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Graphene liquid crystal retarded percolation
for new high-k materials
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Graphene flakes with giant shape anisotropy are extensively used to establish connectedness
electrical percolation in various heterogeneous systems. However, the percolation behaviour
of graphene flakes has been recently predicted to be far more complicated than generally
anticipated on the basis of excluded volume arguments. Here we confirm experimentally that
graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The
competition of percolation and liquid crystal transition provides a new route towards high-k
materials. Indeed, near-percolated liquid-crystalline graphene-based composites display
unprecedented dielectric properties with a dielectric constant improved by 260-fold increase
as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4.
This performance is shown to depend on the structure of monodomains of graphene
liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with
percolation transition and thus alters the dielectric constant are discussed.
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he concept of percolation, initially discussed in the context

of scaling behaviour and universality in statistical physics,

finds today a variety of applications in materials research as
a powerful framework to account for the physical properties of
heterogeneous materials!. The significance of the percolation
transition lies in the fact that the global connectivity of the minor
phase (for example, conducting fillers in an insulating medium) at
the percolation threshold immediately results in a dramatic
change in the transport properties (for example, electrical or
thermal conductivity and diffusion) instead of following a linear
rule of mixtures®?. Such nonlinear scaling is exploited below
percolation, to improve other properties such as dielectric
constant*™® or optical nonlinearity’. Technological applications
of this concept generally demand a low percolation threshold.

Percolation at very low concentrations has often been found in
systems with rod-like particles of large aspect ratios in the
macroscopically isotropic state®. In addition to the connectedness
percolation transition, on increasing concentration rod solutions
also undergo an isotropic-nematic transition, which breaks the
rotational symmetry’. The location of the percolation threshold
depends on the connectivity length, that is, the surface-to-surface
distance below which two rods are in contact, whereas the
location of the isotropic-nematic transition is independent of this
length. Thus, in principle, the order in which the two transitions
occur when one increases the concentration of the rods depends
on the connectivity length. However, when taking realistic
electron tunnelling lengths as the connectivity length, the
percolation transition in rods always occurs at a concentration
far below the isotropic-nematic transition. When extended to
impenetrable platelets, the situation can be different. It has been
recently predicted that the isotropic-nematic transition could
occur below the onset of percolation expected from excluded
volume arguments of randomly oriented platelets'®. If true, this
phenomenon would significantly change our views on the interest
of using graphene for making conductive nanocomposites'!. The
competition of the percolation transition with transitions to
liquid crystals (LCs) near thermal equilibrium could actually
hinder the formation of conductive networks, making the
common belief that graphene flakes exhibit a low percolation
threshold erroneous. This statement is supported by simulations
and it can explain the large variability of experimental results in
the literature with percolation thresholds varying from a fraction
of vol% to tens of vol%. The very low values do not reflect
actual statistical percolation but out of equilibrium gelation
mechanisms.

The absence of percolation in equilibrated samples could still
be exploited positively from a technological point of view, in
particular for the development of new dielectric materials. There
is a fast growing interest in developing graphene-containing
composites that bear favourable dielectric properties'?~'4. They
can potentially serve as high-k materials for various applications,
including §ate dielectrics, energy storage devices and electroactive
materials!?~14,

However, experimental identification of the manifestation of
competing percolation and LC phase transition requires the
challenging development of graphene suspensions that can
percolate or form LCs at rest without being affected by non-
equilibrium mechanisms such as flow or volume changes in
drying systems. Liguid crystallinity of monolayer §raphene in
aqueous media'>!® or polar organic solvents'”!® has been
demonstrated and even already used to prepare composite
fibres!>2% or dielectric composites’!. To date, however,
extensions of their applications to hydrophobic polymer
composites still remain limited because of the difficulty of
forming graphene LCs in non-polar organic solvents at thermal
equilibrium.
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In this work, we have succeeded in producing LCs of graphene
oxide (GO) in a non-polar organic solvent. Such suspensions can
readily serve as precursors to prepare polymer composites with
polydimethylsiloxane (PDMS) as matrix. This unique system
allows the demonstration that large graphene flakes sponta-
neously form LCs before they percolate, confirming therefore the
theoretical prediction that graphene flakes, in spite of their giant
aspect ratio, do not exhibit a low percolation threshold. In
addition to providing the first test of this prediction, the present
materials have unique dielectric properties. They exhibit a very
high dielectric constant of 753 at 100 Hz along with a low loss
tangent of only 0.4. These findings are generic and expected in
other composites manufactured from dispersions of highly
conductive platelets with large aspect ratios, opening thereby a
new route towards efficient high-k materials.

