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Introduction

Abstract

This thesis consists of two individual parts, each one having an interest in itself,

but which are also related to each other.

In Part I we analyze the general notions of the torsion of a module over a non-

integral ring and the torsion of a sheaf on a non-integral scheme. We give an

explicit definition of the torsion subsheaf of a quasi-coherent OX–module and

prove a condition under which it is also quasi-coherent. Using the associated

primes of a module and the primary decomposition of ideals in Noetherian rings,

we review the main criteria for torsion-freeness and purity of a sheaf that have

been established by Grothendieck and Huybrechts-Lehn. These allow to study

the relations between both concepts. It turns out that they are equivalent in

“nice” situations, but they can be quite different as soon as the scheme does not

have equidimensional components. We illustrate the main differences on various

examples. We also discuss some properties of the restriction of a coherent sheaf

to its annihilator and its Fitting support and finally prove that sheaves of pure

dimension are torsion-free on their support, no matter which closed subscheme

structure it is given.

Part II deals with the problem of determining “how many” sheaves in the fine

Simpson moduli spaces M = Mdm−1(P2) of stable sheaves on the projective plane

P2 with linear Hilbert polynomial dm− 1 for d ≥ 4 are not locally free on their

support. Such sheaves are called singular and form a closed subvariety M ′ ⊂M .

Using results of Maican and Drézet, the open subset M0 of sheaves in M without

global sections may be identified with an open subvariety of a projective bundle
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over a variety of Kronecker modules N . By the Theorem of Hilbert-Burch we can

describe sheaves in an open subvariety of M0 as twisted ideal sheaves of curves of

degree d. In order to determine the singular ones, we look at ideals of points on

planar curves. In the case of simple and fat curvilinear points, we characterize

free ideals in terms of the absence of two coefficients in the polynomial defining

the curve. This allows to show that a generic fiber of M0 ∩ M ′ over N is a

union of projective subspaces of codimension 2 and finally that M ′ is singular of

codimension 2.

Motivation and main results

We say that a module over a (commutative unital) ring is torsion-free if its non-

zero elements can only be annihilated by zero-divisors of the ring. This definition

can be extended to sheaves on a locally Noetherian scheme (X ,OX ) by saying

that a coherent OX–module F is torsion-free if the stalks Fx are torsion-free

modules over the local rings OX ,x for all x ∈ X .

Another notion we are interest in is the so-called concept of purity. For this we

recall that the support of a coherent sheaf F on X , denoted by suppF , is the

closed topological subspace of X defined by all points x ∈ X such that the stalk

Fx is non-zero. Let d be the dimension of suppF as a topological space. Then

we say that F is pure of dimension d if the support of every non-zero proper

coherent subsheaf of F also has dimension d.

As d ≤ dimX , we may restrict F to its support and consider it as a sheaf on

a d-dimensional space. For this it is however necessary to introduce a scheme

structure on suppF which defines a closed subscheme of X . Here there is no

canonical choice, but there are two structures which are by definition more rel-

evant than the other ones. The annihilator support can be seen as the minimal

closed subscheme since its structure sheaf is obtained by dividing out the func-

tions that vanish on suppF . The Fitting support is defined via an ideal sheaf

which is locally generated by the minors of a finite free presentation of F and

thus encodes the relations between its local generators. These scheme-theoretic

supports are denoted by Za(F) and Zf (F) respectively. In general Zf (F) con-
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tains Za(F) as a proper closed subscheme as it in addition takes care of the

locally free resolution of F . For the precise definitions of Za(F) and Zf (F) we

refer to Section 1.4.1.

Our main goal of Part I is to show that every coherent sheaf F of pure dimen-

sion is a torsion-free sheaf on Zf (F). The big problem occurring here is that

the Fitting support is a scheme which is in general neither integral, nor reduced.

The motivation for this study is to check torsion-freeness on the support of the

sheaves in the Simpson moduli spaces, which will be defined in Part II.

Torsion-freeness being a local property, it suffices to prove the statement in the

case of affine schemes. It is a well-known result from [35] that if R is a Noethe-

rian ring, then there is a 1-to-1 correspondence between coherent sheaves on the

affine scheme X = SpecR and finitely generated modules over R. The bijection

is denoted by

Modf (R) ∼−→ Coh(OX ) : M 7−→ M̃ . (1)

Now we can state our first main result.

Theorem 3.5.3. Let X = SpecR for some Noetherian ring R and M be a finitely

generated module over R. Assume that the coherent OX–module F = M̃ is pure

of dimension d ≤ dimX . We denote I = Fitt0(M) and Z = V (I) ∼= Spec(R/I).

Then F is a torsion-free OZ–module.

This is a rather obvious result for integral schemes. Our achievement was to

show that the statement actually remains true for every Noetherian ring ; it

may be non-integral, non-reduced or even have embedded primes. We also point

out in Proposition 3.5.1 and Remark 3.5.4 that the torsion-freeness remains true

for every closed subscheme structure that the support may be endowed with.

Torsion naturally shows up in the context of modules and thus appears in al-

most every branch of Algebraic Geometry. For proving our theorem, it became

necessary to study the notion of torsion of a module over a non-integral ring.

While doing this we however experienced a lack of references in the literature.

Classical textbooks on Commutative Algebra that are discussing torsion, such

as Atiyah-MacDonald [2], Bourbaki [4] & [6], Eisenbud [16], Hartshorne [35] and

Matsumura [54], only treat the case of modules over integral domains.
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Our goal is to generalize or disprove some of the classical results about torsion

in the case where the ring contains zero-divisors and/or nilpotent elements. Ac-

tually some statements have already been proven by various people, e.g. in [11]

or [53], and are part of the mathematical folklore. This is where we point out

the two important aspects of Part I of this thesis. On one hand it serves as a

compilation from different sources of facts which are known but have not yet

been written down in a concrete context ; on the other hand it provides a more

deep understanding of torsion in general by improving and extending the classi-

cal theory.

Torsion of a module is mainly discussed in Chapter 1, but also in Appendix C.

Alexander Grothendieck started to mention the torsion of a coherent sheaf on

non-integral schemes in his last volume of EGA [33], but only developed it as a

tool. For this it is necessary to understand the notion of the torsion subsheaf

T (F) of a quasi-coherent sheaf F on a scheme. We give an explicit description

and the main properties of T (F) in Chapter 2. It turns out that quasi-coherence

of T (F) is one of the main issues. Indeed we show

Theorem 2.2.8. Let X = SpecR be an affine Noetherian scheme and F a

quasi-coherent sheaf on X given by F ∼= M̃ for some R-module M . Then

T (F) is quasi-coherent ⇔
(
TR(M)

)
P

= TRP (MP ) , ∀P ∈ SpecR .

If F is coherent, the same equivalence holds true with T (F) being coherent.

One of the main tools we are using in our computations are the associated primes

P1, . . . , Pα of a Noetherian ring R. These are prime ideals Pi E R which can be

written as AnnR(ri) for some ri ∈ R. An associated prime is called embedded if

it is not minimal. It turns out that embedded primes are sources of unpleasant

problems. Their absence often has nice consequences, such as

Theorem 2.2.13. Let X = SpecR be an affine Noetherian scheme and F a

coherent, resp. quasi-coherent OX–module. If R has no embedded primes, then

the torsion subsheaf T (F) ⊆ F is coherent, resp. quasi-coherent.

To prove this statement we use a result from Epstein-Yao [21], which allows

to construct global non zero-divisors from local ones, and hence global torsion
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elements from local ones, if there are no embedded primes. On the other hand

there are examples of torsion-free modules whose corresponding coherent sheaf

is not torsion-free. Indeed in Section 2.3 we present the case of

R = K[X, Y, Z]/〈XY,X2, XZ 〉 with M = R/〈 Ȳ Z̄ 〉 , (2)

and show that the torsion subsheaf of F = M̃ has dense support in suppF .

In particular T (F) is not coherent. Hence even though there is a 1-to-1 cor-

respondence between modules over a ring and quasi-coherent sheaves on the

corresponding affine scheme, there is in general no bijection as in (1) between

torsion-free modules and torsion-free sheaves. However it holds true again under

the assumption that the scheme has no embedded components ; this is the con-

tent of Corollary 2.2.22.

The torsion of a sheaf F is also related to the notion of a meromorphic func-

tion in the sense of Grothendieck. Using an alternative description of T (F), he

proved a powerful criterion for torsion-freeness of a coherent sheaf on a Noethe-

rian scheme X in [33] by only looking at the associated points of X and F . We

repeat that statement in Theorem 2.5.8. This result is one of the main tools we

are going to use in order to prove Theorem 3.5.3.

Next we are interested in describing torsion in geometric terms. The relation

between torsion and dimension is the leading idea of Chapter 3 and Section 1.4.

Our main occupation is to check whether torsion is supported in smaller dimen-

sion. This is indeed satisfied in the coherent case.

Theorem 1.4.23. Let M be a finitely generated module over a Noetherian ring

R. Denote F = M̃ , X = SpecR and Xi = V (Pi) for all i, where P1, . . . , Pα

are the associated primes of R. Then M is a torsion module if and only if the

codimension of suppF is positive along each irreducible component:

codimXi
(
(suppF) ∩ Xi

)
≥ 1 , ∀ i ∈ {1, . . . , α} .

The example (2) however shows that Theorem 1.4.23 does not hold true if the

torsion sheaf is not coherent. Questions about dimension immediately motivate

us to speak about pure sheaves. A priori it is not clear how torsion and purity

are related in the non-integral case. Here we obtain
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Theorem 3.1.17. Let X = SpecR be a Noetherian scheme and F ∈ Coh(OX ).

Assume that dimF = dimX = d and that X has equidimensional components.

Then F is pure of dimension d if and only if F is torsion-free on X .

A criterion for purity (Theorem 3.1.11) has been stated by D. Huybrechts and

M. Lehn in [38]. Similarly as the one of Grothendieck, it only uses the associated

points of X and F . In particular they illustrate that torsion-freeness of a sheaf de-

pends on the considered ambient space while purity does not (Proposition 3.2.5).

The unpleasant aspect of these criteria however is that the non-minimal associ-

ated primes of a module have in general no geometric interpretation. So we are

looking for more “visual” criteria by considering the support of the sheaf as a

new ambient space. It turns out this heavily depends on the chosen subscheme

structure of the support ; for example there are fundamental differences between

the annihilator support Za(F) and the Fitting support Zf (F). For the first one

we can say

Proposition 3.2.12. Let X = SpecR be affine and F ∼= M̃ be coherent with

d = dimF . If the annihilator support Za(F) has a component of dimension < d,

then F is not pure.

On the other hand this is only a partially satisfactory result since the converse

does not hold true and a similar statement for the Fitting support does not exist

at all ; in other words, the Fitting support of a pure sheaf may have embedded

components (as e.g. illustrated in Example 3.4.18). On the other hand it turns

out that the statement of Proposition 3.2.12 is sufficient in order to prove The-

orem 3.5.3. Indeed we show in Proposition 3.5.1 that a coherent sheaf which

is torsion-free on its support endowed with a scheme structure that has no em-

bedded components is also torsion-free on its support when it is given any other

subscheme structure. Thus torsion-freeness of a pure sheaf on its annihilator

support is enough. Together with Theorem 3.1.17 this provides the proof of

Theorem 3.5.3.

Finally we construct explicit counter-examples in Section 3.4.3 to illustrate that

our intuition from Theorem 1.4.23 for a geometric interpretation of torsion is

completely ruined if a scheme has embedded components and/or components
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of different dimensions. Moreover there is in general no clear relation between

torsion-freeness of a sheaf on the different subscheme structures of its support.

An overview of the important results is given in Table 1 on p. xxix as a list of

implications.

After having developed the theory of non-integral torsion, we start Part II by

discussing the Simpson moduli spaces. In his monumental and influential pa-

per [65] from 1994 Carlos T. Simpson showed that for an arbitrary projective

scheme X over an algebraically closed field K of characteristic zero and for an

arbitrary numerical polynomial P ∈ Q[m] there is a coarse moduli space MP (X )

of semistable sheaves on X with Hilbert polynomial P , which turns out to be a

projective scheme.

It is a well-known fact that there is no moduli space which classifies all coherent

sheaves on a projective scheme. The way out of this problem is to introduce the

notion of semistability. A coherent sheaf is called semistable if the ratio, Hilbert

polynomial to its leading coefficient, is asymptotically greater or equal than the

corresponding ratio for each non-zero proper coherent subsheaf (for the exact

definition we refer to Section 4.1.2). If this inequality is even strict, we say that

the sheaf is stable. Historically the moduli spaces of semistable sheaves have first

been studied by D. Giesecker in [27] and M. Maruyama in [50] and [51]. However

they both required semistable sheaves to be in addition torsion-free. Simpson

generalized the definition of semistability by replacing the condition on torsion-

freeness by purity and also proved existence of non-trivial moduli spaces in the

case where degP < dimX . Indeed it is known from classical cohomology theory

that sheaves with Hilbert polynomial P are supported in dimension d = degP ,

hence sheaves with d < dimX cannot be torsion-free if X is e.g. integral.

For our work we restrict ourselves to the projective plane P2 over an algebraically

closed field K and linear Hilbert polynomials P (m) = am + b ∈ Z[m] with in-

teger coefficients and a ≥ 1. The moduli spaces Mam+b(P2) of 1-dimensional

sheaves have been studied for a long time by many algebraic geometers in vari-

ous contexts. J. Le Potier proved for example general properties such as smooth-

ness, irreducibility and the dimension of the spaces in terms of a and b in [47].
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M. Maican on the other hand established some isomorphisms in [49] which re-

duce the studies to finitely many values of b for a given a. Following the ideas

of H.G. Freiermuth developed in [23] he also used Beilinson sequences in [48]

and [15] together with J.-M. Drézet in order to decompose M with a ≤ 6 into

several strata, each of which can be described as a quotient of a certain space of

matrices. Such descriptions have however not yet been established for a > 6 and

it is not known how to characterize all semistable sheaves with a given Hilbert

polynomial am+ b.

Our interest will be the following. The sheaves in Mam+b(P2) are supported

on curves of degree a and are hence torsion sheaves on P2. But one may restrict

them to their Fitting support and consider them as sheaves on a 1-dimensional

variety. Part I ensures that these restrictions are torsion-free. It turns out that

most of the sheaves are even locally free on their support. For proving this

one proceeds as in [23] by looking at those whose support is smooth and ap-

plying the Structure Theorem of finitely generated modules over principal ideal

domains, which implies that freeness and torsion-freeness of the stalks are equiv-

alent. Hence “almost all” stable sheaves in Mam+b(P2) can be seen as vector

bundles on a curve.

In general the Simpson moduli spaces Mam+b(P2) are not fine and their closed

points are not in 1-to-1 correspondence with isomorphism classes of stable sheaves.

However it is shown in [47] that this is the case for coprime values of a and b. So

it is in particular satisfied for linear Hilbert polynomials of the form dm− 1 for

some d ∈ N. We denote M := Mdm−1(P2). The sheaves that are locally free on

their support constitute a dense open subvariety in M whose complement M ′,

consisting of sheaves that are not vector bundles on their support, is in general

non-empty. According to the vocabulary introduced by Le Potier in [47], sheaves

from the boundary M ′ are called singular.

We are interested in describing M ′ and finding some interesting properties, such

as smoothness, irreducibility and its codimension. In Section 4.5.5 and Sec-

tion 4.6 we briefly review the cases for d ≤ 3. The case of 3m + 1 has been

discussed by H.G. Freiermuth and G. Trautmann in [25] and a summary of this
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can be found in [41]. O. Iena showed in [39] that codimM M ′ = 2 for 4m − 1.

Moreover it has been proven that M ′
3m+1 is a smooth and irreducible subvariety,

whereas M ′
4m−1 is singular and path-connected. Our main result of Part II is the

following generalization of [39], which has been obtained in joint work with Dr

Oleksandr Iena.

Theorem 5.5.18. For any integer d ≥ 4, let M = Mdm−1(P2) be the Simpson

moduli space of stable sheaves on P2 with Hilbert polynomial dm− 1. If M ′ ⊂M

denotes the closed subvariety of singular sheaves in M , then M ′ is singular and

of codimension 2.

Let n = d − 1. The study of 1-dimensional stable sheaves is immediately re-

lated to the study of so-called Kronecker modules, which can be represented

as (n − 1) × n–matrices with entries in linear forms. The affine space of Kro-

necker modules is denoted by V. For these objects one can define the notion

of stability in the abstract sense of Geometric Invariant Theory, developed by

D. Mumford and J. Fogarty in [58]. General facts about GIT (which we recall

in Appendix D.4) show that there exists a geometric quotient N = Vs/G of the

open subset of stable Kronecker modules Vs by the reductive group of matrices

G = GLn−1(K)×GLn(K). Drézet proved a concrete and easy-to-use characteri-

zation of the stability of Kronecker modules in [13]. Using this one we are going

to show in Proposition 5.2.14 that Kronecker modules with linearly independent

maximal minors are stable.

Maican has shown in [48] that sheaves F ∈M satisfying h0(F) = 0 (i.e. sheaves

without global sections) are exactly those which have a free resolution

0 −→ OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1) −→ F −→ 0 , (5.8)

where A =
(
Q
Φ

)
is a n×n–matrix with stable Kronecker module Φ ∈ Vs (see The-

orem 5.1.28) and Q is a row vector of n quadratic forms. Moreover detA 6= 0.

We denote the quasi-affine variety of all such matrices by W0. Sheaves F as

given in (5.8) form an open subset M0 ⊆ M and their isomorphism classes are

obtained by dividing out the non-reductive group G′ of automorphisms that is

acting on the exact sequence. More precisely this gives a geometric quotient

M0 = W0/G
′. By eliminating the action of the non-reductive part of G′, Maican

xxi



LEYTEM Alain Introduction

and Drézet constructed by descent in [48] a projective bundle B over N , which is

also a geometric quotient by G′. This way M0 may be seen as an open subvariety

of B. We will reproduce this construction in Section 5.3.

Next we restrict ourselves to stable Kronecker modules whose maximal minors

are coprime. This open subset is denoted by V0 ⊆ Vs. We also set N0 = V0/G
′

and B0 = B|N0 . It has been shown by Yuan in [70] that the codimension of the

complement of B0 in M is at least 2. Hence in order to prove Theorem 5.5.18

it suffices to show that codimB0(M ′ ∩ B0) = 2. This is especially useful since

sheaves in B0 ⊆M0 can be described explicitly as twisted ideal sheaves of curves

of degree d. More precisely, motivated by the corresponding results of Drézet

and Maican in [14] and [15], we establish

Proposition 5.3.31. The sheaves F in B0 are exactly the twisted ideal sheaves

IZ⊆C(d− 3) given by a short exact sequence

0 −→ F −→ OC(d− 3) −→ OZ −→ 0 , (5.27)

where Z ⊆ C is a 0-dimensional subscheme of length l =
(
n
2

)
lying on a curve C

of degree d such that Z is not contained in a curve of degree d− 3.

The proof is a slight variation of the ones in [14] and [15]. We apply the Theorem

of Hilbert-Burch to a Kronecker module Φ ∈ V0 and the 0-dimensional subscheme

Z ⊂ P2 of length l =
(
n
2

)
defined by the vanishing set of its coprime maximal

minors d1, . . . , dn. This way we show in Proposition 5.2.23 and Corollary 5.2.44

that we obtain an exact sequence

0 −→ (n− 1)OP2(−n)
Φ−→ nOP2(−n+ 1)

ϕ−→ OP2 −→ OZ −→ 0 ,

where ϕ = t(d1, . . . , dn) and the points of Z = Z(d1, . . . , dn) do not lie on a curve

of degree n− 2. Here we use t to denote the transpose, i.e. ϕ is a column vector.

Sequence (5.27) is our motivation for studying ideals of points in local rings.

Indeed we shall determine under which conditions the ideal Fp for p ∈ C is a free

module over OC,p. This is true for smooth points and for p ∈ C \Z. Thus F can
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only be singular at singular points of C which also lie in Z. In the case where

p ∈ Z is a simple point (i.e. a point of multiplicity 1), we notice the following

elementary fact.

Lemma 5.4.1. Let R = OC,p be the local Noetherian ring of a curve C ⊂ P2

at a point p ∈ C with unique maximal ideal M. Consider the exact sequence of

R-modules

0 −→M −→ R −→ kp −→ 0 .

Then M is free (of rank 1) if and only if R is regular, i.e. if and only if p is a

smooth point of C.

In general one also has to take care of the multiplicity of p as a point in Z. This is

where we establish the following characterization of free ideals over double points.

Together with Lemma 5.4.1 it is the key point for proving Theorem 5.5.18.

Proposition 5.4.11. Let f ∈ K[X, Y ] be a non-constant polynomial defining a

curve C = Z(f) in A2. Assume that p = (0, 0) is a singular point of C and

denote R = OC,p. Let x, y denote the classes of X, Y in the local ring R. If

I = 〈x, y2 〉 E R is the ideal defining the subscheme of a double point {p} ↪→ C

by the exact sequence of R-modules

0 −→ I −→ R −→ R/I −→ 0 ,

then I is a free R-module (of rank 1) if and only if f contains the monomial Y 2.

To prove this we first notice that if I is free, then it is generated by one element

because of the inclusion I ↪→ R. As p is a singular point we also conclude that

the order of f is at least 2. A proof by contradiction with straight-forward com-

putations then implies that f must contain Y 2. Vice-versa if f contains Y 2, one

shows that I is necessarily generated by x and that R → I : r 7→ r · x is an

isomorphism of R-modules. The geometric interpretation of Proposition 5.4.11

is that I is free if and only if the tangent cone of C at p consists of 2 lines (with

multiplicities) not containing the line X = 0.

Actually we even prove a characterization for all fat curvilinear points of mul-

tiplicity n in Proposition 5.4.17 ; by a “fat point” we mean a scheme whose
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underlying topological space only consists of one point and whose global sections

form a K-vector space of dimension n. On the other hand that one has no geo-

metric interpretation, so at this point we only mention the two criteria above. It

also turns out that the latter are actually sufficient in order to provide a proof of

Theorem 5.5.18. We denote by Nc ⊆ N0 the open subvariety given by Kronecker

modules that define a configuration (i.e. l different points) and by N1 ⊆ N0 \Nc

the subvariety of those where Z from (5.27) consists of one double point and l−2

simple points.

Lemma 5.4.1 and Proposition 5.4.11 characterize non-free ideals in terms of the

absence of two coefficients in the polynomial that defines the curve (since R is

not regular). Hence the subvariety of sheaves in B0 over Nc∪N1 that are singular

at a given point p ∈ Z is of codimension 2. A sheaf being singular if and only

if there exists a point in Z at which it is singular, we combine the individual

conditions at each point and obtain in Corollary 5.5.8 and Corollary 5.5.15 that

the fibers of B0∩M ′ over Nc, resp. N1 are unions of l, resp. l− 1 different linear

subspaces of codimension 2.

In particular this shows that M ′ is singular. Finally we also compute the singular

locus of M ′ over the space of configurations Nc ⊆ N0 in Proposition 5.5.22. Here

we find that the smooth points are those sheaves which are singular at only one

of the points in Z.
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Structure of the dissertation

Throughout this thesis R is used to denote a commutative unital ring (usually

also assumed to be Noetherian) and K is a fixed algebraically closed field of

characteristic zero, for example K = C. An exhaustive list with our notations,

including a reference to the page on which they are introduced, is given on the

pages v – xii after the table of contents.

We assume the reader to be familiar with basic Commutative Algebra of rings

and modules, Scheme Theory, Categories, Functors and Abelian Sheaf Theory.

Outcomes of this thesis to which the author has contributed are indicated by

adding the surname (Leytem) on top of the statement. If a result is taken

from another source, the precise reference is added afterwards. If the author

incorporated new elements to an already established result (e.g. by modifying

the statement or changing the assumptions), the shortcut “cf.” is added before

the reference. Assertions without a caption are either direct consequences of

preceding results or auxiliary facts for which a proof had to be provided.

Part I

Torsion on non-integral schemes and relations with purity

Throughout Part I we illustrate a lot of concepts, statements and algorithms

on several instructive examples, which recurrently occur at many places. They

are denoted by E.1 – E.7 and summarized in Appendix E. When studying these

examples, we suggest the reader to simultaneously look at the summary in the

appendix for a better visualization and understanding, especially since we don’t

recall the notations at each time.

In Chapter 1 we study the relation between the irreducible components of

an affine scheme SpecR and the torsion submodule TR(M) of an R-module M .

Section 1.1 contains short reviews of the basics of schemes and sheaves of

OX–modules. We define coherence and the standard operations on sheaves. The-

orem 1.1.13 illustrates the relation between coherent sheaves on affine Noetherian

schemes and finitely generated modules over the ring of global sections.
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Section 1.2 uses the theory of Primary Ideal Decomposition explained in

Appendix B.2 to decompose a scheme into irreducible components. We illustrate

such a decomposition on an example and point out the problems occurring if we

want to look at non-reduced structures. In the same way we explain how to find

the connected components of the scheme and discuss the difference between the

product and the intersection of two ideals.

Section 1.3 gives characterizations of torsion-free modules (Proposition 1.3.3)

and torsion modules (Proposition 1.3.5) in terms of the associated primes of the

ring. Moreover we study the behaviour of torsion under localization in Propo-

sition 1.3.8 and prove that an element is torsion if and only if it is a torsion

element in all localizations.

Section 1.4 discusses the fact that torsion modules are supported in smaller

dimension. We start by showing in Proposition 1.4.4 that the support of a co-

herent sheaf F is closed. Then we define its annihilator support Za(F) and the

Fitting support Zf (F). We also recall some facts about dimensions in rings and

state Krull’s Height Theorem. In Proposition 1.4.21 and Theorem 1.4.23 it is

then shown that the codimension of the support of a coherent torsion sheaf is

positive in each irreducible component of the scheme. Finally we illustrate this

result on some examples.

Chapter 2 is entirely dedicated to the torsion subsheaf of a quasi-coherent

sheaf F on a locally Noetherian scheme X . We are particularly interested in

what it means for F to be torsion-free.

In Section 2.1 we give a detailed definition of the torsion subsheaf T (F) and

compute its sections and stalks (Proposition 2.1.12 and Proposition 2.1.17).

The aim of Section 2.2 is to determine under which conditions the torsion

subsheaf is quasi-coherent. Theorem 2.2.8 says that this is the case if and only

if all local torsion elements come from global ones. Using a result from Epstein-

Yao [21] we then show in Theorem 2.2.13 that this condition is satisfied if the

ring has no embedded primes. As most of the proofs are constructive, we also

apply the methods to a concrete example. Finally we briefly explain the relation

between embedded primes and Serre’s conditions in Proposition 2.2.28.
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In Section 2.3 we present an example which illustrates that the torsion sub-

sheaf does not need to be coherent and may even have dense support. This

heavily contradicts our idea of a geometric interpretation of torsion from Theo-

rem 1.4.23. In particular it is also an example of a non-coherent subsheaf of a

coherent sheaf on an affine Noetherian scheme.

Section 2.4 analyzes the definition of the sheaf KX of meromorphic functions

on a Noetherian scheme following the ideas of Kleiman in [43]. We compute

its sections (Proposition 2.4.14), its stalks (Proposition 2.4.16) and improve a

result from Murfet [59] to show that KX is quasi-coherent when there are no

embedded primes (Theorem 2.4.19). We also state the relation between torsion

and meromorphic functions in Theorem 2.4.22.

The main result of Section 2.5 is Grothendieck’s criterion for torsion-freeness

of a sheaf, which claims that a quasi-coherent OX–module F on a locally Noethe-

rian scheme X is torsion-free if and only if all associated points of F are associated

points of X .

Finally in Section 2.6 we provide an alternative proof of the fact that the

dimension of the support of a sheaf given by a torsion module drops in all com-

ponents of the scheme. The proof being constructive we again apply it to an

example for better illustration.

Chapter 3 compares the notions of torsion-freeness and purity. Moreover we

point out the main differences between the supports Za(F) and Zf (F) and prove

that pure sheaves are torsion-free on their Fitting support.

In Section 3.1 we define the concept of a pure sheaf and state the criterion

of Huybrechts-Lehn (Theorem 3.1.11). Then we show in Theorem 3.1.17 that a

sheaf F on a scheme X with equidimensional components of dimension d and

dimF = dimX = d is torsion-free if and only if it is pure. These assumptions

moreover give a characterization of torsion modules in terms of the dimension

of their support (Corollary 3.1.25). We also study the relation between the

torsion subsheaf and the torsion filtration ; here Proposition 3.1.33 claims that,

still under these assumptions, the torsion subsheaf T (F) is equal to the subsheaf

Td−1(F) of sections that are supported in smaller dimension. But this equality
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may fail if there are embedded components.

Section 3.2 explains how an OX–module can be considered as a sheaf on its

support. In particular we see in Proposition 3.2.2 that the associated primes do

not change and that the notion of being pure does not depend on the “ambient

space” (Proposition 3.2.5). Torsion-freeness on the other hand does, as can easily

be seen by Example 3.2.8. We also show that the annihilator support of a pure

sheaf has equidimensional components (Proposition 3.2.12), but the converse is

false. Finally Corollary 3.2.23 gives a condition under which sheaves that are

torsion-free on a reduced scheme X are torsion-free on their support. However

this statement may fail in the non-reduced case.

In Section 3.3 we review the examples E.3 – E.7 and analyze them for torsion-

freeness and purity. Inspired by these results we prove in Proposition 3.3.9

that whenever a component has torsion, this torsion generically remains on the

maximal ideals. More precisely, if P is a prime ideal such that MP has torsion,

then MM also has torsion for almost all maximal ideals M containing P . Vice-

versa, if MP is torsion-free, then MM is also torsion-free for a generic M ∈ V (P ).

The main goal of Section 3.4 is to compare the properties of the annihilator

support and the Fitting support of a sheaf F . Both have the same minimal

components (Lemma 3.4.1), but Za(F) has in general “nicer” properties, in the

sense that AnnR(M) is more closely related to AssR(M) and we have effective

results such as Proposition 3.2.12 and Proposition 3.4.6. The Fitting support

of a pure sheaf may for example have embedded components (Example 3.4.18).

On the other hand one generally prefers Zf (F) because of functoriality (Propo-

sition 3.4.13). Then we give many examples to illustrate that there is no clear

relation between torsion-freeness on Za(F) and torsion-freeness on Zf (F) as soon

as one of them has embedded components.

Finally we prove our first main result in Section 3.5. For this we first prove

Proposition 3.5.1, which states that a sheaf which is torsion-free on its support

Z with a subscheme structure that has no embedded components is torsion-free

on all possible subscheme structures of Z. Together with Proposition 3.2.12

and Theorem 3.1.17, this provides the proof of Theorem 3.5.3. After this we

formulate a series of remaining open questions.
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All the results from Part I are summarized in Table 1 below. We always ask the

question

assumptions
?⇒ statement

If the answer is Yes, we refer to the statement where it is proven. In the neg-

ative case, we refer to a counter-example. If we want to impose an additional

assumption, it is added below. A question mark indicates that we haven’t found

an answer yet.

Table 1: (Non-exhaustive) List of implications

Let R be a Noetherian ring, X = SpecR the corresponding affine Noetherian

scheme, F a coherent sheaf on X , Za its annihilator support and Zf its Fitting

support. If we write Z, the subscheme structure of the support is not specified.

Question Answer Reference

F torsion on X ⇒ dimF < dimX Yes 1.4.21

dimF < dimX ⇒ F torsion on X No 1.4.25 & 1.4.26

if X equidimensional Yes 3.1.25

T (F) coherent No 2.3.1

if X no embedded Yes 2.2.13

T (F) 6= 0 coherent ⇒ X no embedded No 3.3.5

F pure ⇒ F torsion-free on X No 3.3.3

if X integral No 3.2.8

if X no embedded and dimF = dimX Yes 3.1.17

F torsion-free on X ⇒ F pure No 3.1.19

if X equidimensional Yes 3.1.17 & 3.1.25

dimF = dimX ⇒ Z = X (as schemes) No 3.1.21

if X is irreducible or reduced No 3.1.21 & 3.1.22

if X is integral Yes 3.1.23

F pure on X ⇔ F pure on Z Yes 3.2.5
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Question Answer Reference

F pure ⇒ Za equidimensional Yes 3.2.12

Za equidimensional ⇒ F pure No 3.2.17

F torsion-free on X ⇒ F torsion-free on Za No 3.2.24

if X reduced and Za no embedded Yes 3.2.23

F torsion-free on Za ⇒ F torsion-free on Zf No 3.4.23

if Za no embedded Yes 3.5.1

F torsion-free on Zf ⇒ F torsion-free on Za No 3.4.25

if Zf no embedded Yes 3.5.1

F pure ⇒ F torsion-free on Z Yes 3.5.3 & 3.5.4

F torsion-free on Za ⇒ F torsion-free on X No 3.2.8

if dimF = dimX No 3.4.23

X equidimensional ⇒ F pure No 3.2.17

if dimF = dimX No 3.2.19

F pure ⇒ X equidimensional No 3.3.4

F torsion-free on X ⇒ X equidimensional No 3.3.4

F torsion-free on Z ⇒ Z equidimensional No 3.4.29

Za equidimensional ⇒ F torsion-free on Za No 3.4.25

Za no embedded ⇒ Zf no embedded No 3.4.18 & 3.4.25

if X integral No 3.4.21

Zf no embedded ⇒ Za no embedded No 3.4.27

F torsion-free on Zf ⇒ F torsion-free on X No 3.2.8

if dimF = dimX ?

F pure ⇒ Zf equidimensional No 3.4.18

if X reduced ?
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Part II

Singular sheaves in the fine Simpson moduli spaces of 1-

dimensional sheaves

Chapter 4 is a reminder of the construction and properties of the Simpson

moduli spaces MP (X ) of semistable sheaves on a projective scheme X with fixed

Hilbert polynomial P . We do this by reviewing classical results from Simp-

son [65], Maican [48] and Le Potier [47]. Reproving some results of Freiermuth

and Trautmann in [25] we also describe the moduli spaces Mam+b for a ≤ 3.

Section 4.1 deals with the necessary preliminaries which we will need for the

rest of the studies, such as Hilbert polynomials, semistability, s-equivalence and

flatness.

In Section 4.2 we define the Simpson moduli functor MP and explain the

concepts of representability, fine and coarse moduli spaces. Then we state Simp-

son’s Theorem which claims the existence of a projective scheme MP (X ) which

corepresents the functor and briefly explain its construction. Moreover there

exists an open subscheme M s
P (X ) whose closed points parametrize isomorphism

classes of stable sheaves in MP (X ). Finally we illustrate that there cannot ex-

ist a fine moduli space when there are properly semistable sheaves with Hilbert

polynomial P .

The aim of Section 4.3 is to give an overview of the properties of the moduli

spaces Mam+b of semistable sheaves on the projective plane with linear Hilbert

polynomial. In particular we see in Corollary 4.3.8 that we obtain a fine moduli

space for coprime a and b. More advanced results are the Theorem of Le Potier,

which gives information about the dimension, irreducibility and smoothness, and

the Duality Theorems of Maican, which gives isomorphisms Mam+b
∼= Mam+a+b

and Mam+b
∼= Mam−b. This restricts the studies to finitely many values of b ∈ Z

for fixed a.

In Section 4.4 we apply our results from Part I to show that semistable

sheaves are torsion-free on their support (Proposition 4.4.1). Then we prove in

Proposition 4.4.5 that the support of a sheaf with Hilbert polynomial am+ b is a

curve of degree a. The final results are Proposition 4.4.16 and Corollary 4.4.21,

which state that stable sheaves in Mam+b with smooth support are locally free
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on their support (i.e. non-singular) and hence that a generic sheaf in Mam+b is

a vector bundle over a smooth curve of degree a. For this one uses that the set

of smooth curves (of degree d) is open and dense in the Hilbert schemes of all

curves (of degree d) on P2.

Section 4.5 starts by introducing syzygies and explains how they can be used

in order to compute global resolutions of coherent sheaves on P2. We compute the

cokernel of a morphism between direct sums of line bundles (Proposition 4.5.9)

and use this in Proposition 4.5.14 to prove that a generic F ∈M s
am+b is a locally

free sheaf of rank 1 on its support. Then we reprove that Mm+1
∼= P2 and

M2m+1
∼= P5. Moreover all of such sheaves are isomorphic to the structure sheaf

of their support, hence there are no singular sheaves in both cases.

In Section 4.6 we review the case of the fine moduli space M3m+1. Sheaves

F ∈ M3m+1 can be described by an exact sequence (Proposition 4.6.4) which is

used to obtain a criterion for F to be singular in Proposition 4.6.10. We also il-

lustrate how a non-reductive group of matrices G acts on this exact sequence and

that M3m+1 is a geometric quotient of a quasi-affine parameter space X ⊂ A18 by

the group G (Theorem 4.6.15). Finally we recall in Theorem 4.6.17 that M3m+1

is isomorphic to the universal cubic curve on P2 and obtain in Proposition 4.6.21

that the subset of singular sheaves M ′
3m+1 is isomorphic to its universal singular

locus, which is smooth, irreducible and of codimension 2.

In Chapter 5 we are going to prove our second main result, which states that

the subvariety M ′ of singular sheaves in M = Mdm−1 for d ≥ 4 is singular and

of codimension 2.

In Section 5.1 we are describing sheaves in a dense open subset M0 ⊆ M to

which we are going to restrict our computations in the following. For this we

define the affine space of Kronecker modules V and state the characterization of

stable sheaves that has been established by Drézet in [13]. In Theorem 5.1.28

we review that sheaves in M without global sections are exactly those of the

resolution (5.8) and given as cokernels of injective matrices containing a stable

Kronecker module. The parameter space of such morphisms, denoted by W0,

is acted on by a non-reductive group G′ of automorphisms. Using that there is
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a 1-to-1 correspondence between isomorphism classes of sheaves given by (5.8)

and the orbits of the G′-action (Corollary 5.1.15), Maican then has shown in [48]

that M0 is a geometric quotient of W0 by G′.

Section 5.2 is dedicated to determining properties of the maximal minors

of a Kronecker module. In particular we prove a formula in Proposition 5.2.5

that describes how these minors change under linear transformations of the rows

and columns. This one allows to show in Proposition 5.2.14 that Kronecker

modules with linearly independent maximal minors are stable. Next we apply

the Theorem of Hilbert-Burch to a Kronecker module Φ with coprime maximal

minors d1, . . . , dn in order to obtain a resolution of the structure sheaf of the

0-dimensional subscheme Z = Z(d1, . . . , dn) defined by the common vanishing

set of d1, . . . , dn (Proposition 5.2.23). Moreover it is shown in Corollary 5.2.44

that Z is of length l =
(
n
2

)
and does not lie on a curve of degree n− 2.

In Section 5.3 we reproduce Maican’s proof from [48] in order to eliminate

the action of the non-reductive part of G′ on W0. This way one obtains by

descent a projective bundle B→ N with fiber P3d−1 (Proposition 5.3.22), where

N is a geometric quotient of Vs. Using that B is also a geometric quotient by

the group G′, we may see M0 as an open subvariety of B (Proposition 5.3.24

and Corollary 5.3.27). Next we restrict the bundle to B0 = B|N0 , where the

subset N0 ⊆ N is given by Kronecker modules with coprime maximal minors.

Proposition 5.3.30 gives an inclusion of open sets B0 ⊆M0. In Proposition 5.3.31

we finally use Hilbert-Burch and the Snake Lemma to describe sheaves in B0 as

twisted ideals sheaves of curves of degree d in (5.27).

The sequence (5.27) is the main motivation of Section 5.4. First we prove a

characterization of free ideals of a simple point on a curve C in Lemma 5.4.1,

which claims that the maximal ideal of a local ring R is free if and only if R is a

regular local ring. After this we consider the case of the ideal of a double point at

the origin given by 〈X, Y 2 〉. In Proposition 5.4.11 we show that it is equivalent

to say that such an ideal is free, that the homogeneous polynomial defining the

curve C contains the monomial Y 2 and that the tangent cone of C at the origin

does not contain the line X = 0. In Proposition 5.4.17 we also consider the case

of a fat curvilinear point of multiplicity n. Here a similar statement holds true,
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but it has no geometric interpretation.

Section 5.5 finally provides the proof of Theorem 5.5.18. We start by ob-

serving that sheaves in B0 can only be singular at singular points of C which

simultaneously lie in Z. Then we distinguish the studies according to the con-

stellation of the l points in Z. For a configuration Nc ⊆ N0, we obtain in

Proposition 5.5.6 that the fibers of B0 over Nc are unions of l different projective

subspaces of P3d−1 of codimension 2. Similarly we obtain in Proposition 5.5.13

that the sheaves which are singular at a double point also constitute a closed

linear projective subspace of codimension 2. After this we compute the smooth

locus of M ′ over Nc in Proposition 5.5.22.

To close the thesis we present some examples (with explicit computations) in

Section 5.6 which illustrate inter alia that there exist stable Kronecker modules

with linearly dependent maximal minors (Example 5.6.1) and that a stable sheaf

may even be non-singular at a double point which is a singular point of the

support (Example 5.6.3). We also give a quick interpretation of our main result

and explain how the study of M can be applied in other research fields. Finally

we again formulate a few open questions for future research.

Appendices

Appendix A is a summary of basic facts of localization of rings and modules.

In particular we explain functoriality and exactness of the localization and an-

alyze under which conditions it commutes with the Hom-functor. Moreover we

study some local properties.

In Appendix B we develop the theory of Primary Ideal Decomposition in

Noetherian rings. We state the Prime Avoidance Lemma and prove that the set

of zero-divisors and nilpotent elements of a ring can be described by means of the

associated primes P1, . . . , Pα of the zero ideal. We also analyze how the associated

primes, which can be written as annihilator ideals, behave under localization. In

the second part we define the associated primes of a module M over a ring and

study their relation with the support of M .
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Appendix C contains complements on torsion and modules over a ring. First

we define what it means for a module to be torsion-free, resp. torsionless and

explain that both notions are in general not equivalent. Then we state some

properties of reflexive and projective modules. Finally we study the case of inte-

gral domains, over which torsion-freeness and torsionlessness of finitely generated

modules are equivalent. We also give a characterization of reflexive modules in

that case and illustrate that this one does not hold true in the non-integral case.

Appendix D consists of 4 completely independent parts. In D.1 we collect sev-

eral well-known results from Commutative Algebra that we are using throughout

the thesis. This way the reader can immediately look up the exact statement.

D.2 develops some facts about intersection of ideals, while D.3 illustrates an ap-

plication of essential ideals to prove torsion-freeness of a module on its support.

Finally D.4 contains basic facts and definitions of GIT which we are mostly using

for constructing quotients in Chapter 5.

In Appendix E we summarize the examples E.1 – E.7 from Part I. We write

down the primary decompositions of the ideals, the associated primes of the

modules and the decompositions of X into (possibly non-reduced) irreducible

components. For a better visualization we also provide figures of the schemes we

are working with.

Appendix F illustrates what happens in case of the moduli space M2m+2,

which is not fine. Theorem F.1.14 states that s-equivalence classes of sheaves

in M2m+2 can be identified with their support and that the singular sheaves

are those which correspond to reducible conics. This allows to show in Corol-

lary F.2.6 that the subset of singular sheaves M ′
2m+2 is singular and of codimen-

sion one. Here one however has to use a modified definition for a sheaf to be

singular since Example F.1.7 shows that s-equivalence classes may simultaneously

contain singular and non-singular sheaves.
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Torsion on non-integral schemes
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Chapter 1

Torsion and irreducible

components

The first aim of this chapter is to find a natural method for decomposing an affine

reducible scheme into finitely many irreducible components. The components of

this decomposition should in particular take care of the topology and of the

dimension of the scheme. Moreover they should encode the multiple structure

if the scheme is not reduced. The main tool for doing this will be Primary

Ideal Decomposition in Noetherian rings. In particular we can apply such a

decomposition to the support of a coherent sheaf.

By using the associated primes we then give characterizations of torsion-free

modules (Proposition 1.3.3) and torsion modules (Proposition 1.3.5). These will

be useful in order to obtain a geometric description of torsion. Indeed it turns out

that the torsion of the module is related to the dimension of the components of

its support. This result is the content of Proposition 1.4.21 and Theorem 1.4.23,

in which we show that the codimension of the support of a coherent torsion sheaf

is positive in each irreducible component of the scheme.

1.1 Reminder on schemes and OX–modules

We start by summarizing some foundations of schemes and sheaves of modules

in general. The aim of this section is just to recall the main results and to fix

3
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the most important notations as we will use them all the time later on. Most

of the statements are given without further explanations. The advanced reader

may immediately skip to Section 1.2. First we refer to Appendix A for some

basic facts on localizations of rings and modules.

1.1.1 Schemes as locally ringed spaces

First we are going to explain the notions of the spectrum of a ring, its Zariski

topology and its structure sheaf, turning it into a locally ringed space. We

also explain the correspondence between closed subschemes of the spectrum and

quotients of the ring. Good references on this topic are e.g. Hartshorne [35],

Section II.2 and [11], Chapter 10.16.

The spectrum of a ring R is defined as the set of all prime ideals in R and

denoted by SpecR. If I E R is an ideal we also denote by V (I) the subset of all

prime ideals containing I. It has the following properties: if J E R is another

ideal and {Ii}i is a family of ideals, then V (I) = V
(

Rad(I)
)
,

V (I) ∪ V (J) = V (I · J) = V (I ∩ J) and
⋂
i V (Ii) = V

(∑
i Ii
)
.

Moreover V (I) ⊆ V (J) if and only if Rad(J) ⊆ Rad(I). This allows to define the

Zariski topology on SpecR by saying that the closed sets are those that are of the

form V (I) for some I E R. The closure in this topology of a point P ∈ SpecR

is

{P} = V (P ) .

So the closed points of SpecR are exactly the maximal ideals ofR. The dimension

of SpecR as a topological space is equal to the Krull dimension of the ring R.

For r ∈ R, we define the distinguished open set D(r) to be the set of all prime

ideals in R which do not contain r. They satisfy D(r)∩D(s) = D(rs), ∀ r, s ∈ R,

hence open sets of the form D(r) form a basis for the Zariski topology on SpecR.

Moreover they allow to prove that SpecR is a compact1 Kolmogorov space.

1Some authors say that SpecR is only quasi-compact as they require compact spaces in

addition to be Hausdorff, which is usually not the case for spectra. We do not adopt this

convention.
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If ϕ : R→ T is a ring homomorphism, it induces a continuous map

φ : SpecT −→ SpecR : Q 7−→ ϕ−1(Q) .

Let I E R. Using that there is a 1-to-1 correspondence between ideals in the

quotient R/I and ideals in R containing I, one also gets a homeomorphism of

topological spaces V (I) ∼= Spec(R/I).

Proposition 1.1.1. [ [11], 10.16.5 ]

If S ⊂ R is a multiplicatively closed set, the ring homomorphism iS : R→ S−1R

(see Definition A.1.1) induces a homeomorphism of topological spaces

Spec(S−1R) ∼−→
{
P ∈ SpecR

∣∣ P ∩ S = ∅
}

: Q 7−→ i−1
S (Q)

with inverse map P 7→ S−1P . In particular there is a 1-to-1 correspondence

between prime ideals in the localization S−1R and prime ideals in R which do

not intersect S.

In order to turn SpecR into a locally ring space, we equip it with a structure sheaf

OR = OSpecR which satisfies OR,P ∼= RP for all P ∈ SpecR and OR
(
D(r)

) ∼= Rr,

∀ r ∈ R. In particular its global sections are OR(SpecR) ∼= R. The continuous

map φ induced by a ring homomorphism ϕ : R → T can now be extended to a

morphism of locally ring spaces

(φ, φ#) : (SpecT,OT ) −→ (SpecR,OR) , φ#
U : OR(U)→ OT (φ−1(U))

for U ⊆ SpecR open, giving rise to a local homomorphism φ#
P : OT,φ(P ) → OR,P

which respects the corresponding maximal ideals. Hence we have a contravari-

ant functor from the category of rings to the category of locally ringed spaces.

Moreover this functor is fully faithful, in the sense that

HomRing(R, T ) ∼= HomLRS

(
(SpecT,OT ), (SpecR,OR)

)
.

Definition 1.1.2. We say that a locally ringed space (X ,OX ) is an affine scheme

if it is isomorphic (as locally ringed spaces) to the spectrum of a ring. A scheme

is a locally ringed space which is locally isomorphic to an affine scheme. Thus

there is an open covering X =
⋃
i Ui such that

(Ui,OX |Ui) ∼= (SpecRi,ORi)

for some rings Ri, ∀ i. The cover {Ui}i is also called an affine covering of X .

5
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If X = SpecR is affine and r ∈ R, then D(r) is again an affine scheme. More

precisely, we have the isomorphism of schemes(
D(r) , OR|D(r)

) ∼= (
SpecRr,ORr

)
.

Note that the homeomorphism of topological spaces already follows from Propo-

sition 1.1.1. One also says that D(r) is an affine open subscheme of SpecR.

A closed subscheme of a scheme X is a scheme which can be embedded into X as

a closed topological subspace. If X = SpecR is affine, then all closed subschemes

of X are of the form V (I) ∼= Spec(R/I) for some ideal I E R, where the injection

Spec(R/I) ↪→ SpecR is induced by R→ R/I.

But depending on the chosen ideal, the scheme structure of a closed subscheme

may change while the underlying topological space does not. For example, if I is

not radical, then V (I) and V (Rad(I)) define two different subschemes of SpecR,

even though they are homeomorphic as topological spaces.

Definition 1.1.3. A scheme (X ,OX ) is called

− connected / irreducible if it is connected / irreducible as a topological space.

− integral if OX (U) is an integral domain for all U ⊆ X open.

− reduced if OX (U) is an reduced ring for all U ⊆ X open.

− locally Noetherian if it can be covered by spectra of Noetherian rings.

− Noetherian if it is locally Noetherian and compact.

Remark 1.1.4. Thus the stalks OX ,x of an integral, resp. reduced scheme X
are integral domains, resp. reduced rings for all x ∈ X .

The converse is false: [ [11], 91.5 ] provides an example of an non-integral ring R

such that the localizations RP are integral domains for all P ∈ SpecR.

Lemma 1.1.5. 1) A scheme is integral if and only if it is reduced and irreducible.

2) Let X = SpecR be an affine scheme. Then X is

a) integral if and only if R is an integral domain.

b) reduced if and only if R is a reduced ring.

c) irreducible if and only if the nilradical nil(R) is a prime ideal.

d) Noetherian if and only if R is a Noetherian ring.

3) The underlying topological space of a Noetherian scheme is a Noetherian topo-

logical space.

6
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Example 1.1.6. Let n ∈ N. The affine n-space is defined as the spectrum of

the polynomial ring in n variables:

An
K := Spec

(
K[X1, . . . , Xn]

)
.

Since K is algebraically closed, its closed points (the maximal ideals) are in 1-to-1

correspondence with points of the classical affine space An. We also denote the

projective n-space by

PnK = Proj
(
K[X1, . . . , Xn]

)
.

Proj is the set of all homogeneous prime ideals in K[X1, . . . , Xn] not containing

M = 〈X1, . . . , Xn 〉, endowed with a similar Zariski topology as above. PnK is a

scheme as it can be covered by n + 1 copies of An
K. Moreover the homogeneous

maximal ideals which are different from M are in 1-to-1 correspondence with the

points of the classical projective space Pn.

1.1.2 Sheaves of OX–modules

Next we want to introduce sheaves on a scheme (X ,OX ) which are compatible

with the scheme structure of X . In particular we are interested in so-called

coherent and locally free sheaves. The main result about coherence is that there

is a correspondence between coherent sheaves and finitely generated modules,

which allows to restrict the study of coherent sheaves to the one of modules over

a ring. References here are Hartshorne [35], Section II.5 and [11], Chapter 17.

Definition 1.1.7. Let (X ,OX ) be a scheme. A sheaf of OX–modules (or an

OX–module) is the data of a sheaf F on X such that F(U) is a module over

the ring OX (U) for all open set U ⊆ X and the module structure commutes

with the restrictions of F and OX . We denote F ∈ Mod(OX ). In particular

OX ∈ Mod(OX ) since every ring defines a module over itself.

An OX–submodule of F is a subsheaf F ′ ∈ Mod(OX ) such that F ′(U) is an

OX (U)–submodule of F(U) for all U ⊆ X open. An ideal sheaf is a subsheaf

of the structure sheaf OX . For F ,G ∈ Mod(OX ), a morphism of OX–modules

ϕ : F → G is the data of a homomorphism ϕU : F(U)→ G(U) of modules over

OX (U) for all open sets U ⊆ X which commutes with the restrictions of F and

G. The space of such morphisms is denoted by Hom(F ,G).

7
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The stalk Fx of F ∈ Mod(OX ) is a module over the local ring OX ,x for all x ∈ X .

Its elements are denoted by sx ∈ Fx and represented by a section s ∈ F(U) for

some open neighborhood U of x such that its germ [s]x is equal to sx.

Every morphism ϕ : F → G induces a homomorphism ϕx : Fx → Gx of modules

over OX ,x on the stalks via ϕx(sx) = [ϕU(s)]x. ϕ is said to be injective, resp.

surjective if the induced module homomorphism ϕx is injective, resp. surjective

for all x ∈ X .

For all F ,G ∈ Mod(OX ), a morphism ϕ : F → G and a subsheaf F ′ ⊆ F ,

one can construct the direct sum F ⊕ G, the tensor product F ⊗ G, the quotient

F/F ′, the kernel kerϕ and the cokernel cokerϕ by using sheafification if neces-

sary. The stalks of these constructions behave nicely and we get

(F ⊕ G)x ∼= Fx ⊕ Gx , (F ⊗ G)x ∼= Fx ⊗ Gx , (F/F ′)x ∼= Fx/F ′x
(kerϕ)x ∼= ker(ϕx) , (cokerϕ)x ∼= coker(ϕx) (1.1)

for all x ∈ X . All of them are again sheaves of OX–modules, so the category

Mod(OX ) admits kernels and cokernels. Moreover it is abelian. By (1.1) a se-

quence of OX–modules

0 −→ F −→ G −→ H −→ 0

is exact if and only if the induced sequence on the stalks

0 −→ Fx −→ Gx −→ Hx −→ 0

is an exact sequence of modules over OX ,x, ∀x ∈ X . Using the correspond-

ing results in the case of modules over a ring, one obtains that the following

(bi)functors are left or right exact:

• ( · )x : Mod(OX )→ Mod(OX ,x) : F 7→ Fx is exact.

