Tubulin was used as a loading control. 

IL-1β production in culture supernatant was assessed by ELISA in wild-type (C), Nlrp3-/- and Casp1-/- (D), or P2rx7-/- 

microglia (E). (F) ATP release was quantified in microglial supernatant upon treatment with Aβ25-35 (50 μM, 5 h) or Aβ35-25 

(50 M, 5 h) or LPS (10 ng/mL, 6 h) performed using a luminescent assay. Data are mean  SEM of at least three 

independent experiments, except for WB (one representative experiment of at least 3 independent experiments). *p<0.05 

compared to Ctrl, p<0.05, KO compared to WT, ns= not significant. One-way ANOVA followed by Dunnet’s multiple 

comparisons test. 
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Even if the Aβ25–35 peptide was unable to act as a signal 1, it seemed to be able to act as a 

signal 2. Indeed, WB analysis revealed that, in LPS-primed microglia, Aβ25–35 was able to 

induce caspase-1 cleavage and IL-1β secretion, whereas the control peptide Aβ35–25 was 

not (Fig. 38B). The additional IL-1 quantification performed by ELISA demonstrated that 

this IL-1β release was dose-dependent since the levels increased from 132±30.5 pg/mL 

with 20 μM of Aβ25–35 to 272±85 pg/mL with 50 μM (Fig. 38C). To confirm the involvement 

of the NLRP3 inflammasome, we used this peptide and its negative reverse control on 

Nlrp3-/- and Casp1-/- microglia. We observed a strong reduction of IL-1β release in the 

supernatant of the knockout cells compared to the wild-type (95% and 77% of decrease 

respectively in Nlrp3-/- and Casp1-/-, Fig. 38D). To determine if this activation could be due 

to an indirect release of ATP, we also treated P2X7 receptor-deficient microglia. Both 

wild-type and P2rx7-/- cells secreted similar amounts of IL-1β, respectively 152±65 pg/mL 

and 214±71 pg/mL in response to 50 μM of Aβ25–35 (Fig. 38E). This latter result was 

strengthened by the absence of ATP in the supernatant of microglia treated with Aβ25–35 

(Fig. 38F). 

 

In addition to the peptide fragment A25-35, we wanted to test the capacity of the full 

length peptide Aβ1-42 to induce NLRP3 activation. This peptide is supposed to be 

physiologically more relevant as it is found in amyloid plaques of AD patients (Shahdat & 

Hashimoto, 2012). The Aβ1-42 peptide was used in its oligomeric and fibrillar forms. The 

fibrillation protocol (see Materials and Methods, section 2.3.3.) led to the formation of 

larger oligomers even if monomers were still present (Fig. 39A). Microglia exposed to 10 

μM of both oligomeric and fibrillar forms, for 6 h or 24 h, failed to significantly modulate 

Il1b and Nlrp3 gene expressions, as shown by RT-PCR analysis (Fig. 39B). This 

observation was confirmed by WB analysis, where we failed to detect pro-IL-1β after Aβ1-

42 treatment         (Fig. 39C). These experiments also demonstrated that, even after LPS-

priming step, Aβ1-42 was still failing to induce a significant IL-1β release, independently 

from its conformation or incubation times (Fig. 39C and Fig. 39D). To exclude the 

possibility that the lack of activity could be linked to the peptide manufacturer (Bachem), 

we also tested Aβ1-42 from other providers (Anaspec and Sigma) and observed similar 

results (data not shown). 
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Fig. 39: Oligomeric and fibrillar Aβ1-42 fail to activate the inflammasome in microglia. 

(A) Aβ1-42 (10 μM) was used under oligomeric form (Olig. = directly resuspended following manufacturer’s instructions) or 

under fibrillar form (Fib. = obtained by heating at 37°C during 7 days). These different Aβ1-42 conformations were analysed 

by WB. (B) Microglia were stimulated for 6 h or 24 h with both forms of Aβ1-42 (10 μM) or for 6 h with LPS (10 ng/mL). 

Transcripts were analysed for the expression of Nlrp3 and Il1b by RT-PCR. Data were normalized to Rpl27. (C, D) 

Untreated or LPS-primed microglia were stimulated for 6 h, 24 h or 48 h with both forms of Aβ1-42 (10 μM) or with ATP (1 

mM, 30 min). (C) Cell free culture supernatants (SN) and cell lysates (XT) were analysed by WB for expression IL-1. -

Tubulin was used as a loading control. (D) IL-1 production in culture supernatant was assessed by ELISA. Data are mean 

 SEM of at least three independent experiments, except for WB (one representative experiment of at least independent 

experiments). *p<0.05 compared to Ctrl. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

 

In addition to A peptide, related to AD, we had tested the ability of α-synuclein 

(α-syn), linked to PD, to trigger inflammasome activation. Some mutations in the Snca 

gene have been associated to familial forms of PD. Among them, the substitution of 

alanine to threonine at position 53 of the α-syn protein (A53T) was identified as causing a 

higher propensity to form -syn fibrils. Therefore, we tested the human native and A53T 

mutant -syn, in both oligomeric and fibrillar forms, for their ability to activate mouse 

microglial inflammasome. To obtain the fibrillar form, the peptides were incubated during 4 

days at 57°C, under shaking conditions (see Materials and Methods, section 2.3.3.). WB 

analysis revealed the monomeric and dimeric forms, represented respectively by the 

17 kDa and 37 kDa bands. Once heated, we observed additional bands at 50 kDa and 

around 150 kDa (Fig. 40A).  
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We investigated, by RT-PCR, whether α-syn could prime microglia. Indeed, the 

native human α-syn (WT α-syn) tended to increase the transcription of Nlrp3 (4-fold for 

oligomeric preparation and 2-fold for fibrillar preparation, Fig. 40B). Interestingly, the 

mutant A53T α-syn seemed to be more potent than the WT α-syn, especially in its 

oligomeric form, since we were able to observe a stronger trend toward Nlrp3 upregulation 

after the treatment (7.5-fold, Fig. 40B).  

 

 

 
Fig. 40: WT and mutant (A53T) α-synuclein fail to activate the inflammasome. 

(A) Wild-type (WT) or mutant (A53T) α-synuclein (α-syn) were used under oligomeric form (Olig. = directly resuspended in 

water) or under fibrillar form (Fib. = obtained by heating at 57°C during 4 days under shaking). These different 

conformations of α-syn were analysed by WB. (B, C) Microglia were stimulated for 6 h, 24 h or 48 h with both forms of WT 

and A53T α-syn (5 μM) or for 6 h with LPS (10 ng/mL). (B) Transcripts were analysed for the expression of Nlrp3 and Il1b by 

RT-PCR. Data were normalized to Rpl27. (C) Cell lysates (XT) were analysed by WB for pro-IL-1 and NLRP3 expression. 

-Tubulin was used as a loading control. (D) LPS-primed microglia were stimulated with both forms of WT or A53T α-syn (5 

μM, 6 h) or with ATP (1 mM, 30 min). IL-1 production in culture supernatant was assessed by ELISA. Data are mean  

SEM of at least three independent experiments, except for WB (one representative experiment of at least 3 independent 

experiments). *p<0.05 compared to Ctrl. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 
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Even if these effects on transcripts were non-significant and remained largely below the 

effect of LPS, we were able to confirm such an upregulation by a WB analysis. Figure 40C 

shows that pro-IL-1β and NLRP3 protein were overexpressed after treatment with either 

human WT or A53T oligomeric α-syn (Fig. 40C). To study if both form could be able to 

activate the inflammasome, we used them on LPS-primed microglia. While ATP induced a 

strong release of IL-1β detected by ELISA, we could not observe IL-1β in the supernatant 

of cells treated with the different α-syn forms (Fig. 40D). 