Results

Phase transfer of GO from the aqueous to organic phase.
Processing GO in organic solvents is not straightforward,
as it needs modifying its surfaces with adequate chemical
functionalities?”. Previous state-of-the-art methods used to
functionalize GO sheets necessitate anhydrous conditions and
harsh reagents®»?*. Here we functionalized GO flakes with a
diblock copolymer polyaminopropylmethylsiloxane-b-PDMS
copolymer (PAPMS-b-PDMS) under ambient conditions via
electrostatic attractions (Fig. 1a). The method is easily scalable
(Supplementary Fig. 1) and in particular addresses the limitations
of other methods for GO modification, such as high reaction
temperatures or irreversible covalent bonding. Positively charged
amine functions of the PAPMS segments electrostatically interact
with the negatively charged carboxylic groups of the GO flakes
(Fig. 1a). Copolymers and GO flakes self-assemble under gentle
stirring at the oil/water interface of a biphasic mixture composed
of copolymer solution in diethyl ether as top phase and a GO
aqueous solution as bottom phase. The copolymer attracts GO
nanosheets from the aqueous to the organic phase and eventually
stabilizes their dispersion in diethyl ether (Fig. 1b). The copolymer-
derivatized GO flakes are no longer soluble in water but readily
form stable dispersions in non-polar organic solvents by pointing
hydrophobic PDMS blocks towards the organic phase. It should be
noted that the underlying phase transfer mechanism is pH
sensitive. A pH of the aqueous solution typically between 4 and
10 is required so that the amine and carboxylic groups remain,
respectively, positively and negatively charged.

Three PAPMS-b-PDMS copolymers named i, ii and iii were
tested. These materials are under the form of isotropic liquids at
room temperature. As shown in Fig. 1b, less copolymer is needed
to fully extract the GO sheets for copolymers ii and iii. However,
these copolymers are found in fact to be less efficient at stabilizing
GO against aggregation than copolymer i in the organic phase. As
shown in Fig. 2, aggregates in the organic phase are observed by
optical microscopy in the cases of dispersions stabilized by
copolymer ii or by copolymer iii. This is not the case for
copolymer i. Sedimentation of the aggregates is observed on
macroscopic scale after a few days (insets in Fig. 2). This
behaviour reflects that the most hydrophobic copolymer i
provides an efficient steric repulsion against aggregation. There-
fore, copolymer i was chosen to modify the GO flakes and the
copolymer i-derivatized GO (GO@copolymer) nanosheets were
further incorporated into a PDMS matrix to form polymer
composites.

The surface morphologies of GO and GO@copolymer flakes
were further investigated by transmission electron microscopy
(TEM). As shown in Fig. 1c, the pristine GO monolayer with a
sheet dimension of 2-3 pm is highly electron transparent, as the
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Figure 1 | Phase transfer of GO from the aqueous to the organic phase. (a) Schematic illustration of the electrostatic attraction between negative charges
of GO nanosheets and positive ones of the PAPMS-b-PDMS copolymer. (b) Photographs show the phase transfer of GO flakes from the aqueous to the
organic phase by using PAPMS-b-PDMS copolymers with different mole concentrations of amine groups. The starting volumes of the oil and water phases
are 10 ml. The amount of GO in the starting aqueous phase is Tmgml~'. The phase transfers are shown as a function of the weight ratio of GO to
copolymer (Mgo:Mcopolymer)- It is considered as completed when the lower aqueous phase is uncoloured. (¢) TEM image showing a flake of pristine GO.
(d) TEM image of GO flakes after functionalization with copolymer i. The samples for TEM characterization are prepared by depositing a drop of sufficiently
diluted pristine GO aqueous solution or modified GO organic solution onto standard TEM grids. (c,d) Scale bars, 500 nm.