• Hom : Mod(OX )op × Mod(OX ) → Mod(OX (X)) : (F ,G) 7→ Hom(F ,G) is left

exact (contravariant in the first argument).

• ⊕ : Mod(OX )× Mod(OX )→ Mod(OX ) : (F ,G) 7→ F ⊕ G is exact.

• ⊗ : Mod(OX )× Mod(OX )→ Mod(OX ) : (F ,G) 7→ F ⊗ G is right exact.

• Γ(U, · ) : Mod(OX )→ Mod(OX (U)) : F 7→ F(U) is left exact, ∀U ⊆ X open.

8
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Let f : X → Y be a morphism of schemes with F ∈ Mod(OX ) and G ∈ Mod(OY).

One defines the direct image f∗F by pushing forward F on Y and the inverse

image f ∗G by pulling G back on X . This way we obtain the pair of functors

f∗ : Mod(OX )→ Mod(OY) and f ∗ : Mod(OY )→ Mod(OX ) which are adjoint, i.e.

Hom(f ∗G,F) ∼= Hom(G, f∗F) ,

functorially with respect to F and G. In particular f∗ is left exact, f ∗ is right

exact and there are canonical morphisms G → f∗f
∗G and f ∗f∗F → F .

Definition 1.1.8. Let F ,G ∈ Mod(OX ). The internal Hom of F and G is defined

by the assignement

Hom(F ,G) : U 7−→ Hom(F|U ,G|U) ,

where F|U and G|U are the restrictions of F and G to the open subscheme

(U,OX |U). It is again an OX–module and hence defines a bifunctor which

is contravariant in the first argument. It induces a module homomorphism(
Hom(F ,G)

)
x → Hom(Fx,Gx) for all x ∈ X , which is not necessarily an iso-

morphism. Finally we also have the adjunction

Hom
(
F ⊗ G , H

) ∼= Hom
(
F , Hom(G,H)

)
, (1.2)

functorially with respect to F ,G,H ∈ Mod(OX ). If the second entry is given by

OX , we denote F∗ := Hom(F ,OX ) and call it the dual sheaf of F .

Now we introduce the derived functors Exti, Tori and H i that are related to

Hom, ⊗ and Γ. Let

0 −→ F1 −→ F2 −→ F3 −→ 0

be a short exact sequences of OX–modules. For F ∈ Mod(OX ) we then have the

following long exact sequences. Left exactness and contravariance of Hom in the

first argument give

0 −→Hom(F3,F) −→ Hom(F2,F) −→ Hom(F1,F) −→ Ext1(F3,F)

−→ Ext1(F2,F) −→ Ext1(F1,F) −→ Ext2(F3,F) −→ . . . .

9
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Covariance and right exactness of the tensor product ⊗ yields

. . . −→ Tor2(F ,F3) −→Tor1(F ,F1) −→ Tor1(F ,F2) −→ Tor1(F ,F3)

−→ F ⊗F1 −→ F ⊗F2 −→ F ⊗F3 −→ 0 ,

and left exactness of Γ(U, · ) for all U ⊆ X open implies

0 −→Γ(U,F1) −→ Γ(U,F2) −→ Γ(U,F3)

−→ H1(U,F1) −→ H1(U,F2) −→ H1(U,F3) −→ H2(U,F1) −→ . . . .

H i(U,F) is called the ith cohomology space of F on U . We say that F is acyclic

if all its higher cohomology spaces vanish, i.e. if H i(X ,F) = {0} for all i ≥ 1.

1.1.3 Coherent sheaves

Let (X ,OX ) be a scheme. In order that the sheaves of our interest behave

somehow “nicely” we want them to be of a certain type.

Definition 1.1.9. We say that a sheaf F ∈ Mod(OX ) is locally free if it is locally

isomorphic to a direct sum of structure sheaves, i.e. if there is an affine covering

{Ui}i such that

F|Ui ∼= O
(Ii)
X |Ui

for some index sets Ii, ∀ i. If the cardinality of these index sets is finite and

constant, say n, then F is said to be locally free of rank n. If n = 1, F is called

invertible. Constant cardinality of the index sets is e.g. satisfied if the scheme is

connected. If E ∈ Mod(OX ) is locally free of finite rank, we moreover have

E∗ ⊗F ∼= Hom(E ,F) , ∀F ∈ Mod(OX )

Proposition 1.1.10. The set consisting of isomorphism classes of invertible

sheaves L ∈ Mod(OX ) forms an abelian group with respect to the tensor product,

the structure sheaf OX as neutral element and inverse L∗ because L⊗L∗ ∼= OX .

This group is called the Picard group of X and denoted by Pic(X ).

The category of locally free sheaves is not abelian since, as in the case of vector

bundles, kernels and cokernels of morphisms between locally free sheaves may

no longer be locally free. This is why we want to look for a “bigger” category

which naturally includes the one of locally free sheaves.

10
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Definition 1.1.11. We say that a sheaf F is of finite type if it can locally be

generated by finitely many sections, i.e. if there is an affine covering {Ui}i and

exact sequences OniX |Ui → F|Ui → 0 for some ni ∈ N (where ni = nj on the

intersection Ui ∩ Uj). If moreover there are mi ∈ N such that the sequences

OmiX |Ui −→ O
ni
X |Ui −→ F|Ui −→ 0

are exact for all i, then F is said to be of finite presentation.

If there only exist such local sequences with infinite direct sums, F is called quasi-

coherent. The category of quasi-coherent sheaves on X is denoted by QCoh(OX ).

Finally we say that F is coherent if it is of finite type and if for every p ∈ N, every

open subset U ⊆ X and every morphism ϕ : OpX |U → F|U , kerϕ is also of finite

type. In particular coherent sheaves are thus of finite presentation. Intuitively

this says that coherent sheaves are locally generated by finitely many sections

and these sections only have finitely many relations between each other. The

category of coherent sheaves on X is denoted by Coh(OX ).

Proposition 1.1.12. Let (X ,OX ) be a locally Noetherian scheme. Then

1) The structure sheaf OX is coherent (as an OX–module).

2) A sheaf F ∈ Mod(OX ) is coherent if and only if it is of finite presentation.

3) If F ∈ Coh(OX ), then the canonical morphism Hom(F ,G)x → Hom(Fx,Gx)
is an isomorphism for all x ∈ X .

The previous definitions of coherence and quasi-coherence actually hold true on

any non-trivial locally ringed space. On schemes we however have an equivalent

description which allows to connect coherent and quasi-coherent sheaves to clas-

sical modules over a ring.

If R is a ring, there exists a functor ∼ : Mod(R) → Mod(OR) : M 7→ M̃ which

associated a sheaf on the affine scheme X = SpecR to every R-module M with

the following properties. For M = R, we obtain R̃ = OR. If M and N are

R-modules, P ∈ SpecR and r ∈ R, then(
M̃
)
P
∼= MP , M̃

(
D(r)

) ∼= Mr , M̃(SpecR) ∼= M

M̃ ⊕N ∼= M̃ ⊕ Ñ , M̃ ⊗R N ∼= M̃ ⊗ Ñ .

11
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If u : M → N is an R-module homomorphism, it induces a morphism ũ : M̃ → Ñ

by functoriality with

k̃eru ∼= ker ũ and c̃okeru ∼= coker ũ .

A ring homomorphism ϕ : R→ T induces a morphism of schemes in the opposite

direction φ : SpecT → SpecR, which satisfies

φ∗(M̃) ∼= M̃ ⊗R T and φ∗(L̃) ∼= L̃ , (1.3)

where L ∈ Mod(T ) is also a module over R because of the morphism ϕ (see

Lemma D.1.2).

Theorem 1.1.13. 1) If M ∈ Mod(R), then M̃ ∈ QCoh(OR).

2) The functor ∼ : Mod(R)→ QCoh(OR) : M 7→ M̃ is fully faithful and exact.

3) A sheaf F ∈ Mod(OR) is quasi-coherent if and only if ∃M ∈ Mod(R) such

that F ∼= M̃ .

4) If R is a Noetherian ring, then F ∈ Mod(OR) is coherent if and only if there

exists a finitely generated R-module M such that F ∼= M̃ .

5) The functor ∼ is a left adjoint of the left exact functor of global sections

Γ(SpecR, · ), i.e. we have

Hom
(
M̃,F

) ∼= HomR

(
M,F(SpecR)

)
, (1.4)

functorially with respect to M ∈ Mod(R) and F ∈ Mod(OR).

Hence the functor ∼ yields a categorical equivalence between the category of R-

modules and the category of quasi-coherent sheaves on the affine scheme SpecR.

If R is Noetherian, this restricts to an equivalence between the category of finitely

generated R-modules and the category of coherent sheaves. As it is fully faithful,

every morphism of quasi-coherent sheaves is induced by some morphism between

the corresponding modules. Exactness and the fact that the stalks of M̃ are

localizations of the module M moreover imply that a sequence of quasi-coherent

OR–modules

0 −→ M̃ −→ Ñ −→ L̃ −→ 0

is exact if and only if the sequence of R-modules 0→M → N → L→ 0 is exact

(since the localized sequence 0 → MP → NP → LP → 0 is exact for all prime

12



LEYTEM Alain 1.2. Decomposition of a scheme into irreducible components

ideals P , see Corollary A.2.14). In particular every injective, resp. surjective

morphism of quasi-coherent sheaves on SpecR is induced by an injective, resp.

surjective homomorphism of modules and quasi-coherent subsheaves of M̃ are

given by submodules of M .

Since an arbitrary scheme (X ,OX ) is covered by affine schemes, we get the

following criterion:

If F ∈ Mod(OX ), then F is a quasi-coherent OX–module if and only if there exists

an affine covering {Ui}i of X with Ui ∼= SpecRi and Ri-modules Mi such that

F|Ui ∼= M̃i for all i. If all Ri are Noetherian rings, then moreover F is coherent

if and only if there are finitely generated Ri-modules Mi such that F|Ui ∼= M̃i,

∀ i. Finally the properties of ∼ also imply that the categories QCoh(OX ) and

Coh(OX ) are closed under taking direct sums, tensor products, kernels, cokernels

and inverse images ; in the case of coherent sheaves, one needs the additional

assumption that X is locally Noetherian (by (1.3) we however see that coherent

sheaves are in general not closed under taking direct images). In particular both

categories are abelian.

Remark 1.1.14. By convention we always assume a scheme to be locally Noethe-

rian as soon as we mention coherent sheaves. Indeed coherence is a property

which does not behave well in the non-Noetherian case as finitely generated mod-

ules are not necessarily of finite presentation and may have submodules which

are no longer finitely generated (compare with Proposition D.1.5).

1.2 Decomposition of a scheme into irreducible

components

In general an arbitrary (affine) Noetherian scheme is a rather complicated object

as it may be reducible and not even connected. This is why we want to decom-

pose it “somehow naturally” into several “easier” (i.e. irreducible) components

which should also take care of the non-reduced scheme structure, if there is any.

Let us refer to Appendix B.2 for some general theory about Primary Ideal De-

composition. This will be the main tool we are going to use in order to decompose

13



LEYTEM Alain 1.2. Decomposition of a scheme into irreducible components

affine schemes into irreducible components.

In the following we first give the general procedure of how to find such an irre-

ducible decomposition and then apply it to a concrete example. This one should

give the reader a detailed illustration of the process once and for all as we do

not repeat the details in applications later on. Moreover we will state several

problems of the decomposition that are related to the non-reduced structure and

explain how to solve them.

Remark 1.2.1. We recall that the zero ideal in a Noetherian ring is decompos-

able (Theorem B.2.23) and can be written as an intersection {0} = Q1∩ . . .∩Qα

of finitely many primary ideals Qi E R. Their radicals Pi = Rad(Qi) are prime

ideals and called the associated primes of R. By Corollary B.2.16 they give the

set of zero-divisors and nilpotent elements in R as

ZD(R) = P1 ∪ . . . ∪ Pα and nil(R) = P1 ∩ . . . ∩ Pα . (1.5)

Finally if r ∈ R and P ∈ SpecR, then Corollary B.2.22 gives the sets of zero-

divisors in the localizations by

ZD(Rr) = (P1)r ∪ . . . ∪ (Pγ1)r , ZD(RP ) = (P1)P ∪ . . . ∪ (Pγ2)P (1.6)

for some γ1, γ2 ≤ α and the primes are numbered such that r /∈ P1, . . . , Pγ1 , resp.

P1, . . . , Pγ2 ⊆ P .

1.2.1 Irreducible components of an affine scheme

Let R be a Noetherian ring with associated primes P1, . . . , Pα. Similarly as in

(B.7) we compute

SpecR = V
(
{0}
)

= V
(⋂

iQi

)
=
⋃
i V (Qi) =

⋃
i V (Pi) .

So if we denote X = SpecR and Xi = V (Pi) for all i ∈ {1, . . . , α}, we get a

decomposition

X =
α⋃
i=1

Xi (1.7)

of X into irreducible subschemes (at least on the topological level) since we have

Xi ∼= Spec(R/Pi) where each R/Pi is an integral domain, see Lemma 1.1.5.

14
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Remark 1.2.2. This decomposition allows to explain the terminology of mini-

mal and embedded primes of R. Indeed if Pi ( Pj are associated primes, then

Xj ( Xi and the component Xj is included in Xi. The minimal primes correspond

to the (maximal) irreducible components and the embedded primes correspond

to irreducible subschemes that are embedded in the irreducible components. If

the ring R is reduced, Lemma B.2.18 implies that it has no embedded primes,

and hence that SpecR has no embedded components.

Topologically one may forget about the embedded components since they are not

maximal. However they are important since they encode a non-reduced struc-

ture which cannot be seen on the topological level. We illustrate this fact on the

following example.

1.2.2 Example

Consider the Noetherian ring R = K[X, Y ]/〈Y 2, XY 〉 ; we will call this Exam-

ple E.1. Let us find its associated primes. We have

{0̄} = 〈 X̄ 〉 ∩ 〈 Ȳ 〉 ,

where Q1 = 〈 X̄ 〉 is primary since R/〈 X̄ 〉 ∼= K[Y ]/〈Y 2 〉 is a ring in which all

zero-divisors are nilpotent and Q2 = 〈 Ȳ 〉 is prime since R/〈 Ȳ 〉 ∼= K[X̄] is an

integral domain. The corresponding radicals are P1 = Rad(Q1) = 〈 X̄, Ȳ 〉 and

P2 = Q2 = 〈 Ȳ 〉. Hence

Ass
(
{0̄}
)

=
{
P1 = 〈 X̄, Ȳ 〉 , P2 = 〈 Ȳ 〉

}
,

where P2 is minimal and P2 ( P1. Thus we have ZD(R) = P1 ∪ P2 = 〈 X̄, Ȳ 〉.
This can also be seen directly since

Ȳ ·
(
f̄ X̄ + ḡȲ

)
= 0̄ , ∀ f, g ∈ K[X, Y ] .

As P2 ( P1, one may omit the component V (P1) ( V (P2) and according to (1.7)

the affine scheme SpecR = V (P2) is already irreducible. Actually V (P1) just

defines a point lying on the affine line

V (P2) ∼= Spec
(
R/〈 Ȳ 〉

) ∼= Spec
(
K[X̄]

) ∼= A1
K .
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However we cannot omit P1 if we want to describe all zero-divisors of R. Alter-

natively irreducibility of SpecR can be seen by the fact that nil(R) = 〈 Ȳ 〉 = P2

(by (1.5) it is the intersection of all minimal primes), hence the nilradical is a

prime ideal. More precisely, we have

Lemma 1.2.3.

SpecR =
{
〈 Ȳ 〉 , 〈 X̄ − a, Ȳ 〉

∣∣ a ∈ K
}
. (1.8)

Proof. Denote I = 〈Y 2, XY 〉 ; we have to find all prime ideals P such that

I ⊆ P ( K[X, Y ]. Note that I is not a prime ideal since Y 2 ∈ I, but Y /∈ I.

This implies that Y ∈ Rad(I). I ⊆ P then implies that Rad(I) ⊆ Rad(P ), i.e.

we have Y ∈ P . But for this 〈Y 〉 and 〈X − a, Y 〉 are all possibilities. Indeed,

assume that P = 〈Y, f1, . . . , fk 〉 for k ≥ 1 such that gcd(f1, . . . , fk) 6= 1. Hence

gcd(fi, fj) 6= 1, ∀ i, j. Using Y we may moreover assume that they only depend

on X. If all fi are irreducible, we need that k = 1, otherwise their gcd will be 1.

If some fj is reducible, then P must contain at least one of its factors, otherwise

P is not prime. By induction, P must contain an irreducible polynomial g which

divides fj. So we can replace fj by g. But this g then needs to divide all other

fi, otherwise the gcd will be 1. In the end, all fi will be multiples of g. In both

cases we thus have P = 〈Y, f 〉 with f ∈ K[X] irreducible, i.e. f is of degree 1

and ∃ a ∈ K such that f = X − a since K is algebraically closed.

Remark 1.2.4. Consider P1 and P2 as points in SpecR. We want to see what

the inclusion P2 ⊂ P1 means on the topological level. P1 is a maximal ideal since

R/P1
∼= K, hence the point {P1} is closed. But {P2} is not closed ; actually it is

a generic point since

{P2} = V (P2) =
{
P ∈ SpecR

∣∣ P2 ⊆ P
}

= X .

In particular, P1 belongs to the closure of P2. Hence P2 ⊂ P1 can be rewritten

as P1 ∈ {P2}.

Remark 1.2.5. Note that the primary decomposition of {0̄} in R can be re-

covered from the one of I in K[X, Y ]. Indeed when looking at the generators of
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LEYTEM Alain 1.2. Decomposition of a scheme into irreducible components

I, one sees SpecR intuitively as a subscheme of A2
K given by the horizontal line

Z(Y ) with a “vertical” double point at the origin (0, 0). Consider the individual

ingredients L = 〈Y 〉 for the line and D = 〈X, Y 2 〉 for the double point. Then

I = L ∩D

is a primary decomposition of I in K[X, Y ]. Indeed, D is primary since

K[X, Y ]/D ∼= K[Y ]/〈Y 2 〉

as rings with Rad(D) = 〈X, Y 〉 and L is a prime ideal. Moreover Y 2 ∈ L ∩D
and XY ∈ L∩D, so I ⊆ L∩D. Conversely, let f ∈ L∩D, i.e. ∃ a, b, g ∈ K[X, Y ]

such that f = gY = aX + bY 2. Hence

gY = aX + bY 2 ⇔ aX = (g − bY )Y .

Since 〈Y 〉 is a prime ideal with X /∈ 〈Y 〉, we need that a = h · Y for some

h ∈ K[X, Y ]. Therefore

aX = (g − bY )Y ⇔ hX · Y = (g − bY ) · Y ⇒ g − bY = hX ,

so that f = gY = (hX + bY )Y = hXY + bY 2 ∈ I.

Problem 1

However the descriptions (1.7) and (1.8) have several problems. The first one is

that (1.8) does not allow to see SpecR as a line with a double point as a closed

subscheme of A2
K since it only describes the spectrum topologically. In fact, (1.7)

already implies that all structures in X are integral since we only consider prime

ideals.

A solution for this problem is to go back to the actual primary ideal decompo-

sition of {0̄} (or I in K[X, Y ]) instead of just looking at the associated primes.

This gives the decomposition

X = SpecR =
⋃
i V (Qi) ∼=

⋃
i Spec(R/Qi) .

As Pi = Rad(Qi), this is topologically the same decomposition as the one in

(1.7), but with a richer scheme structure on each component because V (Qi) is
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given by the quotient R/Qi instead of R/Pi, which is an integral domain. In

particular we can have non-reduced structures since all zero-divisors in R/Qi are

nilpotent. Applying this to our example, we find

X = SpecR = Spec
(
K[X, Y ]/I

) ∼= V (I) = V (L) ∪ V (D)

∼= Spec
(
K[X, Y ]/L

)
∪ Spec

(
K[X, Y ]/D

)
∼= Spec

(
K[X]

)
∪ Spec

(
K[Y ]/〈Y 2 〉

)
,

thus X = A1
K ∪ {dp}, where {dp} is a double point.2

Lemma 1.2.6. A1
K ↪→ X and {dp} ↪→ X are both maximal irreducible closed

subsets in X ↪→ A2
K.

Proof. A1
K
∼= V (L) ⊂ A2

K, thus it is closed in X ∼= V (I). Moreover it is irreducible

since K[X] is an integral domain. To see that it is maximal, we have to show

that there does not exist an ideal J E K[X, Y ] such that V (J) is irreducible and

A1
K ( V (J) ( X . But

A1
K ⊆ V (J) ⊆ X ⇔ V (L) ⊆ V (J) ⊆ V (I)

⇔ Rad(I) ⊆ Rad(J) ⊆ Rad(L) ⇔ 〈Y 〉 ⊆ Rad(J) ⊆ 〈Y 〉 .

Hence A1
K ↪→ X is a maximal irreducible closed subset. For the double point we

have {dp} ∼= V (D) ⊂ A2
K and nil

(
K[Y ]/〈Y 2 〉

)
= 〈 Ȳ 〉, which is a prime ideal, so

it is closed and irreducible. For maximality, let J E K[X, Y ] be such that V (J)

is irreducible and V (D) ⊆ V (J) ⊆ V (I). As above, we get

Rad(I) ⊆ Rad(J) ⊆ Rad(D) ⇔ 〈Y 〉 ⊆ Rad(J) ⊆ 〈X, Y 〉 .

Note that there does not exist prime ideals between 〈Y 〉 and 〈X, Y 〉 since

K[X, Y ] has Krull dimension 2. However there exist arbitrary ideals, and even

radical ideals between them, e.g.

〈Y 〉 ( 〈Y,X2 〉 ( 〈X, Y 〉 or 〈Y 〉 ( 〈Y,X2 +X 〉 ( 〈X, Y 〉 .
2Right now it suffices to imagine a “double point” as two points being infinitesimally close

to each other. More precise explanations will be given in Section 1.4.1 and Example 1.4.9.

18



LEYTEM Alain 1.2. Decomposition of a scheme into irreducible components

But there are none if we require that V (J) should be irreducible (e.g. the second

ideal defines 2 simple points, so it is not an admissible choice). As Y ∈ Rad(J),

let Rad(J) = 〈Y, f1, . . . , fk 〉, where the fi only depend on X. Since Rad(J) is

in 〈X, Y 〉, we also need that no fi has a constant term, i.e. gcd(f1, . . . , fk) is at

least X and we can rewrite Rad(J) = 〈Y, g1X, . . . , gkX 〉. Let

N := nil
(
K[X, Y ]/Rad(J)

)
,

V (J) = V
(

Rad(J)
) ∼= Spec

(
K[X, Y ]/Rad(J)

)
.

Since the quotient by a radical ideal is a reduced ring, we have N = {0̄}. To get

irreducibility we need it to be a prime ideal, i.e. the quotient must be an integral

domain. But we have the relations ḡi · X̄ = 0̄, ∀ i, which lead to the following

possibilities:

If k = 0, then Rad(J) = 〈Y 〉, so let k ≥ 1. If X̄ = 0̄, then X ∈ Rad(J), hence

Rad(J) = 〈X, Y 〉. If X̄ 6= 0̄, then ḡi = 0̄, so gi ∈ Rad(J) for all i. But since

the gi do not depend on Y , this means that they are again multiples of X, i.e.

gi = hiX, ∀ i. Then the relation (h̄iX̄) · X̄ = 0̄ implies again that hi ∈ Rad(J)

for all i, otherwise X̄ would be a zero-divisor. By induction, this yields

gi = ci ·Xni

for some ci ∈ K and ni = deg gi. If ni > 0, we need that ci = 0, otherwise X̄

would be nilpotent. So we obtain that all gi are constant and Rad(J) = 〈X, Y 〉.
Hence {dp} ↪→ X is maximal too.

Remark 1.2.7. Thus X = A1
K ∪ {dp} defines a decomposition of X into irre-

ducible components which is essentially different from (1.7). In particular no

component is superfluous, even though {dp} is included in A1
K as a topological

space.

The difference between the decompositions X = V (P2) and X = V (L) ∪ V (D)

into irreducible components is that the second one considers the possible non-

reduced structures on the components defined by the embedded primes, whose

corresponding irreducible components are not maximal and hence disappear on

the topological level.
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Problem 2

Since P1 is an embedded prime, its corresponding primary ideal is not unique

(compare with Proposition B.2.19). Similarly the primary ideal decomposition

of I in K[X, Y ] is not unique, e.g. one checks that I = 〈Y 2, XY 〉 writes as

I = 〈Y 〉 ∩ 〈X, Y 2 〉 = 〈Y 〉 ∩ 〈X2, XY, Y 2 〉 = 〈Y 〉 ∩ 〈Y 2, X + Y 〉

with

Rad
(
〈X, Y 2 〉

)
= Rad

(
〈X2, XY, Y 2 〉

)
= Rad

(
〈Y 2, X + Y 〉

)
= 〈X, Y 〉 ,

i.e. all decompositions define the same topological space, but they give different

scheme structures.

1) Denote J = 〈X2, XY, Y 2 〉 ; then Spec
(
K[X, Y ]/J

)
defines a triple point since

the K-vector space K[X, Y ]/J ∼= K⊕KX̄ ⊕KȲ is 3-dimensional. With this we

get a decomposition X = V (L) ∪ V (J) into (maximal) irreducible components

given by line Z(Y ) ∼= A1
K and a triple point, which is essentially different from

the decomposition A1
K ∪ {dp}. Intuitively this also makes sense since “one part

of the triple point is included in the line”, so we don’t get “more” than for the

double point. In the quotient R = K[X, Y ]/I this decomposition becomes

I = 〈Y 〉 ∩ 〈X2, XY, Y 2 〉 ⇒ {0̄} = 〈 Ȳ 〉 ∩ 〈 X̄2 〉 ,

where 〈 X̄2 〉 E R is also primary since R/〈 X̄2 〉 ∼= K[X, Y ]/J is a ring in which

all zero-divisors are nilpotent (of order 2):

(f̄ X̄ + ḡȲ )2 = f̄ 2X̄2 + 2f̄ ḡX̄Ȳ + ḡ2Ȳ 2 = 0̄

for all f̄ , ḡ ∈ K[X, Y ]/J .

2) Denote K1 = 〈Y 2, X + Y 〉 ; this gives a decomposition of X = V (L)∪ V (K1)

into a line and a double point. Whether it is different from X = V (L) ∪ V (D)

depends on how we want to see our scheme. If we consider V (K1) and V (D) as

independent schemes (i.e. as spectra of rings), both decompositions will be the

same since there is just 1 double point without embedding. But if we see them

as closed subschemes of A2
K (i.e. as modules over the polynomial ring given by
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the quotients K[X, Y ]/K1 and K[X, Y ]/D), the decompositions will be different.

Actually for any a ∈ K, the ideal

Ka = 〈Y 2, X + aY 〉

will give another primary decomposition I = L ∩Ka, which yields a decompo-

sition X = A1
K ∪ {dp} where the double point depends on the “angle” at the

origin. For a = 0, we recover the “vertical” double point.

Remark 1.2.8. Hence there is (still) no canonical way of decomposing X into

maximal irreducible components that takes care of non-reduced structures on

the embedded components. All we can say is that we have the topological de-

composition given by (1.7), but this one only sees the reduced structures. In

order to give the component a non-reduced structure, if it is intended to exist,

we have to choose one of the primary ideals in the initial primary decomposition

of {0̄} (or I).

1.2.3 Computing primary decompositions in polynomial

rings

In practise it is not always easy to find the primary decomposition of an ideal

in a Noetherian ring. However it can be done quite quickly for Noetherian rings

which are finitely generated K-algebras. Basically this means that such rings

are just quotients of polynomial rings. This is also useful in applications since

spectra of quotients of polynomial ring describe subschemes of the affine space

An
K, which are easy to visualize.

The computer algebra system Singular [12], developed by the University of

Kaiserslautern3, allows to decompose ideals in polynomial rings over Q. For our

purposes this will mostly be sufficient. So in practice we may assume that every

ideal I E R = K[X1, . . . , Xn] can be decomposed. For an ideal in a quotient of

the form Ī E R/J , one computes the primary decomposition of I + J in R and

then projects down again to the quotient (compare Remark B.2.11).

3A program simulating Singular is available at https://cloud.sagemath.com
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Remark 1.2.9. Using a similar method one can also compute primary decom-

positions in sums of polynomial rings and quotients. Let us describe the idea of

this method by the following examples.4

Example 1.2.10. We want to find the primary decomposition of {0} in the

Noetherian ring

R = K[X, Y ]⊕
(
K[X, Y ]/〈X, Y 〉

)
.

The idea is to consider R as a finitely generated K-algebra and to find the

relations between its generators so that we can rewrite it as a quotient of a

bigger polynomial ring. Then it will be of the form R ∼= K[X1, . . . , Xn]/A for

some ideal A E K[X1, . . . , Xn] that describes the relations. We e.g. set the

generators of R to be

1↔ (1, 0̄) , X ↔ (X, 0̄) , Y ↔ (Y, 0̄) , U ↔ (1, 1̄) .

There are no relations between 1, X, Y . For the last one we get 1 · U = U ,

X · U = 0, Y · U = 0 and U2 = U . So

R ∼= K[X, Y, U ]/A = K[X, Y, U ]
/
〈XU, Y U, U(U − 1) 〉

and the primary decomposition is A = 〈U 〉∩〈X, Y, U−1 〉. Hence SpecR ⊂ A3
K

is given by the plane V (U) together with the (simple) point (0, 0, 1). This is also

the intuitive picture (the definition of R suggests that SpecR consists of a plane

and a point).

Example 1.2.11. Now we consider the Noetherian ring

R =
(
K[X, Y ]⊕K[X, Y ]

)/
〈 (X, Y ) 〉 .

Here the computations are a bit more complicated since we take the direct sum

of 2 polynomial rings and divide out the principal ideal generated by the element

(X, Y ) = (X, 0) + (0, Y ). Let

1↔ (1, 1) , U1 ↔ (1, 0) , U2 ↔ (0, 1) ,

X1 ↔ (X, 0) , X2 ↔ (0, X) , Y1 ↔ (Y, 0) , Y2 ↔ (0, Y ) .

4We point out that the technique is not indispensable for the rest of our work ; we just

present it as a complement.
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Apart from the relations U1 +U2 = 1 and X1 +Y2 = 0 (dividing out the principal

ideal) we have

U2
1 = U1 , U1U2 = 0 , U1X1 = X1 , U1X2 = 0 , U1Y1 = Y1 ,

U1Y2 = 0 , U2
2 = U2 , U2X1 = 0 , U2X2 = X2 , U2Y1 = 0 ,

U2Y2 = Y2 , X1X2 = 0 , X1Y2 = 0 , X2Y1 = 0 , Y1Y2 = 0 .

Computing a Gröbner basis of all these relations (there are 17 in total) with

Singular gives

A = 〈Y2 , X1 + Y2 , U1 + U2 − 1 , X2Y1 , U2Y1 , X2(U2 − 1) , U2
2 − U2 〉 ,

hence we can divide out the variables Y2, X1 and U1. Renaming U2 = X, X2 = Y

and Y1 = Z, we finally obtain

R ∼= K[X, Y, Z]
/
〈Y Z,XZ,XY − Y,X2 −X 〉

and Singular gives the primary decomposition 〈X, Y 〉 ∩ 〈X − 1, Z 〉. Thus

SpecR is equal to the union of the 2 skew lines {X = Y = 0} and {X = 1, Z = 0}
in A3

K.

1.2.4 Connected components of a scheme

Similarly as for the irreducible components of a scheme, one may ask how to

find its connected components. First note that every irreducible component is

connected itself (as a topological space), but they are not necessarily maximal,

e.g. two components may intersect, so that the connected component to which

they belong is bigger than the irreducible ones.

This already describes the idea of how to find the connected components of

SpecR: first we determine the irreducible ones by using the primary decomposi-

tion of {0} E R, then we analyze which of them intersect and take the union in

case of a non-empty intersection. To know whether two (or more) components

intersect or not, we compute V (I) ∩ V (J) = V (I + J) and

V (I + J) = ∅ ⇔ @P ∈ SpecR such that I + J ⊆ P .
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As every proper ideal is contained in a maximal ideal, we hence get

V (I) ∩ V (J) = ∅ ⇔ I + J = R .

So we know that two irreducible components do not intersect if the sum of their

defining ideals is equal to R. The ones which do not intersect any other one

are thus connected components. For those which intersect, we have to take

their union in order to obtain the connected component to which they belong.

However there is a problem when taking this union because

V (I) ∪ V (J) = V (I ∩ J) = V (I · J)

and both descriptions give the same topological space. But since I · J ⊆ I ∩ J ,

the one defined by I · J has a richer subscheme structure. So one is tempted to

choose I ·J as it will define a “bigger” scheme (similarly as we preferred primary

ideals instead of prime ideals so that we can obtain non-reduced structures).

On the other hand, it may happen that the structure defined by I · J is even

richer than the one we started with, see e.g. Example 1.2.12 below. This should

of course not happen as we don’t want to “create new structures” in the initial

scheme that we are supposed to study. Hence in order to get the connected

components of a scheme, one always takes the intersection of the ideals defining

the irreducible components that intersect.

Some general facts about intersections of ideals can be found in Appendix D.2.

It includes a criterion (Proposition D.2.7) to decide under which conditions the

product and the intersection agree.

Example 1.2.12. 1) If we take I = J , we get I2 ⊆ I. For I = 〈X 〉 in R = K[X],

we then find 〈X2 〉 ( 〈X 〉. This would e.g. create a double point out of a simple

point.

2) Let I = 〈X 〉 and J = 〈X, Y 〉 in R = K[X, Y ], so that I ·J = 〈X2, XY 〉 and

I ∩ J = 〈X 〉.
3) An example where no ideal is included in the other one is e.g. I = 〈X 〉
and J = 〈X2, Y 〉 in R = K[X, Y ]. Then one gets I · J = 〈X3, XY 〉 and

I∩J = 〈X2, XY 〉. Note that this corresponds to Example E.1 (by interchanging

the variables X and Y ). The primary decomposition

〈X2, Y 〉 = 〈X 〉 ∩ 〈X2, Y 〉
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decomposes the scheme into two irreducible components. As

〈X 〉+ 〈X2, Y 〉 = 〈X, Y 〉 6= R ,

both components intersect, so we only have one connected component. But the

product has the primary decomposition

〈X 〉 · 〈X2, Y 〉 = 〈X3, XY 〉 = 〈X 〉 ∩ 〈X3, Y 〉 ,

and thus gives a line with an embedded triple point. Hence taking the product

of the ideals defining the components instead of the intersection gives a bigger

scheme than the initial one.

1.3 Modules, torsion and their associated primes

In this section we want to show that there are relations between the associated

primes of a module and its torsion. Recall that the torsion submodule of an

R-module M is given by

TR(M) =
{
m ∈M

∣∣ ∃ r ∈ R, r 6= 0 such that r is a NZD and r ∗m = 0
}
.

Basic facts and properties about TR(M) are given in Appendix C.

1.3.1 A criterion for torsion-freeness

It is possible to see whether an R-module M is torsion-free by only looking at the

associated primes of M and R. Our first goal is to establish such a criterion. For

this let us refer to Appendix B.3 for the definition and basic facts of AssR(M).

Proposition 1.3.1. [ [4], II.§7.n◦10.Cor.2, p.115 ] and [ [53], 60762 ]

The assignment TR : Mod(R) → Mod(R) : M 7→ TR(M) defines an additive

covariant and left exact functor. Moreover, if R is Noetherian and M is finitely

generated, then TR(M) is finitely generated as well and we get a left exact functor

TR : Modf (R) −→ Modf (R) : M 7−→ TR(M) .
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Proof. Additivity is proven in Proposition C.1.4 and functoriality follows from

Lemma C.1.9. Since an R-module homomorphism ϕ : M → N moreover satisfies

ϕ
(
TR(M)

)
⊆ TR(N), it induces a morphism

TR(ϕ) = ϕ|TR(M) : TR(M) −→ TR(N) .

To check left exactness, let 0 −→ M
ϕ−→ N

ψ−→ L be an exact sequence of

R-modules. It induces the sequence

0 −→ TR(M)
ϕ−→ TR(N)

ψ−→ TR(L) ,

where ψ◦ϕ = 0 and ϕ is still injective (restriction of an injective map). It remains

to show that a torsion element in kerψ is the image of a torsion element under

ϕ. Let n ∈ TR(N) such that ψ(n) = 0. Then ∃m ∈ M such that n = ϕ(m) by

exactness of the initial sequence. From n ∈ imϕ and injectivity of ϕ, it follows

again from Lemma C.1.9 that m ∈ TR(M).

Remark 1.3.2. In general, the functor is not right exact. Consider for example

the exact sequence of Z-modules

0 −→ Z ·2−→ Z −→ Z/2Z −→ 0 .

Then Z is torsion-free (over itself), but TZ(Z/2Z) 6= {0} by Example C.1.6.

Proposition 1.3.3. [ [21], 3.8, p.7 ] and [ [11], 15.16.8 ]

If R is a Noetherian ring, we have the following criterion for torsion-freeness of

an R-module M :

M is torsion-free

⇔ all associated primes of M are contained in the associated primes of R

⇔ ∀P ∈ AssR(M), ∃Q ∈ AssR(R) such that P ⊆ Q .

where AssR(R) = Ass
(
{0}
)
. In particular, torsion-free modules over integral

domains are exactly those whose only associated prime is {0}.

Proof. Denote the associated primes of R by P1, . . . , Pα. By Remark B.3.2 they

correspond to the associated primes of the zero ideal {0} E R.
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⇒ : Assume that M is torsion-free and let P = AnnR(x) for some x ∈ M ,

x 6= 0 be an associated prime of M . P cannot contain a NZD, otherwise this

NZD annihilates x, which would thus be a non-zero torsion element. Hence P

only contains zero-divisors and P ⊆ P1 ∪ . . . ∪ Pα, which by Prime Avoidance

(Lemma B.1.3) implies that P ⊆ Pi for some i ∈ {1, . . . , α}.
⇐ : By contraposition, assume that M has a non-zero torsion element m with

NZD r ∈ R. Denote A := AnnR(m). Thus r ∈ A. Now consider the injection

R/A ↪→ M : ā 7→ a ∗m. We have A 6= R as 1 ∗m 6= 0, hence R/A 6= {0} and

AssR(R/A) 6= ∅ by Proposition B.3.4 since R is Noetherian. Let P = AnnR(c̄)

for some c̄ ∈ R/A be an associated prime of R/A. Proposition B.3.5 and the

exact sequence 0 → R/A → M imply that P ∈ AssR(M) as well. On the other

hand, r ∈ P since r ∗ c̄ = r̄ · c̄ = 0̄ because r ∈ A. Thus P is an associated

prime of M and contains the NZD r. So it cannot be contained in any of the Pi,

otherwise it would only consist of zero-divisors.

Remark 1.3.4. A = AnnR(m) is an annihilator ideal, but it does not need to

be prime. So we do not necessarily have A ∈ AssR(M).

1.3.2 Characterization of torsion modules

After discussing the case of torsion-freeness we are now interested in finding a

criterion that indicates under which conditions we have a torsion module. Again

it suffices to look at the associated primes.

Proposition 1.3.5. Let P1, . . . , Pα be the associated primes of a Noetherian ring

R and M a finitely generated R-module. The following conditions are equivalent:

1) M is a torsion module.

2) AnnR(M) contains a NZD.

3) AnnR(M) * Pi for all i ∈ {1, . . . , α}.

Proof. The equivalence 1) ⇔ 2) is proven in Lemma C.1.2 since M is finitely

generated.

2) ⇒ 3) : Let r ∈ AnnR(M) be a NZD. Since P1 ∪ . . . ∪ Pα is the set of all

zero-divisors in R, we have r /∈ Pi, ∀ i. Hence AnnR(M) * Pi for all i.
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3)⇒ 2) : If AnnR(M) only contains zero-divisors, then AnnR(M) ⊆ P1∪. . .∪Pα,

hence by Prime Avoidance we have AnnR(M) ⊆ Pj for some j, which is a

contradiction. So AnnR(M) must contain a NZD.

1.3.3 Behaviour of torsion under localization

Let M be an R-module and P ∈ SpecR. By Definition A.2.1 we know that the

localization MP is a module over RP via r
s
∗ m
a

= r∗m
s·a . In this section we want to

analyze how the torsion of M behaves under localization. Let us again denote

the associated primes of R by P1, . . . , Pα.

Proposition 1.3.6. [ [43], p.204 ] and [ [66], p.8 ]

Let R be a Noetherian ring an r ∈ R with r 6= 0. Then r is a NZD if and only

if r
1
∈ RP is a NZD for all P ∈ SpecR.

Proof. ⇒ : (also works in the non-Noetherian case) r being a NZD means that

@ t ∈ R, t 6= 0 such that r · t = 0. Fix any P ∈ SpecR. Then r
1
6= 0 since b ·r 6= 0,

∀ b /∈ P . And if there is an element s
a
∈ RP such that r

1
· s
a

= 0, then ∃ b /∈ P
such that brs = bs · r = 0. Since r is a NZD, we need b · s = 0, which means that
s
a

= 0. It follows that r
1

is a NZD as well.

⇐ : Let r be a zero-divisor ; we show that in this case there exists a prime

ideal P such that r
1

remains a zero-divisor in RP . As r is a zero-divisor, we have

r ∈ P1 ∪ . . . ∪ Pα, hence r ∈ Pi for some i. But then r
1

is a zero-divisor in RPi

because of (1.6) ; the zero-divisors in RPi are given by the localizations of the

assciated primes that are contained in Pi, so in particular for Pi itself. Thus the

statement follows by contraposition.

Remark 1.3.7. If r
1

is a NZD in RP for some P , this does not imply that r is

a NZD in R. In Example 1.4.29 we will see that there exist zero-divisors that

become NZDs in the localization, e.g. if the associated primes are

P1 ∪ . . . ∪ Pγ ∪ Pγ+1 ∪ . . . ∪ Pα ,

where P1, . . . , Pγ ⊆ P , then a zero-divisor in Pj with j > γ becomes a NZD in

the localization RP .
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Proposition 1.3.8. cf. [ [52], 35328 ]

Let M be a module over a Noetherian ring R and m ∈M . Then

m ∈ TR(M) ⇔ m
1
∈ TRP (MP ) , ∀P ∈ SpecR . (1.9)

Proof. ⇒ : (also works in the non-Noetherian case) Let m ∈ TR(M) and r ∈ R,

r 6= 0 be a NZD such that r ∗m = 0. Thus r
1
∗ m

1
= 0 and from Proposition 1.3.6

we know that r
1
∈ RP is a NZD for each prime ideal P , hence m

1
(which may be

zero for some P ’s, but not for all, except if m = 0, see Corollary A.2.12) is a

torsion element in each MP .

⇐ : Let m /∈ TR(M) ; we show that in this case there exists a prime ideal Q

such that m
1

is not a torsion element in MQ. As m is not a torsion element in R,

it cannot be annihilated by a NZD, hence its annihilator AnnR(m) is contained

in the set P1 ∪ . . . ∪ Pα of all zero-divisors. By Prime Avoidance we thus have

AnnR(m) ⊆ Pi for some i ∈ {1, . . . , α}. Let Q := Pi ; then m
1
/∈ TRQ(MQ).

Indeed, first note that m
1
6= 0 since all elements that annihilate m belong to

AnnR(m) and are hence in Q, thus a ∗m 6= 0, ∀ a ∈ R \ Q. Next assume that
r
s
∗ m

1
= 0 for some r

s
∈ RQ, which means that

b ∗ (r ∗m) = 0 ⇔ (b · r) ∗m = 0

for some b /∈ Q. This implies b · r ∈ AnnR(m) ⊆ Q, hence r ∈ Q since Q is

prime and it follows again from (1.6) that r
1

is a zero-divisor in RQ. Thus m
1

is

a non-zero element that can only be annihilated by zero-divisors, i.e. it is not a

torsion element in MQ.

Remark 1.3.9. The equivalence (1.9) is true for arbitrary modules since the

proof does not need an assumption on M to be finitely generated. However it

does not hold in the non-Noetherian case. An example is given in [ [52], 35328 ].

In the proof of Proposition 1.3.8 we use the fact that R is Noetherian to ensure

existence of the associated primes.

Corollary 1.3.10. If M is a module over a Noetherian ring R such that the local-

ization MP is a torsion-free RP -module for all P ∈ SpecR, then M is torsion-free

module over R.
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Proof. Let m ∈M be such that r ∗m = 0 for some NZD r ∈ R. Then r
1
∈ RP is

also a NZD by Proposition 1.3.6, hence r
1
∗m

1
= 0 for all P ∈ SpecR. Since all MP

are torsion-free, we need that m
1

= 0 for all P , hence m = 0 by Corollary A.2.12

and thus TR(M) = {0}.

Remark 1.3.11. If R is an integral domain, the converse of Corollary 1.3.10

holds true as well, see Proposition C.4.14. However it is false in general ! If

M is torsion-free, then there may exist prime ideals P E R such that MP has

non-trivial torsion ; we will see an example in Section 2.3.

However the statement that torsion-freeness of M implies torsion-freeness of the

localizations also holds true in a more general setting ; this will be the aim of

Proposition 2.2.20 and Corollary 2.2.22.

1.4 Relation between torsion and dimension of

the support

Now we are ready to prove the main result of the first chapter. We want to show

that there is a relation between the torsion of a finitely generated module and

the support of the coherent sheaf that it defines. Indeed in Proposition 1.4.21 we

see that torsion modules are supported in smaller dimension and Theorem 1.4.23

will prove that the dimension of the support of a torsion module actually drops

in all irreducible components of the scheme. Finally we will also illustrate these

results on several examples.

1.4.1 Scheme structure of the support of a sheaf

Let (X ,OX ) be a locally Noetherian scheme scheme and F ∈ Coh(OX ). The goal

of this section is to define the support of F on X by putting a suitable subscheme

structure on it. Here there is no canonical choice, but there are two structures

which are more relevant than the other ones.

Definition 1.4.1. [ [16], p.492-493 ]

Let M be an R-module of finite presentation with a generating set {m1, . . . ,mn}
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and consider

Rm A−→ Rn −→M −→ 0

for some m ∈ N. The matrix A is a morphism between free modules and its

entries are elements in R which encode the relations r1 ∗m1 + . . .+ rn ∗mn = 0

between the generators. Here we consider the vectors of the free modules as rows

and multiply them by the matrix on the right. The Fitting ideal of M , denoted

by Fitt0(M), is defined as the ideal generated by all minors of A (determinants

of submatrices) of order n.5 If m < n, we set Fitt0(M) := {0} by definition.

Lemma 1.4.2 (Fitting’s Lemma). [ [16], p.493-495 ] and [ [18], V-9, p.219-220 ]

1) The Fitting ideal does not depend on the generators or the presentation of M .

2) AnnR(M)n ⊆ Fitt0(M) ⊆ AnnR(M).

3) In particular, the Fitting ideal and the annihilator ideal have the same radical.

Now we apply the same idea to coherent sheaves on a scheme. Recall that every

closed subscheme of an affine scheme SpecR is of the form V (I) ∼= Spec(R/I)

for some ideal I E R and thus given by an ideal sheaf Ĩ ⊆ OR. Vice-versa,

every ideal sheaf defines a closed subscheme. On an arbitrary scheme, the same

construction works locally.

Definition 1.4.3. [ [18], V-10, p.220 ]

Let F ∈ Coh(OX ) and {Ui}i with Ui ∼= SpecRi be an affine covering such

that F|Ui is given by some finitely generated Ri-module Mi. The Fitting ideals

Fitt0(Mi) coincide on the intersections Ui ∩ Uj and hence define an ideal sheaf

I ⊆ OX . We denote I = Fitt0(F).

As a topological space the support of F is defined as the set

suppF =
{
x ∈ X

∣∣ Fx 6= {0}} ,
on which we now want to put the structure of a scheme. Note that if F|Ui ∼= M̃i,

then we have a homeomorphism supp(F|Ui) ∼= supp(Mi), where the support of

Mi is as in Definition B.3.10.

5This is actually the definition of the 0th Fitting ideal of M . As we do not need the other

ones, we omit the general definition.
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Proposition 1.4.4. cf. [ [35], II, Ex. 5.6, p.124 ] , [ [6], II.§4.n◦4.Prop.17, p.133 ]

Let R be a Noetherian ring, M a finitely generated R-module and consider the co-

herent sheaf F = M̃ on X = SpecR. Then suppF is closed and, as a topological

space, given by V (AnnR(M)).

Proof. The statement already follows from Proposition B.3.11 since

suppM =
{
P ∈ SpecR

∣∣ MP 6= {0}
}

=
{
P ∈ SpecR

∣∣ AnnR(M) ⊆ P
}

= V
(

AnnR(M)
)
.

However let us also prove directly that Z = suppF is closed. For this we show

that U := X \ Z is open, i.e. if MP = {0} for some P ∈ SpecR, there exists an

open neighborhood V of P such that MQ = {0} for all Q ∈ V .

Let P ∈ U be fixed. If MP = {0}, then every generator mi satisfies mi
1

= 0, i.e.

∃ ri ∈ R\P such that ri∗mi = 0, ∀ i ∈ {1, . . . , n}. Define V := D(r1)∩. . .∩D(rn).

Then V is open and any element Q ∈ V satisfies ri /∈ Q, ∀ i (thus P ∈ V ). Hence

∀ i, mi
s

= 0 in MQ for such Q. It follows that m
s

= 0 for all m ∈ M since M is

finitely generated and MQ = {0} for all Q ∈ V . Thus V ⊆ U .

Thus any ideal I E R satisfying Rad(I) = Rad(AnnR(M)) defines the same

topological subspace of SpecR. In particular Rad(AnnR(M)) is the biggest ideal

that introduces a closed subscheme structure on the support. Moreover, as a

radical ideal, Lemma 1.1.5 implies that it is the only one which defines a reduced

scheme structure. By Lemma 1.4.2, we know that Fitt0(M) and AnnR(M) have

the same radical. This motivates

Definition 1.4.5. Let R be a Noetherian ring, M a finitely generated R-module

and F = M̃ . Denote I = AnnR(M) and I ′ = Fitt0(M). We define the annihi-

lator support of F as the closed subscheme V (I) ∼= Spec(R/I) and the Fitting

support of F by V (I ′) ∼= Spec(R/I ′).

If X is an arbitrary locally Noetherian scheme and F ∈ Coh(OX ), the same

definition applies locally on an affine covering where F is described by finitely

generated modules whose Fitting ideals glue to the ideal sheaf Fitt0(F) ⊆ OX .

We denote the annihilator support of F by Za(F) and its Fitting support by

Zf (F). Za(F) can be seen as the minimal closed subscheme structure which can
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be put on suppF since its structure sheaf is obtained by dividing out the func-

tions that vanish on the support. Zf (F) is defined via Fitt0(F), which is locally

generated by the minors of a finite free presentation of F , thus it encodes the

relations between the local generators and takes care of the locally free resolution

of F .

Remark 1.4.6. In general Za(F) is a proper closed subscheme of Zf (F) and

the structure of the Fitting support may be richer than the one of the annihilator

support, see Example 1.4.9. We will point out some other essential differences

between both supports in Section 3.4.

Example 1.4.7. Let I E R be an ideal and consider the R-module M = R/I

with F = M̃ . Then

Za(F) = Zf (F) = V (I) ∼= Spec(R/I) .

Indeed we have AnnR(M) = AnnR(R/I) = I. For the Fitting support, note that

M is generated by 1̄, hence a relation r ∗ 1̄ = 0̄ implies that r annihilates all

elements in M and vice-versa since every m ∈ M writes as m = a ∗ 1̄ for some

a ∈ R. Thus Fitt0(M) = I as well.

This example already illustrates the following fact.

Lemma 1.4.8. If M ∈ Mod(R) is generated by 1 element, then

AnnR(M) = Fitt0(M) and Za(M̃) = Zf (M̃) .

Proof. If M is generated by some m ∈ M , then an element r ∈ R defines a

relation r ∗m = 0 if and only if r belongs to AnnR(M) since all elements in M

are multiples of m.

Example 1.4.9. [ [18], p.220 ]

Let R = K[X], I = 〈X 〉, J = 〈X2 〉. Consider the affine line X = SpecR = A1
K

with the closed subschemes Y1 = V (I) and Y2 = V (J). As topological spaces we

have Y1 = Y2 since

Y1
∼= Spec(R/I) ∼= SpecK and Y2

∼= Spec(R/J) ∼= Spec
(
K[ε]

)
,
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where ε2 = 0, so both just consist of 1 point. However the schemes are different

since R/I ∼= K and R/J ∼= K ⊕ Kε, so OY2 = OR/J has more sections than

OY1 = OR/I . Indeed Y1 is a single point and Y2 is a double point, both sitting

in the affine line A1
K. The projection R/J → R/I actually implies that Y1 is a

proper closed subscheme of Y2 (even though their underlying topological spaces

are equal). Now consider the sheaves

F := OY2 and G := OY1 ⊕OY1 .

Since AnnR(R/J) = J and AnnR(R/I ⊕ R/I) = I, we obtain Za(F) = Y2 and

Za(G) = Y1. Multiplying by the generators of the annihilators we moreover

obtain the resolutions

R
ϕ−→ R −→ R/J −→ 0 and R⊕R A−→ R⊕R −→ R/I ⊕R/I −→ 0 ,

where ϕ = X2 and

A =

(
X 0

0 X

)
.

Since detϕ = detA = X2, we get Fitt0(R/J) = Fitt0(R/I ⊕ R/I) = J and

therefore the Fitting supports are Zf (F) = Zf (G) = Y2. In particular we see

that Za(G) is a proper subscheme of Zf (G).