 

1.2 ADP and adenosine are able to prime the NLRP3 inflammasome in 

microglia. 

 

During neurodegenerative diseases, dying neurons are thought to release ATP 

which might locally reach high concentrations in the brain parenchyma. It is already known 

that ATP is an efficient NLRP3 inflammasome activator, but much less is known about the 

potential of its metabolites, ADP and adenosine. Therefore, we decided to analyse their 

capacity to prime or activate the microglial NLRP3 inflammasome.  

First, we activated microglia with 1 mM of adenosine, ADP or ATP for 3 h and 

analysed changes in gene expression by RT-PCR. Surprisingly, ADP, and to a lower 

extent adenosine, significantly upregulated Nlrp3 and Il1b gene expressions, while ATP 

did not (Fig. 41A). The priming effect of ADP and adenosine also influenced other pro-

inflammatory factors, such as Cxcl10, Il6 or Tnf (Suppl. Fig. 5). 

To investigate whether ADP or adenosine would be able to activate NLRP3, we 

stimulated LPS-primed microglia with both compounds and quantified the IL-1β levels 

secreted in the supernatant. Interestingly, our ELISA analysis revealed that adenosine did 

not trigger any IL-1β release (Fig. 41B), whereas ADP led to a dose-dependent IL-1β 

secretion (Fig. 41C). Moreover, the quantified levels were similar to those observed after 

ATP exposure (Fig. 41C). To confirm that the ADP-induced IL-1β release did not rely on 

the ATP receptor P2X7, we performed the activation on P2rx7-/- cells. Surprisingly, we 

failed to detect IL-1β release in P2X7R-deficient cells (Fig. 41D). As ADP is not supposed 

to bind to this receptor, we decided to test whether ATP could be present in commercial 

ADP batches. These quantifications, based on a luminescent assay, revealed that they 

were indeed contaminated by 20% of ATP (Fig. 41E). 
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Fig. 41: ADP upregulates Il1b and Nlrp3 genes and triggers IL-1β release via the P2X7R in microglia. 

(A) Microglia were stimulated for 3 h with adenosine (Ad., 1 mM), ADP (1 mM), ATP (1 mM) or LPS (10 ng/mL). Transcripts 

were analysed for expression of Nlrp3 and Il1b by RT-PCR. Data were normalized to Rpl27. (B, C, D) LPS-primed microglia 

were stimulated for 30 min with adenosine (1mM), ADP (0.5 mM, 1 mM, or 5 mM) or ADP (1mM). IL-1 production was 

assessed by ELISA in culture supernatant of wild-type (WT) (B and C) or P2rx7-/- (D) microglia. (E) ATP concentration in 

ADP and ATP samples was quantified using a luminescent assay. Data are mean  SEM of at least three independent 

experiments. *p<0.05 compared to Ctrl, p<0.05, KO compared to WT. Kruskal-Wallis test followed by Dunn’s multiple 

comparisons test. 

 

1.3 IL-1β release triggered by rotenone is NLRP3 

inflammasome-dependent but ROS- and ATP-independent. 

 

Inflammasome and neurodegenerative diseases are both related to mitochondrial 

dysfunction. To study the implication of mitochondrial dysfunction in microglial 

inflammasome activity, we used rotenone, a specific mitochondrial complex I inhibitor. 

This product is also described as a causative agent of Parkinson’s disease. 

LPS-primed microglia were stimulated with different concentrations of rotenone 

(from 10 nM to 5 μM) for different incubation times (from 15 to 90 min). As shown in figure 

42A, rotenone exposure induced a significant release of IL-1 after 90 min (100±46, 

150±72 and 157±66 pg/mL after respectively 0.1, 1 and 5 μM of rotenone). This IL-1 

secretion occurred in an NLRP3 inflammasome-dependent way, as its secretion was 

strongly decreased in supernatants of NLRP3-deficient microglia as compared to wild-type 

(respectively               4.3±1.3 pg/mL vs 161±57 pg/mL, Fig. 42B). In addition, we 

observed an impressive disruption of the IL-1 release from 466±144 pg/mL to 34±9 

pg/mL when the cells were activated in presence of the caspase-1 inhibitor z-YVAD-FMK 
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(Fig. 42C). Then, we analysed the implication of ROS in the rotenone-triggered 

inflammasome activation. For this purpose, the antioxidant molecule NAC was used. 

Surprisingly, the secretion of IL-1 was not affected by this compound (Fig. 42D). In 

addition, we observed that rotenone did not induce ATP release in microglia, indicating 

that it acted in an ATP-independent way (Fig. 42E). 

 

 
 

Fig. 42: IL-1 secretion is triggered by rotenone via the NLRP3 inflammasome activation. 

(A) LPS-primed microglia were stimulated with rotenone (Rot) at different concentrations (from 10 nM to 5 μM) and different 

time points (between 15 to 90 min). Supernatants were analysed for IL-1β secretion by ELISA. (B, C, D) LPS-primed 

microglia were stimulated for 90 min with rotenone (1 mM). Secretion of IL-1β was quantified by ELISA in supernatant of 

wild-type (WT) and Nlrp3-/- microglia (B) or in presence of inhibitors, i.e. z-YVAD-FMK (20 nM, added 15 min before LPS) 

(C), N-Acetyl Cysteine (NAC, 5 mM, 2 h) (D). (F) ATP release was quantified in cell supernatant using a luminescent assay 

and upon treatment with LPS (10 ng/mL, 6 h), rotenone (1 mM, 90 min), or ATP (1 mM, 30 min). Data are mean ± SEM of at 

least three independent experiments, *=p<0.05 compared to Ctrl, #=p<0.05 KO compared to WT. Kruskal-Wallis test 

followed by Dunn’s multiple comparisons test. 

 

2. Preliminary results: Effect of NLRP3 deficiency in an in vivo model of 

Parkinson’s disease. 

 

In addition to in vitro studies, we decided to investigate the role of the NLRP3 

inflammasome in an in vivo model of Parkinson’s disease. For this purpose, we chose to 

study the effect of the NLRP3 deficiency on the neurodegenerative processes occurring in 

a mouse intra-striatal 6-OHDA injection model. 
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Most of this in vivo project was performed by Dr. Eric Koncina. I expanded the 

NLRP3 knockout mice colony, performed the genotyping and generated the first cohort of 

NLRP3-deficient KO mice.  

The striata of the Nlrp3-/- mice and age-matched wild-type mice, were injected with 

4 µg 6-OHDA or with the vehicle. Fourteen days after the injection, the mice were 

euthanized and the neurodegeneration, as well as the extent of microgliosis, were 

evaluated by immunostaining. To detect the presence of dopaminergic neurons, we used 

an antibody against Tyrosine hydroxylase (TH) whereas microgliosis was highlighted by 

the expression of CD68. We analysed these markers in two related anatomical structures: 

the substantia nigra pars compacta (SNpc, in midbrain), containing the dopaminergic 

neuron cell bodies, and the striatum, which is the target of their axonal projections. The 

summary of the results obtained are reported in the figure 43.  

 

 
 

Fig. 43: 6-OHDA triggers similar neurodegenerescence and microgliosis in wild-type and in Nlrp3-/- mice. 

Results obtained by Dr. Eric Koncina. 4 μg of 6-OHDA or vehicle was injected into the mouse striatum (at stereotaxic 

coordinates: AP: +0.5 mm, ML: +2.3 mm, DV: +3.2mm) of wild-type (+/+) and Nlrp3-/- (-/-) mice. Fourteen days after the 

injection, mice were sacrificed and brain collected. TH (Tyrosine hydroxylase) and CD68 staining were performed (A)  on 

sagittal striatum sections, at 4 medio-lateral levels (3, 2.7, 2.4 and 2.1 mm from midline) and (B) on sagittal midbrain 

sections, at 5 medio-lateral levels (1.8, 1.64, 1.48, 1.32, 1.16 mm from midline) for both uninjected or injected hemispheres. 