copper mesh is clearly visible through the flake. After functio-
nalization with copolymer i, one can observe that the GO@co-
polymer particle still exists as a very thin monolayer with similar
sheet dimension to pristine GO (Fig. 1d). These results confirm
that functionalization by PAPMS-b-PDMS does not degrade the
graphene flakes. Raman spectral analyses further clarify the
interaction between copolymer and GO flakes (Supplementary
Fig. 2). As compared with pristine GO, GO@copolymer particles
have an unchanged G band, yet a blue-shifted D band, indicating
that the copolymer does not modify the sp?> carbon lattice
structure but essentially interacts with functional groups of the
GO sheets.

Liquid-crystalline graphene-based polymer composites. The
present method provides a route towards highly concentrated
suspensions of GO in non-polar organic solvents. It could in
principle lead to the formation of LCs on increasing concentra-
tion, as a consequence of the large aspect ratio of the GO flakes.
To test this possibility, we have characterized GO@copolymer
directly after their phase transfer at a concentration of about
1 mgml ~! by optical microscopy under crossed polarizers. At

this concentration, the suspensions are found to be isotropic and
appear homogeneous and black. However, more concentrated
samples controlled by partial evaporation of the solvent display
optical birefringence. The latter reveals a liquid-crystalline order
(Fig. 3a,b) and is observed for weight fractions as low as 1 wt%.
Such LCs made of platelets are often called discotic LCs. Orien-
tational ordering revealed by optical birefringence is maintained
as the concentration is increased further by evaporating the
highly volatile diethyl ether solvent. The LCs are made of small
and randomly oriented monodomains. The present method can
be extended to other solvents by adding a fluid that is less volatile
but miscible with diethyl ether. In particular, it can be extended to
pure PAPMS-b-PDMS used as solvent or PDMS precursors,
which are well soluble in diethyl ether. All these systems display
similar birefringent textures when observed under optical
microscopy between crossed polarizers. More quantitative char-
acterization of the liquid-crystalline order has been achieved
using small-angle X-ray scattering (Supplementary Fig. 3). These
experiments have been performed for the binary mixtures of GO
and pure PAPMS-b-PDMS, to characterize positional ordering.
As sketched in Supplementary Fig. 4, spatial correlations are
pronounced in concentrated materials but become weak for more
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Figure 2 | Optical micrographs of GO suspensions in diethyl ether.

(a) Dispersions stabilized by copolymer i (mgo:Mcopolymer i = 1:4) are free of
aggregates. By contrast, aggregates can be observed for copolymers ii

(b) and iii (¢) stabilized GO suspensions, which are achieved with the mass
ratio of Mgo:Mcopolymer ii = 1:2.5 and Mgo:Mcopolymer i = 1:1, respectively.
(a-c) Scale bars, 100 um; insets show images of macroscopic vials after
2 days. Sedimentation of aggregates can be seen in the upper organic
phases for copolymer ii (b) and iii (c). Suspensions stabilized by
copolymer i (@) remain stable.

dilute samples. The effective thickness of the GO platelets, which
accounts for the actual thickness of the particles and their
roughness and undulations, is found to be of about 0.85nm. The
structure evolution as a function of concentration is well con-
sistent with the expectation that the particles are stabilized by
steric repulsions provided by absorbed PAPMS-b-PDMS copo-
lymers (Supplementary Figs 3 and 4). GO/PDMS composite
precursors can be directly made by the phase transfer in the
presence of PDMS precursors in the upper organic phase. After
complete evaporation of the liquid medium, the graphene flakes
remain suspended in the fluid solely comprising PDMS pre-
cursors. The concentration can be controlled by varying the
amount of added PDMS precursors. Similar to their parent GO
suspensions in diethyl ether, this composite formulation displays