1.4.2 Application: irreducible components of the support

Let M be a finitely generated R-module defining a coherent sheaf F = M̃ on

SpecR. We want to decompose its support into irreducible components in the

same way as described in Section 1.2.

Let I E R be any ideal such that V (I) = suppM as topological spaces (i.e. we

choose a structure on the support of F). If we want to find a decomposition of

V (I) ∼= Spec(R/I), we shall find a primary decomposition of the zero ideal {0̄}
in the ring R/I. By Proposition B.2.10 this can be done by finding the primary

decomposition of I in R. This one then goes down to a primary decomposition

of {0̄} in R/I and gives the associated primes which define the irreducible com-

ponents of Spec(R/I).

Note that the decomposition depends on the chosen ideal I, e.g. the irreducible
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components of the Fitting support and the annihilator support are in general

not the same.

1.4.3 Some facts about dimensions of ideals

In order to prove our main theorems about torsion and dimension, we need some

classical results about the dimension of ideals in a Noetherian ring, which we

briefly state in this subsection.

Definition 1.4.10. [ [54], 12.A, p.71 ]

Let R be a ring. If P E R is a prime ideal, we define its height, denoted by

ht(P ), to be the biggest number of proper inclusions in a chain of prime ideals

contained in P . This notion extends to arbitrary ideals: if I E R is any ideal,

we define the height of I to be

ht(I) := inf
{

ht(P )
∣∣ P ∈ SpecR such that I ⊆ P

}
.

The Krull dimension of R is given by dimR = sup{ ht(P ) | P ∈ SpecR }.

Example 1.4.11. It is known that the Krull dimension of the polynomial ring

K[X1, . . . , Xn] is n. If R is Noetherian, then every prime ideal in R has finite

height. But there also exist Noetherian rings of infinite Krull dimension.

Lemma 1.4.12. [ [54], 12.A, p.72 ]

If P ∈ SpecR, then ht(P ) is equal to the Krull dimension of the localization RP .

Proof. This follows from Proposition 1.1.1 which claims that prime ideals in a

localization S−1R are in 1-to-1 correspondence with prime ideals in R which do

not intersect S via P 7→ S−1P . Taking S = R \ P , a maximal chain of prime

ideals in R which are contained in P thus corresponds to a maximal chain of

prime ideals in RP , and vice-versa.

Proposition 1.4.13. [ [54], 12.A, p.72 ]

For any ideal I E R, we have

dim(R/I) + ht(I) ≤ dimR . (1.10)
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Proof. First note that the projection π : R� R/I gives a 1-to-1 correspondence

between prime ideals in R/I and prime ideals in R containing I (if P̄ E R/I is

prime, then so is π−1(P̄ ) and it contains I and by surjectivity of π, the image of

a prime ideal P E R containing I is still an ideal and also prime because

ā · b̄ ∈ π(P ) ⇔ ∃ r ∈ P such that a · b = π(r) = r̄

⇔ a · b− r ∈ kerπ = I ⊆ P ⇒ a · b ∈ P ) .

Hence a maximal chain of prime ideals in R/I corresponds to a maximal chain

of prime ideals in R containing I. Denote dim(R/I) = m and let P0 E R be a

prime ideal containing I which gives a maximal chain of inclusions:

I ⊆ P0 ( P1 ( . . . ( Pm ( R .

Let ht(P0) = `. So there is another chain of prime ideals P ′` ( . . . ( P ′1 ( P0.

Adding both chains, we obtain a chain of prime ideals in R of length m+ `, thus

dimR ≥ m+ `. But since I ⊆ P0, we get ` ≥ ht(I). Finally

dim(R/I) + ht(I) ≤ m+ ` ≤ dimR .

Remark 1.4.14. In some cases, one can even obtain equality, e.g. it is shown in

[ [54], 14.H, p.92 ] that if R is an integral domain which is also a finitely generated

K-algebra, then every prime ideal P E R satisfies dim(R/P ) + ht(P ) = dimR.

Theorem 1.4.15 (Krull’s Height Theorem). [ [54], 12.I, p.77] , [ [55], 13.5, p.100]

Let R be a Noetherian ring and I = 〈 r1, . . . , rk 〉 an ideal generated by k elements.

Then every minimal prime ideal containing I (i.e. a prime that is minimal among

all primes containing I) has height at most k. In particular, ht(I) ≤ k.

Originally this theorem has been proven by Krull on induction. The base case

k = 1 is the hardest part and is itself an important theorem.

Theorem 1.4.16 (Krull’s Principal Ideal Theorem). [ [2], 11.17 & 11.18, p.122 ]

Let R be a Noetherian ring and a ∈ R such that a 6= 0 and a is not a unit. Then

the principal ideal 〈 a 〉 6= R has height at most 1. Moreover it has height 1 if a

is a NZD (the converse is false).
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Proof. We only prove the statements about NZDs. Let a be a NZD and assume

that the height of 〈 a 〉 is 0. Let P be a prime ideal containing 〈 a 〉 and which is

minimal for this property. Thus ht(P ) = 0. On the other hand, P must contain

a minimal prime associated to {0}, see Proposition B.2.19. But this inclusion

cannot be strict as P is of height 0. Thus P is a minimal prime, which contradicts

that a ∈ P as (1.5) implies that minimal primes only contain zero-divisors. It

follows that 〈 a 〉 must be of height 1.

Remark 1.4.17. cf. [ [53], 334340 ]

If a is a zero-divisor, then it is still possible that 〈 a 〉 has height 1.6 Consider e.g.

Example E.1 and the zero-divisor a = X̄. The only prime ideal in R containing

X̄ is P1 = 〈 X̄, Ȳ 〉, see (1.8), and this one is of height 1 as it contains 〈 Ȳ 〉. Thus

ht
(
〈 Ȳ 〉

)
= 0 , ht

(
〈 X̄ 〉

)
= ht

(
〈 X̄, Ȳ 〉

)
= 1 .

In particular, this example shows that 〈 a 〉 being of height 1 does not necessarily

mean that 〈 a 〉 contains a prime ideal itself (as it is the case for prime ideals).

Remark 1.4.18. The key element for the failure above is that a = X̄ does not

belong to any minimal prime. Indeed the converse is true if R does not have

embedded primes (e.g. if R is reduced). If this is the case, then any zero-divisor

a ∈ R belongs to a minimal prime, which does not contain any other prime ideal,

hence the height of 〈 a 〉 is 0.

Lemma 1.4.19. Let Pj be an embedded prime of a Noetherian ring R. If we

denote X = SpecR and Xj = V (Pj), then dimXj < dimX .

Proof. Let Pi ( Pj be a minimal prime contained in Pj and consider the projec-

tion ϕ : R→ R/Pj. If we have a maximal chain of prime ideals

{0̄} ( Q1 ( Q2 ( . . . ( Q`

in the integral domain R/Pj, then

Pi ( Pj = ϕ−1
(
{0̄}
)
( ϕ−1(Q1) ( ϕ−1(Q2) ( . . . ( ϕ−1(Q`)

is a longer chain of prime ideals in R, hence dimR > dim(R/Pj).

6So there is an error on this webpage:

http://mathworld.wolfram.com/KrullsPrincipalIdealTheorem.html
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Remark 1.4.20. In general, nothing can be said about the dimension of a

component Xi = V (Pi) if Pi is a minimal prime. It may be equal to dimX
(Example 1.4.25) or drop as well (Example 1.4.26).

1.4.4 Theorem and examples

Now we prove that coherent sheaves given by torsion modules are supported in

smaller dimension.

Proposition 1.4.21. Let M be a finitely generated module over a Noetherian

ring R. Denote F = M̃ and X = SpecR. If M is a torsion module, then

dim(suppF) < dimX . (1.11)

The converse is true if R is an integral domain.

Proof. By Proposition 1.4.4 we have

suppF = V
(

AnnR(M)
) ∼= Spec

(
R/AnnR(M)

)
.

Hence in order to prove (1.11), it suffices to show that the Krull dimensions

satisfy

dim
(
R/AnnR(M)

)
< dimR .

Since M is a finitely generated torsion module, we know by Proposition 1.3.5 that

there is a NZD a ∈ AnnR(M) with a 6= 0. By Krull’s Principal Ideal Theorem,

〈 a 〉 has height 1 and thus (1.10) implies that

dim
(
R/〈 a 〉

)
+ 1 ≤ dimR .

Since 〈 a 〉 ⊆ AnnR(M), we moreover have a projection R/〈 a 〉� R/AnnR(M),

which implies that

dim
(
R/〈 a 〉

)
≥ dim

(
R/AnnR(M)

)
.

Hence dim(R/AnnR(M)) ≤ dimR− 1 < dimR.

Conversely, let R be an integral domain and assume that M is not a torsion

module. Proposition 1.3.5 then says that AnnR(M) only contains zero-divisors,

i.e. AnnR(M) = {0}, so the Krull dimensions are equal. By contraposition: if

dim
(
R/AnnR(M)

)
< dimR, then M must be a torsion module.
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Remark 1.4.22. Actually the converse of Proposition 1.4.21 also holds true in

a more general case. We will see that one in Corollary 3.1.25. But in general it

may fail (in the non-integral case) even if M is torsion-free. We will illustrate

this in Example 1.4.25 and Example 1.4.26.

So we see that the dimension of the support of a sheaf given by a torsion module

always drops at least by 1, i.e. codimX (suppF) ≥ 1. However there is an even

stronger result, which has mainly been pointed out by O. Iena.

Theorem 1.4.23. Let M be a finitely generated module over a Noetherian ring

R. Denote F = M̃ , X = SpecR and Xi = V (Pi) for all i, where P1, . . . , Pα

are the associated primes of R. Then M is a torsion module if and only if the

codimension of suppF is positive along each irreducible component:

codimXi
(
(suppF) ∩ Xi

)
≥ 1 , ∀ i ∈ {1, . . . , α} . (1.12)

By negation, M is not a torsion module if and only if there is at least 1 component

in which the dimension does not drop: ∃ i ∈ {1, . . . , α} such that

dim
(
(suppF) ∩ Xi) = dimXi . (1.13)

Proof. Assume that M is not a torsion module, so by Proposition 1.3.5 we have

AnnR(M) ⊆ Pi for some i ∈ {1, . . . , α}. This Pi may be a minimal or an

embedded prime. But then

AnnR(M) ⊆ Pi ⇔ Rad
(

AnnR(M)
)
⊆ Pi

⇔ V (Pi) ⊆ V
(

AnnR(M)
)
⇔ Xi ⊆ suppF .

Hence M is not completely torsion if and only if there is a component Xi which is

completely contained in the support of F , i.e. all stalks of F on Xi are non-zero.

By negation, this means:

M is a torsion module if and only if no component Xi is completely included

in suppF , so on each Xi there are stalks of F which are zero. By coherence

of F this implies that there is an open neighborhood U ⊆ X with U ∩ Xi 6= ∅
on which all stalks of F are zero. Since Xi is an irreducible component, its

underlying topological space is irreducible and U ∩ Xi is dense in Xi. It follows
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that the complement (suppF) ∩ Xi is closed and proper in Xi. Thus it must be

of codimension ≥ 1.

Remark 1.4.24. Note that (1.12) is a much stronger condition than (1.11)

as it says that the dimension drops in every component ! In particular this

is important if the components of SpecR have different dimensions, see e.g.

Example 1.4.26. It may also be possible that the codimension in one (or more)

of the components is strictly bigger than 1. We will e.g. encounter the case of

codimension 2 at the end of Example 1.4.27.

Example 1.4.25. Consider again Example E.1. R is not reduced and we have

an embedded prime P2 ( P1. Let us first compute the dimensions of X = SpecR,

X1 = V (P1) and X2 = V (P2).

Since K[X, Y ]� R and K[X, Y ] is an integral domain, we have dimR < 2. The

chain 〈 Ȳ 〉 ( 〈 X̄, Ȳ 〉 then implies that dimR = 1 (note that {0̄} and 〈 X̄ 〉 are

not prime ideals). Since R/P1
∼= K and R/P2

∼= K[X̄], we obtain dim(R/P1) = 0

and dim(R/P2) = 1. Finally dimX = 1, dimX1 = 0 and dimX2 = 1 (which is

intuitively clear as X consists of a line with an embedded double point).

Now consider M = K. We give it an R-module structure by first considering it

as K ∼= K[X, Y ]/〈X, Y 〉 as a module over K[X, Y ]. Then

〈Y 2, XY 〉 ⊆ AnnK[X,Y ](K) = 〈X, Y 〉 ,

so K is also a module over R ; the structure is given by f̄ ∗λ = λ · f(0). Actually

this is the same as K ∼= R/〈 X̄, Ȳ 〉. So we also see that K is generated by 1 (as

an R-module), hence F = K̃ is a coherent sheaf on X . To find its support, we

have to compute AnnR(K). Let f̄ ∈ R and λ ∈ K such that f̄ ∗ λ = 0, i.e.

f̄ ∗ λ = 0 ⇔ λ · f(0) = 0 ⇔ λ = 0 or f(0) = 0 ⇔ λ = 0 or f̄ ∈ 〈 X̄, Ȳ 〉 ,

and we get AnnR(K) = 〈 X̄, Ȳ 〉. But 〈 X̄, Ȳ 〉 = P1 ∪ P2 is the set of all zero-

divisors in R. It follows by Proposition 1.3.5 that K is not a torsion module

over R. More precisely, we even have TR(K) = {0} since only zero-divisors can

annihilate non-zero elements, i.e. K is torsion-free over R. This can also be seen

by computing the associated primes of M . By Remark B.3.2 we have

AssR(M) = AssR
(
R/〈 X̄, Ȳ 〉

)
= Ass

(
〈 X̄, Ȳ 〉

)
=
{
〈 X̄, Ȳ 〉

}
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since 〈 X̄, Ȳ 〉 is already a prime ideal in R. Proposition 1.3.3 now implies that

M is torsion-free over R since 〈 X̄, Ȳ 〉 ⊆ P1. As AnnR(K) = P1 is an embedded

prime, we also see that

suppF = V
(

AnnR(K)
)

= V (P1) = X1

is 0-dimensional. Thus the converse of Proposition 1.4.21 is false: even sheaves

that are given by torsion-free modules can have supports of lower dimension if

the scheme is not integral. But (1.13) is satisfied because (suppF) ∩ X1 = X1,

so the dimension along the (embedded) component X1 did not drop.

Example 1.4.26. We want to analyze what happens in a space where the min-

imal components have different dimensions. Consider the space given by a plane

in A3
K and a line passing through this plane. In coordinates, we thus need either

Z = 0 or X = Y = 0, i.e. the ideal 〈ZX,ZY 〉. Let R := K[X, Y, Z]/〈ZX,ZY 〉,
which is a reduced Noetherian ring, but not an integral domain. This will be

called Example E.2.

The line is given by the ideal L = 〈 X̄, Ȳ 〉 and the plane by P = 〈 Z̄ 〉. Their in-

tersection gives {0̄} = L∩P , which is also the primary ideal decomposition of {0̄}.
Note that L and P are both prime ideals since R/L ∼= K[Z̄] and R/P ∼= K[X̄, Ȳ ]

are integral domains. In addition both are minimal, so there are no embedded

primes (which was clear since R is reduced).

Next we compute dimR: from K[X, Y, Z]� R, we get dimR < 3. Moreover we

have the chain of prime ideals

〈 Z̄ 〉 ( 〈 X̄, Z̄ 〉 ( 〈 X̄, Ȳ , Z̄ 〉 ,

so that dimR = 2 (note that {0̄}, 〈 X̄ 〉 and 〈 Ȳ 〉 are not prime). By the above,

dim(R/L) = 1 and dim(R/P ) = 2. In particular, we see that the dimension of

the component XL = V (L) is strictly smaller than the one of X = SpecR, even

though L is a minimal prime. On the other hand, the dimension of XP = V (P )

is equal to dimX .

Now we considerM = R/〈 X̄, Ȳ 〉 ∼= K[Z̄] which is an R-module via f̄∗[ḡ] = [f̄ ·ḡ].

As it is generated by [1̄], the sheaf F = M̃ is coherent on X . Let us compute
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AnnR(M) and TR(M). The set of all zero-divisors in R is given by

P ∪ L = 〈 Z̄ 〉 ∪ 〈 X̄, Ȳ 〉 .

Note that M = R/〈 X̄, Ȳ 〉, seen as a ring, is an integral domain. Hence for all

f̄ ∈ R and [ḡ] ∈M with [ḡ] 6= [0̄] we have

f̄ ∗ [ḡ] = [0̄] ⇔ [f̄ · ḡ] = [0̄] ⇔ [f̄ ] · [ḡ] = [0̄] ⇔ [f̄ ] = [0̄] ⇔ f̄ ∈ 〈 X̄, Ȳ 〉 ,

so that AnnR(M) = 〈 X̄, Ȳ 〉 and TR(M) = {0} since only zero-divisors can

annihilate non-zero elements. This is again verified by the associated primes

since AssR(M) = { 〈 X̄, Ȳ 〉 } and we have 〈 X̄, Ȳ 〉 ⊆ L. Thus M is torsion-free,

but the support

suppF = V
(

AnnR(M)
)

= V (L) = XL

is 1-dimensional. This is an example in a reduced ring which shows that the

converse of Proposition 1.4.21 is not true. On the other hand (1.13) is still

satisfied. Note in addition that F ∼= OXL since V (L) ∼= Spec(R/L), i.e. F is

nothing but the structure sheaf of the component XL.

Example 1.4.27. We want to construct an example where we have a non-trivial

torsion submodule. The idea is to consider a subscheme of A3
K that is made up

of 2 perpendicular planes and a line that only passes through one of the planes,

e.g. the planes described by the equations Z = 0 and X = 0 with the line

{X = Y = 0}. This can be obtained by taking

R = K[X, Y, Z]
/〈
Y Z(X − 1), XZ(X − 1)

〉
, (1.14)

which is a reduced Noetherian ring. (1.14) will from now on be called Exam-

ple E.3. The primary decomposition of the defining ideal is

I = 〈Y Z(X − 1) , XZ(X − 1) 〉 = 〈Z 〉 ∩ 〈X − 1 〉 ∩ 〈X, Y 〉

⇒ {0̄} = 〈 Z̄ 〉 ∩ 〈 X̄ − 1 〉 ∩ 〈 X̄, Ȳ 〉 ,

where all the ideals in the decomposition in R are already prime (dividing out

anyone of them will give an integral domain). Hence the associated primes are

P1 = 〈 Z̄ 〉, P2 = 〈 X̄ − 1 〉, P3 = 〈 X̄, Ȳ 〉 and the set of zero-divisors in R reads

ZD(R) = 〈 Z̄ 〉 ∪ 〈 X̄ − 1 〉 ∪ 〈 X̄, Ȳ 〉 .
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Denote X = SpecR with the irreducible components X1,X2,X3 defined by the

associated primes. As expected, we obtain dimX = 2 because of K[X, Y, Z]� R

and we have the chain of prime ideals 〈 Z̄ 〉 ( 〈 Z̄, X̄ 〉 ( 〈 Z̄, X̄, Ȳ 〉. Moreover

dimX1 = 2, dimX2 = 2 and dimX3 = 1 since

R/P1
∼= K[X̄, Ȳ ] , R/P2

∼= K[Ȳ , Z̄] , R/P3
∼= K[Z̄] .

So we get another example where not all irreducible components of X are of the

same dimension.

Next we consider the R-module M = R/〈 Ȳ Z̄ 〉 and the sheaf F = M̃ . M is

generated by [1̄] ∈M , so F is coherent. Intuitively the support of F consists of

the intersection of SpecR with the union of the 2 planes V (Z) and V (Y ). This

gives the union of a plane and 2 lines:

suppF = {Z = 0} ∪ {X = Y = 0} ∪ {X = 1, Y = 0} .

To prove this rigorously, we use the method from Section 1.4.2 (here Za(F) and

Zf (F) coincide since M is generated by 1 element) and compute the primary

decomposition of AnnR(M) = 〈 Ȳ Z̄ 〉 in R.

Note that it is not 〈 Ȳ Z̄ 〉 = 〈 Ȳ 〉 ∩ 〈 Z̄ 〉 since 〈 Ȳ 〉 is not a primary ideal (the

quotient contains zero-divisors which are not nilpotent). Moreover we cannot

take the primary decomposition of 〈Y Z 〉 in K[X, Y, Z] since this ideal does not

contain the defining ideal I (compare Remark B.2.11). One has to decompose〈
Y Z , Y Z(X − 1) , XZ(X − 1)

〉
=
〈
Y Z , XZ(X − 1)

〉
= 〈Z 〉 ∩ 〈X − 1, Y 〉 ∩ 〈X, Y 〉 ,

which yields 〈 Ȳ Z̄ 〉 = 〈 Z̄ 〉 ∩ 〈 X̄ − 1, Ȳ 〉 ∩ 〈 X̄, Ȳ 〉 and gives the support we

intuitively found before since

suppF = V
(

AnnR(M)
) ∼= Spec

(
R/AnnR(M)

)
,

so the decomposition of 〈 Ȳ Z̄ 〉 gives the primary decomposition of the zero ideal

in R/AnnR(M). We denote these components by Z1,Z2,Z3 respectively. By
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Remark B.3.2 we again have

AssR(M) = Ass
(

AnnR(M)
)

= AssR
(
〈 Ȳ Z̄ 〉

)
=
{
P ′1 = 〈 Z̄ 〉 , P ′2 = 〈 X̄ − 1, Ȳ 〉 , P ′3 = 〈 X̄, Ȳ 〉

}
.

In particular, we see that the support along the components X1 and X3 did not

drop (Z1 = X1 and Z3 = X3), which means that M is not a torsion module by

Theorem 1.4.23. This can also be seen by the fact that AnnR(M) only contains

zero-divisors (Proposition 1.3.5).

On the other hand, this does not imply that M is torsion-free. Proposition 1.3.3

actually implies that it is not since P ′2 is an associated prime of M which is

not contained in any of the Pi’s. So let us find the torsion submodule TR(M).

[ḡ] ∈M is a torsion element if there exists a NZD f̄ ∈ R such that

f̄ ∗ [ḡ] = [0̄] ⇔ [f̄ · ḡ] = [0̄] ⇔ f̄ · ḡ ∈ 〈 Ȳ Z̄ 〉 = 〈 Z̄ 〉 ∩ 〈 X̄ − 1, Ȳ 〉 ∩ 〈 X̄, Ȳ 〉 .

Now f̄ · ḡ ∈ 〈 Z̄ 〉 implies that either f̄ or ḡ is a multiple of Z̄ since 〈 Z̄ 〉 is a

prime ideal. But f̄ /∈ 〈 Z̄ 〉 since it is a NZD, hence ḡ ∈ 〈 Z̄ 〉. Similarly we obtain

ḡ ∈ 〈 X̄, Ȳ 〉. The remaining ideal does not give additional information. So we

can already say that

ḡ ∈ 〈 Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 = 〈 X̄Z̄, Ȳ Z̄ 〉 ,

and hence [ḡ] ∈ 〈 [X̄Z̄] 〉. But this necessary form is also sufficient since [X̄Z̄] is

a torsion element:(
Ȳ + X̄−1

)
∗ [X̄Z̄] = Ȳ ∗ [X̄Z̄] + (X̄−1)∗ [X̄Z̄] = [X̄Ȳ Z̄] + [X̄Z̄(X̄−1)] = [0̄] ,

where Ȳ + X̄ − 1 /∈ P1 ∪ P2 ∪ P3 is a NZD. It follows that TR(M) = 〈 [X̄Z̄] 〉.
Denote T = TR(M) and let us compute the support of the sheaf associated to

this torsion module. Intuitively the support of T̃ just consists of the line Z2 since

it vanishes on {XZ = 0} = V (X) ∪ V (Z) inside of suppF . More precisely: for

P ∈ SpecR,

TP = {0} ⇔ [X̄Z̄]
1̄

= 0 ⇔ ∃ f̄ /∈ P such that f̄ ∗ [X̄Z̄] = [0̄]

⇔ ∃ f̄ /∈ P such that f̄ X̄Z̄ ∈ 〈 Ȳ Z̄ 〉 . (1.15)
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But 〈 Ȳ Z̄ 〉 ⊆ 〈 X̄ − 1, Ȳ 〉 which is prime and neither contains X̄, nor Z̄. Thus

f̄ X̄Z̄ ∈ 〈 Ȳ Z̄ 〉 if and only if f̄ ∈ 〈 X̄ − 1, Ȳ 〉 and we get the criterion

TP = {0} ⇔ ∃ f̄ ∈ 〈 X̄ − 1, Ȳ 〉 \ P ,

hence

TP 6= {0} ⇔ @ f̄ ∈ 〈 X̄ − 1, Ȳ 〉 \ P ⇔ 〈 X̄ − 1, Ȳ 〉 ⊆ P ⇔ V (P ) ⊆ Z2 ,

i.e. non-zero localizations can only appear inside of the line Z2. This is also

compatible with (1.12) since the dimension of the support of T̃ dropped in each

component of X :

(suppT ) ∩ X1 = point , (suppT ) ∩ X2 = line , (suppT ) ∩ X3 = ∅ .

In particular, we see that the dimension even dropped by 2 in the plane X1.

Remark 1.4.28. Let us apply the process described in Section 1.2.4 to Exam-

ple E.3 in order to find its connected components. The intuitive picture (union

of 2 planes and a perpendicular line) already illustrates that X should be con-

nected. If we consider the ideals, we see that P2 + P3 = R, so X2 and X3 do not

intersect. However P1 +P2 6= R and P1 +P3 6= R, so X1 intersects both of them.

Hence we shall take the intersection of all 3 ideals to get P1 ∩P2 ∩P3 = {0̄} and

X1 ∪ X2 ∪ X3 = V (P1 ∩ P2 ∩ P3) = V
(
{0̄}
)

= SpecR = X .

Example 1.4.29. Let us also check the results from Section 1.3.3 about localiza-

tion of torsion on Example E.3. We know that [X̄Z̄] ∈ TR(M). How do behave

its localizations ? We denote

[X̄Z̄]P := [X̄Z̄]
1̄
∈MP , ∀P ∈ SpecR .

According to Proposition 1.3.8, these should still be torsion elements for all

P . First note that [X̄Z̄]P = 0 if and only if 〈 X̄ − 1, Ȳ 〉 * P by (1.15), so

in this case [X̄Z̄]P ∈ TRP (MP ) anyway. Hence let 〈 X̄ − 1, Ȳ 〉 ⊆ P , i.e. we

only consider prime ideals P such that V (P ) is contained in the line Z2. Then

P3 * P since X̄ /∈ P (otherwise 1̄ = X̄ − (X̄ − 1) ∈ P ), which means by (1.6)
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that the localizations from elements in P3 become NZDs in RP . In particular,

ȲP is a NZD and it is non-zero since Z̄(X̄ − 1) ∈ P . In other words, the relation

Ȳ ·Z̄(X̄−1) = 0̄ which makes Ȳ a zero-divisor in R disappears in the localization

RP since

X̄Z̄(X̄ − 1) = 0̄ with X̄ /∈ P ⇒ Z̄P (X̄ − 1)P = 0 .

Therefore ȲP ∈ RP is a NZD whereas Ȳ ∈ R is not (compare Remark 1.3.7).

Finally we get

ȲP ∗ [X̄Z̄]P = [Ȳ X̄Z̄]P = 0 ,

i.e. [X̄Z̄]P is a torsion element in MP for all P ∈ SpecR.
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Chapter 2

The torsion subsheaf

After having discussed the notion of torsion of a finitely generated module in

Chapter 1, we are now interested in the torsion of a (quasi-)coherent sheaf. For

this we are going to introduce the notion of the torsion subsheaf. The main idea

is to define a subsheaf of a (quasi-)coherent sheaf F whose stalks consists of the

torsion submodules of the stalks Fx.
In the non-integral case not much on this topic can be found in the classical lit-

erature. Torsion-free sheaves on non-integral schemes have first been introduced

by A. Grothendieck in [33], but he only used it as a tool and did not study the

torsion of a sheaf itself. This is why we dedicated a whole chapter to the defini-

tion and properties of the torsion subsheaf in the Noetherian case.

Our first main result of this chapter is a criterion for (quasi-)coherence of the

torsion subsheaf T (F) of F (Theorem 2.2.8). Then we show that this condition

is satisfied if the ring defining an affine scheme has no embedded primes (The-

orem 2.2.13). We also present a counter-example which shows that T (F) does

not need to be coherent and may have dense support (Section 2.3). Another aim

is to study the relation of T (F) with the sheaf of meromorphic functions (Theo-

rem 2.4.19 and Theorem 2.4.22). Finally we reprove Grothendieck’s criterion for

torsion-freeness in Theorem 2.5.8.
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2.1 Definition and properties

Let (X ,OX ) be a scheme and F ∈ QCoh(OX ). The main idea of the torsion sub-

sheaf is to define a subsheaf of F whose stalks consists of the torsion submodules

of the stalks Fx. The naive idea for doing this is to take the sheafification of the

assignment

U 7−→ TOX (U)

(
F(U)

)
(2.1)

for all U ⊆ X open. However this is not correct since (2.1) is not a presheaf. It

may happen that the restriction map is not well-defined, e.g. if V ⊆ U is open

and s ∈ TOX (U)

(
F(U)

)
. Thus there is a NZD f ∈ OX (U) such that f ∗ s = 0,

but it is not sure whether the restriction s|V ∈ F(V ) belongs to TOX (V )

(
F(V )

)
since f|V may be zero or a zero-divisor. To get the correct definition, one has to

start differently.

2.1.1 Definition

Remark 2.1.1. In practise we only work with coherent sheaves on a locally

Noetherian scheme. However a lot of the following results are true in some

more generality, so a priori we only need that F is a quasi-coherent sheaf on an

arbitrary scheme. If a coherence or Noetherian condition is needed, it will be

pointed out.

Lemma 2.1.2. Let R be a ring.

1) If S ⊂ R is a multiplicatively closed subset and r ∈ R is a NZD, then r
1
∈ S−1R

is also a NZD.

2) If M is any R-module, then torsion elements in M remain torsion elements

in S−1M . More precisely,

m ∈ TR(M) ⇒ m
1
∈ TS−1R(S−1M) .

Proof. 1) The proof is similar as the one of Proposition 1.3.6. If ∃ a
s
∈ S−1R

such that a
s
· r

1
= 0, then ∃ b ∈ S such that ba · r = 0, i.e. ba = 0 since r is a NZD

and thus a
s

= 0.

2) because the NZD that annihilates them remains a NZD in the localization.
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Corollary 2.1.3. Let F ∈ QCoh(OX ) and U ∼= SpecR be affine with F|U ∼= M̃ .

Let r ∈ R and consider a distinguished open set V = D(r) ∼= Spec(Rr). Then

the restriction

TOX (U)

(
F(U)

)
−→ TOX (V )

(
F(V )

)
⇔ TR(M) −→ TRr(Mr) : m 7→ m

1

is well-defined.

Proof. As (U,OX |U) ∼= (SpecR,OR) and (V,OX |V ) ∼= (SpecRr,OR|D(r)), we get

OX (U) = OX |U(U) ∼= OR(SpecR) ∼= R , OX (V ) ∼= OR
(
D(r)

) ∼= Rr ,

F(U) = F|U(U) ∼= M̃(SpecR) ∼= M , F(V ) ∼= M̃
(
D(r)

) ∼= Mr .

Well-definedness of the map m 7→ m
1

follows from Lemma 2.1.2.

Hence restriction of torsion elements behaves well over affine open sets. This

motivates the following definition of seeing the torsion of a sheaf as local torsion

elements over affines.

Definition 2.1.4. [ [52], 35328 ]

Let F ∈ QCoh(OX ), U ⊆ X be open and s ∈ F(U). We say that s is a torsion

section of F if there exist an affine open covering U =
⋃
i Ui such that

s|Ui ∈ TOX (Ui)

(
F(Ui)

)
, ∀ i .

In other words, we have Ui ∼= SpecRi and elements fi ∈ OX (Ui) ∼= Ri which are

NZDs such that fi ∗ s|Ui = 0, ∀ i. The set of all torsion sections of F over U is

denoted is by T (F)(U).

Remark 2.1.5. In particular if U is affine, then

TOX (U)

(
F(U)

)
⊆ T (F)(U) (2.2)

since we don’t need a covering in this case. The other inclusion is a priori not

clear (but true in the Noetherian case, see Proposition 2.1.12).
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Remark 2.1.6. Let W ⊆ X be open, s ∈ F(W ) and V ⊆ U ⊆ W both be affine

with U ∼= SpecR, V = D(r) for some r ∈ R and F|U ∼= M̃ . Then Corollary 2.1.3

also implies that

s|U ∈ TOX (U)

(
F(U)

) ∼= TR(M) ⇒ s|V ∈ TOX (V )

(
F(V )

) ∼= TRr(Mr) ,

i.e. a section that is torsion over an affine open set remains torsion when re-

stricting it to a smaller affine open set.

Lemma 2.1.7. Let F ∈ QCoh(OX ). For all inclusions of open sets V ⊆ U ⊆ X ,

the restriction map T (F)(U)→ T (F)(V ) : s 7→ s|V is well-defined.

Proof. Let s ∈ T (F)(U) with affine covering
⋃
i Ui. An open covering of V is

given by
⋃
i(V ∩ Ui), where each V ∩ Ui can be covered by distinguished open

sets Vij, hence we get an affine open cover V =
⋃
ij Vij. As the restrictions of the

s|Ui to the affines Vij are still torsion elements, Remark 2.1.6 gives

(s|V )|Vij = (s|Ui)|Vij = s|Vij ∈ TOX (Vij)

(
F(Vij)

)
, ∀ i, j ⇒ s|V ∈ T (F)(V ) .

Lemma 2.1.8. If F ∈ QCoh(OX ), then T (F)(U) is an OX (U)–submodule of

F(U), ∀U ⊆ X open.

Proof. Let s, t ∈ T (F)(U) with affine open coverings
⋃
i Ui and

⋃
j U
′
j as in

Definition 2.1.4 respectively. In [ [68], 5.3.1, p.157-158 ] it is shown that Ui ∩ U ′j
can be covered by affine open sets V k

ij which are distinguished for both Ui and

U ′j. Hence we get an affine covering

U =
(⋃

i Ui
)
∩
(⋃

j U
′
j

)
=
⋃
ij

(
Ui ∩ U ′j) =

⋃
ijk V

k
ij .

As the V k
ij are distinguished for both Ui and U ′j, we obtain as above

s|V kij ∈ TOX (V kij)

(
F(V k

ij )
)

, t|V kij ∈ TOX (V kij)

(
F(V k

ij )
)
,

⇒ (s+ t)|V kij ∈ TOX (V kij)

(
F(V k

ij )
)
, ∀ i, j, k ,

i.e. s+ t ∈ T (F)(U). Moreover f ∗ s ∈ T (F)(U) for all f ∈ OX (U) follows from

the fact that f|Ui ∗ s|Ui ∈ TOX (Ui)

(
F(Ui)

)
, ∀ i.
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Definition 2.1.9. Hence the assignment T (F) : U 7→ T (F)(U) defines a

presheaf of OX–modules on (X ,OX ). It is also separated since its restrictions are

those from the sheaf F . Moreover it satisfies the gluing axiom as all defining con-

ditions are local. Indeed let U =
⋃
i Ui be any open covering and si ∈ T (F)(Ui)

sections that agree on intersections. Since si ∈ F(Ui) for all i, these glue to a

section s ∈ F(U), which also belongs to T (F)(U) because each Ui has an affine

open covering
⋃
j Uij such that si|Uij are torsion elements for all j, thus

⋃
ij Uij

is an affine open covering of U such that s|Uij = si|Uij is torsion, ∀ i, j.
It follows that T (F) ⊆ F is a sheaf of OX–modules ; it is called the torsion

subsheaf of F .

Proposition 2.1.10. The assignment T : QCoh(OX )→ Mod(OX ) : F 7→ T (F)

defines an additive covariant and left exact functor.

Proof. Everything already follows from the corresponding statement about mod-

ules. If ϕ : F → G is a morphism, then T (ϕ) : T (F) → T (G) is constructed

as follows : let U ⊆ X be open, s ∈ F(U) and take an affine open covering

U =
⋃
i Ui such that s|Ui is torsion in F(Ui), ∀ i. Then ϕUi(s|Ui) is torsion in

G(Ui) by Lemma C.1.9, hence ϕU(s) ∈ T (G)(U), i.e. ϕU : F(U) −→ G(U) and

T (ϕ)U : T (F)(U)
ϕU−→ T (G)(U) : s 7−→ ϕU(s) .

This gives an OX (U)–module homomorphism T (F)(U)→ T (G)(U) for all open

subsets U ⊆ X . Additivity follows from Proposition C.1.4 because

(s, t) ∈ T (F ⊕ G)(U)

⇔ (s, t)|Ui ∈ TOX (Ui)

(
(F ⊕ G)(Ui)

)
= TOX (Ui)

(
F(Ui)

)
⊕ TOX (Ui)

(
G(Ui)

)
, ∀ i

⇔ s|Ui ∈ TOX (Ui)

(
F(Ui)

)
and t|Ui ∈ TOX (Ui)

(
G(Ui)

)
, ∀ i

⇔ s ∈ T (F)(U) and t ∈ T (G)(U) ⇔ (s, t) ∈ T (F)(U)⊕ T (G)(U) .

Hence T (F ⊕ G)(U) = T (F)(U) ⊕ T (G)(U) for all U ⊆ X and this commutes

with restrictions, so we get T (F ⊕ G) = T (F) ⊕ T (G) as sheaves. Finally for

left exactness, let

0 −→ F ϕ−→ G ψ−→ H
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be an exact sequence of quasi-coherent OX–modules. Left exactness of Γ(U, · )
for all U ⊆ X open gives the exact sequence

0 −→ F(U)
ϕU−→ G(U)

ψU−→ H(U) ,

hence T (ϕ) is injective as it is just a restriction of ϕ. Finally, if t ∈ T (G)(U) is

such that ψU(t) = 0, then ∃ s ∈ F(U) such that t = ϕU(s). The t|Ui = ϕUi(s|Ui)

are torsion over some affine covering U =
⋃
i Ui, thus injectivity of ϕUi and

Proposition 1.3.1 imply that the s|Ui are torsion as well, i.e. s ∈ T (F)(U).

2.1.2 Properties: sections and stalks

An equality T (F)(U) = TOX (U)

(
F(U)

)
for all affine open sets U ⊆ X does not

immediately follow from the definition because affine sets may a priori still need

a covering. However we will show that the inverse inclusion of (2.2) holds true

if we are working with Noetherian rings. After this we are going to prove that

the stalks of T (F) are indeed the torsion submodules of the stalks of F .

Lemma 2.1.11. Let S ⊂ R be a multiplicatively closed subset and M an R-

module. For any m ∈M , we have

S−1
(

AnnR(m)
)

= AnnS−1R

(
m
1

)
. (2.3)

Proof. ⊆ : If r
s

is such that s ∈ S and r ∈ AnnR(m), i.e. r ∗ m = 0, then
r
s
∗ m

1
= 0 as well.

⊇ : If r
s

is such that r
s
∗ m

1
= 0, then ∃ b ∈ S such that b ∗ (r ∗ m) = 0, i.e.

(b · r) ∗m = 0, so we get
r

s
=
b · r
b · s

with b · r ∈ AnnR(m) and b · s ∈ S, hence r
s
∈ S−1

(
AnnR(m)

)
.

Proposition 2.1.12. Let (X ,OX ) be locally Noetherian and F ∈ QCoh(OX ).

Then for affine open sets U ∼= SpecR with F|U ∼= M̃ , we get

T (F)(U) = TOX (U)

(
F(U)

) ∼= TR(M) .

52



LEYTEM Alain 2.1. Definition and properties

Proof. The isomorphism holds because of OX (U) ∼= R and F(U) ∼= M .

Now assume that U ∼= SpecR where R is Noetherian and let U =
⋃
i Ui be an

affine open covering with Ui = D(ri) for some ri ∈ R (note that finitely many of

them are sufficient since SpecR is compact). According to (2.2), we only have

to prove the inclusion ⊆. Let s ∈ T (F)(U) be a section such that

si := s|Ui ∈ TOX (Ui)

(
F(Ui)

)
, ∀ i .

We shall show that s is torsion itself. Denote the localized rings by Ri := Rri , so

that Ui ∼= SpecRi, F(Ui) ∼= Mri and si ∈ TRi(Mri) for all i. Hence si = s
1

seen

as an element in Mri and we are left to prove that s ∈ TR(M).

For this we need that AnnR(s) contains a NZD. Let P1, . . . , Pα be the associated

primes of R. If AnnR(s) only contains zero-divisors, then AnnR(s) ⊆ Pk for some

k ∈ {1, . . . , α} by Prime Avoidance. As Pk ∈ SpecR, ∃ j such that Pk ∈ D(rj),

i.e. rj /∈ Pk. From (1.6), we hence get that all elements from (Pk)rj are zero-

divisors in Rj. In particular all elements from AnnR(s) become zero-divisors

after localization, which is a contradiction by (2.3) since s
1

= sj ∈ TRj(Mrj) is

torsion and its annihilator contains a NZD.

Remark 2.1.13. Thus the attempt of a definition U 7→ TOX (U)

(
F(U)

)
from

(2.1) is correct in a locally Noetherian scheme when only ranging over affines.

Next we determine the stalks of T (F). Being a subsheaf of F , we know that they

must be submodules of the stalks of F . First an observation which illustrates

the local nature of torsion sections.

Lemma 2.1.14. Let (X ,OX ) be locally Noetherian, U ⊆ X open and s ∈ F(U).

Then

s ∈ T (F)(U) ⇔ [s]x ∈ TOX ,x(Fx) , ∀x ∈ U .

Proof. follows from the definition and Proposition 1.3.8

⇒ : Let V ∼= SpecR be an affine open neighborhood of a fixed x ∈ U such

that F|V ∼= M̃ and s|V ∈ TOX (V )

(
F(V )

)
. x corresponds to some prime ideal

P ∈ SpecR. Hence s|V ∈ TR(M) and (1.9) implies that

[s]x = [s]P =
s|V
1
∈ TRP (MP ) ∼= TOX ,x(Fx) .
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⇐ : Let U =
⋃
i Ui be an affine open covering of U with Ui ∼= SpecRi and

F|Ui ∼= M̃i. Since the germs satisfy [s]P ∈ T(Ri)P

(
(Mi)P

)
for all P ∈ SpecRi,

(1.9) again implies that

s|Ui ∈ TRi(Mi) ∼= TOX (Ui)

(
F(Ui)

)
for all i, i.e. s ∈ T (F)(U).

Proposition 2.1.15. [ [11], 30.23.7 ]

Let R be a Noetherian ring, P ∈ SpecR and a ∈ R be such that a
1

is a NZD in

RP . Then ∃ r ∈ R \ P such that a
1

is also a NZD in Rr.

Proof. If a is a NZD in R, then a
1

is a NZD in S−1R for every multiplicatively

closed subset S ⊂ R. So we may assume that a ∈ R is a zero-divisor. Now there

are 2 ways to prove the statement.

method 1 : Being a zero-divisor, a belongs to one of the associated primes

P1, . . . , Pα of R. Let P1, . . . , Pγ be the ones that are included in P . a can-

not belong to some Pi with i ≤ γ, otherwise a
1

would be a zero-divisor in RP by

(1.6). Thus a ∈ Pj for some j > γ. Let P be the set of all associated primes

that contain a, so that

∀Pj ∈ P ⇒ j > γ ⇒ Pj * P ⇒ ∃ rj ∈ Pj \ P .

Let r :=
∏

j rj ; then r ∈ Pj, ∀Pj ∈ P with r /∈ P . By (1.6) again, we know that

the zero-divisors in Rr are given by the localizations of associated primes that

do not contain r. a cannot belong to such a prime since all those that contain a

also contain r (by construction of r). Hence a
1

becomes a NZD in Rr.

method 2 : Let I = AnnR(a) ; since a is a zero-divisor, we know that I 6= {0}.
By Lemma 2.1.11 we have

IP = S−1
(

AnnR(a)
)

= AnnS−1R

(
a
1

)
= AnnRP

(
a
1

)
for S = R \ P . Since a

1
is a NZD, we thus get IP = {0}. On the other hand

I is finitely generated since R is Noetherian. Let I = 〈 a1, . . . , ak 〉 ; then for all
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i ∈ {1, . . . , k}, ∃ ri /∈ P such that ri · ai = 0. Take r :=
∏

i ri, so that r /∈ P and

r · I = {0}. Then a
1

is a NZD in Rr. Indeed,

a
1
· b
rn

= 0 ⇔ ∃m ∈ N such that rm · a · b = 0

⇒ rmb ∈ I ⇒ r · rmb = 0 ⇒ b
1

= 0 .

Remark 2.1.16. Geometrically this means that if f ∈ OX (U) is a section such

that [f ]x is a NZD in the stalk OX ,x, then there exists a distinguished open subset

V = D(r) ⊆ U which is a neighborhood of x and such that f|V is also a NZD in

OX (V ).

Proposition 2.1.17. Let (X ,OX ) be locally Noetherian and F ∈ QCoh(OX ).

Then the stalks of the torsion subsheaf are T (F)x ∼= TOX ,x(Fx), ∀x ∈ X . In

other words, they are given by the torsion submodules of the stalks of F .

Proof. It suffices to prove the statement locally. Let U ∼= SpecR be an affine

open neighborhood of x with F|U ∼= M̃ and x ↔ P ∈ SpecR. The set of affine

open neighborhoods of x being cofinal, we already get

T (F)x = lim−→
V 3x
T (F)(V ) ∼= lim−→

V 3x
TOX (V )

(
F(V )

)
,

where V ⊆ U only runs over affines. Reformulating in terms of spectra, we hence

get

T (F)x =
(
T (F)|U

)
P
∼= lim−→

r/∈P

TRr(Mr) , (2.4)

so it remains to show that this inductive limit is equal to TRP (MP ). For this

we shall prove that for every element in TRP (MP ), there exists r ∈ R \ P and

a torsion section over D(r) representing it (compare : if fx ∈ Fx, then ∃U 3 x
and f ∈ F(U) such that [f ]x = fx). This characterizes the stalk completely. Let
m
s
∈ TRP (MP ) with s /∈ P .

• If m
s

= m
1

= 0, then ∃ r /∈ P such that r ∗ m = 0. Hence P ∈ D(r) and
m
1

= 0 ∈ Rr on D(r) as well. We showed: if the germ of a section is zero, then

the section is locally zero around that point.

• So now we may assume that m
s
6= 0, i.e. AnnR(m) ⊆ P . Since m

s
is torsion, we

have a NZD a
t
∈ RP such that a

t
∗ m

s
= 0, i.e. ∃ b /∈ P such that ba ∗m = 0. In

particular, we also have a ∈ P .
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case 1 : if ba ∈ R is a NZD, then m ∈ TR(M) and all its localizations are torsion

elements too. So it suffices to take the given s /∈ P and the element m
s
∈ TRs(Ms)

on D(s) will represent m
s
∈ TRP (MP ).

case 2 : if ba ∈ R is a zero-divisor, then ba
1

is still a NZD in RP since a
t

= 1
bt
· ba

1
.

By Proposition 2.1.15 we can find r /∈ P such that ba
1

is a NZD in Rr. So

P ∈ D(r) and r ∗m 6= 0 since AnnR(m) ⊆ P , i.e. m
1
6= 0 in Mr. Hence we get

m
1
∈ TRr(Mr). Intersecting with D(s), we can construct the non-zero section

r ∗m
r · s

=
r

r · s
∗ m

1
∈ TRrs(Mrs)

on D(rs) since m
1

remains torsion when restricting it to smaller affines (see Re-

mark 2.1.6). This one then restricts to m
s

in MP since r ·s /∈ P (it does not make

sense to write m
s

in Mrs).

Corollary 2.1.18. Let R be a Noetherian ring and m ∈M an element such that
m
1
∈ TRP (MP ) for some P ∈ SpecR. Then then there exists an (affine) open

neighborhood D(r) of P such that m
1
∈ TRr(Mr), so

m
1
∈ TRQ(MQ) , ∀Q ∈ D(r) .

In terms of sheaves: If s ∈ F(U) is such that [s]x is a torsion element in Fx for

some x ∈ U , then there exists an open neighborhood V ⊆ U of x such that [s]y is

a torsion element in Fy, ∀ y ∈ V , and thus s|V ∈ TOX (V )

(
F(V )

)
by Lemma 2.1.14.

Remark 2.1.19. Note that the proofs above are constructive, so the element

r /∈ P for D(r) can always be obtained explicitly.

Remark 2.1.20. Corollary 2.1.18 already looks like a coherence-condition (if a

property is satisfied on a stalk, then it is satisfied on some small open neighbor-

hood around that stalk). However we will see in Theorem 2.2.8 that this is not

always true.

Corollary 2.1.21. Let R be Noetherian and M a finitely generated R-module.

For each P ∈ SpecR, there exists r ∈ R \ P such that

TRP (MP ) ∼=
(
TRr(Mr)

)
Pr
,

where the RP -module structure of the RHS is induced by (Rr)Pr
∼= RP .
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Proof. For r /∈ P , we define

ρr :
(
TRr(Mr)

)
Pr
−→ TRP (MP ) :

m/rk

s/rl
7−→ rl

s
∗ m
rk

=
rl ∗m
s · rk

,

which is well-defined since r /∈ P , thus torsion elements in Mr remain torsion

elements in MP (take the same power of r on the denominator). Moreover it

is injective because it is a restriction of the isomorphism (Mr)Pr
∼= MP . ρr is

however not surjective for all r /∈ P .

As M is finitely generated, so is MP (take the localizations of the generators).

RP still being a Noetherian ring (see Proposition D.1.10), the submodule

TRP (MP ) =
〈
m1

1
, . . . , mn

1

〉
is finitely generated as well (as a module over RP , so we may assume that all

denominators are 1). For each mi
1

we know by Corollary 2.1.18 that there exists

ri /∈ P such that mi
1
∈ Mri is torsion over D(ri). Let r := r1 · . . . · rn. Then all

mi
1

are torsion elements over D(r) = D(r1) ∩ . . . ∩ D(rn) by Remark 2.1.6, i.e.
mi
1
∈ TRr(Mr) for all i and these elements restrict to the generators of TRP (MP )

in the stalk. In other words, all generators are in the image of ρr, which is hence

surjective.

Remark 2.1.22. In order for the torsion subsheaf to be coherent one needs

that every torsion element in the stalk can be represented by a global torsion

element (see Theorem 2.2.8). But this is not satisfied in general ; only the weaker

statement of Corollary 2.1.21 holds true. It says that for every torsion element

in the stalk, there exists a representative which is torsion on some affine open

neighborhood.

2.2 Torsion-freeness and coherence

In this section we define what it means for a sheaf to be torsion-free and establish

a criterion under which the torsion subsheaf is (quasi-)coherent. Here we always

assume that (X ,OX ) is locally Noetherian, otherwise the torsion subsheaf does

not have the necessary “nice” properties on its stalks and over affine sets. In

particular, we also obtain that OX is coherent. As before, let F be quasi-coherent

and in the cases where it must be coherent, it will be pointed out.
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2.2.1 Definition and examples

Definition 2.2.1. Let F ∈ QCoh(OX ). F is said to be torsion-free if T (F) = 0.

Furthermore one says that F is a torsion sheaf if T (F) = F .

Remark 2.2.2. A priori these definitions only make sense for quasi-coherent

sheaves, otherwise the assignment T : F 7→ T (F) may not be well-defined.

However one often wants to extend the notion of torsion-freeness to arbitrary

sheaves as well. For this we simply take the characterizations of the above

definitions in the quasi-coherent case, namely:

A sheaf F ∈ Mod(OX ) is torsion-free if and only if all its stalks are torsion-free

modules, i.e. if

TOX ,x(Fx) = {0} , ∀x ∈ X .

Similarly F ∈ Mod(OX ) is a torsion sheaf if and only if Fx is a torsion module

over OX ,x for all x ∈ X .

Example 2.2.3. 1) If F ∈ QCoh(OX ), then the torsion subsheaf T (F) is always

a torsion sheaf and F/T (F) is always torsion-free.

2) Locally free sheaves (not necessarily of finite rank) and reflexive sheaves are

torsion-free.

Proof. 1) We have to check that the stalks of T (F) are torsion modules. Indeed,

TOX ,x
(
T (F)x

) ∼= TOX ,x(TOX ,x(Fx)) = TOX ,x(Fx) ∼= T (F)x , ∀x ∈ X .

Moreover (
F/T (F)

)
x
∼= Fx/T (F)x ∼= Fx/TOX ,x(Fx)

and this module is torsion-free.

2) a) If F is locally free, then each stalk Fx is a free OX ,x–module and hence

torsion-free.

b) As reflexive sheaves are coherent, we have (F∗)x ∼= (Fx)∗, ∀x ∈ X . So

if F ∼= F∗∗, then Fx ∼= F∗∗x for all x, i.e. all stalks are reflexive, but reflexive

modules are torsion-free (see Definition C.3.1). Note that one still needs to check

that all isomorphisms agree.
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Remark 2.2.4. We point out that one should not write T
(
T (F)

)
= T (F) or

T
(
F/T (F)

)
= 0 since T : F 7→ T (F) is only defined for quasi-coherent sheaves.

Until now it is not clear whether T (F) is always quasi-coherent1.

But if it is, then so is the quotient F/T (F) because an exact sequence of R-

modules 0→ N →M →M/N → 0 implies that

0 −→ Ñ −→ M̃ −→ M̃/N −→ 0

and

0 −→ Ñ −→ M̃ −→ M̃/Ñ −→ 0 ,

so if F ∼= M̃ and T (F) ∼= Ñ are quasi-coherent, then F/T (F) ∼= M̃/N is quasi-

coherent as well. Similarly if F is coherent and T (F) quasi-coherent, then the

quotient is again coherent since M/N is finitely generated if M is.