The quantification of the TH and CD68 stained surface is represented by the sum of the 4 values for the striatum or the 5 

values for the midbrain. n = 13 per group (WT and KO) *** = p<0.001 compared to left. Two-way ANOVA. 

As expected, we can observe that in wild-type mice the TH staining was strongly reduced 

in the striatum of the injected hemisphere compared to the contralateral one (Fig. 43A). 

However, there was no significant difference in the degeneration between wild-type and 
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Nlrp3-/- mice (Fig. 43A). Similarly, we observed a significant TH+ neuron degeneration in 

the substantia nigra (Fig. 43B), but this neuronal cell loss was equivalent in wild-type and 

NLRP3-deficient mice (Fig. 43B). Microgliosis, which was characterized by the expression 

of CD68, appeared significantly upregulated in the injured substantia nigra but again 

regardless of the genotype of the mice (Fig. 43B). 

The precise kinetic of the ongoing neuroinflammation in the 6-OHDA model is not 

very well defined. This is why we decided to characterize the time window in which 

selected pro-inflammatory markers, including IL-1β, are expressed in this model. To this 

purpose, we performed a kinetic transcript analysis of the pro-inflammatory factors 

expressed in response to 6-OHDA. 

First, we have validated our dissection protocol of collecting samples from the 

mouse striatum and the substantia nigra. Figure 44 shows the expression profile of genes 

relevant to dopamine neurons: Slc6a3 (DAT, (Dopamine Active Transporter), Th and 

Slc18a2 (VMAT2, Vesicular Monoamine Transporter 2) in three collected structures: the 

cortex (Cx), the striatum (St) and the midbrain (Mb). As expected, we observed that these 

genes linked to dopamine neurons were mostly expressed in the midbrain (Fig. 44).  

 

 
 

Fig. 44: Validation of the striatum and midbrain dissection protocol. 

RNA were extracted from biopsies of the cortex (Cx), the striatum (St) and the midbrain (Mb) collected from wild-type mice. 

RT-PCR was performed to analyse the gene expression of Slc6a3, Th and Slc18a2 respectively coding for DAT, TH and 

VMAT2. The expression ratio of these genes was calculated on the Cx. Data are mean  SEM of six independent 

experiments. *p<0.05 compared to the Cx. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 

 

Once our dissection protocol was validated, we administered the vehicle or 6-OHDA 

into wild-type mice by stereotaxic injection (Fig. 45A). The mice were euthanized after 3, 7 

or 14 days. The striatum and midbrain from both hemispheres (ipsi- and contralateral) 

were collected for RNA extraction. In addition, after 14 days, we isolated the brain from a 

mouse of each group (Vehicle or 6-OHDA) in order to check, by immunohistochemistry, 

whether the neurodegeneration was effective in this experiment. 
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The transcripts collected from the striatum were analysed by RT-PCR to investigate 

the expression of pro-inflammatory genes. For each animal, we calculated the ratio of the 

gene expression in the ipsilateral sample compared to the gene expression in the 

contralateral sample of the same animal. The results showed a modest, non-significant, 

trend in upregulation (around 2-fold) of the pro-inflammatory genes Cxcl10, Tnf and Il1b in 

the injected hemispheres, 3 or 7 days after the injection. (Fig. 45B). However, we were not 

able to detect a difference between the vehicle and 6-OHDA injected animals. The Aif1 

and Gfap genes also showed a weak and non-significant increase (around 1.8-fold) in 

expression after 3 days, which might indicate, respectively, the microgliosis and 

astrogliosis (Fig. 45B). As we were unable to observe a significant change in expression, 

we performed an immunohistochemistry staining on the dedicated brains (Fig. 45A). We 

were able to observe an intense upregulation of the GFAP, Iba1 and CD68 staining in the 

ipsilateral side of injected brains compared to the contralateral one (Fig. 45C). In addition, 

the TH staining in the striatum and substantia nigra were decreased in the 6-OHDA 

injected slices, confirming the efficacy of our injection (Fig. 45D). 
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Fig. 45: Pro-inflammatory genes are modestly upregulated in the striatum of mice injected with vehicle or 6-OHDA. 

(A) Plan of the kinetic transcript analysis performed (B, C, D) Striatum of wild-type mice were injected with 4 µg 6-OHDA or 

with vehicle. Mice were euthanized after 3, 7 or 14 days. (B) RT-PCR analysis of mRNA levels for Cxcl10, Tnf, Il1b, Aif1, 

Gfap and Th in striatum samples was performed. Three to five mice were analysed for each time point and for each 

experimental group. Data are expressed as ratio of the relative expression to Rpl27 in ipsilateral site versus contralateral 

site from individual animal. Data are mean ± SEM. (C) Representative immunofluorescent histochemical staining for CD68 

(white), Iba1 (yellow) and GFAP (green) in ipsilateral and contralateral striatum. (D) Representative immunofluorescent 

histochemical staining for TH (Tyrosine hydroxylase, green) in the striatum and midbrain of 6-OHDA injected mice.  
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1. Characterization of inflammasome expression and activation in brain 

cells. 

 

The inflammasome is a multiprotein complex which, once activated, results in the 

activation of caspase-1 and in the subsequent maturation and secretion of active IL-1. 

IL-1 release has been linked to neuroinflammatory conditions and neurodegenerative 

diseases for a long time with both beneficial and detrimental effects described (Allan et al, 

2005). However the potential role of the inflammasome in the local production of IL-1β in 

the brain is not very well understood. Recently, several reports started to investigate 

inflammasome activation in neuroinflammatory and neurodegenerative conditions but 

many fundamental questions remain. We therefore wanted to characterize in more detail 

the in vitro capacities of microglia and astrocytes to express and activate the 

inflammasome.  

 

Inflammasome in microglia 

 

Although microglia resemble hematopoietic macrophages both in phenotype and 

function, it has recently been discovered that they originate from a different progenitor 

(Ginhoux et al, 2010; Schulz et al, 2012; Lourbopoulos et al, 2015). Furthermore, 

microglia, which are isolated from the periphery by the BBB, exhibit differences with 

circulating immune cells (Schulz et al, 2012; Ginhoux et al, 2013). Thus, the investigations 

of inflammasome expression and activation in microglia have to be directly addressed in 

these cells rather than being extrapolated from the existing inflammasome knowledge in 

macrophages. 

For this purpose, we have decided to perform our in vitro experiments on primary 

microglial cells, since our preliminary data showed that these cells exhibit a better 

response to the inflammasome activation compared to microglial cells lines. It is also well 

admitted and described that primary cells better reflect the physiology of in situ microglia.  

Our results showed that primary microglia express the NLRP3 inflammasome core 

components (NLRP3, ASC and Caspase-1) as well as other inflammasome genes, such 

as Nlrp1, Nlrp6, Aim2, Nlrc4 or Casp4 (Casp11). These findings are in accordance with 

other reports suggesting that microglia could form NLRC4 and NLRP3 inflammasome 

complexes (Walsh et al, 2014). In this work, we have mainly focused our attention on the 

NLRP3 inflammasome, since this specific complex assembles in response to DAMPs, 

such as ATP or misfolded proteins, which are strongly linked to neurodegenerative 

diseases. 
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First, we aimed to study if microglia respond to NLRP3 inflammasome activation in 

the same manner than macrophages, in terms of caspase-1 activation and cytokines 

secretion. Our findings indicated that the stimulation of LPS-primed microglia with the 

classical NLRP3 activators ATP, Nigericin and Alum led to the inflammasome complex 

assembly and to subsequent cleavage of caspase-1. We also showed that this caspase-1 

activation triggered the maturation and release of IL-1, IL-18, IL-1 and HMGB1 by 

microglia. Moreover, our observations of the activation of caspase-1, associated with an 

important release of LDH, might indicate that microglia undergo pyroptotic cell death 

following inflammasome activation (Rayamajhi et al, 2013). 