Figure 3 | LC phases of GO in non-polar suspending media. (a,b) Low-
magnification (a) and high-magnification (b) optical micrographs between
crossed polarizers of GO suspensions in diethyl ether at a concentration of
Twt%. (c,d) Low-magnification (¢) and high-magnification (d) micrographs
of viscous GO/PDMS composite precursors with Twt% of GO before
thermal cross-linking. (a,c) Scale bars, 100 um. (b,d) Scale bars, 20 um.
Samples were prepared by transferring a drop of GO suspension onto a
glass slide and confining the dispersion with a cover slip. For the GO/PDMS
sample, the GO/PDMS suspensions were first dried in the vacuum oven at
room temperature for 15 min and then the viscous mixture was transferred
onto a glass slide and confined with similar cover slip. The observed
textures reflect the formation of small monodomains of nematic LC phase.

birefringence (Fig. 3¢c,d). It is noteworthy that the general texture
and size of the monodomains depend on the samples. GO LCs in
PDMS are more viscous than GO LCs in diethyl ether and exhibit
smaller monodomains and numerous topological defects. The
greater amount of defects can be explained by their slower
coarsening in the more viscous materials®>~28,

Owing to the use of the liquid and cross-linkable precursors as
suspending medium, GO liquid crystallinity is well maintained
throughout the all processing, from the parent equilibrated phase
until its solidified state. The present systems are ideal models to
explore the manifestation of competing percolation and LC phase
transition. To electrically assess connectivity percolation, the
obtained GO/PDMS composites need to be thermally reduced to
restore the electrical conductivity of the GO flakes (Fig. 4a). The
dispersion state of reduced GO (rGO) nanosheets was examined
and visualized in scanning electron microscopy (SEM) images of
fractured surfaces of rGO/PDMS composites (Fig. 4b). In
addition, TEM images of GO flakes in nanocomposites, as shown
in Fig. 4c,d, show locally aligned morphologies due to the
formation of small and randomly oriented monodomains of LCs.
The textures before and after thermal reduction are similar. This
observation indicates that the thermal treatment does not affect
the structure of the materials.

Isotropic-nematic transition versus percolation. It has been
conjectured in the 1980s that the percolation threshold of ani-
sotropic objects scales as the ratio of the volume of one particle to
the excluded volume between two particles?. In the case of rods
of diameter D and length L, as well as platelets of thickness D and
diameter L, the percolation threshold would thus be expected to
scale as the inverse of the aspect ratio, (;SP o % (ref. 30). However,
the percolation behaviour of anisotropic particles can be subtle
and often counterintuitive. The clustering mechanism is affected
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Figure 4 | LC graphene-based PDMS composites. (a) Photograph of soft
PDMS composites with GO (brown) and rGO (black) nanosheets at a
loading of 1wt%. (b) SEM image of the fractured surface of a rGO/PDMS
composite with a nanosheet content of 1wt%. Scale bar, 10 um. Cross-
section of composites was obtained by immersion of the composite in liquid
nitrogen and breaking the materials. (¢,d) TEM images of GO (¢) and rGO
(d) flakes in PDMS composite with a loading of 1wt%. Scale bars, 100 nm.
Aligned structures resultant from the liquid crystallinity of the parent
materials are observed.