2.2.2 Criteria for (quasi-)coherence of the torsion sub-

sheaf

Now we are going to attack the question under which conditions the torsion

subsheaf of a quasi-coherent sheaf is again (quasi-)coherent and, if so, by which

module it is given. First some more preliminaries.

Lemma 2.2.5. Let F ∈ QCoh(OX ) and G ⊆ F be a quasi-coherent subsheaf

which is a torsion sheaf. Then G ⊆ T (F). In other words: if F contains a

subsheaf that is torsion, then this one is a subsheaf of the torsion subsheaf. It

follows that T (F) is the biggest torsion subsheaf of F and the smallest subsheaf

T ⊆ F such that F/T is torsion-free.

Proof. follows from Proposition 2.1.10 which gives left exactness of the functor

T : F 7→ T (F). If 0 → G → F is exact, then so is 0 → T (G) → T (F), hence

0→ G → T (F) and G ⊆ T (F).

Lemma 2.2.6.

M ∈ Mod(R) is a torsion module ⇔ M̃ ∈ QCoh(OR) is a torsion sheaf .

1And indeed it is not, see Theorem 2.2.8.
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Proof. follows from Proposition 1.3.8:

⇒ : if m ∈ TR(M), ∀m ∈M , then m
s

= 1
s
∗ m

1
∈ TRP (MP ), ∀P ∈ SpecR, hence

TRP (MP ) = MP .

⇐ : take any m ∈ M ; since m
1
∈ MP = TRP (MP ) for all P ∈ SpecR, we get

m ∈ TR(M).

Proposition 2.2.7. Let X = SpecR be affine and F ∈ QCoh(OR) given by

F ∼= M̃ . If T (F) is quasi-coherent, then it is given by the sheaf associated to

the submodule TR(M). In other words,

T (F) = T (M̃) = T̃R(M) .

Proof. By Lemma 2.2.5 and Lemma 2.2.6, we have

T̃R(M) ⊆ T (F) (2.5)

because TR(M) ≤ M is a torsion submodule, so its associated sheaf is a torsion

sheaf. Note that TR(M) is also finitely generated if M is finitely generated since

R is Noetherian. If we assume that T (F) ⊆ F is quasi-coherent, there must be

a submodule N ≤M such that T (F) ∼= Ñ . As this is a torsion sheaf, N must be

a torsion module, hence N ⊆ TR(M). But (2.5) and Theorem 1.1.13 also imply

that TR(M) ↪→ N since

0 −→ T̃R(M) −→ Ñ is exact if and only if 0 −→ TR(M) −→ N is exact .

Hence N = TR(M) and both sheaves agree.

Theorem 2.2.8 (Leytem). Let X = SpecR be affine and F ∈ QCoh(OR) given

by F ∼= M̃ . Then

T (F) is quasi-coherent ⇔
(
TR(M)

)
P

= TRP (MP ) , ∀P ∈ SpecR .

If F is coherent, the same equivalence holds true with T (F) being coherent.

Proof. The inclusion
(
TR(M)

)
P
⊆ TRP (MP ) always holds true because of (1.9)

and (2.5).
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⇒ : If T (F) is quasi-coherent, we know that it is given by the sheaf associated

to the torsion submodule TR(M), hence

TRP (MP ) ∼=
(
T (M̃)

)
P

=
(
T̃R(M)

)
P
∼=
(
TR(M)

)
P
, ∀P ∈ SpecR .

Both RP -modules are isomorphic and one of them is included in the other one,

hence they are equal.

⇐ : Assume that the RP -modules are equal and note that they are the stalks

of the sheaves T̃R(M) and T (F) respectively. Both sheaves thus have the same

stalks and the inclusion (2.5) implies that they are equal.

In the case where F is coherent (i.e. if M is finitely generated), T (F) will also be

coherent since R is Noetherian, so TR(M) ≤M is finitely generated as well.

Corollary 2.2.9. Let R be a Noetherian ring and assume that M is an R-module

such that
(
TR(M)

)
P = TRP (MP ) for all P ∈ SpecR. Then

T (M̃) = 0 ⇔ M̃ is a torsion-free sheaf

⇔ M is a torsion-free module . (2.6)

Proof. The first equivalence is the definition of torsion-freeness. For (2.6):

⇒ : always holds true since modules with torsion-free localizations are torsion-

free themselves, see Corollary 1.3.10.

⇐ : (false in general) if
(
TR(M)

)
P = TRP (MP ) holds for all prime ideals P E R,

T (M̃) = 0 ⇔
(
T (M̃)

)
P

= 0, ∀P ⇔ TRP (MP ) = 0, ∀P

⇔
(
TR(M)

)
P

= 0, ∀P ⇔ TR(M) = 0 .

Conclusion

Hence knowing whether T (F) is (quasi-)coherent on an affine scheme comes

down to determining under which conditions we have
(
TR(M)

)
P = TRP (MP ) for

all P ∈ SpecR. This equality means that every torsion element in the stalk can

be represented by a global torsion element. In Corollary 2.1.21 we have already

seen that this is true locally on a neighborhood of the considered stalk. However

it is not true globally ; a counter-example will be presented in Section 2.3.
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First we want to know under which conditions it actually holds true. For this

we need the following important result ; it gives an algorithmic construction of

global NZDs from local ones.

Proposition 2.2.10 (Epstein-Yao). [ [21], 4.7, p.11 ]

Let R be a Noetherian ring which has no embedded associated primes and S ⊂ R

a multiplicatively closed subset. If c ∈ R is such that c
1

is a NZD in S−1R, then

∃w ∈ S and ∃ r ∈ R such that w · r = 0 and wc+ r is a NZD in R.

Proof. Let P1, . . . , Pα be the associated primes of R. If c is a NZD itself, take

w = 1 and r = 0. So we may assume that c ∈ P1 ∪ . . . ∪ Pα is a zero-divisor.

Let P1, . . . , Pγ for some γ ≤ α be the associated primes that have empty intersec-

tion with S. R having no embedded primes means that P1, . . . , Pα are mutually

incomparable. In particular, by Prime Avoidance we have

Pi *
⋃
k 6=i

Pk , ∀ i ∈ {1, . . . , α} .

For all j > γ, we now have Pj ∩ S 6= ∅, so ∃wj ∈ Pj ∩ S which satisfies

wj /∈ P1 ∪ . . . ∪ Pγ since those have empty intersection with S. Then we set

w̃ := wγ+1 · . . . · wα ∈
(
Pγ+1 ∩ . . . ∩ Pα ∩ S

)
\
(
P1 ∪ . . . ∪ Pγ

)
since S is multiplicatively closed and all ideals are prime. Similarly for all i ≤ γ,

we have that Pi * Pγ+1 ∪ . . .∪Pα, hence ∃ ri ∈ Pi such that ri /∈ Pγ+1 ∪ . . .∪Pα
and we get

r̃ := r1 · . . . · ri ∈
(
P1 ∩ . . . ∩ Pγ

)
\
(
Pγ+1 ∪ . . . ∪ Pα

)
.

Moreover w̃ · r̃ ∈ P1 ∩ . . . ∩ Pα = nil(R), so ∃n ∈ N such that w̃ n · r̃ n = 0.

Set w := w̃ n and r := r̃ n. These satisfy the same conditions as w̃ and r̃.

Summarizing we have w · r = 0, where

w ∈
(
Pγ+1 ∩ . . . ∩ Pα ∩ S

)
\
(
P1 ∪ . . . ∪ Pγ

)
,

r ∈
(
P1 ∩ . . . ∩ Pγ

)
\
(
Pγ+1 ∪ . . . ∪ Pα

)
.

In addition we have c /∈ P1 ∪ . . . ∪ Pγ, otherwise c
1

would be a zero-divisor in

S−1R. This implies that

wc ∈
(
Pγ+1 ∩ . . . ∩ Pα

)
\
(
P1 ∪ . . . ∪ Pγ

)
.
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Now consider the element wc+ r. To prove that it is a NZD, it suffices to show

that it does not belong to any of the associated primes. First consider Pi for

some i ≤ γ. Then wc + r /∈ Pi since r ∈ Pi and wc /∈ Pi. Similarly for Pj with

j > γ ; wc+r /∈ Pj since wc ∈ Pj but r /∈ Pj. It follows that wc+r /∈ P1∪ . . .∪Pα
is a NZD.

Remark 2.2.11. In particular Proposition 2.2.10 can be applied in the case

where S = R \P for some P ∈ SpecR. Thus if c ∈ R is such that c
1

is a NZD in

RP , then ∃w /∈ P , ∃ r ∈ R such that w · r = 0 and wc+ r is a NZD in R.

Remark 2.2.12. In general, the obtained NZD wc+ r does not restrict to c
1

in

S−1R. But they only differ by a unit. Indeed w · r = 0 with w ∈ S, so r
1

= 0 in

the localization and we are left with wc
1

= w
1
· c

1
where w

1
∈ S−1R is a unit with

inverse 1
w

.

Theorem 2.2.13 (Leytem). Let X = SpecR be an affine Noetherian scheme

and F ∼= M̃ a coherent, resp. quasi-coherent OR–module. If R has no embedded

primes, then the torsion subsheaf T (F) ⊆ F is coherent, resp. quasi-coherent.

Proof. Fix P ∈ SpecR. In the sense of Theorem 2.2.8 we shall prove that(
TR(M)

)
P = TRP (MP ). As the inclusion ⊆ always holds true, we only have to

prove ⊇. Let m
s
∈ TRP (MP ). We shall find a global torsion element n ∈ TR(M)

and s′ /∈ P such that
n

s′
=
m

s

as elements in MP . We may assume that m
s
6= 0, otherwise 0 ∈ TR(M) can be

chosen to represent m
s

= 0. So in particular we may assume that AnnR(m) ⊆ P .

Let a
t
∈ RP be a NZD such that a

t
∗ m

s
= 0, i.e. ∃ b /∈ P such that ba ∗m = 0

(note that a ∈ P ). If ba is a NZD, there is no problem and m ∈ TR(M) is torsion

itself, so we can choose n = m. So let us assume that ba is a zero-divisor. Then
ba
1
∈ RP is still a NZD since a

t
= 1

bt
· ba

1
is a NZD. By Proposition 2.2.10 and

Remark 2.2.11, we thus can find elements w /∈ P and r ∈ R such that w · r = 0

and wba+ r is a NZD in R. Now consider

(wba+ r) ∗ (w ∗m) = w2 ∗ (ba ∗m) + (r · w) ∗m = 0 ,
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i.e. w ∗m ∈ TR(M) and
m

s
=
w ∗m
w · s

,

so we can choose n = w ∗m and s′ = w · s /∈ P . Note in addition that w ∗m 6= 0

since w /∈ P .

2.2.3 Examples

The condition about R not having embedded primes may seem a bit technical,

but it is actually satisfied in a lot of cases that appear in practise.

Lemma 2.2.14. [ [53], 658589 ]

Let R be a Noetherian ring. An embedded prime is given by the annihilator of a

nilpotent element (more precisely, a nilpotent element of degree 2).

Proof. Let Q be an embedded associated prime of R. By Proposition B.2.25 we

know that is given as Q = AnnR(s) for some s ∈ R. Thus q ·s = 0, ∀ q ∈ Q. Since

Q is embedded, it is not contained in any minimal prime Pi, i.e. ∀ i, ∃ qi ∈ Q
such that qi /∈ Pi. But qi · s = 0 ∈ Pi for all i, which implies that s ∈ Pi for all

i, so s is nilpotent by (1.5). More precisely, s also belongs to a minimal prime

that is contained in Q, so that s ∈ Q as well and s2 = 0.

Remark 2.2.15. The converse of Lemma 2.2.14 is false. Minimal primes can also

be given by annihilators of nilpotent elements. Consider e.g. R = K[X]/〈X2 〉.
The only associated prime is P1 = 〈 X̄ 〉 = AnnR(X̄), where X̄ is nilpotent.

Example 2.2.16. All of the following conditions are sufficient for R not to have

embedded primes:

1) R is an integral domain.

2) R is a reduced ring.

3) R has no nilpotent elements of degree 2.

4) The elements whose annihilator define the associated primes are not nilpotent.

5) R is a ring in which every zero-divisor is nilpotent.

6) R is a quotient of a polynomial ring (over a field) by a principal ideal.
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Proof. 1) For integral domains, the only associated prime is P1 = {0}.
2) For reduced rings, the result follows from Lemma B.2.18 ; existence of embed-

ded primes would contradict minimality of the primary decomposition of {0}.
3) 4) since embedded primes are given by annihilators of nilpotent elements of

degree 2.

5) Rings in which every zero-divisor is nilpotent only have one associated prime.

Indeed let P,Q be two arbitrary associated primes. As all zero-divisors are

nilpotent, every associated prime is contained in the intersection of all associ-

ated primes. In particular,

P ⊆ nil(R) =
⋂
i Pi ⊆ Q ,

and similarly Q ⊆ P , hence P = Q is the only associated prime.

6) Here we have R = K[X1, . . . , Xn]/〈 f 〉 for some non-constant polynomial f .

K[X1, . . . , Xn] being a UFD, there is a unit ε such that we can uniquely factorize

f into irreducible components f = ε · fk1
1 · . . . · fkmm , which gives the primary

decomposition

〈 f 〉 = 〈 fk1
1 〉 ∩ . . . ∩ 〈 fkmm 〉

with radicals 〈 fi 〉. In the quotient we get the associated primes Pi = 〈 f̄i 〉 for

all i and none of them is an embedded prime since all fi are irreducible.

Remark 2.2.17. We have the chain of implications 1) ⇒ 2) ⇒ 3) ⇒ 4). The

last one holds true because if Q = AnnR(s) is prime and s is nilpotent, then

sn = 0 for some n ∈ N and sn ∈ Q implies that s ∈ Q, hence s2 = 0.

Example 2.2.18. Let us apply the procedure of Epstein-Yao which constructs

global NZDs from local ones to Example E.3. We localize at the maximal ideal

P = 〈 X̄ − 1, Ȳ , Z̄ 〉. Hence P1, P2 ⊆ P , but P3 * P . Now consider

ȲP ∗ [Z̄]P =
Ȳ

1̄
∗ [Z̄]

1̄
=

[Ȳ Z̄]

1̄
= 0

in MP . As explained in Example 1.4.29, ȲP ∈ RP is a non-zero NZD. Moreover

[Z̄]P 6= 0 since

AnnR([Z̄]) = 〈 Ȳ (X̄ − 1), X̄(X̄ − 1), Ȳ 〉 = 〈 X̄(X̄ − 1), Ȳ 〉 ⊆ P .
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Thus [Z̄]P ∈ TRP (MP ) is a non-zero torsion element. According to Remark 2.1.19

we now apply the methods from Proposition 2.1.15, Corollary 2.1.18, Proposi-

tion 2.2.10 and Theorem 2.2.13 to

− find r /∈ P such that [Z̄]
1̄

is a torsion element in TRr(Mr) over D(r).

− find a global torsion element in TR(M) that represents [Z̄]P , which is possible

since R is reduced.

The algorithm from Proposition 2.1.15 requires r ∈ P3 \ P , so we take r = X̄.

Alternatively we can look for I = AnnR(Ȳ ) = 〈 Z̄(X̄ − 1) 〉, so that X̄ · I = {0̄}.
By (1.6) the zero-divisors in RX̄ are the localizations of elements from the primes

that do not contain X̄. Thus Ȳ
1̄
∈ RX̄ is also a NZD and X̄ ∗ [Z̄] 6= 0, so [Z̄]

remains a non-zero torsion element on D(X̄):

[Z̄]P ∈ TRP (MP ) ⇒ [Z̄]
1̄
∈ TRX̄ (MX̄) .

To find a global torsion element, we already computed TR(M) = 〈 [X̄Z̄] 〉 in

Example 1.4.27, so it cannot be [Z̄] itself. As in Proposition 2.2.10 we first shall

find w /∈ P and r ∈ R such that wȲ + r is a global NZD. As P3 * P1 ∪ P2 ∪ P ,

we can take w = X̄. P1 * P3 and P2 * P3 give r1 = Z̄ and r2 = X̄ − 1, hence

r = Z̄(X̄ − 1). Moreover w · r = X̄Z̄(X̄ − 1) = 0̄. Here we don’t need to take

powers since R is reduced. Finally as in the proof of Theorem 2.2.13, we find(
X̄Ȳ + Z̄(X̄ − 1)

)
∗
(
X̄ ∗ [Z̄]

)
= X̄Ȳ ∗ [X̄Z̄] + Z̄(X̄ − 1) ∗ [X̄Z̄] = [0̄] ,

hence [X̄Z̄] ∈ TR(M) is a global torsion element that represents [Z̄]P ; since

X̄ /∈ P , we can write

[Z̄]P =
[Z̄]

1̄
=
X̄ ∗ [Z̄]

X̄
=

[X̄Z̄]

X̄
∈
(
TR(M)

)
P
.

Remark 2.2.19. In this example we even have [X̄Z̄]P = [Z̄]P since

[X̄Z̄]

1̄
=

[Z̄]

1̄
⇔ ∃ f̄ /∈ P such that f̄ ∗

(
[X̄Z̄]− [Z̄]

)
= [0̄]

⇔ ∃ f̄ /∈ P : f̄ X̄Z̄ − f̄ Z̄ ∈ 〈 Ȳ Z̄ 〉

⇔ ∃ f̄ /∈ P : f̄ Z̄(X̄ − 1) ∈ 〈 Ȳ Z̄ 〉 ,

so it suffices to take f̄ = X̄. This is however a coincidence due to the relations

in the ring ; in general a denominator for the global torsion element is needed.
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2.2.4 Other consequences

In a Noetherian ring with no embedded primes, one can also prove some more

results which do not hold true in general. For example we have the following

generalization of Proposition C.4.14.

Proposition 2.2.20. [ [21], 3.8, p.7 ]

Let R be a Noetherian ring that has no embedded primes, M an R-module and

S ⊂ R a multiplicatively closed subset. If M is torsion-free over R, then S−1M

is torsion-free over S−1R.

Proof. We use the criterion from Proposition 1.3.3 which says that a module

is torsion-free if and only if all its associated primes are contained in some of

the P1, . . . , Pα ∈ AssR(R). If there are no embedded primes, this means that

a module is torsion-free if and only if all associated primes of M are minimal

primes of R (since if P ⊆ Pi for Pi minimal implies by Proposition B.2.19 that

there is another minimal prime Pj such that Pj ⊆ P ⊆ Pi, so we have equality

otherwise Pi would be embedded). Now assume that M is torsion-free, i.e. every

prime in AssR(M) is equal to some Pi ∈ AssR(R). By Proposition B.3.7 the

associated primes of the localization are given by

AssS−1R

(
S−1M

)
=
{
S−1P

∣∣ P ∈ AssR(M), P ∩ S = ∅
}

⊆
{
S−1Pi

∣∣ Pi ∩ S = ∅
}
.

If we want S−1M to be torsion-free, these should be contained in the associated

primes of S−1R. But the latter are exactly given by the S−1Pi such that Pi and

S have empty intersection. Hence all associated primes of S−1M are associated

primes of S−1R, i.e. S−1M is torsion-free.

Remark 2.2.21. What goes wrong in this argument if there are embedded

primes ? If M is torsion-free over R and P ∈ AssR(M) is such that P ( Pj for

some embedded prime Pj, then it may happen that P ∩ S = ∅, but Pj ∩ S 6= ∅
and so S−1P would no longer be contained in an associated prime of S−1R.

Another result one can obtain is e.g. the converse of Corollary 1.3.10.

67



LEYTEM Alain 2.2. Torsion-freeness and coherence

Corollary 2.2.22. Let X = SpecR for a Noetherian ring R that has no embed-

ded primes and F = M̃ be quasi-coherent. Then

M ∈ Mod(R) is torsion-free ⇔ M̃ ∈ QCoh(OR) is torsion-free .

Proof. Sufficiency is proven in Corollary 1.3.10 since the stalks of M̃ are the

localizations MP . For necessity we now apply Proposition 2.2.20 with S = R\P ,

which says that torsion-freeness of M over R implies that MP is torsion-free over

RP for all P ∈ SpecR.

2.2.5 Relation with Serre’s conditions

The condition of a Noetherian ring having no embedded primes is actually a

particular case of a more general concept. We briefly explain the relations in

this section.

Definition 2.2.23. [ [16], p.241 & 425 ]2

Let A be a local Noetherian ring with maximal ideal M. For all elements

a1, . . . , an ∈ R, denote Ii = 〈 a1, . . . , ai 〉. We say that a1, . . . , an is a regular

sequence if In 6= A, a1 is a NZD and āi+1 is a NZD in A/Ii, ∀ i ≥ 1. The depth of

A, denoted by depth(A), is the maximal length of a regular sequence a1, . . . , an

with ai ∈M for all i.

We also recall that A is called a regular local ring if dimA = dimR/M(M/M2).

Lemma 2.2.24. [ [16], 18.2, p.448-449 ]

For any local Noetherian ring A, we have depth(A) ≤ dimA.

Proof. First look at I1 = 〈 a1 〉. Since a1 is a NZD we know by Krull’s Principal

Ideal Theorem that I1 has height 1 and thus by Proposition 1.4.13:

dim(A/I1) + ht(I1) ≤ dimA ⇔ dim(A/I1) ≤ dimA− 1 .

2The definitions in Eisenbud [16] may a priori seem to be different since we took them from

several chapters, but they are equivalent by combining all of them.
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Next we want to divide out I2. As ā2 is a NZD in A/I1, the principal ideal 〈 ā2 〉
has height 1 as well and we get again

dim(A/I2) = dim
(
(A/I1)

/
(I2/I1)

)
≤ dim

(
(A/I1)/〈 ā2 〉

)
≤ dim(A/I1)− 1 ≤ dimA− 2

because 〈 ā2 〉 ⊆ I2/I1. Continuing the same way we obtain that 0 ≤ dim(A/In) ≤
dimA − n, so n ≤ dimA. Taking a regular sequence of maximal length n then

gives depth(A) ≤ dimA.

Definition 2.2.25. [ [16], p.225 & p.452 ]

1) A local Cohen-Macaulay ring is a local Noetherian ring A such that

depth(A) = dimA .

2) An arbitrary Noetherian ring R is called Cohen-Macaulay if the localizations

RP are local Cohen-Macaulay rings for all prime ideals P E R. By Lemma 1.4.12

we have dim(RP ) = ht(P ) for any prime ideal P . Hence a Cohen-Macaulay ring

R satisfies depth(RP ) = ht(P ), ∀P ∈ SpecR.

Definition 2.2.26. Fix an integer k ≥ 0 and let R be a Noetherian ring.

1) R is said to satisfy Serre’s condition (Rk) if RP is a regular local ring for all

P ∈ SpecR such that ht(P ) ≤ k.

2) R satisfies Serre’s condition (Sk) if depth(RP ) ≥ min{k, ht(P )} for all prime

ideals P E R.

Example 2.2.27. Every ring satisfies (S0). If R is Cohen-Macaulay, then R

satisfies (Sk), ∀ k ≥ 0. If R satisfies (Rk), resp. (Sk) for some k, then it satisfies

(Ri), resp. (Si) for all i ≤ k.

We are particularly interested in the condition (S1). Indeed

Proposition 2.2.28. [ [53], 920120 ]

A Noetherian ring satisfies condition (S1) if and only if it has no embedded

associated primes.
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Proof. First note the 2 following facts:

1) P is an associated prime of R if and only if PP is an associated prime of RP

(since P ⊆ P ).

2) A local ring (A,M) satisfies depth(A) = 0 if and only if M is an associated

prime of A. Indeed if M is associated, then it only contains zero-divisors so one

cannot choose a regular element r1 ∈M. Conversely if the depth of A is 0, this

means that M only contains zero-divisors (otherwise one could choose a regular

element), hence is contained in an associated prime of A by Prime Avoidance.

Maximality then implies that it is equal to that prime ideal.

⇒ : Assume that R satisfies (S1) and let P be an associated prime of R. Then

PP is an associated prime of RP , hence

0 = depth(RP ) ≥ min{1, ht(P )} ⇒ ht(P ) = 0

and P is a minimal prime.

⇐ : (S1) is obvious satisfied for minimal primes since these are of height 0. Thus

let P be any prime ideal in R that is not minimal, so by assumption it is not

associated. Hence PP is not associated neither and depth(RP ) ≥ 1. Therefore

all prime ideals in R satisfy depth(RP ) ≥ min{1, ht(P )}.

Remark 2.2.29. [ [37], 4.5.2 & 4.5.3, p.70-71 ]

For completion let us also mention the following results. One can show that a

Noetherian ring is reduced if and only if it satisfies (R0) and (S1) and that it

is normal (i.e. all localizations are integrally closed domains) if and only if it

satisfies (R1) and (S2).

2.3 Example of a non-coherent torsion subsheaf

Now we give an example of a Noetherian ring and a finitely generated module

such that the torsion subsheaf of the coherent sheaf associated to that module

is not coherent anymore. It is similar to the one mentioned in [ [21], 3.9, p.7 ].

By Theorem 2.2.13, we know that such an example must have embedded primes.

Consider

R := K[X, Y, Z]/〈XY,X2, XZ 〉 .
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Geometrically this corresponds to the plane given by the equation X = 0 with

an embedded double point at the origin. From now on this will be called Exam-

ple E.4.

Example 2.3.1. R is not reduced as X̄ is nilpotent of degree 2. The primary

decomposition of its defining ideal is

〈XY,X2, XZ 〉 = 〈X 〉 ∩ 〈X2, Y, Z 〉 ,

giving the decomposition {0̄} = 〈 X̄ 〉 ∩ 〈 Ȳ , Z̄ 〉 = Q1 ∩ Q2 and the associated

primes

P1 = Q1 = 〈 X̄ 〉 = AnnR(Ȳ ) = AnnR(Z̄) ,

P2 = Rad(Q2) = 〈 X̄, Ȳ , Z̄ 〉 = AnnR(X̄) .

Hence P2 is an embedded prime and given by the annihilator of a nilpotent

element (Lemma 2.2.14). It describes the embedded double point at (0, 0, 0).

The set of zero-divisors is therefore given by ZD(R) = 〈 X̄, Ȳ , Z̄ 〉. If X = SpecR,

we get the dimension dimX = dimR = 2 since K[X, Y, Z] � R and because

of the chain of prime ideals 〈 X̄ 〉 ( 〈 X̄, Ȳ 〉 ( 〈 X̄, Ȳ , Z̄ 〉. If X1 = V (P1) and

X2 = V (Q2), then dimX1 = 2 and dimX2 = 0 since R/P1
∼= K[Ȳ , Z̄] and

R/P2
∼= K.

Now consider the R-module M = R/〈 Ȳ Z̄ 〉, which is generated by [1̄]. Therefore

the sheaf F = M̃ , which is just but the structure sheaf of the “cross” {Y Z = 0}
inside of X , is coherent. In Example C.4.23 it is shown that M is torsion-free,

but let us also check this by using Proposition 1.3.3. If we denote

J := 〈XY,X2, XZ, Y Z 〉 E K[X, Y, Z] ,

this gives the primary decompositions J = 〈X,Z 〉 ∩ 〈X, Y 〉 ∩ 〈X2, Y, Z 〉 and

〈 Ȳ Z̄ 〉 = 〈 X̄, Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 ∩ 〈 Ȳ , Z̄ 〉 .

By Remark B.3.2 we thus have the associated primes

AssR(M) = AssR
(
R/〈 Ȳ Z̄ 〉

)
= Ass

(
〈 Ȳ Z̄ 〉

)
=
{
P ′1 = 〈 X̄, Z̄ 〉 , P ′2 = 〈 X̄, Ȳ 〉 , P ′3 = 〈 X̄, Ȳ , Z̄ 〉

}
(2.7)
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since Rad(Q2) = 〈 X̄, Ȳ , Z̄ 〉. As every P ′j ∈ AssR(M) is contained in P2, we

obtain that M is torsion-free. In particular it follows that
(
TR(M)

)
P = {0} for

all P ∈ SpecR.

However there are prime ideals such that TRP (MP ) 6= {0}. For example consider

P = 〈 X̄, Ȳ , Z̄ − 1 〉 and the relation ȲP ∗ [Z̄]P = 0. Since P1 ⊆ P and P2 * P ,

we obtain by (1.6) that ȲP is a NZD in RP . Moreover it is non-zero since

AnnR(Ȳ ) = 〈 X̄ 〉 ⊆ P . Note that RP is actually an integral domain since ȲP

and Z̄P are NZDs (being contained in P2) and X̄P = 0 since Z̄ · X̄ = 0̄ with

Z̄ /∈ P . Next we have [Z̄]P 6= 0 because

f̄ ∗ [Z̄] = [0̄] ⇔ f̄ · Z̄ ∈ 〈 Ȳ Z̄ 〉 = 〈 X̄, Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 ∩ 〈 Ȳ , Z̄ 〉

with Z̄ /∈ 〈 X̄, Ȳ 〉, which is prime, so f̄ ∈ 〈 X̄, Ȳ 〉 and AnnR([Z̄]) = 〈 X̄, Ȳ 〉 ⊆ P .

Hence the relation ȲP ∗ [Z̄]P = 0 implies that [Z̄]P ∈ TRP (MP ). This non-zero

local torsion element cannot be represented by a global one (since there are none:

TR(M) = {0}).
However by Corollary 2.1.21 there is always an affine open neighborhood D(r)

of P over which it can be represented. Since P2 * P , we can take r = Z̄. The

zero-divisors in RZ̄ are the localizations of the elements in associated primes that

do not contain Z̄, hence just X̄
1̄

, but this one is zero because Z̄ · X̄ = 0̄. So

Ȳ

1̄
∗ [Z̄]

1̄
= 0

as elements in MZ̄ where Ȳ
1̄
∈ RZ̄ is a non-zero NZD, i.e. [Z̄]

1̄
∈ TRZ̄ (MZ̄) is still

torsion over D(Z̄).

Remark 2.3.2. We have shown: the torsion subsheaf T (F) ⊆ F is not coherent,

even though F is coherent. It is not quasi-coherent neither since all submodules

of M are finitely generated (R being Noetherian). In particular, the equivalence

(2.6) is not satisfied. Although M is a torsion-free R-module, the associated

sheaf is not torsion-free as it has torsion in the stalks.

Remark 2.3.3. Let us also analyze SpecR from the point of view of Section 1.2.4

(connected and irreducible components). As a topological space it is irreducible,
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thus connected, as nil(R) = 〈 X̄ 〉 is a prime ideal and we have SpecR = V
(
〈 X̄ 〉

)
.

If in addition we want to take care of the embedded double point, we get

SpecR = V
(
{0̄}
)

= V
(
〈 X̄ 〉 ∩ 〈 X̄2, Ȳ , Z̄ 〉

)
= V

(
〈 X̄ 〉

)
∪ V

(
〈 Ȳ , Z̄ 〉

)
∼= Spec

(
R/〈 X̄ 〉

)
∪ Spec

(
R/〈 Ȳ , Z̄ 〉

)
∼= SpecK[Ȳ , Z̄] ∪ Spec

(
K[X]/〈X2 〉

)
= A2

K ∪ {dp} .

Here again it is important to take the intersection of the ideals in order to get the

union. For example, let I = 〈X 〉 and I ′ = 〈X2, Y, Z 〉. Then I + I ′ = 〈X, Y, Z 〉
and

I ∩ I ′ = 〈XY,X2, XZ 〉 , I · I ′ = 〈XY,X3, XZ 〉 ,

hence Spec
(
K[X, Y, Z]/〈XY,X3, XZ 〉

)
would define a plane with an embedded

triple point at the origin, i.e. a scheme with a richer structure than the initial

scheme SpecR.

Example 2.3.4. How does the torsion of Example E.4 looks like on the sup-

port ? First note that Za(F) = Zf (F) since M is generated by 1 element (see

Lemma 1.4.8).

We have seen that X = X1 ∪ X2 with X1
∼= A2

K, X2
∼= {dp} (where the double

point is invisible on the topological level) and dimX1 = 2, dimX2 = 0. Let us

denote the support of F by Z. By definition we have AnnR(M) = 〈 Ȳ Z̄ 〉, so

Z = V
(

AnnR(M)
) ∼= Spec

(
R/〈 Ȳ Z̄ 〉

) ∼= Spec
(
K[X, Y, Z]/J

)
↪→ SpecR .

Looking at the primary decomposition of J , we see that Z is given by the union

of the lines

Z1 = V
(
〈 X̄, Z̄ 〉

)
, Z2 = V

(
〈 X̄, Ȳ 〉

)
and the embedded double point Z3 = X2, which is exactly the “cross” {Y Z = 0}
inside of X . Intuitively we thus have dimZ = 1. To prove it rigorously, note

that any prime ideal in Z must contain X̄ since Z ⊂ X = V
(
〈 X̄ 〉

)
. From

ϕ : K[X, Y, Z] � K[X, Y, Z]/J , we already get dimZ < 3. To show that the

dimension cannot be 2, let P̄0 ( P̄1 ( P̄2 be a maximal chain of prime ideals in
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K[X, Y, Z]/J . As the prime ideals must contain X̄, we get 〈 X̄ 〉 ( P̄0 ( P̄1 ( P̄2,

where 〈 X̄ 〉 is not prime. Now consider the chain of preimages under ϕ, i.e.

{0} ( 〈X 〉 (
(
〈X, Y Z 〉 = ϕ−1

(
〈 X̄ 〉

)
(
)
ϕ−1(P̄0) ( ϕ−1(P̄1) ( ϕ−1(P̄2) ,

which gives a chain of length 4 in K[X, Y, Z] : contradiction. Hence dimZ < 2

and the chain 〈 X̄, Ȳ 〉 ( 〈 X̄, Ȳ , Z̄ 〉 finally gives dimZ = 1.

We point out that Z ⊆ X1 = V (P1) as topological spaces since every prime ideal

in Z contains X̄, but Z ↪→ X1 is not a subscheme ! The reason is the double

point, so there is no surjection

@ K[X, Y, Z]/〈X 〉� K[X, Y, Z]/J

which could define a closed immersion Z ↪→ X1. Now we see that

dim(Z ∩ X1) = dimZ = 1 < 2 = dimX1

and dim(Z ∩ X2) = dimX2 = 0 since 〈 X̄, Ȳ , Z̄ 〉 ∈ Z, so the dimension dropped

in the component X1 but not in X2. By (1.13) and Theorem 1.4.23 this again

illustrates that M is not a torsion module.

Now let us compute the support of the torsion subsheaf T (F). It is given by the

set of all prime ideals P E R such that TRP (MP ) 6= {0}. It suffices to check it

for P ∈ Z (otherwise MP = {0} anyway). As a set we have

Z =
{
〈 X̄, Ȳ 〉 , 〈 X̄, Z̄ 〉 , 〈 X̄, Ȳ , Z̄ − λ 〉 , 〈 X̄, Ȳ − µ, Z̄ 〉 , M

∣∣ λ, µ 6= 0
}
⊆ X .

where M = 〈 X̄, Ȳ , Z̄ 〉. First consider P 6= M, so that P1 ⊆ P and P2 * P .

Then X̄P = 0 since either X̄ /∈ P or Ȳ /∈ P or Z̄ /∈ P . Hence ȲP and Z̄P are NZDs

in RP and they are moreover non-zero since AnnR(Ȳ ) = AnnR(Z̄) = 〈 X̄ 〉 ⊆ P .

We also get

AnnR([Ȳ ]) = 〈 X̄, Z̄ 〉 and AnnR([Z̄]) = 〈 X̄, Ȳ 〉 .

If Z̄ ∈ P , then AnnR([Ȳ ]) ⊆ P , so [Ȳ ]P 6= 0, Z̄P ∗ [Ȳ ]P = 0 and [Ȳ ]P ∈ TRP (MP ).

If Ȳ ∈ P , then AnnR([Z̄]) ⊆ P , so [Z̄]P 6= 0, ȲP ∗ [Z̄]P = 0 and [Z̄]P ∈ TRP (MP ).

Thus

〈 X̄, Ȳ 〉 , 〈 X̄, Z̄ 〉 , 〈 X̄, Ȳ , Z̄ − λ 〉 , 〈 X̄, Ȳ − µ, Z̄ 〉 ∈ supp T (F)
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and the only ideal left to check is M. Here P1 ⊂ P2 = M, so ZD(RM) = (P2)M

implies that [X̄]M, [Ȳ ]M, [Z̄]M remain zero-divisors in RM and none of them is

zero because their annihilators are contained in M. On the other hand, MM is

the unique maximal ideal in the local ring RM, so all elements from RM \MM

(i.e. all NZDs) are units. Thus if there is a torsion element m
s
∈ TRM

(MM) with

a NZD a
t
∈ RM annihilating it, then a

t
is invertible and multiplying by its inverse

in the equation a
t
∗ m

s
= 0 implies that m

s
= 0, hence TRM

(MM) = {0}. So M

is the only prime ideal in Z that is not in the support of the torsion subsheaf.

Since it is a maximal ideal, the point {M} is closed, which means that

supp T (F) = Z \ {M}

is open (in Z and in X ). In particular Proposition 1.4.4 implies that T (F)

cannot be coherent because its support is not closed.

Remark 2.3.5. This example shows that torsion can be very strange. The sheaf

F = M̃ has torsion while the module M itself has none and the torsion subsheaf,

which is not coherent, has support which is (topologically) dense in suppF . On

the other hand the example does not contradict our intuition which says that

torsion should drop dimension in each component. Indeed we have

dim
(

supp T (F) ∩ X1

)
= dim

(
Z \ {M}

)
= 1 < 2 = dimX1 ,

dim
(

supp T (F) ∩ X2

)
= dim ∅ = −1 < 0 = dimX2 ,

and even though the torsion is dense in suppF , it is not dense in each component

of the support. For this consider Z = Z1 ∪ Z2 ∪ Z3, i.e. the support of T (F) is

dense in the lines Z1 and Z2 (just missing the point M), but not in the double

point Z3.

Remark 2.3.6. The subsheaf T (F) is also an example of a non-coherent sub-

sheaf of a coherent sheaf on a Noetherian scheme. This is because it is not

of finite type in a neighborhood of M. Indeed assume that there is an open

neighborhood U ⊆ X of M such that the sequence

(OX |U)n −→ T (F)|U −→ 0
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is exact. So in particular there exist sections s1, . . . , sn ∈ OX (U) whose germs

generate all stalks in U , i.e.(
T (F)

)
x
∼= TOX ,x(Fx) =

〈
[s1]x, . . . , [sn]x

〉
, ∀x ∈ U .

Since the stalk at x = M is zero, we get [s1]M = . . . = [sn]M = 0, hence there

is an open neighborhood V ⊆ U of M on which all the si are zero (take the

intersection of the finitely many open sets where the si vanish individually). But

this would imply that TOX ,x(Fx) = {0} for all x ∈ V . Assume that V ∩Z = {M},
hence Z \ {M} ⊆ X \ V . Taking the closure we get Z ⊆ X \ V since V is open

and this contradicts that M ∈ V ∩Z. So we get a contradiction as {M} ( V ∩Z,

but we have known in Example 2.3.4 that M is the only point in Z where T (F)

has zero stalk.

Not being locally of finite type does not mean that some stalks are not finitely

generated. Indeed all stalks of T (F) are finitely generated since RP
∼= OX ,x

is Noetherian and MP is finitely generated over RP , ∀P ∈ SpecR, hence so

are all its submodules. The crucial fact here is that one cannot find an open

neighborhood U of M on which the same sections generate all stalks in U .

2.4 Meromorphic functions

In this section we want to give an alternative description of the torsion subsheaf

of a coherent sheaf on a locally Noetherian scheme. Indeed we will study the

relation between our definition and the one of A. Grothendieck in EGA I [31]

and EGA IV.4 [33]. Moreover it has already been addressed by Kleiman in [43]

that the latter contains some errors and has to be modified.

First we are going to define the sheaf of meromorphic functions and study some

of its properties. In particular we will generalize a statement from Murfet [59]

using the result of Epstein-Yao [21] in order to prove that this sheaf is quasi-

coherent if the ring has no embedded associated primes ; this will be the aim of

Theorem 2.4.19. Finally we also prove in Theorem 2.4.22 that both definitions

of the torsion subsheaf are equivalent in the Noetherian case.
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2.4.1 Total quotient ring

For our goal we first need the following notion.

Definition 2.4.1. [ [11], 10.9.8 ]

Let R be a ring and S be the set of all NZDs in R. Hence 1 ∈ S, 0 /∈ S and S is

multiplicatively closed. The total quotient ring of R is defined as the localization

Rtot := S−1R. Since S does not contain zero-divisors, Lemma A.1.2 gives an

injection i : R ↪→ Rtot. The idea is to generalize the notion of the quotient field.

Indeed we have Rtot = Quot(R) if R is an integral domain.

Lemma 2.4.2. Let M ∈ Mod(R) and consider the morphism

` : M −→M ⊗R Rtot : m 7−→ m⊗ 1
1
.

Then ker ` = TR(M) ∼= Tor1(M,Rtot/R).

Proof. Since M ⊗R Rtot
∼= S−1M by Lemma A.2.2, we get

`(m) = 0 ⇔ m
1

= 0 ⇔ ∃ s ∈ S such that s ∗m = 0

⇔ ∃ s 6= 0 which is a NZD and s ∗m = 0 ⇔ m ∈ TR(M) .

The proof of the isomorphism is exactly the same as the one in Proposition C.4.12

since Rtot is flat over R (see Corollary A.2.8).

Remark 2.4.3. Note that Lemma 2.4.2 is a generalization of Proposition C.4.1

and Proposition C.4.12, which give the corresponding results in the case of inte-

gral domains.

Proposition 2.4.4. The tuple (Rtot, i) satisfies the following universal property:

For any ring homomorphism ϕ : R→ T such that ϕ maps S to units in T , there

exists a unique homomorphism of rings φ : Rtot → T such that φ ◦ i = ϕ, i.e.

the following diagram commutes:

Rtot
∃!φ

// T

S ⊂ R

i

OO

ϕ

;;

Proof. This is a particular case of Proposition A.1.4.
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2.4.2 Definition of KX
Now we apply the same idea to coherent sheaves on non-integral schemes. Here

all schemes (X ,OX ) are considered to be locally Noetherian. We follow the ideas

developed in [33], [43] and [66].

Definition 2.4.5. [ [59], Def.10, p.13 ] , [ [43], p.204 ] and [ [66], p.8 ]

For all U ⊆ X open, let

S(U) =
{
f ∈ OX (U)

∣∣ f 6= 0 and [f ]x is a NZD in OX ,x, ∀x ∈ U
}
.

Note that 0 /∈ S(U), so S(U) is neither a subring, nor a submodule of OX (U).

It is just a subset.

Lemma 2.4.6. [ [59], Def.10, p.13 ]

The assignment U 7→ S(U) with the restrictions of OX defines a sheaf of sets.

Proof. For V ⊆ U open, the restriction S(U) → S(V ) : f 7→ f|V is well-defined

since [f ]x is a NZD, ∀x ∈ V as well. In particular, f|V 6= 0.

Let f, g ∈ S(U) and U =
⋃
i Ui be an open covering. If f|Ui = g|Ui for all i, then

(f − g)|Ui = 0 in OX (Ui), ∀ i and hence f − g = 0 since OX is a sheaf, i.e. f = g.

Note that we cannot assume that f|Ui = 0 for all i since f 6= 0.

If we have local sections fi ∈ S(Ui) for all i that agree on intersections, they glue

to a global section f ∈ OX (U) such that f|Ui = fi, ∀ i. But this f also belongs to

S(U). Indeed, f 6= 0 since all fi are non-zero and [f ]x is a NZD in OX ,x, ∀x ∈ U
since [f ]x = [fi]x for some i such that x ∈ Ui.

Proposition 2.4.7. [ [43], p.204 ] and [ [66], p.8 ]

For all open subset U ⊆ X , S(U) is contained in the set of NZDs of OX (U).

Moreover S(U) is multiplicatively closed.

Proof. Let f ∈ S(U) and assume that ∃ g ∈ OX (U) such that f · g = 0. Hence

[f · g]x = [f ]x · [g]x = 0, ∀x ∈ U . But all [f ]x are NZDs, so [g]x = 0 for all x,

implying that g = 0 and f is a NZD.

1 ∈ S(U) is obvious. To see that S(U) is multiplicatively closed, let f, g ∈ S(U).

Then f · g 6= 0 since both are NZDs and [f · g]x = [f ]x · [g]x is a NZD in OX ,x for

all x ∈ U as well.
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Corollary 2.4.8. [ [43], p.204 ] and [ [66], p.8 ]

If U ∼= SpecR is affine, then S(U) is equal to the set of NZDs of OX (U).

Proof. This follows from Proposition 1.3.6 which says that a non-zero element

in a ring is a NZD if and only if all its localizations are NZDs. If U ∼= SpecR

and OX (U) ∼= R, then

S(U) =
{
f ∈ OX |U(U)

∣∣ f 6= 0 and [f ]x is a NZD in OX ,x, ∀x ∈ U
}

∼=
{
r ∈ R

∣∣ r 6= 0 and r
1

is a NZD in RP , ∀P ∈ SpecR
}

=
{
r ∈ R

∣∣ r is a NZD
}
.

Definition 2.4.9. [ [43], p.204 ] , [ [59], Def.10, p.13 ] and [ [66], p.8 ]

We define the presheaf of rings Q : U 7→ S(U)−1OX (U) with the restrictions

Q(U) −→ Q(V ) :
f

g
7−→

f|V
g|V

for V ⊆ U open. Its sheafification is denoted by KX and is called the sheaf of

total quotient rings or the sheaf of meromorphic functions on X .

The idea of defining KX is to generalize the concept of the function field of an

integral scheme.

Remark 2.4.10. In particular Corollary 2.4.8 implies that Q(U) = OX (U)tot

for affine open sets U ⊆ X and hence Q(SpecR) ∼= Rtot. But this equality does

not hold in general. Indeed the assignment U 7→ OX (U)tot does not even define a

presheaf as its restriction maps may not be defined3, e.g. a NZD r ∈ OX (U) may

become a zero-divisor in OX (V ) for V ⊆ U , so that the section 1
r
∈ OX (U)tot

does not have an image in OX (V )tot. An example is given in [ [43], p.203 ].

2.4.3 Properties and quasi-coherence

Now we are going to study some properties of the sheaf KX . In particular we are

interested in the question if and/or under which conditions it is quasi-coherent.

3This error in EGA IV.4 [ [33], 20.1.1 & 20.1.3, p.226-227 ] has been redressed in the paper

of Kleiman.
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Lemma 2.4.11. [ [33], 20.1.4, p.227-228 ] , [ [59], L.24, p.13 ] and [ [66], 2.2, p.8 ]

There is an injective morphism OX ↪→ KX , making KX an OX–module.

Proof. Let U ⊆ X be open. By Proposition 2.4.7 S(U) does not contain zero-

divisors, so the natural morphism

iU : OX (U) −→ Q(U) : f 7−→ f
1

is injective by Lemma A.1.2 and we get a morphism of presheaves i : OX ↪→ Q.

Combining with the sheafification θ : Q → KX , we get a morphism of sheaves

OX → KX , turning KX into a sheaf of OX–modules (see Lemma D.1.2). This

morphism is still injective because ix : OX ,x ↪→ Qx by exactness of taking stalks

and θx is an isomorphism, so that OX ,x ↪→ KX ,x for all x ∈ X .

Proposition 2.4.12. [ [59], Prop.25, p.13 ]

KX satisfies the following universal property: For any morphism ϕ : OX → A
of sheaves of rings on X such that for every open set U ⊆ X the ring homomor-

phism ϕU : OX (U)→ A(U) maps S(U) to units in F(U), there exists a unique

morphism of sheaves of rings φ : KX → A such that φ ◦ i = ϕ.

KX
∃!φ

// A

OX

OO

ϕ

>>

Proof. Following the same argument as in the proof of Proposition A.1.4, we

know that ∀U ⊆ X open there exists a unique morphism φ′U : Q(U) → A(U)

such that

Q(U)
∃!φ′U // A(U)

OX (U)

iU

OO

ϕU

::

Note that here we don’t necessarily have Q(U) = OX (U)tot since U may not be

affine. Sheafifying the morphism of presheaves φ′ : Q→ A then gives the desired

morphism of sheaves φ : KX → A.
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As KX is a sheafification of Q, we have KX (U) 6= Q(U) for U ⊆ X open in

general. But now we will show in Proposition 2.4.14 that it is true over affines.

The reader may however skip the proof as it not instructive and very technical.

Lemma 2.4.13. Let r, s ∈ R. Then SpecR = D(r) ∪ D(s) if and only if

1 ∈ 〈 r, s 〉. This gives a condition to see when we have a covering of SpecR.

More generally,

SpecR =
n⋃
i=1

D(ri) ⇔ 1 ∈ 〈 r1, . . . , rn 〉 .

Proof. ⇒ : SpecR = D(r)∪D(s) means that any prime ideal P satisfies either

r /∈ P or s /∈ P . Hence 〈 r, s 〉 = R, otherwise there is a maximal ideal M

containing it, which contradicts M ∈ SpecR.

⇐ : If 1 = ar + bs for some a, b ∈ R, then every prime ideal P must satisfy

r /∈ P or s /∈ P , otherwise 1 ∈ P and P would not be proper.

Proposition 2.4.14. [ [57], Lecture 9, p.61-62 ]

If U ⊆ X is an affine open subset, then

KX (U) ∼= OX (U)tot = S(U)−1OX (U) . (2.8)

Proof. We have to show that the assignment U 7→ OX (U)tot defines a sheaf when

only ranging over affines, i.e. if U ∼= SpecR is affine and covered by (finitely

many) affines Ui = D(ri) ∼= Spec(Rri), then local sections fi ∈ OX (Ui)tot that

agree on intersections Ui ∩ Uj glue to a section f ∈ OX (U)tot. Note that

OX (U)tot
∼= Rtot and OX (Ui)tot

∼= (Rri)tot .

Let fi = si
ti

where si, ti ∈ Rri and the ti are NZDs. Multiplying all of them by rNi

for large N , we may assume that si = ai
1

and ti = bi
1

for some ai, bi ∈ R. Indeed,

fi =
si
ti

=
si · rNi /1
ti · rNi /1

=
s′i/r

ni
i · rNi /1

t′i/r
mi
i · rNi /1

=
(s′i · r

N−ni
i )/1

(t′i · r
N−mi
i )/1

=
ai/1

bi/1
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for N > maxi{ni,mi}. Saying that the sections agree on intersections means:

fi|Ui∩Uj = fj|Ui∩Uj ⇔ si
ti

=
sj
tj

as elements in OX (Ui ∩ Uj)tot

⇔ there is a NZD cij ∈ OX (Ui ∩ Uj) ∼= Rrirj such that cij · (sitj − sjti) = 0

⇔ sitj − sjti = 0 in Rrirj (since cij is a NZD)

⇔ ai
1
· bj

1
− aj

1
· bi

1
= 0 in Rrirj

⇔ ∃ dij ∈ N such that (rirj)
dij · (aibj − ajbi) = 0 in R .

Taking D > maxi,j{dij}, we moreover may represent fi as a fraction ai/1
bi/1

such

that aibj = ajbi in R because

fi =
rDi · ai/1
rDi · bi/1

with rDi ai · rDj bj − rDj aj · rDi bi = (rirj)
D · (aibj − ajbi) = 0. Now we have to find

f = α
β
∈ Rtot where β ∈ R is a NZD such that f|Ui = fi for all i, i.e.

α
β

= si
ti

as elements in OX (Ui)tot ⇔ α
1
· ti − si · β1 = 0 in Rri .

We start by defining the ideal

I =
{
r ∈ R

∣∣ r
1
· si ∈ 〈 ti 〉 E Rri , ∀ i

}
.

Then bj ∈ I, ∀ j because

bj
1
· si =

bj ·ai
1

=
aj ·bi

1
= sj · ti .

Next let c ∈ AnnR(I), so that c · bj = 0, ∀ j. Since tj =
bj
1

is a NZD in Rrj , we

hence need that c
1

= 0, i.e. ∀ j, ∃ `j such that r
`j
j · c = 0 (note that this does not

change if we replace bj by rDj bj). Let L = maxj `j, so that rLj · c = 0 for all j. By

Lemma 2.4.13 we have 1 ∈ 〈 r1, . . . , rn 〉. For all M ∈ N we then get

c = c · 1 = c · 1M = c ·
(∑

j

xjrj

)M
= c ·

∑
i1+...+in=M

λi1,...,in · ri11 · . . . · rinn

for some λi1,...,in ∈ R. Taking M large enough we can achieve that for all possible

values of i1, . . . , in at least one of them is bigger than L, hence all terms cancel.

It follows that c = 0. So we have a non-zero ideal I such that AnnR(I) = {0}.
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Since R is Noetherian Corollary B.2.26 implies that I must contain a NZD β,

which satisfies by definition

β
1
· si = hi · ti for some hi ∈ Rri , ∀ i .

In particular β
1
· si
ti

= hi for all i. But the si
ti

are such that they agree on

intersections Ui∩Uj, hence so do the hi ∈ Rri
∼= OX (Ui). OX being a sheaf, they

glue to a global α ∈ OX (U) ∼= R such that α|Ui = hi for all i, i.e. α
1

= hi in Rri .

Thus we set f := α
β
∈ OX (U)tot and get β

1
· si = α

1
· ti in Rri for all i, which is

what we wanted.

Remark 2.4.15. The isomorphism (2.8) may fail if the rings are not Noetherian ;

it may for example happen thatOX (U)tot ( KX (U). An example is given in [ [43],

p.204-205 ].

Proposition 2.4.16. cf. [ [66], 2.1 p.8 ]

The stalks of KX are the total quotient rings of the stalks of OX ,x, i.e.

KX ,x ∼= (OX ,x)tot , ∀x ∈ X

Proof. Since KX ,x ∼= Qx it suffices to prove that Qx
∼= (OX ,x)tot, ∀x ∈ X . Fix

x ∈ X ; we consider the morphism

ϕU : Q(U) = S(U)−1OX (U) −→ (OX ,x)tot :
f

g
7−→ [f ]x

[g]x

for some open neighborhood U of x. It is well-defined since [g]x is a NZD by

definition. Moreover if f
g

= f ′

g′
, then ∃h ∈ S(U) such that h · (fg′ − f ′g) = 0,

hence

[h]x · [fg′ − f ′g]x = [h]x ·
(
[f ]x · [g′]x − [f ′]x · [g]x

)
= 0 .