In this work, we have used NLRP3- and Caspase-1 knockout mice to show the 

requirement of the NLRP3 inflammasome in these processes. Our results are in line with 

different reports showing that microglia possess the capacity to release IL-1 in an 

NLRP3- and Caspase-1-dependent way (Halle et al, 2008; Hafner-Bratkovič et al, 2012; 

Kaushik et al, 2012). However, the release of IL-18, IL-1α and HMGB1 by microglia after 

inflammasome activation is less described.  

A previous publication showed that the microglial secretion of IL-18 in response to 

stimulation with S.aureus was NLRP3- and ASC-independent (Hanamsagar et al, 2011). 

Interestingly, we were able to show that in response to ATP, Nigericin or Alum treatment, 

the microglial secretion of IL-18 is, on the contrary, NLRP3 inflammasome-dependent. 

These divergent findings clearly open interesting questions concerning a possible 

differential production of IL-18 by microglia depending on the activation stimuli.  

Our experiments also demonstrated that microglial inflammasome activation by ATP 

and Nigericin led to the release of IL-1 and HMGB1 and that this event was abrogated in 

NLRP3 and Caspase-1 knockout cells. It has been already demonstrated that 

macrophages can release IL-1α and HMGB1 after LPS+ATP or LPS+Nigericin treatment 

(Lamkanfi et al, 2010; Gross et al, 2012). However, our study is, to our knowledge, the 

first one which is addressing the involvement of NLRP3 inflammasome in the release of 

these alarmins in microglia. Furthermore, we showed that the caspase-1 protease activity 

was not required for the ATP- and Nigericin-mediated release of HMGB1 and IL-1α in 

microglia. These findings are also in line with previous results obtained from cultured 

macrophages (Gross et al, 2012).  

 

Little is known about the signalling pathways required to trigger the inflammasome 

activation in the CNS (de Rivero Vaccari et al, 2014). First, it is unclear whether the 

two-step model of NLRP3 activation described in macrophages is operational in glial cells. 

Our results showed that microglia required a priming signal (LPS in our experiments) 
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before the exposure to an NLRP3 activator (here, ATP, Nigericin or Alum) in order to 

secrete IL-1. Human monocytes for instance behave differently, as IL-1 can be released 

after a single stimulation with bacterial products alone (Rubartelli et al, 2011). Intriguingly, 

Burguillos and colleagues have shown in 2011 that, unlike in macrophages, the LPS 

priming of mouse microglia might require caspase 8 activation (Burguillos et al, 2011). 

Remarkably, despite several attempts, we were unable to detect the caspase-8 activity in 

microglia after LPS stimulation alone (data not shown). 

After considering the requirement of such a signal 1 to prime the microglial 

inflammasome, we focused our study on the cellular cascades responsible for the specific 

activation of NLRP3. Our investigations showed that the main mechanisms described in 

macrophages — including ROS production, K+ efflux and endosomal rupture — also 

applied to NLRP3 activation within microglia, as supported by previous reports (Halle et al, 

2008; Hoegen et al, 2011; Kaushik et al, 2012).  

First, we were able to highlight the implication of the potassium efflux in the 

activation of NLRP3. Indeed, we observed that blocking this efflux, by adding KCl to the 

extracellular medium, strongly reduced IL-1 secretion by microglia. These results are in 

line with two reports showing a decrease of bacteria- and virus-triggered IL-1 secretion 

when microglia are cultured in high potassium conditions (Hoegen et al, 2011; Kaushik et 

al, 2012). However, these studies did not investigate the effect of KCl on the priming step 

of the inflammasome activation. Interestingly, we observed that blocking potassium efflux 

was linked to a strong decrease in NLRP3 and pro-IL-1 expression. Therefore, we 

suggest that K+ efflux is well implicated in the NLRP3-dependent IL-1β secretion in 

microglia by playing, at least, upstream of the NLRP3 activation. Our observation is in 

opposition with a previous study using macrophages as the authors did not observe a 

modification of pro-IL-1 in KCl-enriched conditions (Pétrilli et al, 2007). These discrepant 

results between microglia and macrophages suggest a possible differential regulation 

level of potassium efflux in inflammasome activation in both cell types.  

In addition, we showed that, with all the NLRP3 activators we tested, the presence 

of an antioxidant reduced the IL-1β secretion, suggesting a role for ROS in microglial 

inflammasome activation. It has been hypothesized that ROS inhibition does not directly 

affect the activation of the NLRP3 inflammasome. Instead, it might negatively regulate the 

priming step of NLRP3 inflammasome activation (Bauernfeind et al, 2011). However, in 

our experiments, the modulatory effect of the antioxidant NAC was independent of the 

priming as the exposure to it did not influence the expression of Nlrp3 and Il1b genes. 

While we cannot exclude that this difference might be linked to the use of different 

antioxidants i.e. DPI in the study of Bauernfeind and colleagues vs NAC in ours, we 
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strongly believe that the redox state of microglia could affect the NLRP3 activity in 

microglia, independently of the priming. Indeed, it is noteworthy that these authors applied 

the antioxidant before the LPS treatment while we used NAC after the priming step.  

Finally, we demonstrated that the Alum-induced IL-1β release relied on cathepsin B 

and phagocytosis. A similar mechanism has been demonstrated for Aβ (Halle et al, 2008). 

However, blocking phagocytosis and cathepsin B activity failed to abrogate the release of 

IL-1 triggered by ATP or Nigericin. Thus, our observations suggest that lysosomal 

damage might only be implicated in the particle-mediated NLRP3 activation in microglia, 

as described in peripheral myeloid cells (Hornung et al, 2008). 

Taken together, our results on primary microglia indicate that they are able to form a 

functional NLRP3 inflammasome, through mechanisms close to those described in 

macrophages. In addition, we demonstrate that this inflammasome is responsible for the 

secretion of IL-1β, IL-1α, IL-18 and HMGB1.  

 

 

In addition to the most studied NLRP3 inflammasome, other inflammasome 

complexes have been characterized. However, their contribution to the cerebral 

production of IL-1 has not been extensively addressed. Our transcript analysis showed 

that microglia express all core components of the AIM2 and NLRC4 inflammasome. 

Therefore, we started to investigate the microglial capacity to form these two complexes. 

In line with the hypothesis that these inflammasomes might be active in microglia, we 

showed that microglia release IL-1 following poly(dA:dT) or Flagellin that respectively 

activate the AIM2 and NLRC4 inflammasome in macrophages. As expected, this IL-1 

secretion occurred independently of NLRP3. While a single publication already 

demonstrated that microglia could assemble the NLRC4 inflammasome (Jamilloux et al, 

2013), the formation of the AIM2 inflammasome in CNS cells has until now only been 

described in neurons (Adamczak et al, 2014). Our findings also suggest that, in addition to 

the AIM2 and NLRC4 complexes, the non-canonical inflammasome pathway could be 

effective in microglia. Indeed, our results showed that LPS transfection triggered the 

secretion of IL-1 and initiated the release of LDH, a possible sign of pyroptosis. However, 

we need to clarify different points by additional experiments, and in particular: (i) confirm 

that our transfection protocol is efficient (ii) determine if the transfection is required (as the 

high LPS concentration was, in our conditions, sufficient to induce IL-1) (iii) decipher the 

precise implication and interaction of caspase-1 and caspase-11 in microglia. 
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We are aware that our actual results on the functionality of AIM2, NLRC4 or the non-

canonical inflammasome in microglia require further evidences and verifications to clarify 

if murine microglia could form other inflammasome complexes than NLRP3. 