31,32 3,33

by polydispersity interactions between the particles
correlation of orientations®® and bundling of rods or stacking
of platelets®®. Deviations from the excluded volume scaling are
expected to occur, in particular when the percolation transition
competes with the transition to liquid-crystalline phases!'%-36,
Recent simulations of impenetrable platelets have shown that
the percolation threshold does not follow scaling with the inverse
aspect ratio!®, On increasing concentration, hard particles (rods
and platelets) of large aspect ratio preferentially align with each
other to maximize packing entropy rather than forming
percolated networks of randomly oriented particles. Thus, there
is a competition between percolation and nematic ordering.
Which of the two transitions occurs first, that is, at a lower
concentration than the other, depends on the shape of the particle
and on an additional characteristic length, the connectivity
length. This length is the typical length over which charge carriers
have to tunnel from one particle to another. For realistic
tunnelling lengths, the percolation threshold in suspensions of
rod-like particles is always below the isotropic-nematic
transition. In contrast, in suspensions of platelets, the isotropic—
nematic transition can occur at lower concentrations than the
percolation transition and thus suppress the formation of a
conducting network. For large aspect ratios, the percolation
threshold then becomes almost independent of the aspect ratio of
the platelets. In simulations of hard-cut spheres!® we found a
constant percolation threshold at D/L>60 for a connectedness
length equal to the particle thickness D. The onset of the plateau
shifts to smaller aspect ratios with decreasing connectedness
length. Thus, for any realistic connectedness length, platelets of
aspect ratios above 100 should be in the regime of a constant
percolation threshold. We rationalized this unusual independence
of the percolation threshold from the aspect ratio in the following
way: we employed the excluded volume argument given above,
but instead of randomly oriented disks we used the volume of
oriented disks as predicted by an effective single-particle cell
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Figure 5 | Interference of LC transition with percolation transition.

(@) AC conductivity of the rGO/PDMS composites as a function of the filler
content, measured at room temperature and 100 Hz. Inset shows the best
fit of the conductivity to a power law, which gives rise to a percolation
threshold ¢.=4.7 wt% and a critical exponent s=3.42. It is worth

noting that, except for the first point in which no rGO is present,

all the characterized materials display a liquid-crystalline texture.

(b) Microstructural representation of PDMS composites, which are
composed of randomly oriented monodomains of LCs at low concentration.
In each domain, the flakes tend to be aligned but no percolating path is
established. (¢) Schematic illustration of the microstructure of the
composite at high concentration. In this case, the monodomains still remain
randomly orientated but flakes inside domains begin to percolate and
eventually form an infinity network of connected path through the insulating
matrix.

model. The cell model reproduced both the nematic-order
parameter and the percolation threshold quite accurately. For
details, please see ref. 10.

Experimentally, we address this issue by assessing the
percolation transition in the rGO/PDMS composites. The
conductivity of the materials for different concentrations of
rGO is shown in Fig. 5a. As expected, the conductivity of the
composites qualitatively increases with increasing the amount of
rGO. However, surprising features are revealed when considering
the quantitative data. Indeed, as compared with the pure PDMS
matrix, the addition of 1.0 wt% of nanosheets has very little effect
on the electrical conduction of the composite by only showing a
slight increase (from 2.3 x 10719 t0 41 x 107 19Sm—1). Such
marginal improvement indicates that the 1.0 wt% sheet loading
is well below the percolation threshold. However, at this
rGO-PDMS mass ratio, the LC transition has already taken place
(Fig. 3¢,d), indicating that the flakes with large anisotropy indeed
tend to self-assemble into nematic LCs (Fig. 5b) before they form
a percolated path along the direction of the conductivity
measurement. However, with increasing further the content of
flakes up to a critical concentration, the conductivity increases
rapidly up to 1.42x10-9Sm~1, which is four orders of
magnitude higher than the virgin polymer. In this case, the
aligned flakes inside each monodomain are considered to be
percolated and eventually form an infinite network of connected
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particles through the insulating matrix, owing to the fact that
each two neighbouring monodomains inherently contact with
each other (Fig. 5¢). Thus, we confirm the theoretical prediction
that the percolation transition occurs at higher concentrations
than the orientational ordering transition.