Since [h]x is a NZD, this implies that [f ]x · [g′]x − [f ′]x · [g]x = 0 and hence
[f ]x
[g]x

= [f ′]x
[g′]x

. Now we get the morphism

ϕx : Qx → (OX ,x)tot :

[
f

g

]
x

7−→ [f ]x
[g]x

on the inductive limit, which is injective since [f ]x
[g]x

= 0 if and only if [f ]x = 0

(since elements in the multiplicative subset are NZDs), which means that f is
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zero on a neighborhood of x and therefore f
g

is zero on a neighborhood of x as

well.

To prove surjectivity, let [f ]x
[g]x
∈ (OX ,x)tot be given. The germs [f ]x and [g]x can

be represented by f, g ∈ OX (U) for some affine open neighborhood U ∼= SpecR

of x with g 6= 0 since [g]x 6= 0. Let x correspond to some P ∈ SpecR, so that

we have an element g ∈ R such that g
1

is a NZD in RP . By Proposition 2.1.15

we can find r /∈ P such that g
1

is also a NZD in Rr. In other words there is an

affine open neighborhood V = D(r) ⊆ U of x such that g|V is a NZD in OX (V ),

hence so are all its germs (Proposition 1.3.6) and

h :=
f|V
g|V
∈ Q(V )

can be chosen as a preimage: ϕx
(
[h]x
)

= [f ]x
[g]x

.

Remark 2.4.17. Again this may be false in the non-Noetherian case, see [ [43],

p.204 ]. In general we only have an injection KX ,x = S−1
x OX ,x ↪→ (OX ,x)tot, where

Sx is contained in (but not equal to) the set of NZDs of OX ,x.

Proposition 2.4.18. [ [33], 20.1.1, p.226 ] and [ [66], 2.2, p.8 ]

KX is a flat OX–module.

Proof. By exactness of taking stalks, a sheaf is flat if and only if all its stalks

are flat. So it follows from KX ,x ∼= (OX ,x)tot, ∀x ∈ X , where (OX ,x)tot is a flat

module over OX ,x (Corollary A.2.8).

Now we are ready to study quasi-coherence of KX . Unfortunately this is not true

in general as it has already been pointed out by Kleiman in [ [43], p.205 ]. We will

see this in Example 2.4.24. However it is true in the case where all Noetherian

rings defining X have no embedded primes. For this we will again use the result

from Epstein-Yao (Proposition 2.2.10).

The following statement has been proven by Murfet in [59] in the case of integral

domains. Our contribution is a modification of its proof so that the result also

holds true more generally in a Noetherian ring without embedded primes.
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Theorem 2.4.19. cf. [ [59], Lemma.28, p.14 ]

Let X = SpecR where R is a Noetherian ring with no embedded primes. Then

we have a canonical isomorphism

R̃tot
∼−→ KX .

Proof. We want to show that R̃tot satisfies the universal property of KX from

Proposition 2.4.12, hence they are canonically isomorphic. Let ϕ : OX → A be

any morphism of sheaves of rings on X such that ϕU maps elements from S(U)

to units in A(U) for every open set U ⊆ X . In particular A gets the structure of

an OX–module. By Theorem 1.1.13 we know that the functor ∼ is a left adjoint

of the functor of global sections Γ(X , · ). Thus

ϕ ∈ Hom(OX ,A) = Hom
(
R̃,A

) ∼= HomR

(
R,A(X )

)
and we get a homomorphism of R-modules f : R → A(X ). Let S ⊂ R denote

the set of NZDs in R. Then f = ϕX and f maps elements from S to units in

A(X ) because S ∼= S(X ) under the identification R ∼= OX (X ). Alternatively by

using Proposition 1.3.6,

S(X ) =
{
t ∈ OX (X )

∣∣ t 6= 0, [t]x is a NZD in OX ,x, ∀x ∈ X
}

∼=
{
r ∈ R

∣∣ r 6= 0, r
1

is a NZD in RP , ∀P ∈ SpecR
}

= { all NZDs in R } = S .

By the universal property of Rtot, we now have a unique homomorphism of rings

ψ : Rtot → A(X ) such that

Rtot
ψ
// A(X )

R

i

OO

f

;;

Applying ∼ and composing with the canonical morphism Ã(X ) → A induced

by (1.4), we obtain

R̃tot
ψ̃
// Ã(X ) // A R̃tot

∃! // A

R̃

ĩ

OO

f̃

<<

OX

j

OO

ϕ

??

85



LEYTEM Alain 2.4. Meromorphic functions

and the morphism R̃tot → A is unique since it comes from Rtot → A(X ) by

adjunction, which is unique. Now it only remains to show that the morphism

of sheaves of rings j = ĩ : OX → R̃tot maps elements from S(U) to units for

every open set U ⊆ X . For this it suffices to prove it for every affine open set

D(r). Indeed let U =
⋃
i Ui for some affine Ui and s ∈ S(U) with restrictions

si = s|Ui ∈ S(Ui). If jUi(si) are units for all i, then

jUi(si) · ti = 1 ⇔ ti =
1

jUi(si)
=

1

jU(s)|Ui
, ∀ i

for some sections ti over Ui, then these agree on intersections (since the si do)

and glue to a global section t such that jU(s) · t = 1, i.e. jU(s) will be a unit as

well.

On the other hand, note that jD(r) : OX (D(r))→ R̃tot(D(r)) is nothing but the

injection of rings ir : Rr ↪→ (Rtot)r and we are left to prove that NZDs in Rr

are mapped to units in (Rtot)r. First assume that R is an integral domain. If
a
rn
∈ Rr is a NZD, then a 6= 0 and a is a NZD in R, hence

ir :
a

rn
7−→ a/1

rn/1
with inverse

rn/a

1/1
· a/1
rn/1

=
rn/1

rn/1
= 1 .

Now let R be a ring with no embedded primes and a
rn
∈ Rr a NZD. In particular

a
1

is a NZD, so by Proposition 2.2.10 we can find w = rm and s ∈ R with w ·s = 0

such that wa+ s is a NZD in R. Hence the inverse of a
rn

in (Rtot)r is

(rnw)/(wa+ s)

1/1
· a/1
rn/1

=
rn · wa

wa+s

rn · 1/1
=

wa+s
wa+s

− s
wa+s

1/1
= 1−

s
1
· 1
wa+s

1/1
= 1− 0 = 1

because w
1
· s

1
= 0, i.e. s

1
/1

1
= 0 in (Rtot)r. Note however that s

1
∈ Rtot is non-zero.

This finishes the proof and shows that KX is indeed canonically isomorphic to

the sheaf associated to Rtot.

Corollary 2.4.20. If (X ,OX ) is a locally Noetherian scheme whose rings that

define the local spectra have no embedded primes, then KX is quasi-coherent.

More precisely, if X =
⋃
i Ui is an affine covering with Ui ∼= SpecRi for some

Noetherian rings Ri with no embedded primes, then

KX |Ui ∼= (̃Ri)tot .

In particular, this holds for integral schemes where (Ri)tot = Quot(Ri), ∀ i.
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2.4.4 Relation with the torsion subsheaf

With the results from the previous section we can now understand the relation

between torsion and meromorphic functions.

Definition 2.4.21. [ [33], 20.1.5, p.228 ]

Let F ∈ QCoh(OX ). We define the sheaf of meromorphic sections on X by

KX (F) := F⊗KX . Combining the identity F → F and the morphismOX ↪→ KX
from Lemma 2.4.11, we moreover obtain a canonical morphism ψ : F → KX (F).

Theorem 2.4.22. cf. [ [33], 20.1.5, p.228 ] and [ [66], 2.6, p.10 ]4

Let (X ,OX ) be a locally Noetherian scheme, F ∈ QCoh(OX ) and ψ : F → KX (F)

be the canonical morphism. Then

T (F) ∼= kerψ . (2.9)

In particular, F is torsion-free if and only if ψ is injective.

Proof. We want to show that there exists a morphism T (F) → kerψ such that

T (F)x ∼= (kerψ)x for all x ∈ X , hence that the 2 sheaves are isomorphic. Since

(kerψ)x ∼= ker(ψx), we may consider

ψx : Fx −→
(
KX (F)

)
x

=
(
F ⊗KX

)
x
∼= Fx ⊗OX ,x KX ,x ∼= Fx ⊗OX ,x (OX ,x)tot

by Proposition 2.4.16. The same argument as in Lemma 2.4.2 then shows that

ker(ψx) = TOX ,x(Fx). Hence T (F) and kerψ have the same stalks. In order

to construct T (F) → kerψ, let ϕ : T (F) ↪→ F be the morphism defining the

subsheaf and consider

kerψ // F ψ
// KX (F)

T (F)

ϕ

OO

∃!

cc

0

::

where ψ ◦ ϕ = 0 since

ϕx :
(
T (F)

)
x
∼= TOX ,x(Fx) ↪→ Fx

is just the inclusion, hence ψx ◦ ϕx = (ψ ◦ ϕ)x = 0, ∀x ∈ X .

4Trautmann [66] states the result for integral schemes, but this fact is not used in the proof.
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Remark 2.4.23. (2.9) is consistent with the definition of the torsion subsheaf of

Grothendieck in EGA I [ [31], 7.4.1, p.163 ] where he defines it in the case of an

integral scheme X as the kernel of the morphism F → F⊗R(X ), where R(X ) is

the function field of X (that has to be replaced by KX in the non-integral case).

Example 2.4.24. We know that the torsion subsheaf of F = M̃ on X = SpecR

from Example E.4 is not quasi-coherent. Hence KX cannot be quasi-coherent

neither, otherwise kerψ would be quasi-coherent. There is also an alternative

way to see this: let X = SpecR be any affine scheme and F ∈ QCoh(OR) given

by F ∼= M̃ for some M ∈ Mod(R). Then ∀ r ∈ OX (X ) ∼= R, the canonical map(
F(X )

)
r
−→ F

(
D(r)

)
:
s

rn
7−→ 1

rn
∗ s|D(r) , (2.10)

where F(X ) is a module over OX (X ), s|D(r) ∈ F(D(r)) and 1
rn
∈ OX (D(r)), is

an isomorphism since quasi-coherent sheaves satisfy

M̃
(
D(r)

) ∼= Mr .

We want to show that this is not satisfied for KX in Example E.4. With r = Z̄,

let us compute (
KX (X )

)
r
∼=
(
OX (X )tot

)
r

=
(
Rtot

)
Z̄
,

KX
(
D(r)

) ∼= KX (SpecRr) ∼= (RZ̄)tot

by (2.8) since X and D(r) are affine. The zero-divisors are

ZD(R) = 〈 X̄, Ȳ , Z̄ 〉 , ZD(RZ̄) =
〈
X̄
1̄

〉
= {0}

because Z̄ · X̄ = 0̄, so RZ̄ is an integral domain and we get(
RZ̄

)
tot

= Quot(RZ̄) =

{
f̄/Z̄n

ḡ/Z̄m

∣∣∣ ḡ/1̄ 6= 0 in RZ̄

}
=

{
f̄/Z̄n

ḡ/Z̄m

∣∣∣ ḡ /∈ AnnR(Z̄)

}
=

{
f̄/Z̄n

ḡ/Z̄m

∣∣∣ ḡ /∈ 〈 X̄ 〉}
since AnnR(Z̄) = 〈 X̄ 〉 is a prime ideal not containing Z̄, so Z̄ḡ = 0̄ ⇔ Z̄kḡ = 0̄

for some k ≥ 1. As the NZDs in R are (classes of) polynomials with non-zero

constant term, we also find

Rtot =
{ f̄
ḡ

∣∣∣ ḡ(0) 6= 0
}

,
(
Rtot

)
Z̄

=

{
f̄/ḡ

Z̄n

∣∣∣ ḡ(0) 6= 0

}
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with Rtot seen as an R-module. This gives the canonical morphism from (2.10)

as (
Rtot

)
Z̄
−→

(
RZ̄

)
tot

:
f̄/ḡ

Z̄n
7−→ 1̄

Z̄n
· f̄/ḡ

1̄/1̄
=
f̄/Z̄n

ḡ/1̄
,

which is well-defined since ḡ(0) 6= 0, so ḡ /∈ 〈 X̄ 〉. However this map is not

surjective ; we can take e.g. ḡ = Ȳ . Then Ȳ /∈ 〈 X̄ 〉, so the denominator in

(RZ̄)tot is well-defined, but Ȳ it is a zero-divisor in R and vanishes at 0, i.e. 1̄/Ȳ

does not exist in Rtot.

Remark 2.4.25. In particular, Example 2.4.24 shows that S−1(Rtot) is in gen-

eral not equal to (S−1R)tot as an R-module. But this can be achieved by con-

structing global NZDs when there are no embedded primes. Indeed it is shown

in [ [21], 4.7, p.11 ] that for a Noetherian ring R with no embedded primes and a

multiplicatively closed subset S ⊂ R, we have the isomorphism of R-modules

S−1(Rtot) ∼= (S−1R)tot .

2.5 The Grothendieck criterion

Using the properties of the sheaf of meromorphic functions, one can obtain a

very powerful criterion to decide whether a quasi-coherent sheaf on a locally

Noetherian scheme is torsion-free by only looking at the associated primes of the

involved rings and modules. It has been proven by Grothendieck in [33].

Definition 2.5.1. Let M be an R-module and a ∈ R. The homothety of M with

respect to a is the R-module homomorphism

ha : M −→M : m 7−→ a ∗m .

Lemma 2.5.2. [ [6], IV.§1.n◦1.Cor.2, p.308-309 ]

Let R be a Noetherian ring, M ∈ Mod(R) and a ∈ R. Then ha is injective if

and only if a does not belong to any prime ideal in AssR(M).

Proof. ⇒ : Assume that ∃P ∈ AssR(M) such that a ∈ P . Proposition B.2.25

gives P = AnnR(x) for some x ∈M , x 6= 0 and a ∗ x = 0, which implies that ha

is not injective.
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⇐ : If ha is not injective, then ∃x ∈ M , x 6= 0 such that a ∗ x = 0. Let

N = 〈x 〉 ≤ M . Since x 6= 0, we have N 6= {0} and thus AssR(N) 6= ∅ since R

is Noetherian (see Proposition B.3.4). Take P ∈ AssR(N), i.e. P = AnnR(r ∗ x)

for some r ∈ R. In particular, P ∈ AssR(M) by Proposition B.3.5 and a ∈ P
since a ∗ (r ∗ x) = r ∗ (a ∗ x) = 0.

Lemma 2.5.3. Let M be an R-module and ` : M → M ⊗R Rtot the morphism

from Lemma 2.4.2. Then ` is injective if and only if ha is injective for every

NZD a ∈ R.

Proof. Note that ` may also be written as ` : M →Mtot because of Lemma A.2.2,

where the denominators in Mtot consist of NZDs in R, i.e. `(x) = x
1
, ∀x ∈M .

⇒ : Assume that ` is injective and let a ∈ R be a NZD. Then

ha(x) = 0 ⇔ a ∗ x = 0 ⇒ x
1

= `(x) = 0 ⇒ x = 0 .

⇐ : Let `(x) = x
1

= 0, i.e. there is a NZD a ∈ R such that a ∗ x = 0, which

implies that x = 0 as ha is injective.

Corollary 2.5.4. For every module M over a Noetherian ring R, we have

TR(M) = {0} ⇔ ` is injective

⇔ for every NZD a ∈ R, a /∈ P, ∀P ∈ AssR(M)

⇔ no prime ideal in AssR(M) contains a NZD .

Proof. Combine Lemma 2.4.2, Lemma 2.5.2 and Lemma 2.5.3.

Definition 2.5.5. [ [32], 3.1.1, p.36 ]

Let (X ,OX ) be a locally Noetherian scheme and F ∈ QCoh(OX ). We say that a

point x ∈ X is associated to F if the maximal ideal Mx of the stalk OX ,x is an

associated prime of Fx, i.e. if Mx ∈ AssOX ,x(Fx). The set of all points that are

associated to F is denoted by Ass(F).

Remark 2.5.6. The definition already implies that Ass(F) ⊆ suppF since

Proposition B.3.4 gives

x ∈ Ass(F) ⇒ AssOX ,x(Fx) 6= ∅ ⇒ Fx 6= {0} .
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Proposition 2.5.7. [ [32], 3.1.2, p.36 ]

Let X = SpecR for a Noetherian ring R, M an R-module and F = M̃ . We

identify x ∈ X with P ∈ SpecR. Then

x ∈ Ass(F) ⇔ P ∈ AssR(M) .

Proof. follows from the behaviour of associated primes under localization (see

Proposition B.3.7). Let S = R \ P and denote the set of prime ideals which are

contained in P by P ⊆ SpecR. Then

Mx ∈ AssOX ,x(Fx) ⇔ PP ∈ AssRP (MP )

⇔ S−1P ∈ S−1
(

AssR(M) ∩ P
)
⇔ P ∈ AssR(M)

since P ∈ P anyway.

Theorem 2.5.8 (Grothendieck). [ [33], 20.1.6, p.228 ]

Let (X ,OX ) be a locally Noetherian scheme and F ∈ QCoh(OX ). Then F is

torsion-free if and only if Ass(F) ⊆ Ass(OX ).

Proof. Since a sheaf is torsion-free if and only if all its stalks are torsion-free, it

suffices to check the property on affine schemes. So let X = SpecR with associ-

ated primes P1, . . . , Pα in R and F = M̃ for some R-module M .

If ψ : F → KX (F) denotes the morphism from Section 2.4.4, then Theo-

rem 2.4.22 and Corollary 2.5.4 imply that

T (F) = 0 ⇔ kerψ = 0 ⇔ ψx : Fx → (Fx)tot is injective, ∀x ∈ X

⇔ ψP : MP → (MP )tot is injective, ∀P ∈ SpecR

⇔ ∀P ∈ SpecR, no prime ideal in AssRP (MP ) contains a NZD

⇔ AssR(M) ⊆ {P1, . . . , Pα} = AssR(R) .

It remains to explain the last equivalence. Recall that Proposition B.3.7 gives

AssRP (MP ) =
{
QP

∣∣ Q ∈ AssR(M), Q ⊆ P
}
.

⇒ : Assume that ∃P ∈ AssR(M) such that P 6= Pi, ∀ i. We show that

AssRP (MP ) then contains a prime ideal that contains a NZD. Consider all asso-

ciated primes that are strictly contained in P (there is at least one since every
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prime ideal contains a minimal prime) ; denote them by P1, . . . , Pβ for some

β ≤ α, i.e. Pi ( P , ∀ i ≤ β. Hence the union is still contained in P and this

inclusion is still strict, otherwise Prime Avoidance implies⋃β
i=1 Pi = P ⇒ P ⊆

⋃β
i=1 Pi ⇒ P ⊆ Pj for some j ≤ β

⇒ P ⊆ Pj ⊆
⋃β
i=1 Pi = P ⇒ P = Pj ,

which contradicts that P /∈ {P1, . . . , Pα}. Thus ∃ r ∈ P \
⋃β
i=1 Pi. Now we

consider the localization RP . Since P ∈ AssR(M), we immediately get that

PP ∈ AssRP (MP ). The zero-divisors in RP are given by the localizations of those

associated primes that are contained in P . But r has been chosen to not belong

to any of them, so r
1

is a NZD in RP . Now r
1
∈ PP gives the desired statement.

⇐ : Fix P ∈ SpecR and let a be any NZD in RP . If AssR(M) ⊆ {P1, . . . , Pα},
then

AssRP (MP ) ⊆
{
QP

∣∣ Q ∈ {P1, . . . , Pα}, Q ⊆ P
}

=
{

(Pi)P
∣∣ Pi ⊆ P

}
,

where (Pi)P ⊆ ZD(RP ), so a cannot belong to a prime ideal in AssRP (MP ).

Remark 2.5.9. The proof allows to explicitly construct stalks that are not

torsion-free if the condition is not satisfied. Indeed if ∃x ∈ Ass(F) \ Ass(OX ),

then it is shown that TOX ,x(Fx) 6= {0} and thus T (F) 6= 0.

Vice-versa, if x ∈ Ass(F)∩Ass(OX ), then TOX ,x(Fx) = {0} since ψx is injective.

Example 2.5.10. Let us check the criterion of Theorem 2.5.8 on Example E.4,

where we know that F = M̃ is not torsion-free. By (2.7) we have

AssR(R) =
{
〈 X̄ 〉 , 〈 X̄, Ȳ , Z̄ 〉

}
,

AssR(M) =
{
〈 X̄, Z̄ 〉 , 〈 X̄, Ȳ 〉 , 〈 X̄, Ȳ , Z̄ 〉

}
,

hence 〈 X̄, Z̄ 〉 and 〈 X̄, Ȳ 〉 are associated primes of M which are not in AssR(R).

By Remark 2.5.9 we can thus immediately conclude from Theorem 2.5.8 that the

stalks at these two prime ideals are not torsion-free (which is indeed the case as

shown in Example 2.3.4).
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Remark 2.5.11. Looking at the computations of supp T (F) in Example 2.3.4,

one may ask if there is a relation between torsion in the stalks at prime ideals

and torsion in the stalks at the maximal ideals containing them. The answer to

this question is Yes, and it will be explained in Proposition 3.3.9.

Remark 2.5.12. Finally let us also point out that Theorem 2.5.8 can be used

to give an alternative proof of Corollary 2.2.22. Indeed if a Noetherian ring has

no embedded primes, then P ∈ AssR(M) is contained in some Q ∈ AssR(R) if

and only if P = Q since Q is minimal. Hence we get

M ∈ Mod(R) is torsion-free

⇔ ∀P ∈ AssR(M), ∃Q ∈ AssR(R) such that P = Q

⇔ AssR(M) ⊆ AssR(R) ⇔ M̃ ∈ QCoh(OR) it torsion-free .

2.6 Some more facts

In this final section we want to present an alternative proof of the fact that

coherent torsion sheaves have smaller-dimensional support in each component

(Proposition 1.4.21 and Theorem 1.4.23). For this we will use several preliminary

results, which are also interesting in themselves. In the following we always

consider a coherent sheaf F on a locally Noetherian scheme (X ,OX ).

2.6.1 Preliminaries

Lemma 2.6.1. [ [61], Thm.12, p.41-42 ]

Let M be a finitely generated R-module and S ⊂ R a multiplicatively closed

subset. Then

S−1
(

AnnR(M)
)

= AnnS−1R

(
S−1M

)
. (2.11)

Proof. ⊂ : if r
s

is such that r ∈ AnnR(M) and s ∈ S, then r
s
∗ m

t
= 0 for all

m
t
∈ S−1M

⊃ : if r
s
∗ m

t
= 0 for all m

t
∈ S−1M , then ∀m ∈ M , ∃ bm ∈ S such that

(bm · r) ∗ m = 0. In particular, if m1, . . . ,mn are the generators of M , then
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∃ bi ∈ S such that (bi · r)∗mi = 0, ∀ i. Let b := b1 · . . . · bn ∈ S, so b · r annihilates

all mi, i.e. b · r ∈ AnnR(M) and

r

s
=
b · r
b · s

.

Proposition 2.6.2. Let F ∈ Coh(OX ) and x ∈ X be fixed. If there is a NZD

fx ∈ OX ,x such that fx ∗Fx = {0}, then there exists an affine open neighborhood

U of x and a NZD f ∈ OX (U) such that f ∗ F|U = 0.

Proof. It suffices to prove the statement locally. Let X = SpecR, F ∼= M̃

for some finitely generated R-module M with generators m1, . . . ,mn and let x

correspond to some P ∈ SpecR. Hence Fx ∼= MP is generated by m1

1
, . . . , mn

1
.

Since fx annihilates Fx, we get fx ∗ mi
1

= 0, ∀ i and all the mx
i = mi

1
are torsion

elements in MP . By Corollary 2.1.18, we thus can find affine open neighborhoods

Ui of x such that each mi
1

is torsion on Ui, i.e.

mUi
i = mi

1
∈ TOX (Ui)

(
F(Ui)

)
, ∀ i .

Let U ⊆
⋂
i Ui be an affine open neighborhood of x and restrict all these torsion

elements to U . By Remark 2.1.6 the restriction of a torsion element on an affine

to a smaller affine is still a torsion element. Write U = D(r), so now we have

mU
i := mUi

i |U = mi
1
∈ TOX (U)

(
F(U)

) ∼= TRr(Mr) , ∀ i ,

i.e. for all i, there is a NZD fi ∈ OX (U) ∼= Rr such that fi ∗ mi
1

= 0. Take

f = f1 · . . . · fn, which is still a NZD in OX (U). Then f ∗ mi
1

= 0, ∀ i and

f∗F|U = 0 since F|U is the sheaf associated to the module Mr, which is generated

by m1

1
, . . . , mn

1
∈Mr.

Remark 2.6.3. In general one cannot expect that [f ]x = fx, i.e. the germ of f

at x may not be equal to the given germ fx.

However they only differ by a unit. Indeed consider the proof of Proposi-

tion 2.1.17 where a
1
∗ m

1
= 0 in MP for some NZD a

1
∈ RP , i.e. ∃ b /∈ P such that

ba ∗m = 0. We proved that m
1

is still torsion in some Mr where it is annihilated

by the NZD ba
1

. Then a
1
6= ba

1
as elements in MP , but we have a

1
= 1

b
· ba

1
where 1

b

is a unit in MP , so in the stalk the 2 NZDs only differ by a unit.
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Corollary 2.6.4. If F ∈ Coh(OX ) is such that Fx is a torsion OX ,x–module

for some x ∈ X , then there is an affine open neighborhood U of x such that

F|U ∈ Coh(OX |U) is a torsion sheaf.

Proof. If Fx is a torsion module, then its annihilator contains a NZD fx by

Proposition 1.3.5, i.e. fx ∗ Fx = {0}. So by Proposition 2.6.2 there is an affine

open neighborhood U of x and a NZD f ∈ OX (U) such that f ∗F|U = 0. Taking

stalks for all y ∈ U , we get fy ∗ Fy = {0} where fy ∈ OX ,y is still a NZD (see

Proposition 1.3.6). Hence Fy is a torsion OX ,y–module, ∀ y ∈ U .

Proposition 2.6.5. For x ∈ X , denote the unique maximal ideal of the local

ring OX ,x by Mx. If F ∈ Coh(OX ), then

suppF ⊆
{
x ∈ X

∣∣ AnnOX ,x(Fx) ⊆Mx

}
. (2.12)

Proof. Let U ∼= SpecR be an affine open subset such that F ∼= M̃ for finitely

generated M . Then

supp(F|U) =
{
P ∈ SpecR

∣∣ MP 6= {0}
}
,

MP 6= {0} ⇔ AnnR(M) ⊆ P ⇒
(

AnnR(M)
)
P

= AnnRP (MP ) ⊆ PP

by using (2.11) and Proposition B.3.11, where PP is the unique maximal ideal

of RP . Repeating the same argument on an affine covering of X , we get the

inclusion (2.12).

Remark 2.6.6. The proof of (2.12) is easy in the case of schemes. However one

can show that it actually holds true for any coherent sheaf on a locally ringed

space.

Let (X ,OX ) be any non-trivial locally ringed space and F ∈ Coh(OX ). Fix

x ∈ X . Then Fx is a finitely generated module over OX ,x and K = OX ,x/Mx is

a field. Define F(x) := Fx/(MxFx), which is a finite-dimensional vector space

over K. By Nakayama’s Lemma (Proposition D.1.11), we moreover have

F(x) = {0} ⇔ Fx = {0}

since if F(x) is generated by z̄1, . . . , z̄n, then Fx is generated by z1, . . . , zn. Now

let rx ∈ AnnOX,x(Fx) be non-zero and set Ex := rx ∗ Fx, so obviously Ex = {0}
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and hence E(x) = {0}. On the other hand we get E(x) = rx · F(x) since

rx ∗m = rx ·m, so E(x) = {0} ⇔ rx · F(x) = {0}. Dealing with vector spaces,

this means that at least one of them must be zero. If rx 6= 0, then F(x) = {0}
and hence Fx = {0}. Thus if x ∈ suppF , we have Fx 6= {0}, so rx = 0 and

rx ∈Mx, which shows that AnnOX,x(Fx) ⊆Mx.

2.6.2 Local irreducible decomposition and result

Let P1, . . . , Pα be the associated primes of a Noetherian ring R. We know that

X = SpecR decomposes into the irreducible subschemes Xi = V (Pi). Now let

U = D(r) be an affine open subset. We are interested in the intersection Xi∩U (if

it is non-empty). More precisely, U ∼= Spec(Rr) also decomposes into irreducible

components X ′i , given by the associated primes in Rr. By (1.6) these are given

by P ′i := (Pi)r for i ∈ {1, . . . , γ} such that r /∈ Pi. Proposition 1.1.1 ensures that{
P ∈ SpecR

∣∣ Pi ⊆ P and r /∈ P
} ∼= {

Q ∈ Spec(Rr)
∣∣ (Pi)r ⊆ Q

}
,

i.e. V (Pi) ∩D(r) ∼= V ′(P ′i )
5 and thus Xi ∩ U = X ′i .

Proposition 2.6.7. Let X = SpecR be affine for a Noetherian ring R and

F ∈ Coh(OX ). If F is a torsion sheaf, then dim
(
(suppF) ∩ Xi

)
< dimXi, ∀ i.

Proof. Let P1, . . . , Pα be the associated primes in R, defining the components

X1, . . . ,Xα. We fix i ∈ {1, . . . , α} and x ∈ (suppF) ∩ Xi (if it is non-empty,

otherwise the inequality is trivial). Since F is torsion, its stalks are finitely

generated torsion modules and we know that AnnOX ,x(Fx) contains a NZD fx. By

Proposition 2.6.2 there exists an affine open neighborhood U = D(r) ⊂ SpecR

of x and a NZD f ∈ OX (U) such that f ∗ F|U = 0. Denote A = Rr, so that

U ∼= SpecA. Since fy ∗Fy = {0} for all y ∈ U , fy is in the annihilator of Fy and

(2.12) gives

(suppF) ∩ U ⊆
{
y ∈ U

∣∣ fy ∈My

} ∼= {
P ∈ SpecA

∣∣ f
1
∈ PP

}
because f ∈ OX (U) ∼= A.

5We use the notation V ( ) for closed sets in SpecR and V ′( ) for closed sets in SpecRr.
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f
1
∈ PP also implies that f ∈ P , otherwise f

1
would be a unit in AP . Hence

(suppF) ∩ U ⊆
{
P ∈ SpecA

∣∣ f
1
∈ PP

}
=
{
P ∈ SpecA

∣∣ f ∈ P } = V ′(f) .

Let P ′1, . . . , P
′
γ be the associated primes in A, defining components X ′1, . . . ,X ′γ

in U . Then x belongs to Xi ∩ U = X ′i . As V ′(f) is closed in SpecA, the set

V ′(f) ∩ X ′i is closed in X ′i . However

V ′(f) ∩ X ′i ( X ′i

since otherwise X ′i ⊆ V ′(f) ⇔ V ′(P ′i ) ⊆ V ′(f), implying that f ∈ P ′i , which

contradicts that f ∈ A is a NZD. So we have a closed subset in X ′i , which is

irreducible and open in itself, hence the Zariski topology (closed sets have empty

interior) implies that the codimension of V ′(f)∩X ′i in X ′i is positive. Combining

everything we find

dim
(
(suppF) ∩ Xi

)
= dim

(
(suppF) ∩ U ∩ Xi

)
= dim

(
(suppF) ∩ X ′i

)
< dimX ′i = dim(Xi ∩ U) = dimXi ,

where all sets are non-empty (as they contain x) and intersecting with U does

not change the dimension because U is open in X . Repeating this argument for

each i and a chosen x belonging to (suppF) ∩ Xi, we get the drop of dimension

in each component of X .

Remark 2.6.8. In the particular case where X = An
K = Spec

(
K[X1, . . . , Xn]

)
,

the proof becomes easier. As above we obtain that F is locally annihilated by

some NZD f ∈ OX (U), i.e. f ∗ F|U = 0. Localizing this relation at all closed

points (i.e. all maximal ideals) in U gives

f ∗ F|U = 0 ⇔ fM ∗ FM = {0}, ∀M ∈ U ⇔ fM · F(M) = {0}, ∀M ∈ U ,

and we get fM = 0 if FM 6= {0} (i.e. if M ∈ suppF). But fM is nothing but

evaluation of (a fraction of) f at the point m ∈ Kn defined by the maximal ideal

M. Indeed the residue field is given by

K = OX,x/Mx
∼= K[X1, . . . , Xn]M/MM

∼= K .
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Recall that the correspondence is given by M = 〈X1 − a1, . . . , Xn − an 〉 if the

point has the coordinates m = (a1, . . . , an). A polynomial s ∈ K[X1, . . . , Xn]

satisfies s ∈ M ⇔ s(m) = 0, hence dividing out MM means to evaluate at m.

More precisely, if we write fM = f
g

with g /∈M, then g(m) 6= 0 and

fM =
f(m)

g(m)
.

So fM = 0 ⇔ fM ∈ MM means that f(m) = 0, i.e. if M ∈ suppF , then M

corresponds to some m ∈ V (f) and we get as before that (suppF) ∩ U ⊆ V (f),

the vanishing set of the polynomial f .

Example 2.6.9. Let us apply the inclusion (2.12) to Example E.3. Recall that

the torsion subsheaf is given by T (F) = T̃ for T = 〈 [X̄Z̄] 〉 ≤M . Computations

in Example 1.4.27 have shown that

AnnR(T ) = 〈 X̄ − 1, Ȳ 〉 and supp T (F) = V
(
〈 X̄ − 1, Ȳ 〉

)
= Z2 .

T is annihilated by the global NZD Ȳ + X̄ − 1, hence (Ȳ + X̄ − 1)P ∗ TP = {0}
for all P ∈ X , so

suppF ⊆
{
P ∈ SpecR

∣∣ (Ȳ + X̄ − 1)P ∈ PP
}

=
{
P ∈ SpecR

∣∣ Ȳ + X̄ − 1 ∈ P
}

= V
(
Ȳ + X̄ − 1

)
,

which is obviously true since Ȳ + X̄ − 1 ∈ 〈 X̄ − 1, Ȳ 〉. Moreover one sees that

V
(
Ȳ + X̄ − 1

)
∩ Xi ( Xi , ∀ i .

On the other hand one can also look for NZDs that annihilate T (F) locally. We

have for example ȲP ∗ [X̄Z̄]P = 0 and (X̄ − 1)P ∗ [X̄Z̄]P = 0. However these

relations do not always give torsion since ȲP may be a zero-divisor, e.g. for

P = 〈 X̄, Ȳ , Z̄ 〉, or e.g. ȲP = 0 for P = 〈 X̄, Ȳ , Z̄ − 1 〉 since Ȳ Z̄(X̄ − 1) = 0̄.

So we have to look for prime ideals P on which the relations are useful. In

Example 2.2.18 we have shown that Ȳ
1̄

remains a NZD on U = D(X̄). Looking

for P such that X̄ − 1 ∈ P2 \ P , one similarly finds that X̄−1
1̄

is a NZD on

V = D(X̄ − 1). Now U ∪ V is already a covering of X since any prime P ∈ X
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either satisfies X̄ /∈ P or X̄ − 1 /∈ P , otherwise 1̄ ∈ P (see also Lemma 2.4.13).

So we get the local annihilations of local NZDs

Ȳ
1̄
∗ F|U = 0 and X̄−1

1̄
∗ F|V = 0 ,

which imply that supp(F|U) ⊆ V ′
(
Ȳ
1̄

)
on D(X̄) and supp(F|V ) ⊆ V ′

(
X̄−1

1̄

)
on

D(X̄ − 1). The associated primes on U , resp. V are the localizations of those

that do not contain X̄, resp. X̄ − 1, hence

P ′1 =
〈
Z̄
1̄

〉
, P ′2 =

〈
X̄−1

1̄

〉
and P ′′1 =

〈
Z̄
1̄

〉
, P ′′2 =

〈
X̄
1̄
, Ȳ

1̄

〉
,

which again shows that V ′
(
Ȳ
1̄

)
∩X ′i ( X ′i and V ′

(
X̄−1

1̄

)
∩X ′′i ( X ′′i for all i. Note

however that if we try to use the (correct) inclusions

suppF ⊆ V (Ȳ ) and suppF ⊆ V (X̄ − 1) ,

then V (Ȳ ) ∩ X3 = X3 and V (X̄ − 1) ∩ X2 = X2, so it is important to only

consider the local intersections. The reason is that Ȳ and X̄ − 1 are (globally)

zero-divisors whereas the above proof only works for NZDs.
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Chapter 3

Purity and its relations with

torsion

The aim of this chapter is to discuss and illustrate the relations, but also the

differences between the concepts of purity and torsion-freeness of a sheaf in the

non-integral case. First we review the criterion of Huybrechts-Lehn which char-

acterizes pure sheaves by looking at their associated points. Then we show in

Theorem 3.1.17 that purity and torsion-freeness are equivalent on schemes where

all components have the same dimension, but also give examples to show that

they are not equivalent in general.

Our main motivation is to show that every coherent sheaf of pure dimension on

a Noetherian scheme is torsion-free as a sheaf on its Fitting support ; this is the

aim of Theorem 3.5.3. For this we explain how a sheaf can be restricted to its

support and that this restriction does not affect purity. After this we give a

necessary condition in Proposition 3.2.12 for sheaves to be pure when looking at

their annihilator support and see why this condition fails for the Fitting support.

Another occuptaion of this chapter is to compare the properties of the annihila-

tor and the Fitting support of a coherent sheaf F . It turns out that there are

fundamental differences between them. The annihilator on one hand allows to

prove some criteria regarding torsion-freeness and purity, making Za(F) a sup-

port that is easier to handle in examples, but Zf (F) commutes with pullbacks,

making it the preferred subscheme structure to work with.
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Finally we present many examples to illustrate there is no clear relation between

torsion-freeness on Za(F) and torsion-freeness on Zf (F) as soon as one of them

has embedded components.

3.1 Characterizations of purity

The goals of this section are to find a criterion for purity by looking at the

associated primes of the module (Theorem 3.1.11) and to prove that purity and

torsion-freeness of an OX–module are equivalent under some conditions involving

the associated primes of the ring (Theorem 3.1.17).

3.1.1 Definition and examples

Definition 3.1.1. [ [38], 1.1.2, p.3 ]

Let (X ,OX ) be a Noetherian scheme and F ∈ Coh(OX ). The dimension of F is

the dimension of its support as a topological space ; we denote

dimF = dim(suppF) .

Now let d ≤ dimX . We say that F is pure of dimension d if dimF = d and F
has no non-zero proper coherent subsheaves F ′ ⊂ F such that dimF ′ < d.

Remark 3.1.2. If X = SpecR, the dimension of X is equal to the maximum of

the dimensions of its irreducible components Xi defined by the associated primes

of R, i.e.

dimR = dimX = max
i=1,...,α

dimXi .

This is why we need (X ,OX ) to be Noetherian instead of just locally Noetherian.

If X cannot be covered by finitely many affine schemes, then dimX may not be

well-defined.

Similarly dimF is equal to the maximum of the dimensions of the irreducible

components of its support. Note that taking Za(F) or Zf (F) as closed subscheme

doesn’t make a difference as they define the same topological space. Thus purity

is a topological condition.
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Example 3.1.3. The sheaf F = M̃ from Example E.3 is not pure. Indeed its

support consists of a plane and two lines, hence dimF = 2. Rigorously we have

dim(supp M̃) = dim
(

Spec(R/AnnR(M))
)

= dim
(
R/〈 Ȳ Z̄ 〉

)
= dim

(
K[X, Y, Z]/〈Y Z,XZ(X − 1) 〉

)
= 2

by taking the chain of prime ideals 〈 Z̄ 〉 ( 〈 Z̄, X̄ 〉 ( 〈 Z̄, X̄, Ȳ 〉. However

T (F) = T̃ is a non-zero coherent subsheaf (since T = TR(M) is finitely gen-

erated) with only 1-dimensional support. From the computations in (1.15), it

follows that AnnR(T ) = 〈 X̄ − 1, Ȳ 〉 and hence

dim(supp T̃ ) = dim
(
R/〈 X̄ − 1, Ȳ 〉

)
= dim

(
K[X, Y, Z]/〈X − 1, Y 〉

)
= dim

(
K[Z]

)
= 1 .

Another example is given by the submodule N = 〈 [Z̄] 〉 ≤M . In Example 2.2.18

we computed

AnnR(N) = AnnR([Z̄]) = 〈 X̄(X̄ − 1), Ȳ 〉 = 〈 X̄, Ȳ 〉 ∩ 〈 X̄ − 1, Ȳ 〉 ,

dim(supp Ñ) = dim
(
R/〈 X̄(X̄ − 1), Ȳ 〉

)
= dim

(
K[X,Z]/〈X(X − 1) 〉

)
= 1

by taking the chain of primes ideals 〈 X̄ 〉 ( 〈 X̄, Z̄ 〉. Geometrically this means

that Ñ is supported on the union of the two lines X3 and Z2. Thus T̃ and Ñ are

2 examples of non-zero proper coherent subsheaves of M̃ with support in smaller

dimension.

Example 3.1.4. The sheaf F = M̃ from Example E.4 is not pure neither.

Consider for example the submodule N = 〈 [X̄] 〉 ≤M . Since

AnnR
(
[X̄]
)

= 〈 X̄, Ȳ , Z̄ 〉 ,

we see that [X̄]P = 0 for all P ∈ SpecR \{M}. Hence the subsheaf Ñ has stalks

NP = {0}, ∀P 6= M and is supported on one point, i.e. in dimension 0.

Lemma 3.1.5. Let X = SpecR be affine. Then F ,G ∈ Coh(OR) are pure of

dimension d if and only if F ⊕ G is pure of dimension d.
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Proof. ⇐ : Assume for example that G is not pure and has a non-zero proper

coherent subsheaf 0 6= G ′ ( G with dimG ′ < d. Then 0⊕G ′ is a non-zero proper

coherent subsheaf of F ⊕ G whose support has dimension < d.

⇒ : Write F ∼= M̃ and G ∼= Ñ for some finitely generated R-modules M and N ,

so that F ⊕G is given by the sheaf associated to the R-module M ⊕N . We shall

show that M ⊕N has no submodule that defines a sheaf of dimension < d. Let

L ≤M ⊕N be any non-zero submodule and (m,n) ∈ L with (m,n) 6= (0, 0). If

m 6= 0, consider 〈m 〉⊕{0} ≤ L ; if n 6= 0, consider {0}⊕ 〈n 〉 ≤ L. Since F and

G are pure, 〈m 〉 and 〈n 〉 are submodules that define sheaves of dimension d (if

they are non-zero), hence L also defines a sheaf with d-dimensional support.

In order to study other examples later on, let us already mention the following

technical lemmata.

Lemma 3.1.6. Let R be a reduced Noetherian ring and denote the associated

primes by P1, . . . , Pα. Fix i and consider Pi as an R-module. Then (Pi)P = {0}
for all P ∈ V (Pi) \

⋃
j 6=i V (Pj), i.e. for all prime ideals P such that Pi ⊆ P but

Pj * P , ∀ j 6= i.

Proof. Pj * P means that ∃ aj ∈ Pj such that aj /∈ P for all j 6= i. Define

a :=
∏

j 6=i aj, so that a ∈
⋂
j 6=i Pj and a /∈ P . Thus a · p ∈ P1 ∩ . . .∩Pα = nil(R),

∀ p ∈ Pi. As R is reduced, this means that a · p = 0. a /∈ P then implies that
p
1

= 0 as an element in (Pi)P for all p ∈ Pi. Hence (Pi)P = {0}.

Remark 3.1.7. The geometric interpretation of this result is that the subsheaf

of the structure sheaf OR which is defined by the ideal of an irreducible compo-

nent has zero stalks on the points (primes) that only belong to this component.

This agrees with the intuitive interpretation that sections of such a subsheaf are

functions that vanish on the given component.

Also note that the condition P ∈ V (Pi) with Pj * P , ∀ j 6= i implies that Pi is

a minimal prime since otherwise there exists k 6= i such that Pk ( Pi ⊆ P .

Remark 3.1.8. The assumption of R being reduced is necessary. Consider e.g.

the ring

R = K[X, Y, Z]/〈XZ2, Y Z2 〉
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with the primary decomposition 〈XZ2, Y Z2 〉 = 〈Z2 〉∩〈X, Y 〉, which gives the

associated primes P1 = 〈 Z̄ 〉 and P2 = 〈 X̄, Ȳ 〉. If we take P = 〈 X̄ − 1, Ȳ , Z̄ 〉,
then P1 ⊆ P and P2 * P , but Z̄P 6= 0 since AnnR(Z̄) = 〈 X̄Z̄, Ȳ Z̄ 〉 ⊆ P .

However we can change the statement of Lemma 3.1.6 in such a way that it is

also holds true in the non-reduced case.

Lemma 3.1.9. Let R be a Noetherian ring with associated primes P1, . . . , Pα

and primary decomposition {0} = Q1 ∩ . . .∩Qα. For fixed i, we get (Qi)P = {0}
for all P ∈ V (Pi) \

⋃
j 6=i V (Pj).

Proof. Note that Pj * P implies that Qj * P , otherwise Rad(Qj) ⊆ Rad(P ),

i.e. Pj ⊆ P .

Using the same technique as in Lemma 3.1.6 we can find an element a ∈
⋂
j 6=iQj

such that a /∈ P . Let p ∈ Qi be arbitrary. Then a · p ∈ Q1 ∩ . . . ∩Qα = {0}, i.e.
p
1

= 0 in (Qi)P .

Remark 3.1.10. Now if we consider again the example in Remark 3.1.8, then

Q1 = 〈 Z̄2 〉 and Z̄2
P = 0 since X̄ · Z̄2 = 0 with X̄ /∈ P .

3.1.2 The criterion of Huybrechts-Lehn

Using the associated primes of M , we can give the following precise characteri-

zation of purity.

Theorem 3.1.11 (Huybrechts-Lehn). [ [38], 1.1.2, p.3 ]

Let (X ,OX ) be a Noetherian scheme and F ∈ Coh(OX ) with d = dimF . Then

F is pure of dimension d if and only if all points in Ass(F) are of dimension d.

Proof. Since X can be covered by affine open sets, it suffices to prove the state-

ment in the affine case. Let X = SpecR for some Noetherian ring R and F = M̃

be coherent, so that x ∈ Ass(F) corresponds to P ∈ AssR(M), see Proposi-

tion 2.5.7. By Corollary B.3.17 and Proposition 1.4.4 we have

suppM = V
(

AnnR(M)
)

= V
(

Rad
(

AnnR(M)
))

= V
(⋂

P P
)

=
⋃
P V (P ) (3.1)
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as topological spaces. Hence saying that dimF = d means that the maximal

dimension of a component that prime ideals in AssR(M) can define is d as well,

i.e. dimV (P ) ≤ d, ∀P ∈ AssR(M).

⇒ : Assume that P ∈ AssR(M) defines a component V (P ) of dimension < d.

By definition P is given as P = AnnR(x) for some x ∈ M , x 6= 0. Consider the

non-zero submodule N = 〈x 〉 ≤M . Then suppN ⊆ V (P ) since ∀Q ∈ SpecR,

x
1

= 0 in MQ ⇔ ∃ a /∈ Q such that a ∗ x = 0 ⇔ ∃ a ∈ AnnR(x) \Q = P \Q .

Hence x
1
6= 0 in MQ implies that P ⊆ Q, i.e. Q ∈ V (P ). But then N ≤ M is a

submodule such that dim(suppN) ≤ dimV (P ) < d, which contradicts purity.

⇐ : If all prime ideals in AssR(M) define components of dimension d, then in par-

ticular they are all minimal (since components defined by embedded primes have

smaller dimension, see Lemma 1.4.19). Let N ≤M be any non-zero submodule.

Then AssR(N) ⊆ AssR(M) by Proposition B.3.5, so all primes in AssR(N) also

define components of dimension d. But then a similar formula as (3.1) implies

that dim(suppN) = d as well. Thus M defines a sheaf of pure dimension d.

Remark 3.1.12. [ [6], IV.§2.n◦3, Thm.1, p.319 ]

If M is a finitely generated module over a Noetherian ring R, there is a direct

way to find the primes in AssR(M). Indeed there exists a decomposition of the

submodule {0} ≤M of the form

{0} =
⋂

P∈AssR(M)

N(P ) ,

where N(P ) ≤ M are submodules such that AssR
(
N(P )

)
= {P}. Hence the

associated primes of M are exactly those that arise as unique associated primes

of the submodules in the decomposition of {0}. However in practise such a

decomposition is not always easy to compute, even with Singular, and it is

especially hard if M is some abstract module.

This is why we want to look at the associated primes which define the support of

the sheaf. Unfortunately there is no general statement as Theorem 3.1.11 in this

case. We will prove the corresponding result in Proposition 3.2.12, but already

point out that it will in particular depend on the chosen subscheme structure of

the support.
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With the criterion of Huybrechts-Lehn we can already give a first class of ex-

amples of sheaves that are pure. The following example describes under which

conditions a structure sheaf is pure.

Example 3.1.13. Let X = SpecR be affine and d = dimX . Then the structure

sheaf OR is pure of dimension d if and only if R has no associated prime (minimal

or embedded) which defines a component of dimension < d.

Proof. ⇒ : Assume by contraposition that Pi defines a component such that

dimV (Pi) < d and let {0} = Q1 ∩ . . . ∩ Qα be the primary decomposition of

{0} in R. Consider the ideal Q =
⋂
j 6=iQj. Then Q 6= {0}, otherwise the

decomposition is not minimal. We will show that QP = {0} for all P ∈ SpecR

such that P /∈ V (Pi) and hence that suppQ ⊆ V (Pi), i.e. Q defines a subsheaf

of OR whose support is contained in V (Pi) and thus has dimension < d. Let

p ∈ Q be arbitrary and assume that P /∈ V (Pi) = V (Qi), i.e. Qi * P . Then

∃ a ∈ Qi \ P and as in Lemma 3.1.9 we obtain a · p ∈ Q1 ∩ . . . ∩ Qα = {0}, so

that p
1

= 0 in QP .

⇐ : If all associated primes of R define components of the same dimension, we

can apply Theorem 3.1.11 with AssR(R) = Ass
(
{0}
)

and see that OR = R̃ is

pure of dimension d.

Remark 3.1.14. In other words, the structure sheaf of an affine scheme is pure

if and only if all irreducible components (minimal and embedded ones) of the

scheme have the same dimension.

Example 3.1.15. The pullback of a pure sheaf may not be pure any more. More

precisely, if f : X → Y is a morphism of Noetherian schemes and F ∈ Coh(OY)

is pure of dimension d = dimF , then f ∗F ∈ Coh(OX ) does not need to be pure

as well. This can easily be seen on affine schemes.

Let f : SpecS → SpecR be a morphism of schemes for some Noetherian rings

R, S and giving rise to a ring homomorphism ϕ : R→ S which turns S into an

R-module. If F ∈ Coh(OR) is given by a finitely generated R-module M , then

(1.3) implies that f ∗F is given by the S-module M ⊗R S.

Now consider R = K[X, Y, Z] with M = R, i.e. F = OR and S = R/〈XZ, Y Z 〉,
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which describes the subscheme of A3
K given a plane and a line (see Example E.2),

hence ϕ : R→ S is just the projection. Example 3.1.13 implies that OR is pure

of dimension 3 since SpecR is an integral scheme, so {0} is the only associated

prime of R. But M ⊗R S ∼= S, so that f ∗F ∼= OS. However S has minimal

primes that define components of different dimensions, thus OS is not pure by

Example 3.1.13.

3.1.3 Relation with torsion-freeness

Definition 3.1.16. Let X = SpecR be an affine scheme for a Noetherian ring

R and d = dimX . We say that X has equidimensional components if R has

no embedded primes and all minimal primes P ∈ AssR(R) define components

V (P ) ⊆ X of dimension d.

The first important result that relates torsion-freeness and purity of a sheaf is

the following.

Theorem 3.1.17 (Leytem). Let X = SpecR be an affine Noetherian scheme and

F ∈ Coh(OR) with dimF = dimX = d. If X has equidimensional components,

then F is pure of dimension d if and only if F is torsion-free on X .

Proof. ⇒ : Assume that F ∼= M̃ is pure of dimension d. Since there are

no embedded primes, we know by Theorem 2.2.13 that the torsion subsheaf

T (F) ⊆ F is coherent and given by TR(M), which is a torsion module. Hence

(1.11) in Proposition 1.4.21 gives

dim
(

supp T (F)
)

= dim
(

supp T̃R(M)
)
< dimX = dimF ,

i.e. T (F) is a coherent subsheaf of F whose support has dimension < d. In

particular it is proper since dimF = d. F being pure, we get T (F) = 0 and

thus that F is torsion-free.

⇐ : Assume that F ∼= M̃ is torsion-free and let N ⊂M be any non-zero proper

submodule. F being torsion-free, we get that M and hence N are torsion-free as

well (see Corollary 1.3.10). In particular, AnnR(N) only contains zero-divisors

by Proposition 1.3.5 and Prime Avoidance gives AnnR(N) ⊆ Pi for some minimal
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prime Pi (since there are no embedded primes). But then

V (Pi) ⊆ V
(

AnnR(N)
)
⇔ Xi ⊆ supp Ñ

⇒ dimXi = dim(supp Ñ) = dimX = dimF

because all minimal primes define components of dimension d. Hence every non-

zero proper coherent subsheaf of F has dimension d as well, i.e. F is pure.

Remark 3.1.18. The condition about X having equidimensional components is

crucial. Indeed there are examples of schemes with no embedded primes and a

sheaf F with dimF = dimX which is torsion-free but not pure.

Example 3.1.19. Consider Example E.2 and the structure sheaf OR (i.e. we

take M = R). This is a free sheaf, hence it is torsion-free by Example 2.2.3.