 

In summary, our results showed that the inflammasome is an important player of the 

inflammation triggered by primary murine microglia. However, we have to keep in mind 

that cultured microglia do not faithfully reflect the in situ properties of microglia in a 

normal, nonpathological brain (Kettenmann et al, 2011). Moreover, a recent study also 

underlines the fact that adult microglia significantly differ from neonatal microglia, that we 

used (Butovsky et al, 2014). 

 

Inflammasome in astrocytes  

 

Current evidence has shown astrocytes as important actors in neuroinflammation. 

During CNS injury, astrocytes become reactive, migrate to the damaged site, release 

numerous pro-inflammatory factors and form the glial scar (Pekny & Pekna, 2014). 

Despite their implication in immune response, only few studies have tried to characterize 

the inflammasomes in astrocytes.  

Before analysing the inflammasome expression in astrocytes, we emphasized the 

importance of the purity of astrocyte cultures. Indeed, studying the pro-inflammatory role 

of astrocytes required some precautions. In the last few years, we and others have 

noticed that, even small amounts of highly reactive microglia could interfere with the 

astrocytic response and mitigate the experimental readout (Saura, 2007; Losciuto et al, 

2012). This could even result in an erroneous attribution of inflammatory capacities to 

astrocytes in place of microglia. To avoid such misleading conclusions, we purified our 

astrocyte cultures by two successive passages on MACS columns, in order to deplete as 

many microglia as possible. This protocol of purification has been validated and published 

by our group (Losciuto et al, 2012, included in Appendixes). 

 

In the literature, numerous publications described the expression and release of 

IL-1 by astrocytes following diverse stimuli and in particular the exposure to LPS (e.g. 

Fontana et al. 1983; Lau and Yu 2001; Ma et al. 2013). We failed, however, to detect any 

Il1b mRNA or pro-IL-1 in astrocyte-enriched cultures, although we tested several 

potential inducers, such as LPS, P3C or CCM, as well as longer exposure times. The lack 

of Il1b expression was also supported by our experiments on neurosphere-derived 

astrocytes, a model of astrocyte culture devoid of microglia. Moreover, our results are in 
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line with the recent findings of Facci and colleagues using the lysosomotropic agent L-

leucyl-L-leucine methyl ester (Leu-Leu-OMe) to eradicate residual microglia from 

astrocyte cultures (Facci et al, 2014). In this study, classical astrocyte cultures released 

IL-1 into the medium while microglia-depleted cultures did not. By taking all these 

considerations together, we believe that many reports of IL-1 production by astrocytes 

could be due to microglial contaminations and that there is still no convincing evidence for 

IL-1 expression in astrocytes.  

Even if pure astrocytes might not be able to express IL-1, they nevertheless 

constitutively expressed IL-18 and HMGB1. As both need a functional inflammasome to 

be matured and/or released, we investigated the expression of NLRP3 inflammasome 

components by astrocytes. Despite the constitutive presence of caspase-1, we observed 

very weak levels of NLRP3 and ASC transcripts and almost no NLRP3 and ASC proteins, 

with or without priming. On the contrary, we were able to detect Aim2 and Nlrp6 

expression in astrocytes. However, the stimulation of astrocytes with poly(dA:dT), an 

efficient AIM2 activator did not result in detectable IL-18 production by astrocytes. As the 

AIM2 inflammasome is dependent on ASC, the lack of ASC expression in murine 

astrocytes could explain this observation. 

Together, these considerations suggest that the capacity of mouse astrocytes to 

form a functional inflammasome might be compromised. However, some hints suggest 

that, in opposition to the mouse cells, human astrocytes could present a different profile of 

inflammasome components expression. Indeed, some reports described the expression of 

NLRP3, ASC or IL-1 in human astrocytes (Zou & Crews, 2012; Kawana et al, 2013; 

Kaushal et al, 2015). Moreover, a publication described a functional NLRP2 

inflammasome in human astrocytes (Minkiewicz et al, 2013). In mice, NLRP2 expression 

seems to be restricted to ovaries playing a role in early embryonic development as a 

maternal effect gene (Peng et al, 2012). Accordingly, we did not detect NLRP2 expression 

in our mouse astrocytes. Together, these observations suggest species-specific 

differences in inflammasome components expression in astrocytes. 

 

Astrocytes and microglia represent key actors of the neuroinflammatory response. In 

case of brain injury, microglia are able to trigger an appropriate response involving 

secretion of cytokines and chemokines, resulting in the activation of astrocytes. Our 

results suggest that mouse microglia express a functional inflammasome contrarily to 

astrocytes and are thus the main glial cell type in the brain responsible for IL-1 and IL-18 

secretion. However, we have to keep in mind that, even if astrocytes might not be able to 

express or release IL-1 and IL-18, they are a target of both cytokines. As such, they 
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certainly are an important element in the study of neuroinflammation triggered by the 

inflammasome. Therefore, it is crucial to analyse the crosstalk between microglia and 

astrocytes to fully appreciate the importance of the inflammasome function in the brain 

and the potential therapeutic applications in neurodegenerative diseases.  



DISCUSSION 

 
 106 

2. NLRP3 inflammasome in neurodegenerative diseases. 

 

Activators of microglial NLRP3 inflammasome in neurodegenerative context 

 

The relationship between the NLRP3 inflammasome and CNS diseases has 

emerged only recently. Several studies suggested that the NLRP3 inflammasome might 

be involved in acute brain infections, multiple sclerosis or in neurodegenerative diseases 

(Walsh et al, 2014). So far, the molecular and cellular events responsible for the activation 

of NLRP3 in these pathological conditions have been poorly investigated. Our purpose is 

to investigate and discuss the events that might facilitate an effective inflammasome 

activation during neurodegenerative pathologies, with a special regard to Parkinson’s 

disease. To this aim, we have explored the role of neurological disease-relevant 

molecules in the NLRP3 inflammasome activation, such as neurodegenerative disease-

associated misfolded proteins, ATP and its metabolites or mitochondrial inhibitors. 

 

Inflammasome function has been linked to a number of diseases that are 

characterized by peptide aggregates or particulate structures, such as uric acid crystals in 

gout or islet amyloid polypeptide in type 2 diabetes (Masters et al, 2010; Robbins et al, 

2014). The accumulation of protein aggregates is a hallmark of many neurodegenerative 

diseases such as -synuclein in PD, A in AD or prion proteins in prion disease. Recent 

studies showed that prion protein fibrils are able to induce inflammasome-dependent IL-1 

secretion in microglia (Hafner-Bratkovič et al, 2012; Shi et al, 2012). Besides, several 

other reports demonstrated the capacity of different conformations of the A peptide to 

trigger an inflammasome-dependent IL-1 secretion in macrophages and microglia (Halle 

et al, 2008; Parajuli et al, 2013; Wu et al, 2013b). In addition to these in vitro experiments, 

the in vivo relevance of the NLRP3 inflammasome in Alzheimer's disease has recently 

been demonstrated in the APP/PS1 mouse model where NLRP3-deficient mice show less 

severe symptoms (Heneka et al, 2013). 