The steep rise of the conductivity of the composite, o, near
percolation can be typically described by a bond percolation
model! and treated by a power law: . X Gmaix(¢. — ) ~°,
where 0 yauix is the conductivity of the polymer matrix, ¢, is the
onset of connectedness percolation, ¢ is the filler content and s is
the universal critical exponent in the insulating region. The best
fit of the conductivity data to the above power law yields
¢.=47wt% (see the inset in Fig. 5a). Such a percolation
threshold is much greater than the predicted value (~0.1 vol%)
for randomly oriented oblate ellipsoids (platelets) with an aspect
ratio of 1,000, as typically expected for the presently used
particles’’. The common strategy to pursue a low percolation
threshold in composites by introducing highly anisotropic
particles is shown to fail experimentally for platelets such as
graphene nanosheets. However, the high percolation threshold
coupled with low conductivity level here indicates that the LC
composites can serve as valuable dielectric materials. Indeed, the
dielectric constant of composites is expected to diverge at the
percolation threshold. Coincidentally, some graphene-based
nanocomposites have been shown to be extremely promising as
high-k materials!?>~14. This feature probably arises from the
presently identified tendency of platelets at spontaneously order.

Dielectric properties of the rGO/PDMS composites. In a
percolative polymer composite, as the conducting filler
content (¢) approaches the percolation threshold,¢p., from
below, the dielectric constant, ¢, of the composite diverges as
&c/ Ematrix = |¢° 7¢| "9 where émanix is the relative dielectric
constant of the polymer matrix and q is an exponent of about 1
(ref. 6). This divergent behaviour near percolation is desirable for
new high-k materials at a low filler loading. However, an intuitive
drawback of high-k percolative composites is that their high
dielectric constant originates from the detailed but sensitive
structure of microcapacitors very close to ¢. (ref. 13), which
makes the control of such a structure difficult. By contrast, in the
present study, the locally aligned graphene flakes in composites
can form effective microcapacitors at concentrations much below
¢.. The formation of small monodomains of LCs well preserves
the microcapacitor structure by largely retarding the percolation
transition. As a result, the compositional window for high-k
performances is considerably expanded.

Figure 6a presents the dielectric constant of the resultant
rGO/PDMS composites at varying filler loadings. Variations of
the dielectric constant, conductivity and of the loss tangent as a
function of frequency are provided in Fig. 7. The dielectric
constant at 100 Hz of the composites gradually increases from 2.8
to 23 at low filler contents (<3 wt%), yet dramatically augments
to 753 at the percolation threshold, which is 260 times higher
than that of pure PDMS. The increase in dielectric constant is
ascribed to interfacial polarization as a result of the conductivity
contrast between the conducting rGO flakes and the insulating
PDMS matrix. Aligned flakes in the monodomains can be viewed
as local microcapacitors with the rGO as electrodes and a very
thin host polymer layer in between as dielectric (Fig. 5b)*!. The
large rise at percolation results from the growth of the capacitor
size as platelets become gradually connected. The average
aggregate size diverges, while their separation decreases,
explaining thereby a divergence of the dielectric constant at low
frequency with the formation of giant capacitors. This general
behaviour is in fact qualitatively independent of the nature of the
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Figure 6 | Dielectric properties of the rGO/PDMS composites.

(a) Dielectric constant of composites, ¢, measured at room temperature
and 100 Hz. The inset shows that the dielectric constant can be described
by the percolation theory and matches well with the standard model™ with
¢.=4.7wt% and g =1.15. (b) Loss tangent, tand, of the composites versus
filler content, measured at room temperature and 100 Hz.

percolating system. However, quantitative features are here
optimized with the platelet geometry that favours the formation
of capacitors over a large processing window. Indeed, local
capacitors are formed already at low concentration because of the
shape and structuration of the conductive particles that face
each other in the liquid-crystalline state. In addition, their
concentration can be increased to concentrations greater than
usually expected for anisotropic particles, because the platelets are
aligned and therefore less prone to contact each other. As
outlined above, it is the LC transition that explains the unusually
high percolation threshold of graphene platelets. As a result, the
present materials can exhibit a large rise of dielectric constant
over a large concentration range, by contrast to other systems in
which the near-percolation regime is generally narrow!Z14,
Owing to the unique microcapacitor network structure inside the
LC momodomains, the high dielectric performances can be easily
tuned in a wide range of filler content between 3.0 and 5 wt%.
Apart from the high dielectric constant, high-k materials
should also have low loss tangent for realistic applications.
Unfortunately, the high dielectric constant in percolative
composites is often accompanied by a quite high loss dissipation
factor due to the delocalization of charges on a macroscopic scale
near percolation as a result of tunnelling or ohmic conduction.
For instance, as reported in an isotropic rGO/polyvinylidene
fluoride nanocomposite, the loss tangent increased rapidly up to
11 near percolation, owing to the significantly increased
conductivity in the nanocomposites’®. By contrast, in the
presently studied composites, due to the formation of LC
monodomains, establishing a percolating path of rGO by