The associated primes are both minimal, but define components of different

dimensions since V (P1) is a line and V (P2) is a plane. In Example 3.1.15 we

have seen that OR is thus not pure. To see this directly, we look at the subsheaf

F ⊆ OR defined by the submodule P2 ≤ M . Let P ∈ SpecR ; if X̄ /∈ P or

Ȳ /∈ P , then Z̄P = 0 since X̄ · Z̄ = 0̄ or Ȳ · Z̄ = 0̄. Hence prime ideals in the

support must satisfy 〈 X̄, Ȳ 〉 ⊆ P and we get suppF ⊆ V (P1) with F 6= 0, so

that dimF ≤ 1 while dimOR = 2 (actually dimF = 1).

Remark 3.1.20. The condition dimF = dimX is important as well, otherwise

F may be a torsion sheaf itself and we get T (F) = F (compare with the proof

of Theorem 3.1.17). Note however that dimF = dimX does not imply that

suppF = X . It even fails in very easy situations.

Example 3.1.21. If all components have the same dimension:

Consider the “cross” in A2
K described by R = K[X, Y ]/〈XY 〉 and the structure

sheaf of a line given by M = R/〈 X̄ 〉. Both X = SpecR and suppM are

1-dimensional, but suppM ( X .

Example 3.1.22. If there is just 1 associated prime (the scheme is irreducible):

Consider the double line in A2
K given by R = K[X, Y ]/〈Y 2 〉. The only associated

prime is 〈 Ȳ 〉. But if we consider the structure sheaf of a simple line, then

M = R/〈 Ȳ 〉 has support V (Ȳ ) while X = SpecR = V (Ȳ 2), i.e. suppM ( X
again and both are 1-dimensional.

109



LEYTEM Alain 3.1. Characterizations of purity

Remark 3.1.23. If we want the implication dimF = dimX ⇒ suppF = X
to be true, the previous examples show that we need only 1 associated prime

whose irreducible component is reduced (see also Lemma 3.1.24). But a reduced

and irreducible scheme is integral by Lemma 1.1.5, i.e. it is only true for integral

schemes.

Lemma 3.1.24. Let R be a Noetherian ring and {0} = Q1 ∩ . . .∩Qα a primary

decomposition with Pi = Rad(Qi). If Pi is an associated prime such that Qi ( Pi

(i.e. the component Xi = V (Qi) has a multiple structure), then Pi is given by

the annihilator of a nilpotent element (of degree 2).

Proof. The proof contains elements from the proof of Proposition B.2.25.

Denote Ii =
⋂
j 6=iQj. We are given that Pi = AnnR(x) for some x ∈ R such that

x ∈ Ii ∩ Pm−1
i , where m ≥ 1 is minimal such that Pm

i ⊆ Qi. Taking radicals,

x ∈ Ii already implies that x ∈ Pj, ∀ j 6= i, so we are left to show that x ∈ Pi
in order to obtain that x is nilpotent. But this follows from Qi ( Pi as we thus

have m ≥ 2. In particular, x ∈ Pi and x2 = 0.

In all examples we see that the condition about X having equidimensional com-

ponents is quite important, otherwise purity may even fail for very “easy” sheaves

(e.g. locally free sheaves), even though they are torsion-free, see Example 3.1.19.

Actually this condition also gives the converse of Proposition 1.4.21 in a more

general setting.

Corollary 3.1.25. If X = SpecR has equidimensional components, then

M is a torsion R-module ⇔ M̃ is a torsion OR–module

⇔ dim(supp M̃) < dimX .

Proof. The first equivalence is given by Lemma 2.2.6. The second implication,

⇒ is always true because of (1.11). For ⇐ we use the characterization from

Theorem 1.4.23, which says that a module is torsion if and only if the dimension

of its support drops in each component. But if all components have the same

dimension d = dimX , this condition is equivalent to a drop of the global dimen-

sion. Indeed, if the dimension of the support is < d, then it has dropped in each

component as they all have dimension d.
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The next result contains the notion of the Hilbert polynomial PF of a coherent

sheaf F on a projective scheme. We refer to Section 4.1.1 for the precise defini-

tion and some properties of PF . Nevertheless we want to include the statement

already at this point since it contains information about the torsion of F and

the dimension of its support.

Corollary 3.1.26. Let (X ,OX ) be a projective scheme over a Noetherian ring,

F ∈ Coh(OX ) and assume that the Hilbert polynomial PF has degree d < dimX .

Then F|U is a torsion sheaf on all affine schemes U ∼= SpecR such that U has

equidimensional components.

Proof. Let F|U ∼= M̃ for some R-module M . We have d = degPF = dimF , so if

d = dimF = dim(F|U) = dim(supp M̃) < dimX = dimU = dim(SpecR) ,

then M is a torsion module over R by Corollary 3.1.25. From this we conclude

that F|U ∈ Coh(OX |U) ∼= Coh(OR) is a torsion sheaf on U .

Example 3.1.27. Let X = PnK be the projective space, which is covered by n+1

copies of the affine space, i.e. X =
⋃n
i=0 Ui where Ui ∼= An

K = SpecK[X1, . . . , Xn].

Since polynomial rings over fields are integral domains, the corresponding spec-

trum has in particular equidimensional components. So if F ∈ Coh(OX ) is such

that degPF < n, then F is a torsion sheaf on each Ui and hence a torsion sheaf

on X since the stalk Fx is a torsion module for all x ∈ X .

Remark 3.1.28. We can also prove the fact from Example 3.1.27 directly. If

Z = Zf (F) is the Fitting support of F , we have the exact sequence

0 −→ Fitt0(F) −→ OX −→ OZ −→ 0

of OX–modules since the subscheme Z is defined by the Fitting ideal sheaf (Def-

inition 1.4.3). Fix x ∈ X ; if x /∈ Z, then Fx = {0} and this is a torsion module.

For x ∈ Z we get

0 −→
(

Fitt0(F)
)
x
−→ OX ,x −→ OZ,x −→ 0

⇔ 0 −→ IP −→ RP −→ (R/I)P −→ 0 ,
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where R = K[X1, . . . , Xn], U ∼= SpecR, F|U ∼= M̃ , I = Fitt0(M) and x corre-

sponds to some P ∈ U . Then IP 6= {0}, otherwise OX ,x ∼= OZ,x and by coherence

this would imply that OX |V ∼= OZ |V for some open neighborhood V ⊆ U of x,

which is impossible as dimZ < dimX and V is dense in U . Hence IP contains

a non-zero element. But

IP =
(

Fitt0(M)
)
P
⊆
(

AnnR(M)
)
P

= AnnRP (MP )

by Lemma 1.4.2 and (2.11) sinceM is finitely generated. So this non-zero element

(i.e. a NZD as RP is an integral domain) belongs to the annihilator of MP ,

implying that MP
∼= Fx is a torsion module by Proposition 1.3.5. Finally we get

TOX ,x(Fx) = Fx, ∀x ∈ X .

3.1.4 Relation with the torsion filtration

Some authors define the torsion subsheaf to be a maximal subsheaf which is

supported in smaller dimension. As we know from Section 1.4.4 that torsion and

a drop of the dimension are not always equivalent, we want to study the relation

between both definitions. Here we follow the ideas from Huybrechts-Lehn [38],

Chapter 1.1 and Bakker [3], Chapter 2.1.

Definition 3.1.29. [ [3], 2.1, p.9-10 ]

Let (X ,OX ) be a Noetherian scheme with n = dimX . For d ∈ {0, . . . , n} we

denote by Cohd(OX ) the category of coherent OX–modules that are supported

in dimension ≤ d. It is a full subcategory of Coh(OX ) and we have the inclusion

functor id : Cohd(OX )→ Coh(OX ).

Proposition 3.1.30. cf. [ [3], 2.1, p.10 ]

The functor id admits a right adjoint Td : Coh(OX ) → Cohd(OX ) such that for

all G ∈ Cohd(OX ) and F ∈ Coh(OX ),

Hom
(
id(G),F

)
= Hom

(
G, Td(F)

)
.

Proof. Let F ∈ Coh(OX ) ; we define Td(F) to be the sheaf of sections of F that

are supported in dimension ≤ d, i.e. for U ⊆ X open,

Td(F)(U) =
{
s ∈ F(U)

∣∣ dim(supp s) ≤ d
}
.
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This defines a submodule of F(U) as

supp(s+ t) ⊆ supp s ∪ supp t and supp(f ∗ s) ⊆ supp s

for s, t ∈ F(U) and f ∈ OX (U), so s + t and f ∗ s are still sections that are

supported in dimension ≤ d. Moreover Td(F) is coherent again: if F|U ∼= M̃ for

some finitely generated module M over a Noetherian ring R, then

Td(F)|U ∼= M̃d where Md =
{
m ∈M

∣∣ dim
(

supp 〈m 〉
)
≤ d

}
and Md is again finitely generated since R is Noetherian. For the adjunction,

first note that every morphism G → Td(F) in Cohd(OX ) is also a morphism

id(G) → F . Conversely let ϕ : id(G) → F be a morphism of coherent sheaves.

To prove that imϕ ⊆ Td(F) it suffices to show that for every section s ∈ G(U),

its image ϕ(s) is also supported in dimension ≤ d. But this is satisfied because[
ϕ(s)

]
x

= ϕx
(
[s]x
)
, (3.2)

thus if [s]x = 0, then so is its image. In particular, dim
(

suppϕ(s)
)
≤ d.

Theorem 3.1.31. [ [38], 1.1.4, p.4 ] and [ [3], 2.1, p.10 ]

Let (X ,OX ) be a Noetherian scheme and F ∈ Coh(OX ) with d = dimF . Then

0 ⊆ T0(F) ⊆ T1(F) ⊆ . . . ⊆ Td−1(F) ⊆ Td(F) = F (3.3)

is the unique filtration such that Ti(F) is a maximal coherent1 subsheaf of F of

dimension ≤ i.

Definition 3.1.32. (3.3) is called the torsion filtration of F . By definition each

one of the quotients Ti(F)/Ti−1(F) is a sheaf of pure dimension i, if it is non-

zero (since subsheaves whose support has smaller dimension are divided out). In

particular we see that F is pure of dimension d if and only if Td−1(F) = 0.

Now we prove the relation between the torsion subsheaf T (F) and the term

Td−1(F) in the torsion filtration. Indeed it is a priori not clear why (3.3) is

called a “torsion” filtration as it only involves the dimension of the sections.

1The word “coherent” is not explicitly mentioned in [38], but we have shown in Proposi-

tion 3.1.30 that it is indeed the case.
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Proposition 3.1.33 (Leytem). Let X = SpecR for some Noetherian ring R and

F ∈ Coh(OR) with d = dimF = dimX . If X has equidimensional components,

then T (F) = Td−1(F).

Proof. The inclusion ⊆ is true when R has no embedded primes because then

T (F) is coherent and supported in dimension ≤ d − 1 by Theorem 2.2.13 and

Proposition 1.4.21. If in addition all minimal primes define components of the

same dimension, we know by Corollary 3.1.25 that a coherent sheaf is torsion

if and only if it is supported in smaller dimension. Since Td−1(F) satisfies this

(and is coherent), it is torsion and thus contained in T (F) by Lemma 2.2.5.

Remark 3.1.34. The formula T (F) = Td−1(F) can be seen as a generalization

of Theorem 3.1.17. Indeed it implies that a sheaf F with dimF = dimX is pure

of dimension d if and only if it is torsion-free.

Remark 3.1.35. The assumption dimF = dimX in Proposition 3.1.33 is again

necessary. This is compatible with the results from Theorem 3.1.17 and Re-

mark 3.1.20. Assume for example that d = dimF < dimX . Then F is itself

supported in smaller dimension, hence a torsion sheaf on X by Corollary 3.1.25

(for schemes with equidimensional components) and we get T (F) = F = Td(F).

Example 3.1.36. In general T (F) and Td−1(F) may not be related at all. Con-

sider Example E.4 where dimX = 2 and d = dimF = 1. T (F) is not coherent

and supported on suppF \ {M}, i.e. in dimension 1 as well. On the other hand

T0(F) is coherent and given by

T0(F) = 〈̃ [X̄] 〉 , (3.4)

which is supported on {M} only. Thus no one can be included in the other one.

So we see that two subsheaves of F that are equal in “nice” situations can be

quite different in general.

Proof. Intuitively (3.4) is clear, but let us also prove it rigorously. We are looking

for a maximal R-submodule N ≤M such that suppN is 0-dimensional.

Obviously the support of 〈 [X̄] 〉 is of dimension 0 as it is only supported on {M}.
But is it maximal (maybe there are submodules that are supported on finitely
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many points, or on double points) ? Since M is torsion-free, so is N and its

annihilator is contained in the set of zero-divisors:

AnnR(N) ⊆ 〈 X̄, Ȳ , Z̄ 〉 = M ⇒ V (M) = {M} ⊆ suppN ,

i.e. M is in the support of any (non-zero) submodule of M . Assume that N is

supported on finitely many points (M included). Then its annihilator contains

a finite intersection of maximal ideals:

M ∩M1 ∩ . . . ∩Mn ⊆ AnnR(N) ,

where each Mi is either of the form 〈 X̄, Ȳ − λ, Z̄ 〉 or of the form 〈 X̄, Ȳ , Z̄ −µ 〉
for some λ, µ 6= 0 (since maximal ideals in the support of M are of this form,

see Example 2.3.4). In particular we obtain X̄ ∈ AnnR(N). As R is Noetherian,

N is again finitely generated ; denote its generators by [ḡ1], . . . , [ḡk]. X̄ being

in the annihilator implies that no [ḡi] has a constant term. Now we proceed by

induction on n. For n = 1 we have

〈 X̄ , Ȳ (Ȳ − λ) , Z̄ 〉 ⊆ AnnR(N) or 〈 X̄ , Ȳ , Z̄(Z̄ − µ) 〉 ⊆ AnnR(N) .

Consider e.g. the first one. Z̄ ∈ AnnR(N) implies that the [ḡi] cannot have

terms in [Z̄] otherwise these do not vanish since Z̄ only annihilates [X̄] and [Ȳ ].

Similarly Ȳ (Ȳ − λ) ∈ AnnR(N) means that there are no terms in [Ȳ ]. But then

the [ḡi] are just polynomials in [X̄] which together with X̄2 = 0̄ implies that

N = 〈 [X̄] 〉. Similarly in the second case.

Our induction hypothesis is that M∩M1∩ . . .∩Mn always contains X̄ (clear), a

term of the form Ȳ ·f(Ȳ ) and a term of the form Z̄ ·h(Z̄). By the same argument

as before this will show that N = 〈 [X̄] 〉. It is satisfied for n = 1. Assume that

it is true for n. The following intersection gives

〈 X̄ , . . . , Ȳ · f(Y ) , . . . , Z̄ · h(Z̄) 〉 ∩ 〈 X̄, Ȳ − λ, Z̄ 〉

= 〈 X̄ , . . . , Ȳ (Ȳ − λ) · f(Y ) , . . . , Z̄ · h(Z̄) 〉 ,

and similarly when intersecting with 〈 X̄, Ȳ , Z̄ − µ 〉. Hence the statement holds

true for n+ 1.

Until now we have shown that any N ≤ M with 0-dimensional support can
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only be supported on {M}, at least topologically (since we were using AnnR(N)

instead of the Fitting ideal). It remains to show that this support cannot be

a double point, which is given by 〈 Ȳ , Z̄ 〉. Assume again that N is generated

by some [ḡ1], . . . , [ḡk] such that k is minimal. In order to obtain Ȳ as a minor

in the Fitting ideal we need that all other relations only involve 1̄. But then

all generators with 1̄ can be omitted since 1̄ is a unit (just replace them in the

relations). In order for k to be minimal we thus need k = 1, which implies as

before that N = 〈 [X̄] 〉 since AnnR(N) = Fitt0(N) for 1 generator.

3.2 Sheaves on their support

If F ∈ Coh(OX ), the assumption dimF = dimX is in general not satisfied, so

our results from Theorem 3.1.17 and Proposition 3.1.33 cannot be used. The

main idea of this section is to consider F as a sheaf on its support Z (whose

structure has to be specified), in which case dimF = dimZ is obviously true, so

we can again apply our results for F , now seen as a sheaf on the subscheme Z.

3.2.1 Modules over quotients

Let R be a ring, M an R-module and I E R an ideal such that I ⊆ AnnR(M).

Thus we have the exact sequence of R-modules

0 −→ I −→ R −→ R/I −→ 0 .

Denote A := R/I. We define an A-module structure on M by s̄ ∗m := s ∗m,

which is well-defined as i ∗ m = 0, ∀ i ∈ I. On the other hand we can define

N := M ⊗RA, where A is an R-module via the projection map, i.e. r ∗ s̄ := r̄ · s̄.
By straight-forward computations one then shows

Lemma 3.2.1. M ∼= N as A-modules.

Thus for any ideal I ⊆ AnnR(M), one can define an R/I-module structure on an

R-module either directly or by means of a tensor product. One may ask whether

the associated primes of M will change under this new module structure, i.e. do
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they depend on the ring over which we consider M as a module ? The following

result shows that the answer is No.

Proposition 3.2.2. If I E R is such that I ⊆ AnnR(M) and π : R → R/I,

then

AssR/I(M) = π
(

AssR(M)
)
.

Proof. Recall that

Spec(R/I) ∼= V (I) =
{
P ∈ SpecR

∣∣ I ⊆ P
}

since prime ideals in R/I are in 1-to-1 correspondence with prime ideals in R

containing I. As the elements in M do not change, neither do their annihilators

(up to taking classes of the generators). So it only remains to check that primes in

AssR(M) contain I. This follows from Theorem B.3.15, which gives the inclusion

AssR(M) ⊆ suppM . Indeed if P ∈ AssR(M) is such that I * P , then ∃ r ∈ I \P
and MP = {0} since r ∗M = {0}, so P would not be in the support of M .

Remark 3.2.3. Even if the sets of associated primes are not exactly the same,

we will always write AssR/I(M) = AssR(M) in the following, having in mind

that one has to take the classes of the generators of the primes because of the

module structure r̄ ∗m = r ∗m for r ∈ R, m ∈M .

3.2.2 Purity and torsion-freeness on the support

Now we apply the same idea as before to sheaves and the ideal which defines

their support.

Definition 3.2.4. Let M be a finitely generated R-module with coherent sheaf

F ∼= M̃ on the affine scheme X = SpecR. We denote Z = suppF (the sub-

scheme structure has yet to be specified) and consider the closed immersion of

schemes i : Z ↪→ X . Next we want to “forget” about the structure of F as an

OX–module and only see it as an OZ–module on its support. As Z = V (I) for

some I ⊆ AnnR(M) (usually the Fitting ideal), M also carries an R/I-module

structure via r̄ ∗m = r ∗m and is thus still finitely generated. By pulling back,

i then defines the functor

i∗ : Coh(OR) −→ Coh(OR/I) ⇔ Coh(OX ) −→ Coh(OZ)
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with i∗M̃ ∼= M̃ by (1.3) where M ∈ Mod(R) on the RHS is considered as an

R/I-module as in Lemma 3.2.1. Hence the underlying set of the module did not

change under this transformation.

The next result is essential as it shows that purity of a coherent sheaf F is a

notion that is independent of the “ambient space” X on which F is considered.

Proposition 3.2.5. Let (X ,OX ) be a Noetherian scheme and F ∈ Coh(OX ).

Then F is pure of dimension d as an OX–module if and only if F is pure of

dimension d as an OZ–module.

Proof. Let X = SpecR, F ∼= M̃ and I ⊆ AnnR(M) defining the subscheme

structure on Z = V (I). Let N ≤ M be a submodule (unspecified whether as

an R-module or an R/I-module). We have the homeomorphism of topological

spaces V (I) ∼= Spec(R/I) given by P 7→ π(P ) and inverse Q 7→ π−1(Q), where

π : R→ R/I. So{
Q ∈ Spec(R/I)

∣∣ NQ 6= {0}
} ∼= {

P ∈ V (I)
∣∣ NP 6= {0}

}
=
{
P ∈ SpecR

∣∣ NP 6= {0}
}
,

where the last equality holds because if P /∈ V (I), then I * P and ∃ r ∈ I \ P ,

so r ∈ AnnR(M) and r ∗ N = {0}, i.e. NP = {0}. Being homeomorphic, the

supports of submodules of M on Z and on X thus have the same dimension. It

follows that M ∈ Mod(R) has a submodule with support of dimension < d if

and only if M ∈ Mod(R/I) has a submodule of dimension < d.

Remark 3.2.6. Note that this result is compatible with Proposition 3.2.2. In-

deed by the criterion for purity of Huybrechts-Lehn (Theorem 3.1.11), a sheaf

being pure or not is completely determined by the dimension of its associated

points. As these do not change under pulling back to the support, neither does

the property of being pure.

Remark 3.2.7. On the other hand, the notion of torsion-freeness of a sheaf

strongly depends on the space where it is considered.
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Example 3.2.8. Let R = K[X, Y ] with X = SpecR = A2
K be the affine plane

and M = R/I with I = 〈X 〉 describe the structure sheaf of a line. Thus

dimX = 2 and dim(suppM) = 1.

M is a torsion R-module since X ∈ AnnR(M) is a NZD. But it is (obviously)

free as an R/I-module. So we get a torsion sheaf on X , but which is torsion-free,

and even free, on its support.

Example 3.2.9. Let us also analyze this fact on Example E.4.

If we denote I = 〈 Ȳ Z̄ 〉, then AnnR(M) = Fitt0(M) = I as M is generated by

one element. As rings we have R/I ∼= K[X, Y, Z]/〈XY,X2, XZ, Y Z 〉 and M is

also a module over R/I.

From Example 2.3.1 we know that M is a torsion-free module over R, but there

is torsion on the stalks, e.g. for P = 〈 X̄, Ȳ , Z̄ − 1 〉 we have ȲP ∗ [Z̄]P = 0 where

[Z̄]P 6= 0 and ȲP ∈ RP is a NZD. On the other hand we have M ∼= R/I as

modules over R/I, i.e. M is a free R/I-module and its corresponding sheaf is

locally free on suppM (obvious since it is the structure sheaf of the support). In

particular, all its stalks are free and hence torsion-free as well. So what happened

to the torsion relation on the support ?

Let us study the relations ȲP ∗ [Z̄]P = 0 and Z̄P ∗ [Ȳ ]P = 0 over R/I. Since

M ∼= R/I, they reduce to ȲP · Z̄P = 0 and Z̄P · ȲP = 0 in the localization of this

ring (now with P seen as a prime ideal in R/I, compare Remark 3.2.3). So we

immediately see that ȲP and Z̄P are zero-divisors as they annihilate each other,

i.e. they are no torsion elements. More precisely we even have ȲP = 0̄ since

Z̄ · Ȳ = 0̄ with Z̄ /∈ P .

Example 3.2.10. Something similar happens in Example E.3, where

I = AnnR(M) = 〈 Ȳ Z̄ 〉

and the global NZD Ȳ + X̄ − 1, which defines the global torsion element [X̄Z̄],

becomes a zero-divisor in the quotient R/I ∼= K[X, Y, Z]/ 〈Y Z,XZ(X − 1) 〉, so

the torsion relation reduces to(
Ȳ + X̄ − 1

)
· X̄Z̄ = 0̄ .
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Remark 3.2.11. The fact that torsion-freeness of a sheaf depends on the ring

can also be seen by using Grothendieck’s criterion (Theorem 2.5.8). Indeed

the associated primes of M remain the same (Proposition 3.2.2), whereas the

associated primes of the ring change, hence the condition Ass(F) ⊆ Ass(OX )

becomes Ass(F) ⊆ Ass(OZ) and may not be satisfied anymore. The fact that

the primes of the ring change, but those of the module do not also illustrates

that the notion of torsion depends on the ring on which the sheaf is considered,

but the sheaf does not.

Now we are ready to give a criterion which allows to see whether a sheaf is pure

by only looking at its support (see Remark 3.1.12).

Proposition 3.2.12 (Leytem). Let X = SpecR be affine and F ∼= M̃ be coher-

ent with d = dimF . If the annihilator support Za(F) of F has a component of

dimension < d, then F is not pure.

Proof. Considering the annihilator support means that we have I = AnnR(M),

so we can consider the R-module M also as a module over R/I. In the following

we restrict all computations to the subscheme Spec(R/I) ↪→ X .

The support having a component of smaller dimension means that the ring R/I

has a prime (minimal or embedded) which defines a component of dimension < d

in SpecR/I ; let’s denote it by Q E R/I. It is given by the annihilator of a non-

zero element, i.e. Q = AnnR/I(x̄) for some x̄ ∈ R/I, x̄ 6= 0̄ by Proposition B.2.25.

Consider the submodule N := x̄ ∗M . Then N 6= {0} since x̄ 6= 0̄ means that

x /∈ AnnR(M). In particular, suppN 6= ∅ as there always exists P ∈ Spec(R/I)

such that NP 6= {0}, see Proposition A.2.11. On the other hand, NP = {0} for

all P ∈ Spec(R/I) such that x̄
1̄

= 0 as an element in (R/I)P . But

x̄
1̄

= 0 ⇔ ∃ ȳ /∈ P such that x̄ · ȳ = 0̄ ⇔ ∃ ȳ ∈ AnnR/I(x̄) \P ⇔ ∃ ȳ ∈ Q \P .

By contraposition, x̄
1̄
6= 0 ⇔ Q ⊆ P and NP 6= {0}, hence we obtain Q ⊆ P

and ∅ 6= suppN ⊆ V (Q). This means that all the primes which define non-zero

stalks of N lie in the component V (Q). But then dim(suppN) ≤ dimV (Q) < d,

i.e. N defines a coherent subsheaf of F which is supported in dimension < d.

Hence F is not pure.
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Remark 3.2.13. Hence for a coherent sheaf F ∈ Coh(OR) on X = SpecR, there

are only 2 cases:

− If Za(F) has a component of dimension < d, then F is not pure.

− If Za(F) has equidimensional components, then purity and torsion-freeness of

F on Za(F) are equivalent by Theorem 3.1.17.

Corollary 3.2.14. Let X = SpecR be affine, F ∈ Coh(OX ), Z = Za(F) and

assume that F is pure of dimension d. Then OZ is pure of dimension d.

Proof. If F is pure, we know by Proposition 3.2.12 that Z = Za(F) has equidi-

mensional components. Example 3.1.13 then implies that OZ is pure of dimen-

sion d = dimZ.

Remark 3.2.15. It is important to consider the annihilator support as the

condition x̄ 6= 0̄ is crucial. If we would consider the Fitting support, it is possible

that x /∈ Fitt0(M) but x ∈ AnnR(M), so that N = {0}. We will encounter this

situation in Remark 3.4.19. In general a lot of things can happen for the Fitting

support, e.g. two sheaves may have exactly the same scheme-theoretical support,

but one of them is pure while the other one is not (see Example 3.4.18). So there

cannot exist a criterion to decide whether a sheaf is pure by only looking at the

components of its Fitting support.

Remark 3.2.16. Using the criterion of Huybrechts-Lehn we will see an alterna-

tive proof of Proposition 3.2.12 in Remark 3.4.8.

Example 3.2.17. The converse of Proposition 3.2.12 is false. Consider for ex-

ample X = A2
K = SpecK[X, Y ] and F = M̃ where

M = K[X, Y ]/〈X 〉 ⊕ K[X, Y ]/〈X, Y 〉 = R/I ⊕R/J ,

i.e. F is the structure sheaf of a line and a (simple) point lying on that line.

Then AnnR(M) = I, so Za(F) is 1-dimensional and just consists of a line. In

particular it has equidimensional components. But R/J ≤ M is a non-trivial

submodule with 0-dimensional support since R/J ∼= K. Thus F is not pure

of dimension 1. On the other hand note that M is a torsion module over R
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because X ∈ AnnR(M) is a NZD, hence F is a torsion sheaf on X . As F is not

pure and Za(F) just has 1 component, Theorem 3.1.17 implies that F cannot be

torsion-free on Za(F) neither. Indeed this is checked by Ȳ ∗ (0̄, 1̄) = (0̄, 0̄) where

Ȳ ∈ R/I is a NZD.

Remark 3.2.18. Example 3.2.17 also shows that there exist sheaves on integral

schemes (which have in particular equidimensional components) that are not

pure. However we get dimF < dimX since F is a torsion sheaf on X , so F is

not a sheaf of maximal dimension.

Example 3.2.19. Let us find a sheaf F on a scheme X with equidimensional

components such that dimF = dimX and F is not pure. By Theorem 3.1.17 it

suffices to give an example of a sheaf of maximal dimension that is not torsion-

free. The torsion subsheaf of such a sheaf then gives a non-zero coherent subsheaf

(as there are no embedded primes, see Theorem 2.2.13) which is supported in

smaller dimension.

Consider e.g. R = K[X, Y, Z]/〈XY 〉, so SpecR describes the union of the

2 planes given by the equations X = 0 and Y = 0. As a module we take

M = R/〈 X̄Z̄ 〉, thus dim(suppM) = dimR. Moreover Z̄ ∗ [X̄] = [0̄] gives a

non-trivial torsion element and AnnR([X̄]) = 〈 Ȳ , Z̄ 〉 implies that [X̄] ∈ TR(M)

is supported on the line {Y = Z = 0}. Thus the sheaf associated to M is not

pure as 〈 [X̄] 〉 ≤ M defines a non-trivial coherent subsheaf that is supported in

smaller dimension.

In Example 3.2.8 we have seen that a module which is torsion-free over R/I for

I ⊆ AnnR(M) may not be torsion-free over R. To end this section, we want to

show that nevertheless the converse is true if R is Noetherian and reduced.

Proposition 3.2.20. Let R be a reduced Noetherian ring, M an R-module and

I E R an ideal such that I ⊆ AnnR(M). If M is torsion-free over R, then M is

also torsion-free over R/I.

Proof. Let m ∈ M be annihilated by a NZD r̄ ∈ R/I. To show that m = 0, it

suffices to prove that the preimage of r̄ under R → R/I also contains a NZD,

i.e. ∃ i ∈ I such that r + i is a NZD, because then (r + i) ∗m = r̄ ∗m = 0, so
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m = 0 by torsion-freeness of M over R.

If the chosen r ∈ R is a NZD, take i = 0. If r is a zero-divisor, it belongs to

some associated prime Pi = AnnR(a) for some a ∈ R. r · a = 0 implies that

a ∈ I, otherwise r̄ · ā = 0̄ and r̄ would be a zero-divisor. Then r + a /∈ Pi since

r ∈ Pi and a /∈ Pi (as R is reduced). Then we continue in the same matter.

If r + a is a NZD, take i = a. If it is still a zero-divisor, it belongs to another

associated prime Pj = AnnR(b) for some b ∈ R. Again b ∈ I, otherwise r̄ would

be a zero-divisor. Moreover b /∈ Pj since R is reduced and

(r + a) · b = 0 ⇒ a · b = −r · b ∈ Pi ⇒ b ∈ Pi since a /∈ Pi .

Hence we get r+a+ b /∈ Pi∪Pj. Continuing the same way we obtain the desired

statement as R only has finitely many associated primes (keep adding elements

from I as long until the sum does not belong to any of the primes any more and

is thus a NZD annihilating m).

Remark 3.2.21. A more elegant proof of Proposition 3.2.20 is given in Propo-

sition D.3.6. This one uses the theory of so-called essential ideals.

Remark 3.2.22. In general we do not have a similar result for sheaves ; if X is

reduced and F is torsion-free on X , we cannot conclude that F is torsion-free

on its support since torsion-freeness of sheaves and modules are in general not

equivalent. However we have

Corollary 3.2.23. Let X be a reduced locally Noetherian scheme and F a quasi-

coherent sheaf on X . Take any closed subscheme structure Z on the support of

F . If F is torsion-free on X and Z has no embedded components, then F is

torsion-free on Z.

Proof. It suffices to prove the statement on affines. Let X = SpecR for a reduced

Noetherian ring R, F = M̃ for some R-module M and I ⊆ AnnR(M) such that

Z = V (I). If F is torsion-free on X , then M is a torsion-free module over

R by Corollary 1.3.10. Proposition 3.2.20 then implies that M is also torsion-

free over R/I. But R/I has no embedded primes since Z was assumed to have

no embedded components, hence F is torsion-free on V (I) ∼= Spec(R/I) by

Corollary 2.2.22.
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Example 3.2.24. Proposition 3.2.20 does not hold true if the ring is not reduced.

Consider e.g. the ring R = K[X, Y ]/〈XY,X2 〉 and the ideal M = 〈 X̄, Ȳ 〉 as a

module overR. ThenM is torsion-free overR (as a submodule ofR, which is free)

and I = AnnR(M) = 〈 X̄ 〉, thus R/I ∼= K[Ȳ ] is an integral domain. However the

module structure R/I ×M → M gives e.g. Ȳ ∗ X̄ = X̄Ȳ = 0̄, where Ȳ ∈ R/I
is a NZD. Hence M is not torsion-free over R/I. Geometrically this means that

we have found a coherent subsheaf F ⊆ OR which is torsion-free on SpecR, but

not on Za(F). Moreover it is not pure since dim(suppM) = dimK[Ȳ ] = 1, but

〈 X̄ 〉 ≤M is supported in dimension 0.

3.2.3 Global sections on the support

Next we are interested in the global sections of a sheaf that has be restricted

to its support. It will turn out that these are exactly the same as those on the

whole scheme.

Proposition 3.2.25. Let M be an R-module and I E R. If I ⊆ AnnR(M), then

HomR(R/I,M) ∼= HomR(R,M) ∼= M .

Proof. The second isomorphism is clear. Let π : R → R/I, π(r) = r̄ be the

projection map.

If ϕ : R/I →M , then one defines ϕ̃ : R→M : r 7→ ϕ(r̄), i.e. ϕ̃ = ϕ ◦ π.

R

π
��

ϕ̃

!!

R

π
��

ψ

!!

R/I
ϕ
//M R/I

ψ̃
//M

If ψ : R → M , we set ψ̃ : R/I → M : r̄ 7→ ψ(r). This is well-defined as for

i ∈ I ⊆ AnnR(M), we get ψ(i) = ψ(i · 1) = i ∗ ψ(1) = 0 where ψ(1) ∈M .

Corollary 3.2.26. Let (X ,OX ) be a scheme with F ∈ Coh(OX ) and denote its

support by Z (with some subscheme structure). Then

Hom(OZ ,F) ∼= Hom(OX ,F) ∼= F(X ) ,

which means that taking global sections of F on X is equivalent to taking global

sections on Z.
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Remark 3.2.27. For I ⊆ AnnR(M), consider the short exact sequence of R-

modules

0 −→ I
j−→ R

π−→ R/I −→ 0 .

Now we apply the left exact contravariant functor HomR( · ,M). This gives

0 −→ HomR(R/I,M)
◦π−→ HomR(R,M)

◦j−→ HomR(I,M) −→ Ext1(R/I,M) −→ . . . .

In Proposition 3.2.25 we showed that ◦π is an isomorphism. But exactness of the

sequence implies that im(◦π) = ker(◦j). And indeed for every ρ ∈ HomR(R,M)

we get ρ ◦ j = 0 because ρ(i) = 0, ∀ i ∈ I. So ◦j is the zero map. On the other

hand this does not imply that HomR(I,M) = {0}.

Example 3.2.28. Consider R = K[X] and M = K ∼= K[X]/〈X 〉, so we get

I = AnnR(M) = 〈X 〉. Then we can set

f : 〈X 〉 −→ K : X 7−→ α

X · g 7−→ α · g(0)

for some α ∈ K∗ and this is a well-defined R-module homomorphism I → M .

Another example is the sequence of Z-modules

Z p−→ Z/nZ ∗n−→ Z/nZ ,

where p is surjective and im p = ker(∗n), but Z/nZ 6= {0} even if ∗n is actually

the zero morphism.

Remark 3.2.29. So we illustrated that if M is an R-module and I ⊆ AnnR(M)

is an ideal, there may exist non-zero R-module homomorphisms I →M .

3.3 Examples and torsion components

In the following we illustrate the concepts of purity and torsion-freeness on some

examples of coherent sheaves F = M̃ on X = SpecR and on Z = Zf (F) = V (I)

for I = Fitt0(M) ; in this section all modules will be generated by 1 element, so
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AnnR(M) = Fitt0(M). In particular we are interested in answering the following

questions. Is M torsion-free over R and/or over R/I ? Is F torsion-free on X
and/or on Z ? Is F of pure dimension ? For these we will use the criteria from

Proposition 1.3.3, Theorem 2.5.8 and Theorem 3.1.11.

Moreover we use Grothendieck’s criterion to see where the torsion appears in the

case when there exists P ∈ AssR(M) \ AssR(R). Its proof allows to find a NZD

in RP that creates the torsion ; it is given by r
1

for r ∈ P that does not belong to

any prime Pi of R that is strictly contained in P . A neatly arranged summary

of all the results is given in Appendix E.

3.3.1 Example E.3

The ring R = K[X, Y, Z]/〈Y Z(X − 1), XZ(X − 1) 〉 defines the components

X1,X2,X3, so there are no embedded primes and the torsion subsheaf of any

coherent sheaf is coherent.

Example 3.3.1. For M = R/〈 Ȳ Z̄ 〉, we know from Example 1.4.27 that the

support Z consists of the plane X1 and the two parallel lines Z2 and Z3 = X3.

Hence dimF = 2. The torsion submodule is TR(M) = 〈 [X̄Z̄] 〉, so M is not

torsion-free over R. Since torsion remains after localization, F is not torsion-free

on X neither. If we take P = P ′2, then P2 ( P , so ȲP is a NZD such that

ȲP ∗ [X̄Z̄]P = 0. The global torsion element [X̄Z̄] is supported on V (P ), so all

stalks MM for P ⊆M have torsion too (see Example 1.4.29). Finally we saw in

Example 1.4.27 that T (F) is only supported on the line Z2 and thus defines a

coherent subsheaf of F with 1-dimensional support, i.e. F is not pure of dimen-

sion 2. Now what happens as a sheaf on the support ?

Let I = AnnR(M) = 〈 Ȳ Z̄ 〉 ; then M ∼= R/I, so M is a free R/I-module (ob-

vious as F is the structure sheaf of Z). In particular, M is torsion-free over

R/I and F is torsion-free on Z. But it is not pure on Z as it is not pure on

X . Hence torsion-freeness on Z and purity are not equivalent. This is because

not all minimal primes in R/I define components of the same dimension. One

could also see this by the fact that F = OR/I and Spec(R/I) has components of

dimension < 2, so Example 3.1.13 tells that OR/I is not of pure dimension 2.

Note that a subsheaf of F with smaller dimension on Z can be given by the sub-
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sheaf of F which has smaller dimension on X , i.e. by T (F). In Example 3.2.10

we already illustrated that the torsion relation (Ȳ + X̄ − 1) ∗ [X̄Z̄] = [0̄] on R

is not longer torsion in R/I since Ȳ + X̄ − 1 ∈ R/I is a zero-divisor. On Z,

the torsion subsheaf T (F) ⊂ F = OR/I is described by the ideal 〈 X̄Z̄ 〉 ⊂ R/I.

Moreover it satisfies (X̄ − 1) · X̄Z̄ = 0̄ and Ȳ · X̄Z̄ = 0̄, so the support is indeed

included in Z2.

3.3.2 Example E.4 and Example E.5

The ring R = K[X, Y, Z]/〈XY,X2, XZ 〉 with components X1,X2 has an embed-

ded prime which defines an embedded double point on the plane X1.

Example 3.3.2. We saw in Example 2.3.1 that the R-module M = R/〈 Ȳ Z̄ 〉 is

torsion-free and that its corresponding sheaf is supported on Z = Z1 ∪ Z2 ∪ Z3,

hence dimF = 1. F is however not torsion-free and its torsion subsheaf T (F),

which is not coherent, is supported on Z \ {M}, where M = 〈 X̄, Ȳ , Z̄ 〉 is a the

maximal ideal, see Example 2.3.4. Here we can take Z̄ ∈ P = P ′1 and Ȳ ∈ Q = P ′2

with P1 ( P and P1 ( Q, so we find the torsion relations Z̄P ∗ [Ȳ ]P = 0 and

ȲQ ∗ [Z̄]Q = 0. Since however P ′3 = P3, there is no torsion on the embedded

component. Moreover Example 3.1.4 shows that it is not pure of dimension 1 as

〈 [X̄] 〉 ≤M defines a subsheaf with 0-dimensional support.

But again F is free and hence torsion-free as a sheaf on its support because

I = AnnR(M) = 〈 Ȳ Z̄ 〉, M ∼= R/I and F = OR/I . Being not pure on X , it

is not pure on Z neither. This can also be seen by the fact that Za(F) has an

embedded prime, so according to the constructive proof of Proposition 3.2.12, we

can explicitly find a subsheaf with smaller dimension using its annihilator. We

have 〈 X̄, Ȳ , Z̄ 〉 = AnnR(X̄) where X̄ ∈ R/I is nilpotent and X̄ /∈ AnnR(M), so

the wanted subsheaf is N := X̄ ∗M = X̄ ∗ 〈 [1̄] 〉 = 〈 [X̄] 〉.

Example 3.3.3. Now let us take a look at what may happen for a sheaf whose

support no longer has embedded components, i.e. we shall divide out the nilpo-

tent element X̄. ConsiderM = R/〈 X̄, Ȳ Z̄ 〉, which we now will call Example E.5.

The primary decomposition becomes

〈XY,X2, XZ,X, Y Z 〉 = 〈X, Y Z 〉 = 〈X, Y 〉 ∩ 〈X,Z 〉 ,
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so the support of F is Z1∪Z2 and dimF = 1. Let us first analyze what happens

on the support. As I = AnnR(M) = 〈 X̄, Ȳ Z̄ 〉, M ∼= R/I says that M is free

over R/I and that F = OR/I is free, hence torsion-free on Z. This also implies

that F = OZ is pure of dimension 1 as Z has equidimensional components (see

Example 3.1.13). Alternatively this can be seen by the criterion of Huybrechts-

Lehn since the associated primes P ′1 = 〈X, Y 〉 and P ′2 = 〈X,Z 〉 of M define

components of the same dimension. However the situation on X is quite different.

First we obtain that M is also torsion-free over R since P ′1 and P ′2 are both

contained in P2. But there is torsion locally since they do not belong to AssR(R).

Consider for example the relation ȲP ∗ [Z̄]P = [0̄] at P = 〈 X̄, Ȳ , Z̄−1 〉. ȲP ∈ RP

is a NZD and [Z̄]P 6= 0 since

f̄ ∗ [Z̄] = [0̄] ⇔ f̄ · Z̄ ∈ 〈 X̄, Ȳ Z̄ 〉 = 〈 X̄, Ȳ 〉 ∩ 〈 X̄, Z̄ 〉 ⇒ f̄ ∈ 〈 X̄, Ȳ 〉 ⊆ P ,

thus [Z̄]P ∈ TRP (MP ). So again we have a module which is torsion-free but

where certain stalks are not. Indeed one exactly shows as in Example 2.3.4

that TRP (MP ) 6= {0} for all P ∈ Z, P 6= M since the topological spaces are

the same. Alternatively this also follows from Grothendieck’s criterion since

P ′1, P
′
2 ∈ AssR(M) \ AssR(R). So the torsion subsheaf T (F) is not coherent on

X as its support is not closed. The most interesting fact however is that F is of

pure dimension 1 without being torsion-free on X . This is due to the embedded

component.

3.3.3 Examples of coherent torsion with embedded primes

Next we consider the ring

R = K[X, Y, Z]/〈XZ, Y Z2 〉 .

The primary decomposition

〈XZ, Y Z2 〉 = 〈Z 〉 ∩ 〈X, Y 〉 ∩ 〈X,Z2 〉

gives the associated primes

P1 = 〈 Z̄ 〉 = AnnR(X̄) , P2 = 〈 X̄, Ȳ 〉 = AnnR(Z̄2) ,

P3 = 〈 X̄, Z̄ 〉 = AnnR(Ȳ Z̄) ,
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where Ȳ Z̄ ∈ R is nilpotent of degree 2. The set of zero-divisors in R is given by

ZD(R) = 〈 X̄, Ȳ 〉 ∪ 〈 X̄, Z̄ 〉. X describes the union of a plane, a perpendicular

line and a double line which is embedded into the plane. We denote them by

X1,X2,X3 respectively. As expected we have dimX = 2 since K[X, Y, Z] � R

and we have the chain of primes 〈 Z̄ 〉 ( 〈 X̄, Z 〉 ( 〈 X̄, Y, Z 〉.

Example 3.3.4. We take the module M = R/〈 X̄ 〉, which is generated by [1̄],

and call it Example E.6. It describes the structure sheaf of the line and the

double line since X ∩ V (X̄) = X2 ∪ X3. As AnnR(M) = 〈 X̄ 〉, this can also be

seen on the primary decomposition

〈XZ, Y Z2, X 〉 = 〈X, Y Z2 〉 = 〈X, Y 〉 ∩ 〈X,Z2 〉 .

As rings we have R/〈 X̄ 〉 ∼= K[Y, Z]/〈Y Z2 〉, so dimF = 1. By definition

I = AnnR(M) = 〈 X̄ 〉, we see again that M ∼= R/I and F = OR/I , so M

is torsion-free over R/I and F is torsion-free on Z. Moreover F = OZ is pure

of dimension 1 as R/I has no embedded primes and Z has equidimensional

components (Example 3.1.13). To check torsion-freeness on R and X , denote

P ′1 = 〈 X̄, Ȳ 〉 and P ′2 = 〈 X̄, Z̄ 〉. Then we see that

AssR(M) = {P ′1 , P ′2 } ⊆ {P1 , P2 , P3 } = AssR(R) ,

hence M is torsion-free over R and F is torsion-free on X , i.e. T (F) = 0. In

particular T (F) is coherent even though R has embedded primes. This gives

an example of a pure and torsion-free sheaf on a scheme that has an embedded

component.

Example 3.3.5. On the same ring we now consider M = R/〈 X̄Ȳ 〉, which gives

the structure sheaf of X ∩ {XY = 0}. We will call it Example E.7. Intuitively

this gives the union of the line X2, the double line X3 and another line. Indeed

the primary decomposition gives

〈XZ, Y Z2, XY 〉 = 〈X, Y 〉 ∩ 〈Y, Z 〉 ∩ 〈X,Z2 〉

⇒ AssR(M) =
{
P ′1 = 〈 X̄, Ȳ 〉 , P ′2 = 〈 Ȳ , Z̄ 〉 , P ′3 = 〈 X̄, Z̄ 〉

}
,
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so that Z = Z1 ∪ Z2 ∪ Z3 with Z1 = X2 and Z3 = X3. Hence dimF = 1 and

as before we see that F is free and torsion-free on Z. Moreover it is pure of

dimension 1 since Z has equidimensional components. More interesting things

happen however on X .

Concerning torsion of M over R, we have P ′2 * Pi for all i, hence M is not

torsion-free over R. In order to find the torsion submodule, let f̄ ∈ R be a NZD

and [ḡ] ∈M such that f̄ ∗ [ḡ] = [0̄]. Then

f̄ · ḡ ∈ 〈 X̄Ȳ 〉 = 〈 X̄, Ȳ 〉 ∩ 〈 Ȳ , Z̄ 〉 ∩ 〈 X̄, Z̄2 〉 ⊆ P2 ∩ 〈 Ȳ , Z̄ 〉 ∩ P3

⇒ ḡ ∈ P2 ∩ P3 = 〈 X̄, Ȳ Z̄ 〉 ,

so that [X̄] and [Ȳ Z̄] are candidates for torsion elements. But
(
Ȳ +Z̄

)
∗ [X̄] = [0̄]

where Ȳ + Z̄ is a NZD, hence we already get [X̄] ∈ TR(M). To show that there

are no other torsion elements, assume that ∃ f̄1, f̄2 ∈ R such that

f̄1 ∗ [X̄] + f̄2 ∗ [Ȳ Z̄] ∈ TR(M) .

Then [f̄2Ȳ Z̄] ∈ TR(M) and by the relations in R, we may assume that f̄2 only

depends on Ȳ . But this is not possible as all elements that annihilate [Ȳ Z̄] are

contained in P3. So finally we get TR(M) = 〈 [X̄] 〉. This torsion also remains

on all localizations such that [X̄]P 6= 0. As Z̄ ∗ [X̄] = 0 and Ȳ ∗ [X̄] = 0 are

all relations annihilating [X̄], we get that [X̄]P 6= 0 for all P on the line Z2, i.e.

TRP (MP ) 6= {0}, ∀P ∈ Z2. So F is not torsion-free on X , although it is pure of

dimension 1.

Let us find all P ∈ X on which the localization is not torsion-free (i.e. let us

determine the support of T (F)). We already know that Z2 ⊆ supp T (F). Note

that the relation may simplify, e.g. for P = 〈 X̄ − λ, Ȳ , Z̄ 〉 for λ 6= 0 we get

Z̄P = 0, so that X̄P and ȲP are NZDs and ȲP ∗ [X̄]P = 0. This is nothing but the

global relation
(
Ȳ + Z̄

)
∗ [X̄] = [0̄] since Z̄ vanishes in the localization. Also note

that [Ȳ ]P = 0 since X̄ /∈ P , so multiples of [X̄]P are the only torsion elements

for such primes. Now consider P = 〈 X̄, Ȳ , Z̄ − λ 〉 for λ 6= 0. As Z̄ /∈ P , we get

X̄P = ȲP = 0. So there is no torsion since the remaining element [Z̄]P cannot

be annihilated at all. Finally we look at P = 〈 X̄, Ȳ − λ, Z̄ 〉 for λ 6= 0. Here

we obtain that ȲP is a NZD together with the relations Z̄2
P = 0, X̄P Z̄P = 0
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and [X̄]P = 0. One sees that there is no possible combination to obtain torsion.

Finally we have supp T (F) = Z2. This implies in particular that the torsion

subsheaf is coherent since every local torsion element comes from a global one

(all local ones are multiples of [X̄]P , so they all come from [X̄]) and we get

T (F) = 〈̃ [X̄] 〉 .

Hence on X = SpecR we have a coherent sheaf F which is pure but not torsion-

free and whose torsion subsheaf is coherent even though R has embedded primes.

Example 3.3.6. Consider the ring R = K[X, Y, Z]/〈XZ,X2 〉 with the module

M = R/〈 X̄, Ȳ Z̄ 〉 and the primary decompositions

〈XZ,X2 〉 = 〈X 〉 ∩ 〈X2, Z 〉 , 〈XZ,X2, X, Y Z 〉 = 〈X, Y 〉 ∩ 〈X,Z 〉 .

Hence {0̄} = 〈 X̄ 〉 ∩ 〈 X̄2, Z̄ 〉 = Q1 ∩Q2 with

AssR(R) =
{
P1 = 〈 X̄ 〉 , P2 = 〈 X̄, Z̄ 〉

}
,

AssR(M) =
{
P ′1 = 〈 X̄, Ȳ 〉 , P ′2 = 〈 X̄, Z̄ 〉

}
.

If X1 = V (P1), X2 = V (Q2), Z1 = V (P ′1) and Z2 = V (P ′2), then X = X1∪X2 is a

plane with an embedded double line and Z = Z1 ∪Z2 gives the (simple) “cross”

inside of that plane. In particular dimX = 2, dimF = 1 and F is torsion-free

on Z and pure of dimension 1.

But since P ′1 is not included in any of the primes from AssR(R), we see that M

is not torsion-free over R and that F is not torsion-free over X . As Ȳ ∈ R is

a NZD with Ȳ ∗ [Z̄] = [0̄], we obtain that [Z̄] ∈ M is a global torsion element.

One finds that TR(M) = 〈 [Z̄] 〉. The torsion remains in all localizations such

that [Z̄]P 6= 0, so that TRP (MP ) 6= {0} for all P ∈ Z1. The question is whether

there are other stalks on which torsion may appear. By Remark 2.5.9 we know

that the answer is No (if an associated prime P ∈ AssR(M) is also an associated

prime of R, then MP is torsion-free). Hence TRQ(MQ) = {0} for all primes of

the form Q = 〈 X̄, Ȳ − λ, Z̄ 〉 ∈ Z2 with λ 6= 0. Finally we have

T (F) = 〈̃ [Z̄] 〉 with supp T (F) = Z1 .
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3.3.4 Torsion in a given component

We noticed that all examples in Section 3.3 have a property in common: for each

module M , torsion in the stalk MP only appeared at prime ideals P which belong

to a component of Z that is not a component of X ; independent of whether M

was torsion-free or not. This is a consequence of Grothendieck’s criterion. Indeed

we have

Corollary 3.3.7. Let R be a Noetherian ring and M a module over R.

1) If P ∈ AssR(M) \ AssR(R), then TRP (MP ) 6= {0}.
2) Vice-versa, if M ∈ AssR(M) ∩ AssR(R), then TRP (MP ) = {0}.

Proof. follows from Theorem 2.5.8 and Remark 2.5.9.

In other words, if V (P ) is an irreducible component of Z that is not a component

of X , then there is torsion in MP and if V (P ) ⊆ Z is also a component of X ,

there is none.

On the other hand we cannot say that there is torsion in MM for all maximal

ideals M containing P , i.e. we cannot say what happens at a closed point by just

looking at the component(s) it belongs to. Similarly if P ∈ AssR(M) belongs to

AssR(R), there still may exist points on the component V (P ) at which the stalks

are not torsion-free.

Example 3.3.8. Consider Example E.4 at the maximal ideal M = 〈 X̄, Ȳ , Z̄ 〉.
M belongs to the lines Z1 = V (P ′1) and Z2 = V (P ′2), which are not components

of X itself. However we have shown in Example 2.3.4 that TRM
(MM) = {0},

even if MP ′1
and MP ′2

are not torsion-free. Torsion-freeness at M is due to the

fact that the component V (M) ⊆ Z is also a component of X .

If M is a maximal ideal containing P , we cannot conclude:

TRP (MP ) 6= {0} 6⇒ TRM
(MM) 6= {0} ,

TRP (MP ) = {0} 6⇒ TRM
(MM) = {0} .

Nevertheless we now show that if P defines a “component with torsion”, then

generically there is also torsion on MM. The converse (if P gives a “torsion-free
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component”, then there is generically no torsion in MM) is true as well, but the

exact statement is slightly different.