 

At the beginning of our project, in 2011, only one report addressed the possibility 

that A could induce IL-1 secretion. Therefore, we aimed to confirm the activation of 

microglial NLRP3 by A. To this purpose, we have used two different A peptides: the 

shorter peptide A25-35 and the full-length A1-42. A25-35 is endogenously found in elderly 

people and has been described to be a more toxic form (Millucci et al, 2009). Moreover, 

the neurodegenerative properties of this peptide have been demonstrated in vitro (Pike et 
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al, 1993) and are supported by in vivo experiments demonstrating that the direct cerebral 

infusion of A25-35 impairs memory (Tohda et al, 2003; Yamada et al, 2005).  

We were able to show that A25-35 could indeed activate the NLRP3 inflammasome 

in microglia, consistently to a previous report (Sanz et al, 2009). However, we observed 

that, in our conditions, IL-1 secretion occurred in a P2X7R-independent way, while Sanz 

and colleagues showed that the expression of P2X7 receptor seemed required for the 

release of IL-1. 

While the A25-35 peptide has been extensively used in previous in-vitro studies, we 

wanted to test the physiologically more relevant full length peptide A1-42 for its capacity to 

induce NLRP3 activation. Surprisingly, we were unsuccessful in triggering inflammasome 

activation by A1-42, contrarily to published studies (Halle et al, 2008; Parajuli et al, 2013; 

Wu et al, 2013b). We tested the oligomeric and fibrillar forms from different providers and 

tried multiple protocols but remained unable to detect IL-1 production in primary 

microglia. We believe it is likely that the preparation of A may be a crucial step and 

explain these discrepancies. It is well admitted that the conformation of A1-42 peptide 

might be of great importance for immune activation, at least in vitro. For example, it has 

been described that A1-42 oligomers induce much greater microglial activation than 

insoluble fibrils (Sondag et al, 2009; Heurtaux et al, 2010; Paranjape et al, 2012). The 

importance of the conformation is sustained by the divergent results that we obtained with 

the A1-42 and A25-35 as the latter peptide is described as being more toxic and less prone 

to aggregation. Moreover, we have to consider that the A peptide changes easily its 

conformation depending on various factors including the concentration, pH or solvent 

(Shahdat & Hashimoto, 2012). In line with these concerns, it is possible that our A 

preparations contain less pro-inflammatory species than A preparations used in 

published reports. This underlines the importance for us and the other authors to clearly 

characterize the different conformations of A that they used. 

 

-synuclein (-syn), the main component of Lewy Bodies in PD, can form fibrils with 

a cross–β-sheet structure. Therefore, we tested the capacity of oligomeric and fibrillar 

-syn to activate the NLRP3 inflammasome in microglia. For this purpose, we used 

human native -syn but also the human A53T mutant form, which occurs in familial forms 

of PD. -syn treatment did not result in mature IL-1 secretion in our hands, although we 

tested different kinetics and concentrations of both forms. Recently, other reports 

described the ability of -syn to trigger the inflammasome in human monocytes and THP1 

cells (Codolo et al, 2013; Freeman et al, 2013). Again, as for A, these discrepancies 

might be explained by a difference in aggregation forms. In addition, these studies were 
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based on human monocyte cell models and it has precisely been described that the 

NLRP3 inflammasome activation occurs through different mechanisms in mouse 

macrophages and human monocytes (Netea et al, 2014; Rubartelli, 2014). Even though 

we failed to characterize -syn as a direct NLRP3 activator, it might still indirectly 

contribute to the activation of the inflammasome. Indeed, in the literature, numerous 

publications described -syn as an important pro-inflammatory agent responsible for 

microglial activation (Béraud et al, 2013). This is also in accordance with our own 

observations where the human WT and A53T forms, in particular the oligomeric ones, 

upregulate the expression of IL-1 and NLRP3 at both transcript and protein levels. Thus, 

our results suggest that α-synuclein could at least participate in the priming step required 

for the NLRP3 inflammasome activation. 

 

In view to the above discussed results, we hypothesized that microglial 

inflammasome might be preferentially activated in response to neuronal death and 

associated ATP release rather than by the presence of peptide aggregates during the 

course of neurodegenerative diseases. It has been reported that the intracellular ATP 

concentration varies between 1 and 10 mM depending on the cell type (Orriss et al, 2009), 

whereas the extracellular concentration is in the nanomolar range. However, after CNS 

injury the extracellular ATP concentration may reach 1 mM at the injury site (Pellegatti et 

al, 2005; Yin et al, 2007; Orriss et al, 2009). We and others have described that such an 

ATP concentrations are able to activate NLRP3 in cultured microglia (Halle et al, 2008; 

Hanamsagar et al, 2011; Hoegen et al, 2011; Facci et al, 2014). In this work, we wanted 

to perform a more extensive study and investigate the role of ATP metabolites during 

microglial activation. Indeed, in the brain, the released ATP can be rapidly hydrolysed 

(within 200 milliseconds) in a stepwise manner to ADP, AMP (Adenosine monophosphate) 

and adenosine by ecto-enzymes (Antonioli et al, 2013). Therefore, ADP and adenosine 

might be transiently present at high concentrations during neurodegeneration and could 

specifically interact with cells via their respective receptors, notably the P2 receptors, 

which are massively expressed by microglia (Koizumi et al, 2013). 

Our results suggest that ADP and adenosine could participate in the establishment 

of neuroinflammation. Indeed, they induced the overexpression and secretion of different 

pro-inflammatory factors (i.e. CXCL10, TNF, IL-6). Most interestingly, adenosine and 

ADP were able to prime microglia for a subsequent NLRP3 activation. Indeed, our 

experiments showed that microglia upregulate the expression of Nlrp3 and Il1b genes 

following the exposure to adenosine or ADP. If the priming ability of adenosine has been 

recently published using THP1 cells (Baron et al. 2015), the pro-inflammatory effect of 
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ADP has, to our knowledge, not been described. 

In 2013, a paper written by Gombault et al. proposed that multiple purinergic 

signalling pathways triggered by ATP, ADP and adenosine could be involved in the 

regulation of the NLRP3 inflammasome (Gombault 2013). Therefore, we wanted to test 

whether ADP or adenosine could activate the NLRP3 inflammasome in LPS-primed 

microglia. We failed to observe any IL-1 secretion even after stimulation with 1mM 

adenosine. These results confirmed a recent publication demonstrating that only 

millimolar concentrations of adenosine (> 3 mM) activate the NLRP3 inflammasome 

(Baron et al, 2015). On another hand, we were surprised to detect a strong ADP-induced 

IL-1 release, similar to the one observed after ATP treatment in LPS-primed microglia. 

Moreover, this ADP-triggered IL-1β release was abrogated in P2X7 receptor-deficient 

microglia. As ADP is not described as a ligand of P2X7 receptor, we suspected our 

commercial ADP sources of being contaminated by ATP. Indeed, the quantification of 

ATP levels in the ADP commercial batch (Sigma) clearly indicated the presence of 20% 

ATP. We ordered and tested ADP batches from alternative providers (Enzo Life Sciences 

and Jena Bioscience) which were contaminated too. Therefore, we cannot confirm or 

deny that ADP could be an NLRP3 activator, although this could provide new molecular 

insights on the mechanisms of inflammasome regulation during neurodegenerative 

processes. 