| 6:8700 | DOI: 10.1038/ncomms9700 | www.nature.com/naturecommunications

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

a
3
10 M’Q‘ oo,
¢ "o,
€ M i3
- % s
2 102 ‘e oo,
3 >y 4444 %"‘0
o »»»»»::‘,« *
[$]
% mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
2 10'F
a

C
® Pure PDMS » 3.7 wt%
1 ® 1.0wi% < 42w%
10' F A 2.0 W% ® 47 W%
E v 3.0 wt%
. 0L
5" M“MM
g L NN N~
S »PPPPP 44«
g dadgsuay S TPNNNT L
€ o M
o Y
S -

Ty
1072 E. ' "'lllIIn-u-I'Ill“'.

10" 10? 10° 10* 10° 10°
Frequency (Hz)

Figure 7 | Dielectric properties of rGO/PDMS nanocomposites. The
frequency dependence of the dielectric constant, (@) AC conductivity

(b) and loss tangent (¢) of rGO/PDMS nanocomposites with different
weight fractions of rGO.

tunnelling or ohmic conduction becomes more difficult, resulting
thereby in a limited conductivity level (Fig. 5a). As a result, as
shown in Fig. 6b, the loss tangent undergoes a moderate increase
up to only a value of ~0.43 at 100 Hz.

Lastly, even though the present materials are of primary
interest for their dielectric properties, we have also characterized
their mechanical properties. A large increase of the Young’s
modulus is observed with increasing the fraction rGO in the
PDMS matrices (Supplementary Fig. 5).

Discussion

We modified GO flakes by using PAPMS-b-PDMS copolymers.
The modified GO flakes can be well dispersed in a non-polar
organic solvent such as diethyl ether. Nematic LCs formed on
increasing the concentration of GO suspensions, which over-
comes the practical limitations imposed on liquid-crystalline GO
processing in polar liquid media'>!'”. A liquid-crystalline
graphene-based composite was realized and characterized
electrically, to assess the percolation transition. It was found
that the graphene flakes with giant anisotropy tend to self-
assemble into numerous monodomains of nematic LCs before
they form an infinite percolating network. Owing to the LC

structures, the composites showed a wide processing window to
easily tune high dielectric performances, not as the case of
conventional percolative composites in which the dielectric
properties are very sensitive to concentration variations near
the percolation threshold>!314, The wide compositional window
coupled with the high dielectric constant and low loss tangent
validate the principle that graphene LC retarded percolation
provides a route to new and highly efficient high-k materials.
Although this approach was not clearly identified in earlier
studies, it is likely to be that some promising results
already established in the development of graphene-based
nanocomposites for dielectric applications could be due to the
physical mechanisms described in this work. Lastly, even though
the present study was performed with conductive nanoplatelets,
the concept of competition of connectivity percolation and LC
transition does depend only on the shape of the particles and not
on their chemical composition or electrical properties. It is
therefore expected that a similar behaviour should take place with
non-conductive materials such as inorganic clay platelets.
Nevertheless, for such materials the competition of LC
transition with rigidity percolation, as opposed to connectivity,
may be of greater technological interest if mechanical properties
are concerned. This problem is still raising questions for future
research.