Proposition 3.3.9 (Leytem). Let X = SpecR for a Noetherian ring R, F ∼= M̃

be quasi-coherent and fix P ∈ X .

1) If TRP (MP ) 6= {0}, then ∃ r /∈ P such that

TRM
(MM) 6= {0} for all M ∈ V (P ) ∩D(r) .

2) If TRP (MP ) = {0} and TRM
(MM) 6= {0} for some M ∈ V (P ), then

∃ r /∈ P such that M ∈ V (r) .

Proof. 1) Let m
1
∈ TRP (MP ) be a non-zero torsion element. By Corollary 2.1.18

we know that m
1
∈ TRr(Mr) for some r /∈ P where m

1
∈ Mr is still non-zero and

m
1
∈ TRQ(MQ), ∀Q ∈ D(r). Moreover m

1
6= 0 in MM for all M containing P since

AnnR(m) ⊆ P ⊆M. Finally

0 6= m
1
∈ TRM

(MM) , ∀M ∈ V (P ) ∩D(r) .

2) Let a
1
∗ m

1
= 0 where a

1
∈ RM is a NZD and m

1
∈MM is non-zero, i.e. ∃ b /∈M

such that ba∗m = 0. Since P ⊆M, every associated prime of R that is contained

in P is also contained in M. In particular, all zero-divisors in RP remain zero-

divisors in RM. Hence a
1

is also a NZD in RP . But then m
1

= 0 in MP since

ba∗m = 0 with b /∈ P and MP is torsion-free. From this we get that m
1

= 0 on an

open neighborhood D(r) of P (since F is a sheaf), i.e. m
1

= 0 in Mr with r /∈ P .

But as m
1
6= 0 in MM, we hence obtain M /∈ D(r), i.e. M ∈ V (r) = X \D(r).

Remark 3.3.10. The first statement says that if there is torsion in MP , there

is a dense open neighborhood of P in V (P ) on which we have torsion too. The

second one says that if MP is torsion-free, then torsion in V (P ) can only appear

in a set with empty interior. So in both cases we obtain a generic situation.

Example 3.3.11. Consider Example E.4, where e.g. P = P ′2 ∈ AssR(M) is not

an associated prime of R, so we know that TRP (MP ) 6= {0}. A torsion relation is

given by ȲP ∗ [Z̄]P = 0. Taking r = Z̄ ∈ P2 \P , we find that [Z̄]/1̄ is still torsion
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over D(Z̄), see Example 2.3.1. The intersection V (P ) ∩ D(Z̄) is then equal to

the line Z2 with the origin removed.

Similarly we have P ′1 ∈ AssR(M) \ AssR(R), hence by taking r = Ȳ ∈ P2 \ P ′1,

one finds that TRM
(MM) 6= {0} for all M ∈ V (P ′2)∩D(Ȳ ), which is equal to the

line Z1 with the origin removed. So we have torsion on all points of the “cross”,

except the origin (compare Example 2.3.4).

Example 3.3.12. Now consider Example E.3. Here P = 〈 Z̄ 〉 ∈ AssR(M) is an

associated prime of R too, so TRP (MP ) = {0}. At M = 〈 X̄ − 1, Ȳ , Z̄ 〉 ∈ V (P )

we however have torsion given by ȲM ∗ [Z̄]M = 0. But [Z̄]P = 0 since Ȳ /∈ P , so

according to the proof of Proposition 3.3.9 we see that M ∈ V (Ȳ ), which means

that M can only belong to the line

V (P ) ∩ V (Ȳ ) = V
(
P + 〈 Ȳ 〉

)
= V

(
〈 Ȳ , Z̄ 〉

)
,

and this one has empty interior in the plane V (P ). Now we can continue the

same way by looking at the prime L = 〈 Ȳ , Z̄ 〉 that defines the line. Since

X̄−1 /∈ L, the global torsion element [X̄Z̄] vanishes and we have TRL(ML) = {0}.
But still M ∈ V (L), so we get [Z̄]L = 0 as well with X̄(X̄ − 1) /∈ L, hence

M ∈ V (X̄(X̄ − 1)). So now

M ∈ V (L) ∩ V
(
X̄(X̄ − 1)

)
= V

(
〈 X̄(X̄ − 1), Ȳ , Z̄ 〉

)
=
{
〈 X̄, Ȳ , Z̄ 〉 , 〈 X̄ − 1, Ȳ , Z̄ 〉

}
,

which means that these 2 maximal ideals are the only ones in V (P ) on which

torsion may appear.

Remark 3.3.13. By repeating the above argument with [Z̄]M = [X̄Z̄]M (see

Remark 2.2.19) one can omit X̄ and immediately finds M = 〈 X̄ − 1, Ȳ , Z̄ 〉 as

only solution.

Example 3.3.14. Let P = 〈 Z̄ 〉 in Example E.7 ; as P /∈ suppM , we trivially

get TRP (MP ) = {0}. However for M = 〈 X̄ − 1, Ȳ , Z̄ 〉 ∈ V (P ) we have the

torsion relation ȲM ∗ [X̄]M = 0 where ȲM is a NZD, see Example 3.3.5. Since

Ȳ /∈ P we obtain [X̄]P = 0, hence M ∈ V (Ȳ ) and we get

M ∈ V (P ) ∩ V (Ȳ ) = V
(
〈 Ȳ , Z̄ 〉

)
.
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Now take L = 〈 Ȳ , Z̄ 〉 ; this is an associated prime of M but not of R, so

TRL(ML) 6= {0} with ȲL ∗ [X̄]L = 0 as well. Then Proposition 3.3.9 says that

there is generically torsion at the maximal ideals in the line Z2 = V (L). And

indeed we know that all stalks in Z2 have torsion.

Remark 3.3.15. Example 3.3.12 and Example 3.3.14 show that there is in

general no information about the codimension of the subspace where torsion can

appear in a “torsion-free component”. More precisely, for P ∈ SpecR denote

TP :=
{
M ∈ V (P )

∣∣ TRM
(MM) 6= {0}

}
.

If TRP (MP ) = {0}, we have proved in Proposition 3.3.9 that codimV (P )(TP ) ≥ 1.

But it is also possible that we have an equality, as well as a strict inequality.

In the case where the torsion subsheaf is quasi-coherent, we can even say some-

thing more.

Proposition 3.3.16. Let X = SpecR for a Noetherian ring R, F ∼= M̃ be

quasi-coherent and assume that T (F) is quasi-coherent too. If TRP (MP ) 6= {0}
for some P ∈ X , then TRM

(MM) 6= {0} for all M ∈ V (P ).

Proof. Theorem 2.2.8 says that T (F) being coherent means that(
TR(M)

)
P

= TRP (MP ) , ∀P ∈ X .

Hence if MP has torsion, then the local (non-zero) torsion element in TRP (MP )

comes from a global torsion element m ∈ TR(M) with AnnR(m) ⊆ P and m

remains torsion in all localizations where it does not vanish. But AnnR(m) ⊆M

as well, so 0 6= m
1
∈ TRM

(MM) for all M ∈ V (P ).

3.4 Annihilator vs. Fitting support

In most of the examples we encountered until now, the module was generated by

1 element and hence the annihilator support coincided with the Fitting support.

But in general the properties of a sheaf F ∈ Coh(OX ) restricted to Za(F) or to

Zf (F) can be quite different. In this section we are going to analyze the relations

and differences between both supports. Moreover we want to understand which

one of them is a “better” choice.
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3.4.1 Associated primes of M , AnnR(M) and Fitt0(M)

We start with the following observation.

Lemma 3.4.1. Let I, I ′ be ideals in a Noetherian ring R with Rad(I) = Rad(I ′),

so that V (I) = V (I ′) as topological spaces. Then I and I ′ have the same minimal

associated primes, i.e. the minimal primes in Ass(I) and Ass(I ′) are the same.

Proof. The argument will be symmetric with respect to I and I ′, so we only show

that every minimal associated prime of I is a minimal associated prime of I ′. Let

I = Q1 ∩ . . . ∩ Qα and I ′ = Q′1 ∩ . . . ∩ Q′β be minimal primary decompositions.

This gives

P1 ∩ . . . ∩ Pα = Rad(I) = Rad(I ′) = P ′1 ∩ . . . ∩ P ′β .

We may assume that all primes in these intersections are minimal, otherwise

they can be omitted. Let Pi be a fixed minimal prime of I. By Prime Avoidance

the inclusion P ′1 ∩ . . . ∩ P ′β = Rad(I) ⊆ Pi implies that there is a minimal prime

P ′j of I ′ such that P ′j ⊆ Pi. Assume that P ′j ( Pi, i.e. ∃ r ∈ Pi \ P ′j . Since Pi is

minimal, we get Pk * Pi for all k 6= i and ∃ rk ∈ Pk \ Pi. In particular, rk /∈ P ′j ,
∀ k 6= i. But then

r ·
∏
k 6=i

rk ∈
(
P1 ∩ . . . ∩ Pα

)
\ P ′j ,

which contradicts that Rad(I) = Rad(I ′). Hence Pi = P ′j and Pi is also a minimal

prime for I ′.

Corollary 3.4.2. Let M be a finitely generated module over a Noetherian ring.

Then the minimal primes in Ass
(

AnnR(M)
)

and Ass
(

Fitt0(M)
)

are the same.

Remark 3.4.3. Actually we can say that an even stronger statement holds

true: let I = AnnR(M), I ′ = Fitt0(M) with minimal primary decompositions

I =
⋂
iQi and I ′ =

⋂
j Q
′
j as above. Since V (I) is a subscheme of V (I ′), we get

Spec(R/I) is a subscheme of Spec(R/I ′) ⇒ ∀ i, ∃ j such that Q′j ⊆ Qi .

It means that every component of Spec(R/I) is contained in a component of

Spec(R/I ′), which is a much stronger condition as it also gives information about

embedded components and components with non-reduced structures.
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By Proposition 3.2.5 and Proposition 3.2.2 we know that purity of a sheaf F
is independent of the “ambient space” and that the associated primes do not

depend on the ring over which F is considered, so we do not need to study

purity of F on Za(F) and Zf (F).

But Grothendieck’s criterion shows that torsion-freeness of F heavily depends

on the ring over which the sheaf is considered. So we are interested in the primes

in AssR
(
R/AnnR(M)

)
= Ass

(
AnnR(M)

)
and

AssR
(
R/Fitt0(M)

)
= Ass

(
Fitt0(M)

)
,

as well as in their relation to the primes in AssR(M). Unfortunately these are

in general not the same. But we have the following result.

Proposition 3.4.4. [ [6], IV.§1.n◦4.Thm.2, p.313 ] and [ [55], 6.5, p.39 ]

Let R be a Noetherian ring and M a finitely generated R-module. Then the

minimal primes in

AssR(M) , suppM , Ass
(

AnnR(M)
)

, Ass
(

Fitt0(M)
)

are the same. Hence we always obtain the same (topological) decomposition

suppM =
⋃

P minimal

V (P ) .

Remark 3.4.5. In particular for any X = SpecR, as soon as a minimal prime

P of the annihilator or the Fitting support is not contained in the set AssR(R),

then MP is not torsion-free.

We can partially deal with the embedded primes by the following result.

Proposition 3.4.6. [ [11], 10.66.4 ]

Let M be a finitely generated module over a Noetherian ring R and I = AnnR(M).

If AssR(M) does not contain embedded primes, then Ass(I) has no embedded

primes neither.

Proof. Let P ∈ Ass(I) be arbitrary ; it is given by the annihilator of an element

x̄ ∈ R/I, x̄ 6= 0̄. So the submodule N = x ∗M is non-zero as x /∈ AnnR(M).

In particular we have P ⊆ AnnR(N) because P = AnnR(x̄), i.e. elements that
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annihilate x̄ also annihilate N . Then any associated prime Q ∈ AssR(N) satisfies

P ⊆ Q because ∀m ∈M ,

r ∈ P = AnnR(x̄) ⇒ r · x ∈ I ⇒ r ∗ (x ∗m) = (r · x) ∗m = 0

⇒ AnnR(x̄) ⊆ AnnR(x ∗m) .

Moreover Q ∈ AssR(M) by Proposition B.3.5 since N ≤ M . Now assume that

P is embedded, i.e. there is a minimal prime P ′ ∈ Ass(I) such that P ′ ( P . P ′

being minimal, we know that P ′ ∈ AssR(M) as well. Now we take any prime

Q ∈ AssR(N) ⊆ AssR(M), which exists by Proposition B.3.4 since N 6= {0}.
Then P ′ ( P ⊆ Q and Q would be an embedded prime in AssR(M).

Remark 3.4.7. By contraposition: if Ass
(

AnnR(M)
)

has embedded primes,

then so has AssR(M). Similarly as in Proposition 3.2.12 we see that the argument

does not work for I = Fitt0(M) since N could be zero if x ∈ AnnR(M)\Fitt0(M).

Remark 3.4.8. As mentioned in Remark 3.2.16, Proposition 3.4.6 and Theo-

rem 3.1.11 now allow to give an alternative proof of Proposition 3.2.12.

Let P ∈ Ass
(

AnnR(M)
)

be a prime ideal which defines a component of dimen-

sion < d. If P is minimal, then P ∈ AssR(M) by Proposition 3.4.4 and the

criterion of Huybrechts-Lehn implies that F is not pure. If P is embedded, then

AssR(M) also contains an embedded prime by Remark 3.4.7 and again F is not

pure because of Theorem 3.1.11.

3.4.2 Properties of AnnR(M) and Fitt0(M)

We mainly want to discuss 2 aspects of the annihilator and the Fitting ideal.

Since the criteria of Grothendieck and Huybrechts-Lehn are based on the as-

sociated primes of M , we first want to know which one of them is “closer” to

AssR(M). Secondly we are interested in knowing which one behaves “better”

with respect to the scheme structures.

The advantages of Fitt0(M) are that it defines a richer structure on the sup-

port and that it encodes information about the finite presentation of the module

(i.e. the locally free resolution of the sheaf). On the other hand AnnR(M)
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can easier deal with embedded primes (Proposition 3.2.12 and Proposition 3.4.6)

which allows conclusions about purity.

Lemma 3.4.9. [ [18], V-11, p.221 ] and [ [30], 7.2.7, p.346 ]

Let R be a (not nec. Noetherian) ring and M,N two R-modules of finite presen-

tation. Then AnnR(M ⊕N) = AnnR(M) ∩ AnnR(N) and

Fitt0(M ⊕N) = Fitt0(M) · Fitt0(N) .

Proof. The formula for the annihilator follows from r ∗ (m,n) = 0 ⇔ r ∗m = 0

and r ∗ n = 0. For the Fitting ideal, consider the finite presentations

Rm1
ϕ−→ Rm0 −→M −→ 0 and Rn1

ψ−→ Rn0 −→ N −→ 0 ,

where ϕ is of type m1 ×m0 and ψ is of the type n1 × n0, so that the direct sum

is given by

Rm1+n1 A−→ Rm0+n0 −→M ⊕N −→ 0 ,

where

A =

(
ϕ 0

0 ψ

)
is a matrix of type (m1 + n1) × (m0 + n0). If we compute its minors of order

m0 + n0, the blocks of zeros imply that these will just consist of products of the

minors of ϕ and ψ.

Corollary 3.4.10. [ [30], 7.2.8, p.346 ]

Let I1, . . . , Ik E R be ideals in a Noetherian ring and consider the R-modules

Mi = R/Ii. Then AnnR
(
M1 ⊕ . . .⊕Mk

)
= I1 ∩ . . . ∩ Ik and

Fitt0

(
M1 ⊕ . . .⊕Mk

)
= I1 · . . . · Ik .

Proof. Since each R-module R/Ii is generated by 1̄, we obtain that

AnnR(R/Ii) = Fitt0(R/Ii) = Ii

for all i ∈ {1, . . . , k} and use the formulas of Lemma 3.4.9 by induction.
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Remark 3.4.11. Hence comparing the annihilator and Fitting ideals is also

related to comparing the ideals I ∩ J and I · J as in Section 1.2.4. So similarly

as in that discussion, the Fitting support can cause problems as it may become

too big. Consider e.g. Example 3.4.23 and Example 3.4.27 below ; in these we

will define M in order to obtain the structure sheaf of a certain component, but

taking the Fitting ideal of M ⊕M gives a support that is equal to all of the

spectrum, so we lose the (smaller) subscheme that we actually wanted to study.

Remark 3.4.12. We obtain a particular case for M = R/I⊕R/I for some ideal

I E R. Indeed

AssR(R/I) = Ass(I) = Ass
(

AnnR(R/I)
)

= Ass
(

Fitt0(R/I)
)

since R/I is generated by one element. But AnnR(M) = I, Fitt0(M) = I2 and

AssR(M) = AssR
(
R/I ⊕R/I

)
= AssR(R/I) ∪ AssR(R/I)

= Ass(I) = Ass
(

AnnR(M)
)

by Corollary B.3.6. Hence for modules of this type, the annihilator is closer

related to AssR(M) than the Fitting ideal. This illustrates again the impression

that AnnR(M) gives in general easier criteria for torsion-freeness and purity.

However the Fitting ideal has the following important property: it commutes

with pullbacks. This is very useful in the theory of moduli spaces.

Proposition 3.4.13. [ [1], p.179-180 ]

Let f : X → Y be a morphism of schemes and F ∈ Mod(OY). Then Fitt0(f ∗F)

is generated by Fitt0(F) as an OX–module.

This follows from right exactness of the functor f ∗ : Mod(OY) → Mod(OX ).

Indeed if

OmY −→ OnY −→ F −→ 0

is a locally free resolution of F on Y , then

f ∗OmY −→ f ∗OnY −→ f ∗F −→ 0 ⇔ OmX −→ OnX −→ f ∗F −→ 0
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is a locally free resolution of f ∗F on X . We will prove the corresponding state-

ment for modules.

Let f : SpecS → SpecR be a morphism of affine schemes and F ∼= M̃ a

quasi-coherent sheaf on SpecR. So we can pull back F on SpecS via f ∗F . On

the level of modules this corresponds to a homomorphism of rings ϕ : R → S,

which turns S into an R-module via r ∗ s = ϕ(r) · s. Then

Lemma 3.4.14. [ [16], 20.5, p.494 ] and [ [52], 34621 ]

The Fitting support commutes with pullbacks, in the sense that

Fitt0

(
M ⊗R S) ∼= Fitt0(M)⊗R S . (3.5)

Proof. Let

Rm A−→ Rn −→M −→ 0

be a finite presentation of M over R with A = (aij)ij for some aij ∈ R. Tensoring

by S we get

Sm
B−→ Sn −→M ⊗R S −→ 0 ,

where B = ϕ(A). This is because the tensor product transforms an R-module

homomorphism R→ R : r 7→ a · r for some a ∈ R into S → S : s 7→ a ∗ s (still

as R-modules). As a morphism of S-modules this gives S → S : s 7→ ϕ(a) · s.
Now Fitt0(M ⊗R S) is an ideal in S that is generated by subdeterminants of

B = ϕ(A). Since ϕ is a ring homomorphism we get sdet(ϕ(A)) = ϕ(sdetA), i.e.

the Fitting ideal on S is generated by the generators of the Fitting ideal on R

that we see as elements in S via ϕ. This corresponds to Fitt0(M)⊗R S.

Remark 3.4.15. The idea behind these operations is that we can first pull back

to S and then take the ideal over S or first take the ideal over R and then pull

back to S. This gives the S-modules

Fitt0

(
M ⊗R S) , AnnS

(
M ⊗R S) , Fitt0(M)⊗R S , AnnR(M)⊗R S .

Example 3.4.16. In general a formula as in (3.5) does not hold true for the

annihilator. Indeed we always have a morphism of S-modules

AnnR(M)⊗R S −→ AnnS
(
M ⊗R S) : r ⊗ s 7−→ r ∗ s , (3.6)
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which is well-defined since (r ∗ s) ∗ (m⊗ t) = m⊗ (r ∗ st) = (r ∗m)⊗ (s · t) = 0,

∀m ∈ M , t ∈ S. But it may not be injective: consider e.g. M = R/I and

S = R/J for some ideals I, J E R such that {0} 6= I · J ( I ∩ J . Then

Corollary D.2.6 gives

AnnR(M)⊗R S = AnnR(R/I)⊗R R/J = I ⊗R R/J ∼= I/(I · J) ,

AnnS
(
M ⊗R S) = AnnR/J

(
R/I ⊗R R/J) ∼= AnnR/J

(
R/(I + J)

)
.

Taking an element r ∈ (I ∩ J) \ I · J , we find that r̄ 6= 0̄ but it is mapped to

zero since r ∈ J . Alternatively we can see this r̄ as an element r⊗ 1̄ ∈ I ⊗RR/J
which is non-zero because

r ⊗ 1̄ = (r · 1)⊗ 1̄ 6= 1⊗ (r ∗ 1̄) = 0 and r ⊗ 1̄ 6= (i · j)⊗ 1̄ = i⊗ j̄ = 0

as 1 /∈ I and r cannot be written as a product i · j with i ∈ I and j ∈ J . Taking

I = J such that {0} 6= I2 ( I, we even get a stronger counter-example since then

R/(I + I) = R/I and AnnR/I(R/I) = {0}, so (3.6) is nothing but the morphism

I/I2 → {0}.

Remark 3.4.17. The fact that Fitt0(M) commutes with pullbacks is however

the crucial aspect why one prefers in general to consider the Fitting support of a

sheaf instead of its annihilator support. This way one ensures that the support

behaves functorially with respect to morphisms of schemes and sheaves and that

the scheme structure is respected under pulling back.

On the other hand this gives several disadvantages regarding criteria for torsion-

freeness and purity, whom we are now forced to deal with. The following exam-

ples in Section 3.4.3 show that the Fitting support may have a lot of unexpected

and unpleasant properties.

3.4.3 Examples: creation and disappearance of embed-

ded primes

Example 3.4.18. Inspired from Example E.4 and Example E.5 let us consider

the non-reduced ring R = K[X, Y, Z]/〈XY,X2, XZ 〉 together with the modules
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M = R/〈 X̄, Ȳ Z̄ 〉 and N = R/〈 Ȳ Z̄ 〉. We set

F = M ⊕M , G = N ⊕N

and look at the sheaves F = F̃ and G = G̃. In Example 3.3.3 and Example 3.3.2

we have seen that M̃ is of pure dimension, but Ñ is not. By Lemma 3.1.5 we

hence obtain that F is pure and G is not. Alternatively one can see this by

looking at the annihilator supports. We denote

I = AnnR(F ) = AnnR(M) = 〈 X̄, Ȳ Z̄ 〉 ,

J = AnnR(G) = AnnR(N) = 〈 Ȳ Z̄ 〉 ,

so that we get the free modules F ∼= (R/I)2 and G ∼= (R/J)2. Since Za(F) has

equidimensional components, torsion-freeness of F = OR/I ⊕ OR/I implies that

F is of pure dimension. Za(G) having an embedded component, we conclude on

the other hand from Proposition 3.2.12 that G is not pure. As in Remark 3.4.12

we get

AssR(F ) = Ass
(

AnnR(F )
)

=
{
〈 X̄, Ȳ 〉 , 〈 X̄, Z̄ 〉

}
,

AssR(G) = Ass
(

AnnR(G)
)

=
{
〈 X̄, Ȳ 〉 , 〈 X̄, Z̄ 〉 , 〈 X̄, Ȳ , Z̄ 〉

}
.

Now we want to compute Zf (F) and Zf (G). For this we have to look at the

relations of the generators of F and G. To simplify notations, let’s denote them

by (1, 0) and (0, 1). For G we have

Ȳ Z̄ ∗ (1, 0) + 0̄ ∗ (0, 1) = (0, 0)

0̄ ∗ (1, 0) + Ȳ Z̄ ∗ (0, 1) = (0, 0)
−→

(
Ȳ Z̄ 0̄

0̄ Ȳ Z̄

)
.

Fitt0(G) is generated by all minors of order 2 (the number of generators), i.e.

Fitt0(G) = 〈 (Ȳ Z̄)2 〉. The primary decomposition gives

〈XY,X2, XZ, (Y Z)2 〉 = 〈X, Y 2 〉 ∩ 〈X,Z2 〉 ∩ 〈Z,X2, XY, Y 2 〉 ,

so the associated primes in R are

〈 X̄, Ȳ 〉 = AnnR(Ȳ Z̄2) , 〈 X̄, Z̄ 〉 = AnnR(Ȳ 2Z̄) ,

〈 X̄, Ȳ , Z̄ 〉 = AnnR(X̄) .
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This means that the Fitting support of G consists of 2 double lines and a triple

point at their intersection (already a lot more complicated than 2 lines and a

double point at the intersection). Note that all primes are given by annihilators

of nilpotent elements. The triple point is moreover an embedded component.

For F we get

Ȳ Z̄ ∗ (1, 0) + 0̄ ∗ (0, 1) = (0, 0)

0̄ ∗ (1, 0) + Ȳ Z̄ ∗ (0, 1) = (0, 0)

X̄ ∗ (1, 0) + 0̄ ∗ (0, 1) = (0, 0)

0̄ ∗ (1, 0) + X̄ ∗ (0, 1) = (0, 0)

−→


Ȳ Z̄ 0̄

0̄ Ȳ Z̄

X̄ 0̄

0̄ X̄

 .

Again Fitt0(F ) is generated by all minors of order 2, i.e. (Ȳ Z̄)2, X̄2 = 0̄ and

X̄Ȳ Z̄ = 0̄, so Fitt0(F ) = 〈 (Ȳ Z̄)2 〉 as well. Thus Zf (F) = Zf (G), although F
is pure and G is not. This shows that there cannot exist a criterion to decide

whether a sheaf is pure by only looking at the components of its Fitting support

(compare Remark 3.2.15). Finally we have

Ass
(

Fitt0(F )
)

= Ass
(

Fitt0(G)
)

=
{
〈 X̄, Ȳ 〉 , 〈 X̄, Z̄ 〉 , 〈 X̄, Ȳ , Z̄ 〉

}
and Grothendieck’s criterion allows to see that F and G are torsion-free on both

of their supports.

Remark 3.4.19. The idea of the proof of Proposition 3.2.12 does not work for

the Fitting support here (compare Remark 3.2.15). Indeed consider F and the

embedded triple point of Zf (F), whose associated prime is given by AnnR(X̄).

We have X̄ /∈ Fitt0(F ) but X̄ ∈ AnnR(F ), so defining the submodule X̄∗F = {0}
does not help. On the other hand it works for G since X̄ /∈ AnnR(G).

Remark 3.4.20. Example 3.4.18 also illustrates that the Fitting support of

a pure sheaf may have embedded components (in contrast to its annihilator

support, see Proposition 3.2.12).

Indeed we know from Corollary 3.2.14 that if F is pure of dimension d, then

OZa(F) is also pure of dimension d, butOZf (F) does not need to. Actually the only

thing that can happen for the Fitting support is a creation of embedded primes

since the minimal primes of Za(F) and Zf (F) are the same (Corollary 3.4.2), so

if all components of Za(F) are of dimension d, then all minimal primes in Zf (F)

also define components of dimension d.
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Example 3.4.21. Creation of new embedded primes in the Fitting support may

even happen for integral schemes ; consider Example 3.2.17 with M = R/I⊕R/J .

We have seen that the annihilator support is a line and has only one component,

but its Fitting support is given by

Fitt0(M) = I · J = 〈X2, XY 〉 = 〈X 〉 ∩ 〈X2, Y 〉 ,

thus defines a line with an embedded double point. Note however that the sheaf

M̃ is not pure.

Example 3.4.22. We can also illustrate another aspect why Fitting supports are

difficult to handle. Consider again Example 3.4.18 ; if I = AnnR(F ) = 〈 X̄, Ȳ Z̄ 〉
and I ′ = Fitt0(F ) = 〈 (Ȳ Z̄)2 〉, then I ′ ( I and ϕ : R/I ′ � R/I. F ∼= (R/I)2

implies that F is a free module over R/I, generated by (1, 0) and (0, 1). However

it is not longer free over R/I ′, e.g. we have

X̄ ∗ (1, 0) = ϕ(X̄) ·
(
[1̄], [0̄]

)
= [X̄] ·

(
[1̄], [0̄]

)
= [0̄] ·

(
[1̄], [0̄]

)
= (0, 0) ,

where X̄ ∈ R/I ′ is non-zero, but [X̄] ∈ R/I is zero, so (1, 0) is not linearly

independent over R/I ′. However R/I is still torsion-free since R/I ′ has more

zero-divisors:

ZD(R/I) = 〈 X̄, Ȳ 〉 ∪ 〈 X̄, Z̄ 〉 , ZD(R/I ′) = 〈 X̄, Ȳ , Z̄ 〉 .

If there is a NZD r̄ ∈ R/I ′ annihilating some m ∈ M , then r̄ is also a NZD in

R/I annihilating m and M would have torsion over R/I. The same argument

shows that every torsion-free module over R/I is also torsion-free over R/I ′.

Unfortunately this result does not hold true in general.

Example 3.4.23. Consider R = K[X, Y, Z]/〈XZ,X2 〉 and the quotient module

M = R/〈 X̄Ȳ 〉. We have the primary decompositions

〈XZ,X2 〉 = 〈X 〉 ∩ 〈Z,X2 〉 , 〈XZ,X2, XY 〉 = 〈X 〉 ∩ 〈X2, Y, Z 〉 ,

so X consists of a plane with an embedded double line and M describes the

structure sheaf of that plane with an embedded double point at the origin. Let

145



LEYTEM Alain 3.4. Annihilator vs. Fitting support

N = M ⊕M , so I = AnnR(N) = 〈 X̄Ȳ 〉 and I ′ = Fitt0(N) = 〈 (X̄Ȳ )2 〉 where

X̄2Ȳ 2 = 0̄, i.e. Zf (Ñ) = SpecR. N is free of rank 2 over R/I, generated by

(1, 0) and (0, 1), and hence torsion-free. But it is neither free, nor torsion-free

over R/I ′ because

ZD(R/I) = 〈 X̄, Ȳ , Z̄ 〉 , ZD(R/I ′) = 〈 X̄, Z̄ 〉 .

The generator (1, 0) is e.g. annihilated by the non-zero element X̄Ȳ ∈ R/I ′

(while X̄Ȳ is zero in R/I), so the generating set is not linearly independent.

Moreover Ȳ is a NZD in R/I ′ with Ȳ ∗
(
[X̄], [0̄]

)
= 0 in N , thus TR/I′(N) 6= {0}.

Let us also analyze this using the associated primes.

AssR(R) =
{
〈 X̄ 〉 , 〈 X̄, Z̄ 〉

}
,

AssR(M) =
{
〈 X̄ 〉 , 〈 X̄, Ȳ , Z̄ 〉

}
= AssR(N) ,

Ass
(

AnnR(N)
)

= AssR(N) , Ass
(

Fitt0(N)
)

= AssR(R) .

The inclusion AssR(N) ⊆ Ass
(

AnnR(N)
)

shows that the sheaf Ñ is torsion-free

on Za(Ñ). But AssR(N) * Ass
(

Fitt0(N)
)
, so it is not torsion-free on its Fitting

support.

Remark 3.4.24. This gives yet another illustration of the difficulty of Fitting

supports: the module N = M ⊕M defines a sheaf whose direct summands are

(torsion-)free on their Fitting supports since Fitt0(M) = I, but it is not torsion-

free itself. In other words, M̃ is torsion-free on Zf (M̃), but Ñ = M̃ ⊕ M̃ is not

torsion-free on Zf (Ñ).

Example 3.4.25. Something similar also happens in Example 3.2.24. Let us

compute the Fitting support of the subsheaf F ⊆ OR. M is generated by X̄ and

Ȳ , which give the relations 
−Ȳ X̄

Ȳ 0̄

0̄ X̄

X̄ 0̄

 ,

i.e. Fitt0(M) = 〈XY,X2 〉 and thus Zf (F) = SpecR. In particular we see that

Za(F) is just a simple line since AnnR(M) = 〈 X̄ 〉, whereas Zf (F) is a line with
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an embedded double point, i.e. Za(F) ( Zf (F). Hence F is an example of a

sheaf which is torsion-free on its Fitting support (since it is equal to SpecR),

but not on its annihilator support. Thus we have exactly the opposite situation

as in Example 3.4.23.

Remark 3.4.26. Intuitively one could think that taking the Fitting support

can only create more zero-divisors (i.e. more embedded components) since it

contains Za(F) as a closed subscheme, see Remark 3.4.3. Example 3.4.23 however

shows that this is not the case ; in general Zf (F) does not have more embedded

components than Za(F). Indeed it is true that their minimal primes are the

same since both define the same topological space, but an embedded component

of Za(F) can e.g. disappear in Zf (F) to become part of a bigger component.

In general nothing can be said for embedded primes of Za(F). They may remain,

but can also disappear in another component of Zf (F), which can either be

embedded (Example 3.4.23) or minimal (Example 3.4.27). This is due to the

embedded component in the ring R. Indeed if R has embedded components,

these may be divided out in the module so that they are not “seen” by the

annihilator support, but they “come back” as soon as the Fitting support is

strictly bigger. Hence Zf (F) also takes care of the structure of the ring and

“remembers” where the module came from.

Example 3.4.27. We want to illustrate that embedded primes of Za(F) can

disappear in Zf (F) and become part of a minimal prime whose component was

given a non-reduced structure.

Let R = K[X, Y, Z]/〈X2 〉 represent a double plane and M = R/〈 X̄Z̄, X̄Ȳ 〉
define the structure sheaf of a simple plane and an embedded double point.

Take N = M ⊕M , so that I = AnnR(N) = 〈 X̄Z̄, X̄Ȳ 〉 and

I ′ = Fitt0(N) = 〈 (X̄Z̄)2, X̄Z̄X̄Ȳ , (X̄Ȳ )2 〉 = {0̄}

since X̄2 = 0̄. Hence we get the primary decompositions

〈X2, XZ,XY 〉 = Q1 ∩Q2 = 〈X 〉 ∩ 〈X2, Y, Z 〉 , 〈X2 〉 = Q′1 = 〈X2 〉
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with associated primes

AssR(R) =
{
P ′1 = 〈 X̄ 〉

}
,

AssR(M) =
{
P1 = 〈 X̄ 〉 , P2 = 〈 X̄, Ȳ , Z̄ 〉

}
= AssR(N) ,

Ass
(

AnnR(N)
)

= AssR(N) , Ass
(

Fitt0(N)
)

= AssR(R) .

So we see that the minimal primes of R/I and R/I ′ are the same while the

embedded prime P2 has disappeared. Indeed it is characterized by P1 ( P2 with

Q1 * Q2 (otherwise the primary decomposition is not minimal). But we have

Q′1 ⊆ Q2, which means that the plane V (P1) has been “doubled” to become

V (Q′1) and now contains the double point, that was not contained in the simple

plane. Looking at the associated primes, we again conclude that the sheaf defined

by N is torsion-free on its annihilator support, but not on its Fitting support.

Example 3.4.28. Consider R = K[X, Y, Z] with the modules M = R/〈X, Y Z 〉,
N = R/〈Z,XY 〉 and L = M ⊕N , i.e. the support of L consists of the union of

two “crosses”. When considering the Fitting support, a certain multiple structure

will be put on their intersection. Lemma 3.4.9 gives

AnnR(L) = 〈X, Y Z 〉 ∩ 〈Z,XY 〉 = 〈XY,XZ, Y Z 〉

= 〈X, Y 〉 ∩ 〈X,Z 〉 ∩ 〈Y, Z 〉 ,

Fitt0(L) = 〈X, Y Z 〉 · 〈Z,XY 〉 = 〈XZ,X2Y, Y Z2, XY 2Z 〉

= 〈X, Y 〉 ∩ 〈X2, XZ,Z2 〉 ∩ 〈Y, Z 〉 ,

AssR(L) = AssR(M) ∪ AssR(N) =
{
〈X, Y 〉 , 〈X,Z 〉 , 〈Y, Z 〉

}
.

If L = L̃, let us denote the components of Za(L) by Z1,Z2,Z3 and those of

Zf (L) by Z ′1,Z ′2,Z ′3. Topologically we have Zi = Z ′i for all i, but Z ′2 has a richer

structure than Z2. Although Zf (L) transformed Z2 into Z ′2, it did not create

any embedded components.

As M and N are just quotients, their corresponding sheaves are (torsion-)free on

suppM and suppN , hence pure of dimension 1 by Theorem 3.1.17 as all compo-

nents (the lines) have the same dimension. Thus L is pure as well (Lemma 3.1.5)

and therefore torsion-free on Za(L) and Zf (L) because both have equidimen-

sional components. This is again checked by observing that

AssR(L) = Ass
(

AnnR(L)
)

= Ass
(

Fitt0(L)
)
.
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Example 3.4.29. Let R = K[X, Y, Z] and F = M̃ , where M = M1 ⊕M2 ⊕M3

with

M1 = R/〈X 〉 , M2 = R/〈Y 2 〉 , M3 = R/〈X3, Z 〉 ,

i.e. F is the sum of the structure sheaves of a plane, a double plane and a triple

line. Corollary 3.4.2 then allows to compute

AnnR(M) = 〈X 〉 ∩ 〈Y 2 〉 ∩ 〈X3, Z 〉 = 〈XY 2Z , X3Y 2 〉 ,

Fitt0(M) = 〈X 〉 · 〈Y 2 〉 · 〈X3, Z 〉 = 〈XY 2Z , X4Y 2 〉

= 〈X 〉 ∩ 〈Y 2 〉 ∩ 〈X4, Z 〉 ,

AssR(M) = AssR(M1) ∪ AssR(M2) ∪ AssR(M3) =
{
〈X 〉 , 〈Y 〉 , 〈X,Z 〉

}
.

As in Example 3.4.28 the sheaves associated to M1,M2,M3 are torsion-free on

their support and hence pure (but not of the same dimension). However F is

not pure anymore because M3 ≤M defines a subsheaf with smaller-dimensional

support. On the other hand F is still torsion-free on Za(F) and Zf (F), even if

these have embedded components.

Example 3.4.30. Consider R = K[X, Y, Z]/〈X2 〉 with M = R/〈 X̄, Ȳ Z̄ 〉 and

N = M ⊕M , so that M describes the structure sheaf of a simple “cross” in a

double plane. Computing the Fitting ideal, we find

Fitt0(N) = AnnR(N) · AnnR(N) = 〈 X̄Ȳ Z̄, Ȳ 2Z̄2 〉

and hence the primary decomposition

〈X2, XY Z, (Y Z)2 〉 = 〈X2, XY, Y 2 〉 ∩ 〈X2, XZ,Z2 〉

shows that Zf (Ñ) “recovers” the structure of SpecR and gives 2 triple lines.

But it does not create a new embedded component. The sheaf is still pure of

dimension 1 and torsion-free on its support since

AssR(N) = Ass
(

AnnR(N)
)

= Ass
(

Fitt0(N)
)

=
{
〈X, Y 〉 , 〈X,Z 〉

}
.
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3.4.4 Remark: projective varieties in the literature

In the literature the condition “let X be a variety” often means that X is irre-

ducible, reduced and sometimes even smooth. In particular the general conven-

tion is that projective varieties are locally given by integral domains. If this is

the case we know that purity and torsion-freeness of a sheaf on X are equivalent

and e.g. the following statements hold true:

[ [62], Section 2, p.278 ]

“We work with coherent sheaves on an algebraic variety X [...] If dim suppA =

dimX then A has pure support iff A has no torsion, because dim suppB < dimX

is equivalent to B being a torsion sheaf.”

[ [45], Section 3.2.3, p.36 ]

“In case X is a projective curve, i.e. d = 1 [...] note that a sheaf F is pure of

dimension 1 if and only if has no torsion subsheaf, i.e. T0(F) = 0.”

We want to point out that with our definition of a variety, where is in gen-

eral non-integral, non-reduced and/or not equidimensional, these assertions do

not hold true anymore.

Consider Example E.4 with F = M̃ seen as a sheaf on its support Z = suppF
(i.e. take X = Z, so that dimF = dimX = 1). F is coherent and (torsion-)free

on Z, but not pure of dimension 1. Moreover the sheaf T0(F) is non-zero (see

Example 3.1.36) and supported in dimension 0, but torsion-free on Z as it is a

subsheaf of the structure sheaf OZ = F . Alternatively we have

AssR
(
〈 [X̄] 〉

)
=
{
〈 X̄, Ȳ , Z̄ 〉

}
,

Ass
(

AnnR(M)
)

=
{
〈 X̄, Ȳ 〉 , 〈 X̄, Z̄ 〉 , 〈 X̄, Ȳ , Z̄ 〉

}
.

Remark 3.4.31. Note that there exist integral curves that are not smooth,

e.g. the nodal curve in A2 which is given as the vanishing set of the irreducible

polynomial f(X, Y ) = X3 + Y 3 + XY , so the coordinate ring K[X, Y ]/〈 f 〉 is

an integral domain (hence so are all stalks), but the curve is singular because it

intersects itself.
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3.5 Final result and open questions

We are given the following question: (∗)
Let X = SpecR for some Noetherian ring R and M a finitely generated R-

module. Assume that the coherent OX–module

F = M̃

is pure on X . We denote I = Fitt0(M) and R′ = R/I, so that M can also be

seen as a module over R′ and the Fitting support of F is Z = V (I) ∼= SpecR′.

Is F torsion-free as an OZ–module ?

3.5.1 Torsion-freeness on different supports

In order to answer this question, we first need to compare torsion-freeness of a

sheaf on different supports. Example 3.4.23 and Example 3.4.25 showed that

torsion-freeness of F on Za(F) does not imply torsion-freeness on Zf (F), and

neither vice-versa. This is always due to the existence of embedded primes.

Nevertheless such an implication exists if the support on which F is torsion-free

does not have embedded components.

Proposition 3.5.1 (Leytem). Let F = M̃ for some finitely generated module M

over a Noetherian ring R and I, I ′ ⊆ AnnR(M) be two ideals defining different

subscheme structures on suppF . Assume that F is torsion-free on V (I) and

that Ass(I) has no embedded primes. Then F is also torsion-free on V (I ′).

Proof. We will use Grothendieck’s criterion and Proposition 3.2.2. As F is

torsion-free on V (I), we have

AssR/I(M) ⊆ AssR(R/I) = Ass(I) .

Since Ass(I) has no embedded primes and the minimal primes in Ass(I) and

Ass(I ′) are the same (Lemma 3.4.1), the set of associated primes Ass(I ′) can

only be bigger (i.e. contain some embedded primes that are not associated

primes of I). As the associated primes of M are moreover independent of the

ring, we obtain

AssR/I′(M) = AssR/I(M) ⊆ Ass(I) ⊆ Ass(I ′) = AssR(R/I ′) ,
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and hence that F = M̃ is torsion-free on V (I ′).

Remark 3.5.2. This can e.g. be observed in Example 3.4.22. The ring R/I

defining Za(F) does not have embedded primes and F is torsion-free on Za(F),

thus F is also torsion-free on Zf (F).

If we would consider the question (∗) for Za(F), the answer is immediately Yes

since the annihilator support of a pure sheaf has equidimensional components

(Proposition 3.2.12), hence purity implies that it is torsion-free (Theorem 3.1.17).

In order to obtain the corresponding result for the Fitting support, we have to

include Proposition 3.5.1 into our reasoning.

Theorem 3.5.3 (Leytem). The answer to the question (∗) is Yes, i.e. purity of

a coherent sheaf implies torsion-freeness on its Fitting support.

Proof. Let I = Fitt0(M) and J = AnnR(M). Since F is of pure dimension, its

annihilator support Za(F) has equidimensional components (Proposition 3.2.12).

Purity and Theorem 3.1.17 then imply that F is torsion-free on V (J). Using

Grothendieck’s criterion and Proposition 3.5.1 this means

AssR/I(M) = AssR/J(M) ⊆ Ass(J) ⊆ Ass(I) = AssR(R/I)

since Za(F) = V (J) has no embedded primes and Rad(I) = Rad(J). It follows

that

AssR/I(M) ⊆ AssR(R/I) = Ass
(

Fitt0(M)
)
,

and hence F is torsion-free on Zf (F) = V (I) as well.

Remark 3.5.4. As in the proof of Proposition 3.5.1 we see that the result does

not just hold true for I = Fitt0(M), but for any ideal I ⊆ AnnR(M) such that

V (I) = suppM as topological spaces (since all we need is that the minimal

primes are the same).

Remark 3.5.5. The statement of Theorem 3.5.3 is rather obvious in the integral

case. Our achievement was to prove that the result holds true for any Noetherian

ring.
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3.5.2 Message and open questions

Our message of Part I of this thesis is the following:

The behaviour of torsion and purity can be very counter-intuitive

when there are embedded primes. But

Purity always implies torsion-freeness of a sheaf on its support.

Open questions and first attempts

1) Is it possible that the Fitting support of a pure sheaf on a reduced scheme

has embedded components ?

A priori it does not seem to be possible since an embedded component in Zf (F)

can only be created either by an existing embedded component of the scheme

(see e.g. Example 3.4.18), which is not possible as it is reduced, or by a subsheaf

of F which is supported in smaller dimension (as in Example 3.4.21), but there

is none since F is pure.

2) Assume that X is reduced and F is torsion-free on X . Is F torsion-free on

its support ?

We already proved in Proposition 3.2.20 that if R is a reduced ring and a module

M is torsion-free over R, then M is also torsion-free over R/I for I ⊆ AnnR(M).

However we are interested in knowing whether the corresponding sheaf is torsion-

free as well. From Corollary 3.2.23 we know for example that this holds true if

the ring R/I has no embedded primes.

Proposition 1.3.3 and Theorem 2.5.8 already imply that AssR(M) ⊆ AssR(R)

since R is reduced and thus has no embedded primes. Moreover torsion-freeness

of M over R/I says that every P ∈ AssR(M) is contained in some Q ∈ Ass(I).

Torsion on Z = V (I) can only appear if such a P is strictly contained in an

embedded prime Q. So the question reduces to:

If R is reduced, is it possible to create embedded primes in Ass(I) = AssR(R/I)

without creating them in AssR(M) ? We conjecture that the answer is negative.
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In the case one tries to construct a counter-example note that we have the fol-

lowing constraint:

Denote F = M̃ . If X = SpecR has equidimensional components, then torsion-

freeness of F on X implies that F is pure (Theorem 3.1.17 and Corollary 3.1.25)

and hence that it is torsion-free on Z by Remark 3.5.4. So in order to obtain a

counter-example (if there is one), one needs a reduced scheme X whose compo-

nents have different dimensions.

3) Is torsion-freeness and torsionlessness (see Sections C.2 and C.4) of a

finitely generated module equivalent when there are no embedded primes,

or at least if the ring is reduced ?
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Singular sheaves in the fine

Simpson moduli spaces of

one-dimensional sheaves on P2
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Chapter 4

Construction and examples of

the Simpson moduli spaces

This chapter is a reminder of the construction and properties of the moduli spaces

MP (X ) of semistable sheaves on a projective variety X . They have initially

been introduced by Gieseker and Maruyama in 1977 and generalized by Simpson

in 1994. A short historical note is given in Section 4.2.5. We are especially

interested in semistable sheaves on P2 with linear Hilbert polynomial. For this

we are repeating classical results from Simpson [65], Maican [48], Le Potier [47],

Freiermuth [23] and Trautmann [25]. While doing so we also include a short

initiation to moduli spaces and representability of moduli functors.

From this point of view we are giving a basic introduction to the theory of

Simpson moduli spaces ; the chapter collects already known results and examples

which should be understood in order to deal with the problems that are discussed

in Chapter 5 later on. In particular we review the situation of Mam+b(P2) for

a ≤ 3, where we have Mm+1
∼= P2, M2m+1

∼= P5 and M3m+1
∼= U(3), the universal

cubic curve on P2. The reader who is familiar with the definition and construction

of the moduli spacesMP (X ), as well as with singularities of 1-dimensional sheaves

with “small” Hilbert polynomial, may only consider Section 4.4 ; in this one we

define the notion of a singular sheaf as in [47] and use the results of Part I to

explain why “almost all” stable sheaves in Mam+b(P2) are vector bundles on a

smooth curve of degree a (Corollary 4.4.21).
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We include this chapter at this point rather than in a separate appendix so that

the reader can get a better idea of the objects we are going to study. Beside

introducing moduli spaces, we also want to illustrate some notions and objects

in easy situations which we will introduce more generally in Section 5.1, such as

parameter spaces and geometric quotients by non-reductive groups. Moreover we

explain some tools in Section 4.5 which allow to compute locally free resolutions

of coherent sheaves on P2, such as syzygies and Koszul resolutions. Finally

we study the case of M3m+1 in more detail and reprove that the subvariety of

singular sheaves in M3m+1 is given by the universal singular locus of U(3), which

is smooth, irreducible and of codimension 2.

4.1 Preliminaries

We start with some preliminary results. Let us first recall the following facts.

Definition 4.1.1. A projective scheme over K is a scheme (X ,OX ) that is locally

of finite type over SpecK and which can be embedded as a closed subscheme into

some projective space PnK. In particular this implies that X is Noetherian as it is

compact and any point has an affine open neighborhood U ⊆ X such that OX (U)

is a finitely generated K-algebra (i.e. isomorphic to a quotient of a polynomial

ring). The closed embedding X ↪→ PnK moreover gives rise to a very ample

invertible sheaf O(1) on X by pulling back the twisting sheaf OPnK(1) of Serre.

Theorem 4.1.2 (Grothendieck’s Vanishing Theorem). [ [35], III, Th. 2.7, p.208 ]

Let X be a Noetherian topological space of finite dimension n.

Then H i(X,F) = {0} for all i > n and all sheaves of abelian groups F on X.

Theorem 4.1.3 (Serre’s Theorem A). [ [64], p.36 ]

Let (X ,OX ) be a projective scheme over K with very ample sheaf O(1).

If F ∈ Coh(OX ), then there exists an integer n0 ∈ Z such that F(n) is generated

by global sections for all n ≥ n0.
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Theorem 4.1.4 (Serre’s Theorem B). [ [35], Th. 5.2, p.228 ] and [ [64], Th. p.36 ]

Let (X ,OX ) be a projective scheme over K with very ample sheaf O(1) and

F ∈ Coh(OX ). Then the cohomology spaces H i(X ,F) are finite-dimensional

vector spaces over K for all i ≥ 0. Moreover there exists an integer m0 ∈ Z such

that F(m) is acyclic1 for all m ≥ m0.

Remark 4.1.5. In analytic geometry Serre’s Theorem B is also called the Finite-

ness Theorem of Cartan-Serre, see e.g. [ [22], Th. 9.1.1, p.257 ]

4.1.1 Hilbert polynomials

Definition 4.1.6. Let X be a projective scheme and F ∈ Coh(OX ). The Euler

characteristic of F , denoted by χ(X ,F), is the integer defined as

χ(X ,F) =
∑
i≥0

(−1)i · hi(F) , (4.1)

where hi(F) = dimK
(
H i(X ,F)

)
. Theorem 4.1.2 and Theorem 4.1.4 ensure that

this is well-defined.

Definition 4.1.7. Let X be a projective scheme over K and F ∈ Coh(OX ),

F 6= 0. We denote d = dimF the dimension of the support of F as a closed

topological subspace of X . It can be shown, see e.g. [ [68], 18.6.1, p.483 ] or [ [64],

Prop. p.38 ], that the Euler characteristic of the twisted sheaf

F(m) := F ⊗O(m) = F ⊗O(1)⊗m

is a polynomial expression in m of degree d. Thus we can define the Hilbert

polynomial PF of F by the formula

PF(m) = χ
(
X ,F(m)

)
∈ Q[m]

for m ∈ Z. This is a numerical polynomial (i.e. a polynomial with rational

coefficients that takes integer values on integers) with degPF = d. In particular,

PF = 0 if and only if F = 0 (in which case d = −1).

1We recall that the definition of an acyclic sheaf is given in Section 1.1.2.
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Remark 4.1.8. Whenever we mention the Hilbert polynomial of an OX–module

on a projective scheme, the sheaf is assumed to be coherent otherwise its Hilbert

polynomial may not exist because of infinite-dimensional vector spaces occurring

in (4.1).

Serre’s Theorem B and [ [11], 32.33.15 ] imply that

PF(m) = h0
(
F(m)

)
= dimK Γ

(
X ,F(m)

)
for m >> 0 .

In particular it shows that the leading coefficient of PF is always > 0 as it

is non-zero by definition (if F 6= 0) and dimensions of vector spaces are non-

negative. The Euler characteristic is moreover additive in exact sequences, hence

so are Hilbert polynomials (since the sheaf O(m) is invertible and thus flat, see

Proposition C.3.12). More generally:

Proposition 4.1.9. [ [68], 18.4.A, p.472 ]

If

0 −→ F1 −→ . . . −→ Fn −→ 0

is an exact sequence of coherent OX–modules, then
∑n

i=1(−1)i · PFi = 0. In

particular we have

PF⊕G = PF + PG , PF/F ′ = PF − PF ′ , PF(k)(m) = PF(m+ k) (4.2)

for a coherent subsheaf F ′ ⊆ F and for all k ∈ Z.

Example 4.1.10. [ [11], 32.33.14 ] and [ [68], p.484 ]

Let X = PnK be the n-dimensional projective space over K. Then we have

POX (m) =
(
m+n
n

)
and for all k ∈ Z,

PO(k)(m) = χ
(
PnK,OPnK(k)(m)

)
=

(
m+ k + n

n

)
. (4.3)

We finish the preliminaries by the following important lemma, which states that

a twist F 7→ F(k) for some k ∈ Z does not change sheaves which are supported

in dimension 0.
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Lemma 4.1.11. If G ∈ Coh(OX ) has 0-dimensional support, then

G(k) ∼= G , ∀ k ∈ Z .

Proof. Denote Z = suppG ; as this is closed of dimension 0, we can rewrite G as

a finite sum of skyscrapers

G =
⊕
x∈Z

Skyx(Gx) .