 

The pesticide rotenone is known to be a causative agent of Parkinson’s disease 

(Tanner et al, 2011). This compound act as a specific mitochondrial complex I inhibitor 

which enhances mitochondrial ROS production. Interestingly, mitochondrial defects and 

ROS generation have both been linked to neurodegenerative diseases (Hussain Bhat et 

al, 2015) but also to inflammasome signalling (Harijith et al, 2014). Therefore, we decided 

to study if rotenone could be a possible microglial NLRP3 activator. In the literature, 

rotenone has been described as a putative inducer of NLRP3 activation and IL-1β release 

in macrophages (Nakahira et al, 2011; Zhou et al, 2011). Accordingly, microglia exposed 

to rotenone released IL-1 in an NLRP3 inflammasome-dependent manner. Our 

observation confirmed a recent report demonstrating that BV2 cells respond to rotenone 

by activating caspase-1 and releasing IL-1β (Liang et al, 2015). However, the same 

authors also report that the antioxidant NAC could modulate this response, an observation 

that we were unable to reproduce. The causes of these discrepancies could be diverse: 

the different treatment durations, the dissimilar concentrations used for both rotenone and 

NAC, and also the different cell models. Indeed, they used a rat cell line instead of mouse 

primary cultures and the redox status of cell lines and primary cells could differ (Rubartelli 
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et al, 2011). Thus, our findings suggest that rotenone could activate the inflammasome in 

a ROS-independent way in primary microglia. As this result was rather unexpected, 

additional investigations are required to determine whether rotenone could activate the 

NLRP3 trough such an alternative activation mechanism.  

 

Taken together, our in vitro results suggest that different hallmarks of 

neurodegenerative diseases could indeed participate in the activation of the NLRP3 

inflammasome and lead to the subsequent secretion of IL-1β, a cytokine which can be 

observed in the brain of PD patients. We hypothesize that the abnormal deposition of 

misfolded proteins in the brain parenchyma could act as the signal 1 by activating and 

priming surrounding microglia. At the same time, mitochondrial dysfunction and ATP 

released by injured cells might play the role of the signal 2 and thus, could induce the 

inflammasome assembly and downstream release of cytokines and alarmins observed in 

neurodegenerative processes. 

 

Parkinson’s disease: a role for NLRP3 inflammasome? 

 

Increasing evidence implies that immune dysregulation and neuroinflammation 

might sustain and exacerbate the loss of the dopaminergic neurons in PD (Brochard et al, 

2009; Perry, 2012; Rodrigues et al, 2014). Among the factors driving neuroinflammation, 

IL-1 has been highlighted for its link to PD: (i) IL-1 is elevated in the CSF (Blum-Degen 

et al, 1995; Mogi et al, 1996) and in the serum of PD patients (Koziorowski et al, 2012; 

Dursun et al, 2015). (ii) Il1b gene polymorphisms have been associated with age-at-onset 

of sporadic PD (Nishimura et al, 2000; McGeer et al, 2002; Wahner et al, 2007). (iii) In 

vivo, the chronic expression of IL-1 by the introduction of adenoviral vectors into the 

substantia nigra of rats elicited diverse characteristics of PD, including dopaminergic cell 

death, akinesia and glial activation (Ferrari et al, 2006). (iv) Blocking IL-1 signalling by 

administration of IL-1Ra reduces the cell loss observed in the 6-OHDA PD model (Koprich 

et al, 2008; Pott Godoy et al, 2008). Taken together, these findings support our hypothesis 

that the release of IL-1 and thus the inflammasome could be involved in dopaminergic 

neuronal degeneration observed in PD. 

Our in vitro results suggest that the NLRP3 inflammasome could be activated during 

the pathogenesis of PD. Thus, we decided to investigate the relevance of NLRP3 

signalling in an in vivo PD mouse model. Among the different animal models of PD, we 

chose the broadly used 6-OHDA injection into the mouse striatum which presents several 

advantages, including a robust degeneration of TH neurons within 15 days. Moreover, the 
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presence of IL-1 in both striatum and substantia nigra have been observed in this model 

(Villar-Cheda et al, 2012; Machado-Filho et al, 2014; Munoz et al, 2014; Nadella et al, 

2014).  

Therefore, we analysed the PD-related features induced by the administration of 

6-OHDA in wild-type compared to NLRP3 knockout mice. Our preliminary results suggest 

that the genetic ablation of NLRP3 did not exert any significant impact on the 

dopaminergic neuron degenerescence after the intra-striatal injection of 6-OHDA. Indeed, 

the absence of NLRP3 did not protect TH neurons from cell death. Moreover, the 

expression of CD68 was similar in wild-type and in NLRP3 KO mice, suggesting no 

modification in terms of microgliosis. Interestingly, a recent report shows that NLRP3 

knockout mice appear less susceptible to MPTP-induced dopaminergic neuronal death 

than wild-type mice (Yan et al, 2015). This dissimilar result could be explained by two 

factors: the different PD model used (6-OHDA vs MPTP) as well as the time points at 

which the degeneration was evaluated. In fact, Yan et al quantified the TH neuron loss 

only 24 h after MPTP injection while we decided to perform our analysis 14 days after the 

injection, which could be considered as an endpoint measurement. Thus, we cannot 

exclude that the loss of NLRP3 might transiently delay the degeneration of dopamine 

neurons. 

In order to explore this hypothesis, we aimed to determine the time frame during 

which IL-1 is present in the intra-striatal 6-OHDA model. For this purpose, we carried out 

a kinetic transcriptional analysis of the pro-inflammatory factors expressed after the 

6-OHDA injection.  

Our results showed that the expression of Il1b and other neuroinflammation-related 

genes were not significantly upregulated in the ipsilateral hemisphere compared to the 

contralateral control, at any tested time point (3, 7 or 14 days). While it might be possible 

than the pro-inflammatory gene expression was really not altered after the injection, we 

believe it is unlikely. Indeed, our immunohistochemistry analyses clearly showed a strong 

inflammation, at least due to the stab wound injury. This last observation supported by the 

bibliographic context argues that a technical failure prevented us from detecting the 

transcriptional overexpression of the pro-inflammatory genes. Thus, additional 

experiments are still required to determine the time frame of IL-1 expression and 

determine whether NLRP3 deficiency could delay the dopaminergic neuron 

degenerescence. 
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In the present study, we outlined the expression and regulation of the inflammasome 

in glial cells, emphasizing its role in neurodegenerative diseases. 

The following points summarise our results: 

 Astrocytes constitutively expressed IL-18 and HMGB1. However, we were unable to 

observe any constitutive or induced expression of IL-1 or IL-1. 

 Astrocytes appeared unable to form a functional NLRP3 inflammasome, as they did 

not express NLRP3 and ASC proteins, at least in our conditions. 

 On the contrary, microglia expressed a functional NLRP3 inflammasome whose 

activation occurred through similar mechanisms than described in macrophages. 

 The exposure of microglia to ATP, Nigericin or Alum triggered IL-1, IL-1, IL-18 

and HMGB1 release in an NLRP3 inflammasome-dependent way.  

 The PD relevant -synuclein did not activate the microglial NLRP3 inflammasome 

but was able to prime it. 

 We confirmed A25-35 ,but not A1-42, as a microglial inflammasome activator 

 Rotenone and ATP induced microglial inflammasome activation. 

 Genetic ablation of NLRP3 did not exert any impact on late stages of 

neurodegenerescence induced by intra-striatal injection of 6-OHDA. 

A summarized view of these findings is depicted in Figure 46.  

 

In conclusion, the experiments presented in this doctoral thesis expand our current 

knowledge of the expression and regulation of inflammasome components in the mouse 

CNS. This project also contributes to the current effort to determine whether NLRP3 is 

involved in neurodegenerative diseases and in particular in Parkinson’s disease. 

However, further experiments are required to complete this work. These include the 

characterization of AIM2, NLRC4 and non-canonical inflammasomes in microglia but also 

the clarification of how the purinergic signalling could activate the inflammasome in 

microglia.  