Methods

Materials. The monolayer GO aqueous solution is purchased from the Graphenea
Company in Spain. It is typically obtained by chemically processing raw graphite
material in water. The monolayer content reaches up to 95% and the single layer
has a sheet dimension of 2-3 um. Before use, the received GO solution is diluted to
reach a concentration of 1 mgml ~!. Three kinds of PAPMS-b-PDMS copolymers
named copolymer i, ii and iii with 2-3, 4-5 and 6-7 mol% of amine groups,
respectively, were purchased from Gelest. Copolymers i, ii and iii have total
molecular weights of 4,500-6,000, 7,000-9,000 and 4,000-5,000 g mol ~ 1, respec-
tively. The liquid PDMS precursor and curing agent are provided by Dow Corning
under the trade name Dow Corning Sylgard 184 silicone elastomer kit. Both the
copolymer and PDMS precursors were used as received. The composition of the
PDMS precursor and curing agents are provided in Supplementary Note 1.

Phase transfer. A typical phase transfer process can be described as follows. A
certain amount of selected copolymer was first dissolved in diethyl ether and
subsequently mixed with the readily diluted GO suspensions (1 mgml~!). Here
the volume of diethyl ether used is the same with GO solution. As the diethyl ether
is immiscible with water and has a lower density than water, the copolymer
solution in diethyl ether would form an upper phase with GO water solution as a
bottom phase. This biphasic mixture was magnetically stirred for 12h so that the
modified GO flakes can be recovered in the organic phase as the phase transfer is
achieved. Finally, the mixture will separate into two phase, that is, a clear aqueous
phase and a thick, brown organic phase. It should be noted that the phase transfer
can be well performed even in the presence of PDMS dissolved in the upper
organic phase. In this way, the obtained GO/PDMS composite precursor can be
used to prepare solid composites based on a typical solution casting method.

Fabrication of solid composites. To achieve the best solubility of GO in diethyl
ether, the copolymer i with 2-3 mol% amine groups was chosen to interact with the
GO flakes at a GO/copolymer mass ratio of 1:4. The phase transfer was achieved
with polymer matrix PDMS in the upper diethyl ether phase. Afterwards, the
collected GO/PDMS composite precursor was used as start materials to prepare
solid composites by evaporating solvent and residual water, followed by thermally
induced cross-linking with the addition of curing agent. Details of the processes are
schematically illustrated in Supplementary Fig. 6 and more information on the
composites fabrication is provided in Supplementary Method.

Characterization. Surface morphologies of the GO flakes before and after copo-
lymer modification were characterized by TEM (Hitachi H600). The Raman
spectra were taken using an excitation of wavelength of 532 nm on Horiba Jobin
Yvon Xplora. The laser spot size is 1 um. Samples were prepared by depositing GO
aqueous solution or modified GO organic solution on silicon wafers, followed by a
completely drying process at room temperature for 12h. GO and GO/PDMS
suspensions (upper phase achieved by phase transfer with and without PDMS
dissolved in organic phase, respectively) were taken to investigate their birefrin-
gence under a polarizing optical microscope (Leica DM 2500P) with x 10 and

x 40 objectives. The morphology of as-prepared GO/PDMS composites was
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observed by a SEM using a field-emission SEM instrument (JEOL 6700FEG) after
sputter coating with platinum. The GO and rGO-based PDMS composites are
further examined under a TEM (Hitachi H7650). For TEM analysis, the composites
were ultramicrotomed to slices of 40-60 nm thickness (Leica UC7). X-ray data
were collected on a Rigaku Nanoviewer (XRF microsource generator, MicroMax
007HF), with a 1,200-W rotating anode coupled to a confocal Max-Flux Osmic
mirror (Applied Rigaku Technologies, Austin, USA) and a MAR345 image plate
detector (MARResearch, Norderstedt, Germany). Samples were put in quartz
capillaries, which are exposed to the incident X-Ray beam. The detector is placed at
a distance of 1,193 mm, providing access to 20 angle in the 0.15°-4° range
(0.1-3nm ~ ). The dielectric properties of the rGO/PDMS composites were
characterized as a function of frequency (0.1-10® Hz) at room temperature using
an impedance analyser (7260 Impedance Analyzer, MaterialsMates Italia). Before
measurement, silver grease has been applied on the sample surfaces for contacting.
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