In addition, our results suggest that microglia is the main glial cell type in the brain 

responsible for IL-1 and IL-18 secretion. However, it is essential to confirm that our 

observation remains true in situ with regard to the intercellular network and specific 

pathologic conditions.  

 

Furthermore, we also have to pursue studies in view to better respond to the 

question: Is the NLRP3 inflammasome implicated in Parkinson’s disease? 

Our in vivo study showed that the deficiency of NLRP3 appeared not able to protect, 

at least permanently, dopamine neurons from the 6-OHDA-induced cell death. However, 



GENERAL CONCLUSION & PERSPECTIVES 

 
 114 

in light to the recent report of Yan and colleagues showing that the loss of NLRP3 is 

neuroprotective at early time points in the MPTP model, we are now planning to 

investigate whether such an early difference might occur in the 6-OHDA model and thus, 

whether the loss of NLRP3 might provide a transient neuroprotection. 

In addition, we showed in this study that -synuclein, another major hallmark of PD, 

was at least able to prime the inflammasome in microglial cultures. It would be interesting 

to strengthen this observation using an in vivo mouse model and in particular to test 

whether the loss of NLRP3 is beneficial in a transgenic mice model overexpressing -

synuclein. 

 All these investigations could enlighten a potential therapeutic interest of the 

NLRP3 inflammasome for Parkinson’s disease. 
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Fig. 46: Summary of our findings.  

The capacity to form a functional NLRP3 inflammasome and secretion of IL-1 is limited to the microglial compartment in 

the mouse brain. Indeed, we were not able to detect the expression neither of IL-1 nor of all NLRP3 inflammasome 

components. In addition to IL-1, microglia were able to secrete IL-18, IL-1 and HMGB1 in an NLRP3 inflammasome-

dependent way and through mechanisms similar to those observed in macrophages. Moreover, our results suggest that 

microglial inflammasome can play a role in the neuroinflammation observed during Parkinson’s disease. Indeed, microglia 

can be primed by -synuclein exposure and microglial stimulation with Parkinson’s disease-related products, such as 

rotenone or ATP, which results in the activation of the NLRP3 inflammasome and IL-1 release. However, our preliminary in 

vivo results tend to indicate that genetic ablation of NLRP3 did not exert any significant impact on neurodegenerative 

processes occurring in an in vivo model of Parkinson’s disease s. 
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Appendix I: Supplemental figures 

 

 

 

Suppl. Table 1. Expression levels of inflammasome-related genes in untreated or LPS-primed microglia.  

Nlrp1, Nlrp2, Nlrp3, Nlrp6, Nlrp12, Aim2, Nlrc4, Pycard, Casp1 and Casp4 gene expressions were analysed by RT-PCR. 

Data are given as means of Ct ± SD and are representative of at least three independent experiments. 

 
 

 

 

 

 

 

 

 
Suppl. Fig. 1: Tlr4 is lower expressed in AEC-M2 than in microglial cultures. 

Gene expression of Tlr4 was analysed in untreated AEC-M2 and microglial cultures by RT-PCR. Results were normalized to 

Rpl27. Data are mean ± SEM of at least three independent experiments 
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Suppl. Fig. 2: P3C and CCM efficiently primed microglia for subsequent NLRP3 inflammasome activation. 

(A, B) Microglia were treated for 6 h with LPS (10 ng/mL), P3C (10 ng/mL), IL-1β (10 ng/mL), TNF-α (10 ng/mL), IFNγ 

(10 ng/mL) or CCM (10 ng/mL IL-1β + 10 ng/mL TNFα + 20 ng/mL IFNγ). (A) The gene expression level of Il1b and Nlrp3 

were analysed by RT-PCR and normalized to Rpl27. Data are shown as a percentage of the LPS-induced gene expression 

(100%). (B) Cell lysates (Xt) were analysed by WB for the expression of IL-1β and NLRP3 proteins. α-Tubulin was used as 

a loading control. (C) Microglia were treated for 6 h with LPS (10 ng/mL), P3C (10 ng/mL), IL-1β (10 ng/mL), TNF-α (10 

ng/mL), IFNγ (10 ng/mL) or CCM (10 ng/mL IL-1β + 10 ng/mL TNFα + 20 ng/mL IFNγ) and then stimulated with ATP (1mM, 

30 min). IL-1β secretion in supernatant were analysed by ELISA. Data are mean ± SEM of at least three independent 

experiments, except for WB (one representative experiment of at least 3 independent experiments). *=p<0.05 compared to 

Ctrl. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 
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Suppl. Table 2. Expression levels of pro-inflammatory genes and inflammasome-related genes in primed astrocytes. 

Primary astrocytes (AEC M2) were primed for 6 h with LPS (10 ng/mL), P3C (10 ng/mL), IL-1β (10 ng/mL), TNF-α (10 

ng/mL), IFNγ (10 ng/mL) or CCM (10 ng/mL IL-1β + 10 ng/mL TNFα + 20 ng/mL IFNγ). Primary microglia were untreated or 

primed with LPS (10ng/mL, 6 h) and served as control. RNA were extracted and analysed by RT-PCR for expression of the 

pro-inflammatory genes Il6, Nos2, Ptgs2, Cxcl10 and Tnf but also the expression of NLRP3 inflammasome-related genes 

(i.e. Il1b, Il1a, Il18, Hmgb1, Nlrp3, Pycard and Asc). Data are given as means of Ct ± SD and are representative of at least 

three independent experiments. 

 

 

 

 

 

Suppl. Fig. 3: Astrocytes do not release IL-1β following NLRP3 inflammasome activation. 

IL-1β secretion was assayed by ELISA on supernatant of CCM-primed astrocytes and LPS-microglia treated with ATP (1 

mM, 30 min) or Nigericin (Nig, 1.34 µM, 2 h). Data are mean ± SEM of at least three independent experiments. *=p<0.05 

compared to Ctrl. Kruskal-Wallis test followed by Dunn’s multiple comparisons test. 
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Suppl. Fig. 4: Neurosphere-derived astrocytes poorly express Il1b, Pycard and Nlrp3 genes. 

Gene expressions of Nlrp3, Pycard, Casp1, Il1b and Il18 were analysed in neurosphere-derived astrocyte cultures 

stimulated for 6 h with CCM by RT-PCR. Data are normalized to Rpl27 and are mean ± SEM values of at least three 

independent experiments. 

 

Suppl. Table 3. Expression levels of other inflammasome-related genes in untreated or primed astrocytes.  

Primary astrocytes were untreated or primed with CCM (10ng/mL, 6 h). Primary microglia were untreated or primed with 

LPS (10ng/mL, 6 h) and served as comparison. RNA were extracted and analysed for gene expression of Nlrp1, Nlrp2, 

Nlrp6, Nlrp12, Aim2, Nlrc4 and Casp4 by RT-PCR. Data are Ct mean ± SEM and are representative of at least three 

independent experiments. 

 
 

 
Suppl. Fig. 5: ADP and adenosine seems to be pro-inflammatory factors. 

(A) Microglia were stimulated for 3 h with adenosine (Ad., 1mM), ADP (1mM) or ATP (1mM). Transcripts were analysed for 

expression of Cxcl10, Tnf and Il6 by RT-PCR. Data were normalized to Rpl27. (B) Microglia were stimulated for 3 h with 

ADP at 0.5 mM, 1 mM, or 5 mM. CXCL10 and TNFα secretions were assessed by ELISA in culture supernatant of wild-type 

(WT) (B) or P2rx7-/- (D) microglia. Data are mean  SEM of at least three independent experiments. *p<0.05 compared to 

Ctrl, p<0.05, KO compared to WT. Kruskal-Wallis test followed by Dunn’s multiple comparisons test.  
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