Since the tensor product commutes with direct sums, it thus suffices to show that

twisting does not change a skyscraper sheaf. Let G = Skyx(M) for some (closed)

point x ∈ X and an OX ,x–module M . By definition this is equal to G = i∗M

where i : {x} ↪→ X is the inclusion. We want to show that G⊗OX (k) ∼= G. Both

sheaves already have the same stalks. Hence it remains to show that there exists

a morphism between them. For this we use that there is a canonical morphism

G ⊗ OX (k) = (i∗M)⊗OX (k)
∃−→ i∗

(
M ⊗OX ,x i∗OX (k)

) ∼= i∗
(
M ⊗OX ,x OX (k)x

)
∼= i∗

(
M ⊗OX ,x OX ,x

) ∼= i∗M = G .

4.1.2 Semistability and s-equivalence

Consider again a projective scheme (X ,OX ) over K and F ∈ Coh(OX ), F 6= 0

with d = dimF ≥ 0.

Lemma 4.1.12. [ [38], 1.2.1, p.10 ] and [ [65], p.55 ]

The Hilbert polynomial PF can uniquely be written in the form

PF(m) =
d∑
i=0

αi(F) · m
i

i!
(4.4)

for some rational coefficients αi(F) ∈ Q, i ∈ {0, . . . , d} such that αd(F) ∈ N
and α0(F) = χ(X ,F). If F ′ ⊆ F is a coherent subsheaf and G ∈ Coh(OX ) with

d = dimG = dimF ′, additivity in exact sequences shows that

αi(F ⊕ G) = αi(F) + αi(G) and αi(F/F ′) = αi(F)− αi(F ′) .
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Definition 4.1.13. [ [38], 1.2.1, p.10 ] and [ [65], p.55 ]

The leading coefficient αd(F) of PF is called the multiplicity of F . We also define

the slope as the quotient µ(F) = αd−1(F)

αd(F)
and the reduced Hilbert polynomial of

F by

pF =
PF

αd(F)
.

Notation 4.1.14. If f and g are polynomials we write f < g, resp. f ≤ g if

there exists an integer m0 ∈ N such that f(m) < g(m), resp. f(m) ≤ g(m) for

all m ≥ m0, i.e. if the inequality is satisfied for sufficiently large m.

Definition 4.1.15. [ [38], 1.2.4, p.11 ] , [ [48], 2.1, p.5-6 ] and [ [65], p.55 ]

Let F ∈ Coh(OX ) with d = dimF .

F is called stable, resp. semistable of dimension d if

1) F is of pure dimension d, i.e. dimF ′ = d for any proper non-zero coherent

subsheaf 0 6= F ′ ( F .

2) Any proper non-zero coherent subsheaf 0 6= F ′ ( F satisfies pF ′ < pF , resp.

pF ′ ≤ pF .2

Note that the notion of (semi)stability depends on the very ample sheaf O(1),

i.e. on the chosen embedding X ↪→ PnK.

Remark 4.1.16. cf. [ [38], 1.2.2, p.11 & 1.2.11, p.14 ]

The definition of the slope is taken from [65] and differs from the one in [38],

where it is given by

µ̃(F) =
deg(F)

rk(F)
=
αd(OX )

αd(F)
·
(
αd−1(F)− αd(F)

αd(OX )
· αd−1(OX )

)
= αd(OX ) · µ(F)− αd−1(OX )

if d = dimF = dimX , otherwise the rank of F is zero. But both give equivalent

notions for µ-(semi)stability ; one says that a sheaf is µ-(semi)stable if it satisfies

certain torsion conditions3 and µ(F ′) (≤)µ(F) for4 any proper non-zero coherent

subsheaf 0 6= F ′ ( F . As αd(OX ) > 0, both notions give the same definition.

2This is the notion of G-stability in the sense of Giesecker. Here we do not consider the

related notion of µ-stability (sometimes also called M-stability in the sense of Mumford), but we

will briefly see in Section 4.3.1 that they are equivalent in the case of linear Hilbert polynomials.
3that are not of our interest right now
4The notation (≤) means that we take ≤ for semistability and < in the stable case.
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Remark 4.1.17. [ [38], 1.2.5, p.11 ]

An equivalent definition for (semi)stability would have been to say that a sheaf

F ∈ Coh(OX ) is (semi)stable if and only if

αd(F) · PF ′ (≤)αd(F ′) · PF (4.5)

for all proper coherent subsheaves F ′ ( F . Condition 2) in Definition 4.1.15 is

then satisfied. Applying the inequality to the coherent subsheaf Td−1(F) ⊂ F ,

which satisfies αd
(
Td−1(F)

)
= 0 then gives PTd−1(F) ≤ 0, hence Td−1(F) = 0.

But this exactly means that F is pure of dimension d, so (4.5) includes purity

for free.

Definition 4.1.18. [ [38], 1.5.1, p.23 ] , [ [67], 12.3, p.78-79 ] and [ [48], 2.4, p.7 ]

Let F ∈ Coh(OX ) be semistable with d = dimF . A Jordan-Hölder filtration

(sometimes also called a stable filtration) of F is a filtration

0 = F0 ( F1 ( . . . ( Fk = F (4.6)

for some k ∈ N by coherent subsheaves Fi ⊂ F such that all Qi = Fi/Fi−1

with i ≥ 1 are stable sheaves of dimension d and have the same reduced Hilbert

polynomial as F , i.e. pQi = pF for all i ∈ {1, . . . , k}.

Remark 4.1.19. cf. [ [38], 1.5.1, p.23 ]

This implies that F1 = Q1 is stable, Fi with i ≥ 2 is semistable (otherwise F
would not be) and all Fi have reduced Hilbert polynomial pF . Indeed we have

pF1 = pF and PQi = PFi − PFi−1
, hence by induction

αd(Qi) · pQi = αd(Fi) · pFi − αd(Fi−1) · pFi−1
⇒ pFi =

αd(Qi) + αd(Fi−1)

αd(Fi)
· pF

with pQi = pF and αd(Qi) = αd(Fi)− αd(Fi−1), thus pFi = pF for all i ≥ 2.

Definition 4.1.20. [ [38], 1.5.2, p.23 ] and [ [67], 12.3.1, p.79 ]

For a semistable sheaf F ∈ Coh(OX ) with a Jordan-Hölder filtration as in (4.6)

we define the graded sheaf of F by

gr(F) :=
k⊕
i=1

(
Fi/Fi−1

)
.
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Proposition 4.1.21. [ [38], 1.5.2, p.23-24 ] and [ [67], 12.3.1, p.79-80 ]

1) Jordan-Hölder filtrations always exist, but don’t need to be unique.

2) All quotients F/Fi with i ∈ {1, . . . , k−1} in (4.6) are semistable of dimension

d with reduced Hilbert polynomial pF .

3) The graded sheaf gr(F) is independent of the chosen filtration of F (in the

sense that different filtrations will give isomorphic graded sheaves).

Thus the following equivalence relation is well-defined.

Definition 4.1.22. [ [38], 1.5.3, p.24 ] , [ [67], 12.3.2, p.80 ] and [ [49], p.4 ]

Two semistable sheaves F ,G ∈ Coh(OX ) with the same reduced Hilbert polyno-

mial are called s-equivalent (stably equivalent) if their graded sheaves are isomor-

phic, i.e.

F ∼ G ⇔ gr(F) ∼= gr(G) .

This means that there exists a permutation σ of the index set {1, . . . , k} such

that Fi/Fi−1
∼= Gσ(i)/Gσ(i)−1, ∀ i.

Example 4.1.23. [ [67], 12.3.2, p.80 ]

Obviously two isomorphic sheaves are s-equivalent (since they have isomorphic

filtrations). The converse is false ; an illustration of this fact is e.g. the following.

Assume that a semistable sheaf F is given by an extension

0 −→ F ′ −→ F −→ G −→ 0 , (4.7)

where F ′,G ∈ Coh(OX ) are stable. Then 0 ( F ′ ( F is a Jordan-Hölder

filtration of F since F ′ and F/F ′ ∼= G are stable and we get

gr(F) ∼= F ′ ⊕ G = gr(F ′ ⊕ G) .

Thus any extension F as in (4.7) is s-equivalent to F ′ ⊕ G. But there are a lot

of such extensions that do not split (i.e. which are not isomorphic to the direct

sum) ; a concrete example will be given in Example F.1.9.

Remark 4.1.24. However if all sheaves are stable, then being s-equivalent means

being isomorphic since stable sheaves have the trivial Jordan-Hölder filtration

0 ( F , and hence gr(F) = F .
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4.1.3 Fibers and flatness

Definition 4.1.25. We denote by Sch(K) the category of Noetherian schemes

that are of finite type over SpecK. Hence its objects are schemes that can be

covered by finitely many affine schemes which are spectra of Noetherian rings

that are finitely generated K-algebras.

Let (X ,OX ) be a projective scheme over K, S ∈ Sch(K) and assume that a

morphism f : X → S is given (one also says that X is a scheme over S). For

every closed point s ∈ S, let κ(s) = OS,s/Ms be its residue field. The importance

of s being closed is made clear by the results below. In particular, closed points

are respected by morphisms.

Lemma 4.1.26. [ [29], 3.33, p.79-80 ]

Let (Y ,OY) be a scheme that is locally of finite type over some field K and y ∈ Y
with residue field κ(y). Then y is a closed point if and only if the field extension

K ↪→ κ(y) is finite.

In particular if K is algebraically closed, then it has no non-trivial finite algebraic

extensions, thus y is closed if and only if κ(y) ∼= K.

Lemma 4.1.27. [ [53], 516766 ]

Let (Y ,OY) and (Z,OZ) be schemes that are locally of finite type over some field

K and f : Y → Z a morphism of K-schemes. If y ∈ Y is a closed point, then

f(y) ∈ Z is closed as well.

Proof. The morphism f : Y → Z induces a homomorphism of local rings

f#
y : OZ,f(y) → OY,y

that preserves the maximal ideals, i.e. f#
y

(
Mf(y)

)
⊆ My. Hence it induces a

morphism of fields

OZ,f(y)/Mf(y) −→ OY,y/My ⇔ κ
(
f(y)

)
−→ κ(y)

which is thus injective. Since y is closed, the extension K ↪→ κ(y) is finite, hence

so is K ↪→ κ
(
f(y)

)
. If K is algebraically closed, this can be shown easier by

K ↪→ κ
(
f(y)

)
↪→ κ(y) ∼= K, thus f(y) is closed as well.
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Remark 4.1.28. So for a projective scheme X over S, we have κ(s) ∼= K for

all closed point s ∈ S and {s} = Specκ(s) defines a closed subscheme of S with

inclusion morphism is : {s} ↪→ S.

Definition 4.1.29. [ [35], II, p.89 ] and [ [38], 2.1, p.34 ]

Let f : X → S be a morphism. The fiber of f over s is defined as the fiber

product Xs := X ×S Specκ(s), which is a scheme over κ(s).

Xs
πs //

��

X
f

�� ##

{s} is // S // SpecK

(4.8)

For F ∈ Coh(OX ) we denote the restriction of F to the fiber Xs by5

F|s := π∗sF ∈ Coh(OXs)

Proposition 4.1.30. [ [35], II, Ex. 3.10, p.92 ]

There is a homeomorphism of topological spaces Xs ∼= f−1({s}). In particular

Xs can be seen as a closed subscheme of X , hence it is also a projective scheme

over K.

Example 4.1.31. Consider the trivial product XS := X ×KS, which is a scheme

over S. Then the fiber over s for a closed point s ∈ S is (XS)s ∼= X since

(X ×K S)s //

��

X ×K S //

��

X

��

{s} // S // SpecK

where (X ×K S)s = (X ×K S)×S Specκ(s) ∼= X ×K SpecK ∼= X .

Definition 4.1.32. [ [67], 2.3, p.10 ] and [ [38], 2.1.1, p.34-35 ]

The morphism f : X → S gives rise to a homomorphism OS,f(x) → OX ,x of local

rings for all x ∈ X , turning every module over OX ,x also into a module over

OS,f(x). A sheaf F ∈ Mod(OX ) is called flat over S (or S-flat) if the stalk Fx is

a flat OS,f(x)–module, ∀x ∈ X .

5Here we do not use the standard notation Fs of the literature in order to avoid confusions

with the stalks of F .
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Flatness is a property which ensures that the fibers and the restrictions F|s
behave in some sense “continuously”. More precisely we have the following im-

portant results.

Proposition 4.1.33. [ [67], 2.3, p.10 & 17.6, p.98 ]

Let T ∈ Sch(K) with a morphism f : T → S and consider the fiber product

X ×S T π //

��

X

��

T
f

// S

1) If F ∈ Mod(OX ) is S-flat on X , then π∗F is T -flat on X ×S T .

2) Let

0 −→ F −→ G −→ H −→ 0

be a short exact sequence of OX–modules and assume that H is S-flat. Then the

sequence of pullbacks

0 −→ π∗F −→ π∗G −→ π∗H −→ 0

is an exact sequence of sheaves on X ×S T . In particular in the setting of (4.8),

the sequence of restrictions 0 → F|s → G|s → H|s → 0 is exact on Xs for all

closed points s ∈ S.

Theorem 4.1.34. [ [35], III, Thm. 9.9, p.261-263 ] , [ [67], 2.5 & 2.5.1, p.11-12 ]

Let F be a coherent sheaf on PnK×KS, considered as a scheme over S, and assume

that F is flat over S. Then the function

s 7−→ PF|s = χ
(
PnK,F|s(m)

)
with values in numerical polynomials is locally constant on the closed points of

S.6 If S is moreover connected, the Hilbert polynomial of the restriction F|s on

PnK is independent of s ∈ S closed.7

6It is important to only consider the closed points, otherwise the fiber over s may not be a

projective scheme.
7Hartshorne [35] only proves the statement in the case where S is an integral scheme, so it

is irreducible and hence connected ; Trautmann generalized the proof in the non-reduced case.

On the other hand [ [38], 2.1.2, p.35 ] states this result for any morphism f : X → S, but only

gives a reference to Hartshorne where it is not proven in such a generality.
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Proposition 4.1.35. [ [67], 2.5.2, p.12 ]

The converse of Theorem 4.1.34 holds true if S is a reduced scheme, i.e. if S is

reduced and s 7→ PF|s is a constant function on the closed points of S, then F is

flat over S.

4.2 The Simpson moduli functor

Now we are able to define the main objects that we will be working with in the

following. We denote by Schc(K) the full subcategory of connected Noetherian

schemes of finite type over SpecK. Let (X ,OX ) be a projective scheme over K,

S ∈ Schc(K) and denote XS = X ×K S with the projection πS : XS → S.

4.2.1 Definition and properties

Definition 4.2.1. cf. [ [65], p.58 ]8

Fix a polynomial P ∈ Q[m] of degree d. We say that E is a semistable sheaf

on XS/S with Hilbert polynomial P if E is a coherent sheaf on XS that is flat

over S and such that for each closed point s ∈ S, the restriction E|s on the fiber

(XS)s ∼= X is a semistable sheaf of pure dimension d and Hilbert polynomial P .

This is well-defined as we know from Theorem 4.1.34 that Hilbert polynomials

in the fibers are independent of the closed point s if S is connected.

Definition 4.2.2. [ [65], p.65 ] , [ [67], 13.1, p.83-84 ] and [ [38], 4.1, p.90 ]

For S ∈ Schc(K) and a numerical polynomial P ∈ Q[m] of degree d we define

MP (S) :=
{

[E ]
∣∣ E is a semistable sheaf on XS/ S

of pure dimension d and Hilbert polynomial P
}
, (4.9)

where the equivalence class [E ] is defined as follows: two S-flat sheaves E and

F on XS are equivalent, E ∼ F , if there exists a line bundle (i.e. an invertible

sheaf) L on S such that E ∼= F ⊗ π∗SL.

8The definition in [65] is more general as it considers the case of arbitrary projective schemes

X → S. We restrict ourselves to the case of XS → S. The upcoming definition of MP (S)

however is exactly the same as in [65].
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So in other words [E ] ∈ MP (S) is a class of a coherent sheaf on XS that is flat

over S and such that for every closed point s ∈ S, the restriction E|s on X is

a semistable sheaf of pure dimension d and Hilbert polynomial P . Elements in

MP (S) are also called families over S.

Lemma 4.2.3. [ [67], p.84 ] and [ [38], 4.1, p.90 ]

∼ is an equivalence relation on Coh(OXS) and if E ∼ F , then E|s ∼= F|s for all

closed points s ∈ S.

Proof. We use that pullbacks of invertible sheaves are invertible and commute

with tensor products.

− reflexive: E ∼ E because E ⊗ π∗SOS ∼= E ⊗ OXS ∼= E .

− symmetric: E ∼= F ⊗ π∗SL
⇒ E ⊗ π∗S(L∗) ∼= F ⊗ π∗SL ⊗ π∗S(L∗) ∼= F ⊗ π∗S(L ⊗ L∗) ∼= F ⊗ π∗SOS ∼= F .

− transitive: E ∼ F and F ∼ G
⇒ E ∼= G ⊗ π∗SL′ ⊗ π∗SL ∼= F ⊗ π∗S(L′ ⊗ L) ⇒ E ∼ G.

These properties holds since Pic(XS) is an abelian group, see Proposition 1.1.10.

For the restrictions consider the diagram

X πs //

q

��

XS
πS
��

{s} is // S
If E ∼ F , then

E|s = π∗sE ∼= π∗s(F ⊗ π∗SL) ∼= π∗sF ⊗ π∗sπ∗SL ∼= π∗sF ⊗ q∗i∗sL ∼= π∗sF = F|s

since i∗sL is a line bundle over one point and hence trivial (of rank 1), so that

i∗sL ∼= OK and q∗i∗sL ∼= OX .

Proposition 4.2.4. [ [67], 13.1, p.84 ] , [ [38], 4.1, p.90 ] and [ [48], p.7 ]

The assignment S 7→ MP (S) is functorial and contravariant. It defines the

Simpson moduli functor

MP : Schc(K)op −→ Set : S 7−→MP (S) .
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Proof. Let a morphism f : T → S in Schc(K) be given ; we are intended to

construct a pullback map f ∗ : MP (S) →MP (T ). For [E ] ∈ MP (S) we define

f ∗[E ] = [p∗E ], where XS ×S T ∼= XT so that p ' idX ×f and

X πt //

��

XT
p
//

πT
��

XS //

πS
��

X

��

{t} // T
f
// S // SpecK

We have to show that this is independent of the class [E ] and that [p∗E ] indeed

defines an element in MP (T ). If E ∼ F on XS with E ∼= F ⊗ π∗SL, then

p∗E ∼= p∗F ⊗ p∗π∗SL ∼= p∗F ⊗ π∗T (f ∗L), i.e. p∗E ∼ p∗F on XT . Moreover p∗E is

still coherent and flat over T as a pullback.

It remains to show the properties on the fibers. For this note that for any closed

point t ∈ T we have (p∗E)|t = π∗t p
∗E ∼= (p ◦ πt)∗E ∼= π∗f(t)E = E|f(t) because

X πt //

��

XT
p
//

πT
��

XS
πS
��

∼= X
πf(t)

//

��

XS
πS
��

{t} it // T
f
// S {f(t)}

if(t)
// S

where f ◦ it = if(t) and f(t) is a closed point in S. Now since E|f(t) is semistable

of pure dimension d with Hilbert polynomial P , so is (p∗E)|t.

Remark 4.2.5. Functoriality is the actual motivation of Definition 4.2.2, which

is rather abstract. Indeed one cannot defineMP (S) to be the space of semistable

sheaves on XS since e.g. purity is not preserved under pullbacks, see Exam-

ple 3.1.15. Thus semistability has to be defined fiberwise.

Definition 4.2.6. [ [67], 4.2, p.19-20 ] and [ [48], 2.7 & 2.8, p.8 ]

A scheme M ∈ Schc(K) is called a fine moduli space of semistable sheaves on X
with Hilbert polynomial P if there exists an isomorphism of functors

MP
∼−→ Hom( · ,M) , (4.10)

where Hom is taken in the category Schc(K). One also says that M represents

the functorMP . If this is the case, the class [U ] ∈MP (M) that corresponds to

the identity idM ∈ Hom(M,M) under this isomorphism is called the universal
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family. By definition U is a family over M , i.e. a semistable coherent sheaf on

XM/M that is flat over M .

Remark 4.2.7. U has the following important property: For any S ∈ Schc(K)

and [E ] ∈ MP (S), there exists a unique morphism f : S →M , given by (4.10),

such that [E ] = f ∗[U ], i.e. there is a line bundle L on S such that E ∼= F ∗U⊗π∗SL.

XS F //

πS
��

XM
πM
��

S
f
//M

This means that every family over S is a unique pullback of the universal sheaf

U on XM/M (in the sense defined above, i.e. up to some twist by a line bundle).

In particular, M is unique up to canonical isomorphism. We also have a set

bijection

M ∼= Hom
(
{pt},M

) ∼=MP (pt) , (4.11)

where {pt} = SpecK is a closed point. Hence the closed points of M are in 1-to-1

correspondence with elements inMP (SpecK). The latter are classes of coherent

sheaves on XSpecK that are flat over SpecK and such that the restriction to

the fiber over closed points is a semistable sheaf of pure dimension d and Hilbert

polynomial P . Here we have XSpecK = X×KSpecK ∼= X and pt is the only closed

point in SpecK. Flatness is always satisfied since OK,pt
∼= K and modules over K

are always free, hence flat. It remains to check what happens to the equivalence

relation ; since every line bundle L over SpecK is trivial, we get E ⊗π∗SpecKL ∼= E
and the equivalence classes become isomorphism classes. Summarizing we obtain{

closed points of M
} 1:1←→MP (SpecK) ∼=

{
isomorphism classes of

semistable sheaves on X of pure dimension d and Hilbert polynomial P
}
.

Remark 4.2.8. We will see in Section 4.2.3 that the closed points of fine moduli

spaces must necessarily correspond to isomorphism classes of stable sheaves,

otherwise one may construct examples that ruin continuity conditions.

Corollary 4.2.9. Assume that M ∈ Schc(K) is a fine moduli space and let [F ]

be an isomorphism class in M which is closed, i.e. [F ] corresponds to a closed

point m ∈M . Then the restriction U|m on the fiber X is isomorphic to F .

171



LEYTEM Alain 4.2. The Simpson moduli functor

Proof. [F ] ∈M ∼=MP (SpecK), so representabiliy of M implies that there exists

a unique morphism f : SpecK→M such that [F ] = [F ∗U ] which, since all line

bundles on SpecK are trivial, means that F ∼= F ∗U .

XSpecK
F //

��

XM
πM

��

X πm //

��

XM
πM

��

SpecK f
//M {m} im //M

But uniqueness of f together with XSpecK ∼= X and {m} ∼= SpecK imply that

f is nothing but the inclusion im, hence these two diagrams are isomorphic. In

particular U|m = π∗mU ∼= F ∗U ∼= F .

Definition 4.2.10. [ [38], 2.2.1, p.40 ]

A scheme M ∈ Schc(K) is said to be a coarse moduli space of semistable sheaves

on X with Hilbert polynomial P (or that it corepresents the Simpson moduli

functor MP ) if there is a natural transformation of functors

α : MP −→ Hom( · ,M)

which satisfies the following universal property: for any other connected scheme

N ∈ Schc(K) with a natural transformation β : MP → Hom( · , N), there exists

a unique morphism of schemes h : M → N over K such that β = (h◦) ◦ α, i.e.

we have the commutative diagram

MP
α //

β
%%

Hom( · ,M)

h◦
ww

Hom( · , N)

where β(S) = h ◦ α(S), ∀S ∈ Schc(K). This again ensures that M is uniquely

given up to canonical isomorphism.

Remark 4.2.11. cf. [ [67], 13.1, p.84 ] and [ [48], 2.5, p.7 ]

Some authors, such as Maican [48], Trautmann [67] and Harris-Morrison [34],

also require that the natural transformation α : MP → Hom( · ,M) of a coarse

moduli space must be a set bijection on closed points, i.e.

α(SpecK) : MP (SpecK) ∼−→ Hom(SpecK,M) ∼= M .
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As in Remark 4.2.7 this implies again that closed points in M are in 1-to-1 cor-

respondence with isomorphism classes of stable sheaves on X of pure dimension

d and Hilbert polynomial P .

However we will explain in Section 4.2.3 why this additional condition is in gen-

eral not a good choice in the case of the Simpson moduli functor MP .

Lemma 4.2.12. [ [67], 13.1, p.84 ]

If the natural transformation α : MP → Hom( · ,M) is a bijection on closed

points, then it is given by

α(S) : MP (S) −→ Hom(S,M) : [E ] 7−→
(
S →M : s 7→ [E|s]

)
(4.12)

for all S ∈ Schc(K) and s ∈ S closed. Here [E|s] denotes the isomorphism class.

Proof. α(S) is well-defined since [E ] ∈ MP (S) means that its restriction E|s is

semistable on X of pure dimension d and Hilbert polynomial P . Lemma 4.2.3

moreover ensures that its isomorphism class is independent of the representative

of the equivalence class [E ]. Fix s ∈ S closed and consider the morphism of

schemes is : SpecK → S : pt 7→ s. Since α is a natural transformation we get

the commutative diagram

MP (S)
α(S)

//

i∗s
��

Hom(S,M)

◦ is
��

MP (SpecK)
α(SpecK)

//M

because M ∼= Hom(SpecK,M) via m 7→ (pt 7→ m). To find the value of

α(S)[E ](s), we compute

α(S)[E ](s) =
(
α(S)[E ] ◦ is

)
(pt) = α(SpecK)i∗s[E ](pt)

= α(SpecK)[E|s](pt) = [E|s]

since α(SpecK) and (4.11) give a bijection between MP (SpecK) and M when

evaluating at pt.

Remark 4.2.13. If α(SpecK) is not a bijection, then a similar formula as in

Lemma 4.2.12 holds true. In that case we obtain the same expression than (4.12),
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but where [E|s] means s-equivalence class. This is still well-defined since isomor-

phic sheaves are also s-equivalent.

The reason for this is explained in Theorem 4.2.14 below. Indeed elements

of MP (SpecK) are still isomorphism classes of semistable sheaves on X with

Hilbert polynomial P . The only difference is that there is no longer a 1-to-1

correspondence since M may have less closed points.

4.2.2 Theorem of Simpson

The following deep result was proven in 1994 by Carlos T. Simpson in [65],

Theorem 1.21, p.71-73.

Theorem 4.2.14 (Simpson). Let (X ,OX ) be a projective scheme over K and

P ∈ Q[m] a fixed numerical polynomial of degree d.

1) There exists a moduli space MP (X ) ∈ Schc(K) which universally corepre-

sents9 the Simpson moduli functor MP .

2) MP (X ) is also a projective scheme over K.

3) The closed points of MP (X ) are in bijection with s-equivalence classes of

coherent semistable sheaves on X of pure dimension d and Hilbert polyno-

mial P .

4) There is a dense open subscheme M s
P (X ) ⊆ MP (X ) whose closed points

parametrize isomorphism classes of stable sheaves on X with Hilbert poly-

nomial P (for which isomorphism and s-equivalence classes coincide).

Sketch of proof. We briefly describe how MP (X ) is constructed ; more informa-

tion can be found in [ [65], p.65-66 ] and [ [47], p.4-5 ].

For a numerical polynomial P ∈ Q[m] and a coherent sheaf G ∈ Coh(OX ), the

Hilbert scheme HilbP (G) classifies (equivalence classes of) quotients G � Q with

9Denote hM = Hom( · ,M). For our purposes we do not need the definition of a universal

corepresentation, but let us nevertheless mention it for completion ; it means that there is a

natural transformation α : MP → hM such that for any morphism φ : hN → hM , the fiber

product hN ×hM
MP is corepresented by hN . So in particular MP (X ) is also a coarse moduli

space by choosing the identity hM → hM .
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given Hilbert polynomial PQ = P . We fix M ∈ N large enough such that the

twisted sheaf F(M) is generated by global sections and H i(F(M)) = {0}, ∀ i ≥ 1

for all semistable sheaves F ∈ Coh(OX ) with Hilbert polynomial P . This is pos-

sible because of Serre’s Theorems A and B and since the set of semistable sheaves

with fixed Hilbert polynomial is bounded, see [ [65], 1.1, p.56-57 ], which ensures

that M can be chosen independent of F . Now let V ∼= KP (M) be a vector space

of dimension P (M) and define the invertible sheaf G = V ⊗O(−M), where V is

seen as the trivial vector bundle with fiber V . Then consider the Hilbert scheme

HilbP (G), on which the group SL(V ) acts by composition

V ⊗O(−M)
SL(V )−→ V ⊗O(−M) −→ Q .

The open subset Ω ⊂ HilbP (G) of points that are semistable under the action of

SL(V ) (in the sense of Geometric Invariant Theory, see Appendix D.4 for more

information) then describes semistable quotients Q, so we take

MP (X ) := Ω/ SL(V ) , (4.13)

which can shown to be a projective scheme by using GIT.

Remark 4.2.15. In some particular cases we will see more precise descriptions

of Ω and the action of SL(V ) in terms of affine spaces and matrices acting on

exact sequences. This is e.g. done in Remark 4.6.23 and Remark 5.1.43.

Remark 4.2.16. The definitions of a coarse moduli space in [ [48], 2.5, p.7-8 ]

and [ [23], 3.6, p.28 ] contain the condition about α(SpecK) being a bijection,

but still claim that MP (X ) is a coarse moduli space. This is not the case since

α being a bijection on closed points does not imply that the closed points of M

are in 1-to-1 correspondence with s-equivalence classes of semistable sheaves as

stated in Theorem 4.2.14 (compare Remark 4.2.7 and Remark 4.2.11).

4.2.3 Representability and properly semistable sheaves

In general it is not possible to obtain a fine moduli space for the functorMP as

soon as there are semistable sheaves that are not stable (such sheaves are called

properly semistable). Similarly having a set bijection between closed points of the
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moduli space and MP (SpecK) is not possible since such a construction would

not be continuous. The reasons for this are the following.

Lemma 4.2.17. [ [38], 4.1.2, p.91 ]

Let F ∈ Coh(OX ) be semistable with Hilbert polynomial P and assume that we

have a corepresentation α : MP → Hom( · ,M) for some M ∈ Schc(K). If there

exists a non-split exact sequence of semistable sheaves

0 −→ F ′ −→ F −→ G −→ 0 (4.14)

with the same reduced Hilbert polynomial pF , then the closed points of M cannot

be in 1-to-1 correspondence with elements from MP (SpecK), i.e. α cannot be a

bijection on closed points.

Proof. If (4.14) holds one can construct a coherent sheaf E on XA1 = X ×K A1
K

which is flat over A1
K such that

E|0 ∼= F ′ ⊕ G , E|t ∼= F , ∀ t 6= 0 ,

where we identify closed points in A1
K via t ↔ 〈X − t 〉. Hence [E ] ∈ MP (A1

K)

since its restrictions to the fibers at closed points are semistable sheaves on X
with Hilbert polynomial P . If α(SpecK) would be a bijection, then Lemma 4.2.12

gives a morphism f : A1
K →M : t 7→ [E|t]. But this is not continuous at 0 since

F 6∼= F ′ ⊕ G, so f is not a morphism of schemes. Hence α cannot be a bijection

on closed points.

Remark 4.2.18. Intuitively one could consider the two curves K→ M (where

K is endowed with some topology) defined by t 7→ [F ] and t 7→ [E|t]. For t 6= 0

the sheaves F and E|t are isomorphic and the curves agree ; one could say that

both are “constant”. But for t→ 0 we have E|0 6∼= F , so the “constant” sequence

t 7→ [E|t] has a “limit” at 0 with a different value. It is clear that situations like

this should not happen if we want a “good” moduli space M to parametrize our

sheaves.

The way out of this issue is to consider s-equivalence classes instead of isomor-

phism classes. Indeed if F ′ and G in (4.14) are stable, then F is s-equivalent to

F ′⊕G by Example 4.1.23 and E|0 ∼ E|t for t 6= 0, so the “limit” of the sequence
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t 7→ [E|t] (where [ ] now means s-equivalence class) will still have the same value.

This illustrates that closed points of a moduli space must at least correspond to

s-equivalence classes of semistable sheaves with Hilbert polynomial P , otherwise

the (classes of) sheaves in M do not vary “continuously”.

More generally there is no hope of having a bijection on closed points when exact

sequences like (4.14) exist, which e.g. occurs in the following case.

Corollary 4.2.19. If there exists a properly semistable sheaf on X with Hilbert

polynomial P , then α : MP → Hom( · ,M) is not a bijection on closed points.

Proof. It suffices to consider the Jordan-Hölder filtration (4.6) of F . As F is

not stable, the filtration is non-trivial and we have 0 6= F1 ( F . Hence we can

choose

0 −→ F1 −→ F −→ F/F1 −→ 0 .

This is because pF1 = pF by Remark 4.1.19, so we have

PF/F1 =
(
αd(F)− αd(F1)

)
· pF/F1 ,

PF/F1 = PF − PF1 = αd(F) · pF − αd(F1) · pF1 =
(
αd(F)− αd(F1)

)
· pF

and obtain pF/F1 = pF since αd(F)− αd(F1) is non-zero (otherwise F/F1 = 0).

Semistability of F/F1 follows from Proposition 4.1.21. Moreover this sequence

does not split.

4.2.4 Representability in the stable case

The following result gives a condition for representabiliy in the case of stable

sheaves.

Definition 4.2.20. [ [38], 4.1, p.90 ] and [ [48], p.8 ]

Let P ∈ Q[m] be a numerical polynomial of degree d. Similarly as for the

Simpson moduli functor MP we can define a functor Ms
P : Schc(K)op → Set

that should classify stable sheaves by

Ms
P (S) :=

{
[E ]
∣∣ E is a stable sheaf on XS/ S of

pure dimension d and Hilbert polynomial P
}
,

where [E ] is the same equivalence class as in (4.9).
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Theorem 4.2.21. [ [38], 4.6.5 & 4.6.6, p.119-120 ] and [ [48], 2.9, p.9 ]

Let P ∈ Q[m] be a numerical polynomial of degree d ≤ dimX and write it of the

form

P (m) =
d∑
i=0

βi ·
(
m+ i− 1

i

)
(4.15)

for some integral coefficients βi ∈ Z. If gcd(β0, . . . , βd) = 1, then the open

subscheme M s
P (X ) from Theorem 4.2.14 is a fine moduli space for the functor

Ms
P . In particular there exists a universal family on X ×K M

s
P (X ).

4.2.5 Some historical remarks

The initial motivation for studying moduli spaces of semistable sheaves is that

there is no moduli space which classifies all coherent sheaves on a projective

scheme. The way out of this problem is to add the semistability condition. The

first achievements on this topic have been done by D. Giesecker and M. Maruyama

in 1977. However they defined semistable sheaves to be torsion-free instead of

pure. On integral projective schemes this e.g. implies that the moduli spaces

are empty if the degree of the fixed Hilbert polynomial is strictly less than the

dimension of the scheme (as sheaves on “nice” schemes which are supported in

smaller dimension are torsion).

Maruyama proved existence of the moduli space of stable sheaves on a smooth

projective variety X with a fixed Hilbert polynomial in [50] by using Mumford’s

Geometric Invariant Theory. The semistable case presented technical difficulties

which first had been solved by Gieseker in [27] in case X is a surface. For higher-

dimensional X existence of the moduli space of semistable sheaves is proven in

[51] one year later.

In 1994 Simpson generalized the definition of (semi)stability by replacing the con-

dition on torsion-freeness by purity in [65]. This way he also managed to prove

existence of non-trivial moduli spaces of semistable sheaves with fixed Hilbert

polynomial of degree d < dimX . This is why the spaces MP (X ) are called Simp-

son moduli spaces, even though Giesecker and Maruyama introduced the concept

almost 20 years before. Showing boundedness of the set of semistable sheaves

with fixed Hilbert polynomial is by the way an essential part of the proof, in the
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initial one of Maruyama as well as in the one of Simpson.

From a pedagogical point of view one however prefers to speak about the state-

ment of Simpson because of its bigger generality. For a better understanding it

is also useful to consider textbooks such as [38] which summarize all important

results before studying the original article(s).

4.3 Simpson moduli spaces on P2

From now on we always consider the (classical) projective plane P2 = P(K3) with

structure sheafOP2 given by regular functions and fixed homogeneous coordinates

(x0 : x1 : x2), resp. the corresponding projective scheme

X = P2
K = ProjK[X0, X1, X2]

and Serre’s twisting sheaf OP2(1) as very ample line bundle.

Example 4.3.1. Hence by (4.3) the Hilbert polynomials of the twisted sheaves

OP2(k), k ∈ Z are

POP2
(k)(m) =

(
m+ k + 2

2

)
=

(m+ k + 2)(m+ k + 1)

2

=
1

2
·m2 +

2k + 3

2
·m+

k2 + 3k + 2

2
.

Lemma 4.3.2. If F ,G ∈ Coh(OP2), then we have for all n ∈ Z

Hom
(
F(n),G

) ∼= Hom
(
F ,G(−n)

)
.

Proof. Let E = OP2(n), so that E∗ ∼= OP2(−n). Definition 1.1.9 and (1.2) give

Hom
(
F(n),G

)
= Hom

(
F ⊗ E ,G

) ∼= Hom
(
F , Hom(E ,G)

)
∼= Hom

(
F , E∗ ⊗ G

) ∼= Hom
(
F ,G(−n)

)
.

4.3.1 Sheaves with linear Hilbert polynomial

We are particularly interested in semistable sheaves on P2 whose Hilbert polyno-

mial is linear, i.e. sheaves that are supported in dimension d = 1. More precisely,
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we consider F ∈ Coh(OP2) with a Hilbert polynomial

PF(m) = α1(F) ·m+ α0(F) ,

where α0(F) ∈ Z and α1(F) ∈ N.10

Remark 4.3.3. For such sheaves the conditions for being (semi)stable become

1) F is of pure dimension 1, i.e. F has no non-zero proper coherent subsheaves

with 0-dimensional support.

2) Every proper non-zero coherent subsheaf 0 6= F ′ ( F satisfies µ(F ′) < µ(F),

resp. µ(F ′) ≤ µ(F). The second property follows from

pF(m) =
α1(F) ·m+ α0(F)

α1(F)
= m+

α0(F)

α1(F)
= m+ µ(F) ,

so that pF ′ (≤) pF ⇔ µ(F ′) (≤)µ(F). In particular this proves that the con-

ditions of (semi)stability and µ-(semi)stability are equivalent for linear Hilbert

polynomials, see also [ [23], 3.3, p.20 ].

Notation 4.3.4. In the following we always write the Hilbert polynomial as

PF(m) = am + b, where a ≥ 1 is the multiplicity of F and b is the Euler

characteristic

b = χ(P2,F) = h0(F)− h1(F) . (4.16)

Lemma 4.3.5. cf. [ [23], 3.1, p.23-24 ]

If F ∈ Coh(OP2) has Hilbert polynomial PF(m) = am + b, any proper subsheaf

F ′ ( F has Hilbert polynomial µm+ r with µ ≤ a and if µ = a, then r < b.

Proof. Consider the exact sequence

0 −→ F ′ −→ F −→ F/F ′ −→ 0 ,

where the quotient F/F ′ has Hilbert polynomial (a − µ)m + (b − r) by (4.2).

Hence a ≥ µ since the leading coefficient must be non-negative. If a = µ, the

same argument gives b ≥ r. But the constant terms cannot be equal, otherwise

F/F ′ = 0 since it has zero Hilbert polynomial and F = F ′ by Definition 4.1.7,

which contradicts that F ′ is proper.

10If α1(F) = 0, the Hilbert polynomial of F is constant, which means that F is supported on

finitely many points (with multiplicities) and thus equal to a direct sum of skyscraper sheaves.
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Proposition 4.3.6. [ [23], 3.1, p.23-24 ] and [ [48], 2.3, p.6 ]

If F ∈ Coh(OP2) is a semistable sheaf with Hilbert polynomial PF(m) = am + b

where a and b are coprime, i.e. gcd(a, b) = 1, then F is stable.

Proof. Let F ′ ⊆ F be a non-zero subsheaf of F with Hilbert polynomial given

by PF ′(m) = µm+ r. If F ′ has the same reduced Hilbert polynomial pF , then

pF ′ = pF ⇔ m+ r
µ

= m+ b
a
⇔ r

µ
= b

a
⇔ a · r = µ · b .

Since a divides the product µ · b with gcd(a, b) = 1, we need that a divides µ.

Together with µ ≤ a from Lemma 4.3.5 this implies that µ = a, thus r = b and

PF ′ = PF , which means that F ′ is not proper. We have shown that any subsheaf

of F with the same reduced Hilbert polynomial is equal to F itself. Hence the

reduced Hilbert polynomial of a proper non-zero subsheaf 0 6= F ′ ( F always

satisfies pF ′ < pF , i.e. F is stable.

Corollary 4.3.7. If gcd(a, b) = 1, then all semistable sheaves on P2 with Hilbert

polynomial am+ b are stable. Hence the moduli functorsMs
am+b andMam+b are

equal and M s
am+b(P2) = Mam+b(P2).

Corollary 4.3.8. [ [47], 3.19, p.20 ] and [ [48], 2.10, p.9 ]

If gcd(a, b) = 1, then Mam+b(P2) is a fine moduli space for the Simpson moduli

functorMam+b. In particular its closed points correspond to isomorphism classes

of stable sheaves on P2 with Hilbert polynomial am+ b.

Proof. Note that for linear Hilbert polynomials the coefficients from (4.4) and

(4.15) coincide11:

α0 ·
m0

0!
+ α1 ·

m1

1!
= α0 + α1 ·m , β0 ·

(
m− 1

0

)
+ β1 ·

(
m

1

)
= β0 + β1 ·m .

The coefficients β0 = a and β1 = b being coprime we know from Theorem 4.2.21

that the functor Ms
am+b is represented by M s

am+b(P2). But again a and b are

coprime, so the functors Ms
am+b and Mam+b are equal by Corollary 4.3.7 and

also their moduli spaces coincide. ThusMam+b is represented by Mam+b(P2).

11This is no longer true for higher degrees, e.g. m2

2! 6=
(
m+1
2

)
.
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Proposition 4.3.9. cf. [ [48], p.6 ]

Let f ∈ K[X0, X1, X2] be a homogeneous polynomial of degree d ≥ 1 and denote

its vanishing set in P2 by

Z(f) =
{

(x0 : x1 : x2) ∈ P2

∣∣ f(x0, x1, x2) = 0
}
.

1) The structure sheaf OC of the 1-dimensional curve C = Z(f) has Hilbert

polynomial

POC (m) = d ·m+ 3d−d2

2
. (4.17)

2) OC is stable.

Proof. 1) C being the vanishing set of the polynomial f , we get the presentation

0 −→ OP2(−d)
·f−→ OP2 −→ OC −→ 0 , (4.18)

which allows to compute the Hilbert polynomial of OC by using Example 4.3.1:

POC (m) =
(m+ 2)(m+ 1)

2
− (m− d+ 2)(m− d+ 1)

2
= d ·m+

3d− d2

2
.

2) First we have to show that OC is pure of dimension 1. This is true because

the subscheme C ⊂ P2 is a curve, so it has no components of dimension 0 (see

Example 2.2.16). Indeed on an affine open set Ui ⊂ P2, it is given by

C|Ui = Spec
(
K[Xj, Xk]/〈 fi 〉

)
,

where fi is obtained from f by replacing Xi = 1. This is a (possibly non-reduced)

ring without embedded primes.

To prove stability let 0 6= I ( OC be a proper coherent subsheaf. It is shown in

[ [48], 6.8, p.31-32 ] that there exists a homogeneous polynomial g ∈ K[X0, X1, X2]

dividing f and the ideal sheaf J of the curve C ′ = Z(g) satisfies I ⊂ J ⊂ OC
where J /I is supported on finitely many points. So we have a subscheme C ′ ⊆ C

and exact sequences

0 −→ J −→ OC −→ OC′ −→ 0 , 0 −→ I −→ J −→ J /I −→ 0 .

J /I being supported on finitely many points means that it has constant Hilbert

polynomial c ≥ 0. In particular PI and PJ only differ by the constant c. More-

over C ′ is a curve of degree r ≤ d (since g divides f), so OC′ has a similar Hilbert
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polynomial thanOC . Proposition 4.1.9 andOC′ ∼= OC/J ∼= (OC/I)
/

(J /I) then

imply that

POC′ = POC − PI − PJ /I ⇒ PI(m) = d ·m+ 3d−d2

2
− r ·m− 3r−r2

2
− c

⇒ µ(I) =
3d− 3r − d2 + r2 − 2c

2(d− r)
=

3− d− r
2

− c

d− r
.

Note that d − r 6= 0, otherwise I would be supported on finitely many points,

which contradicts that OC is of pure dimension 1. The slope of OC is given by

µ(OC) = 3d−d2

2d
= 3−d

2
and this is clearly > µ(I). Hence OC is stable.

4.3.2 Theorem of Le Potier

Let P (m) = am+ b ∈ Z[m] be fixed with a ≥ 1. The following results give some

information and properties of the moduli space Mam+b of semistable sheaves on

P2 with linear Hilbert polynomial am+b. They have first been stated and proven

by Joseph Le Potier in [47], Theorem 1.1, p.1.

Theorem 4.3.10 (Le Potier). s

1) Mam+b is an irreducible projective variety of dimension a2 + 1.

[ [47], Thm. 3.1, p.10-11 ]

2) If a ≥ 3, Mam+b is also locally factorial.

[ [47], Thm. 3.5, p.12 & p.19 ]

3) The open subvariety M s
am+b of stable sheaves on P2 is smooth.

[ [47], Prop. 2.3, p.5 ]

4) In particular if gcd(a, b) = 1, then Mam+b is smooth itself.

[ [23], Thm. 4.5, p.46 ]

We also have a precise result about non-representability of the moduli functors.

Theorem 4.3.11. [ [47], 3.4, p.11 & 3.19, p.20-22 ], [ [24], p.15 ], [ [48], 2.11, p.9 ]

Assume that gcd(a, b) 6= 1. Then the closed subscheme Mam+b\M s
am+b of properly

semistable sheaves on P2 with Hilbert polynomial am+b has codimension ≥ 2a−3

and for any open subset U ⊆ Mam+b there does not exist a universal family on
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P2 × U . In particular there are no fine moduli spaces for the functors Mam+b

and Ms
am+b.

4.3.3 The Duality Theorem of Maican

Fix a ≥ 1. A priori one may think that it is necessary to study the moduli spaces

Mam+b for all b ∈ Z. But the following results from Maican and Drézet that have

been proven in [49] and [15] show that it suffices to restrict the values of β to a

(relatively small) finite set.

Proposition 4.3.12. [ [15], p.1 ]

The map

Mam+b −→Mam+a+b : F 7−→ F(1) = F ⊗OP2(1) (4.19)

defines an isomorphism of projective varieties with inverse map G 7−→ G(−1).

Proof. First recall that tensoring by OP2(1) is exact since the sheaf is invertible.

The map (4.19) is well-defined as

PF(1)(m) = PF(m+ 1) = a(m+ 1) + b = am+ a+ b

and preserves coherence. It also preserves purity, semistability and s-equivalence

classes. Indeed if F ′ ( F(1) is a proper non-zero subsheaf with 0-dimensional

support, then F ′(−1) ( F would be a 0-dimensional subsheaf of F (here we

use exactness and Lemma 4.1.11). Similarly if F ′ is such that pF ′ > pF(1), then

F ′(−1) would destabilize F : writing PF ′(m) = µm+ r, we get

r
µ

= µ(F ′) > µ(F(1)) = 1 + b
a

⇒ −1 + r
µ

= µ(F ′(−1)) > µ(F) = b
a
.

To see that s-equivalence classes are preserved as well, note that if F0 ( . . . ( Fk
is a Jordan-Hölder filtration of F , then F0(1) ( . . . ( Fk(1) is a filtration of

F(1). Here we again use exactness. As before all stability conditions are still

satisfied and each Fi(1) has reduced Hilbert polynomial pF + 1, hence so do the

quotients Fi(1)/Fi−1(1). Finally we admit that the map is also a morphism of

projective varieties.
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Remark 4.3.13. In particular the isomorphism Mam+b
∼= Mam+a+b implies that

it is enough to consider b ∈ {1, 2, . . . , a}. But one can even do a better estimate

using another deep result.

Definition 4.3.14. [ [49], p.2 ] , [ [38], 1.1.7, p.6 ] and [ [23], 4.3, p.44 ]

Let F ∈ Coh(OP2) with dimF = 1 (i.e. F has linear Hilbert polynomial). We

define the dual sheaf of F by

FD := Ext1(F , ωP2) ,

where ωP2 is the canonical sheaf on P2 and Ext1(F , · ) is the first right derived

functor of Hom(F , · ) (so FD is indeed a sheaf).12 From [ [35], II, 8.20.1, p.182 ]

we know that ωP2
∼= OP2(−3).

Remark 4.3.15. This definition is motivated by the fact that the (usual) dual

F∗ of a 1-dimensional sheaf on a smooth surface is zero. Indeed if X is a smooth

projective variety, then the structure sheaf OX is pure (see Example 3.1.13) and

we get

F∗(U) = Hom
(
F|U ,OX |U

)
= {0}

for every open subset U ⊆ P2 because dimF < dimOX and OX is pure (compare

with the proof of Proposition 3.1.30). Hence it makes sense to consider the

derived functor of Hom.

Proposition 4.3.16. [ [49], p.3-5 ] and [ [48], p.51-52 ]

Let F ∈ Coh(OP2) be of pure dimension 1 with Hilbert polynomial am+ b. Then

1) Exti(F , ωX ) = 0 for i > 1 and hi(F) = h1−i(FD). In particular the Euler

characteristic is χ(P2,FD) = −χ(P2,F).

2) The Hilbert polynomial of the dual FD is13

PFD(m) = (−1)dimF · PF(−m) = −(−am+ b) = am− b .
12Freiermuth [23] and Maican in [48] define the dual sheaf by F∇ = Ext1(F , ωP2

)(1), but

Proposition 4.3.12 ensures that the additional twist does not change the result as the corre-

sponding moduli spaces will be isomorphic.
13The Hilbert polynomial of F∇ would be am+ a− b.
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3) F is (semi)stable if and only if FD is (semi)stable.

4) Let F ,G ∈ Coh(OP2) be semistable of pure dimension 1 with the same Hilbert

polynomial. Then F and G are s-equivalent if and only if FD and GD are s-

equivalent.

Theorem 4.3.17. [ [49], p.7 ] , [ [48], 9.4, p.52-53 ] and [ [23], 4.4, p.44-45 ]14

For all integers n ≥ 2 and a ≥ 1, there is an isomorphism of projective varieties

Mam+b(Pn) ∼−→Mam−b(Pn) : [F ] 7−→ [FD] ,

where [ ] denotes the s-equivalence class of semistable sheaves on Pn.

Remark 4.3.18. Hence in order to study the moduli spaces Mam+b, for fixed

a ≥ 1 it suffices to consider the values b ∈ {1, 2, . . . , ba
2
c, a}.

4.4 Support and singular sheaves

Let F ∈ Coh(OP2) be a semistable with linear Hilbert polynomial am+ b where

0 < b ≤ a and consider its Fitting support C := Zf (F).15 In particular F
also inherits the structure of a coherent OC–module (see Section 3.2). C is a

projective curve in P2, but in general it is neither integral, nor reduced. However

this is where we can apply our results from Part I and say the following.

Proposition 4.4.1. cf. [ [23], 3.1, p.23-25 ] and [ [48], 2.3, p.6 ]16

1) F is a torsion sheaf on P2.

2) The annihilator support Za(F) has no embedded components.

3) F is torsion-free as a sheaf on Za(F) and on Zf (F), i.e. F is a torsion-free

OC–module.

Proof. 1) As dimF < dimP2, this has already been proven in Example 3.1.27

and Remark 3.1.28.

2) F being pure, this follows from Proposition 3.2.12.

3) follows from Proposition 3.5.1, Theorem 3.5.3 and Remark 3.5.4.

14[48] and [23] only prove the theorem for P2 and in the case where gcd(α, β) = 1.
15We refer to Definition 1.4.5 for a reminder of the Fitting support of a coherent sheaf.
16Maican does not specify which support he meant, but gives [23] as a reference, which uses

the annihilator support.
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The aim of this section is to prove that “almost all” sheaves in M s
am+b are not

just torsion-free, but actually locally free on their support and can be seen as

vector bundles on a 1-dimensional variety.

4.4.1 Properties of the support

Before continuing we briefly introduce the following tool.

Definition 4.4.2. [ [38], 1.1.11 & 1.1.12, p.7-8 ]

Let X be any projective scheme and F ∈ Coh(OX ). A section s ∈ Γ(X ,O(1)) is

called F-regular if the morphism

F(−1)
s∗−→ F

which is induced by O(−1)
s·−→ OX after tensoring by F is injective. One can

show that F -regular sections always exist (in some sense they are even dense).

We only give a description which shall illustrate this fact.

Proposition 4.4.3. cf. [ [38], 1.1.11, p.9 ]

A section s ∈ Γ(X ,O(1)) is F-regular if and only if its zero set H = V (s)

contains no associated points of F .17

Proof. It suffices to prove the statement on affines. Let U ∼= SpecR, so that

F|U ∼= M̃ for some R-module M and s ∈ F(U) ∼= M . Then

F(−1)
s−→ F is injective ⇔ Fx

sx−→ Fx is injective, ∀x

⇔ MP
sP−→MP is injective, ∀P

⇔ M
s−→M is injective

by Proposition A.2.13. Lemma 2.5.2 moreover implies that this homothety is

injective if and only if s does not belong to any associated prime of M . On the

other hand if P ∈ AssR(M), then

s ∈ P ⇔ P ∈ V (s) = H .

Therefore s not belonging to an associated prime of M means that no associated

point of F belongs to H.

17We recall that the set Ass(F) is introduced in Definition 2.5.5.
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Remark 4.4.4. This allows to see that regular sections always exist in the case

of semistable sheaves F on P2 with linear Hilbert polynomial. Indeed we know

that C = Zf (F) is a curve, s ∈ Γ(X ,OP2(1)) is a homogeneous polynomial

of degree 1 (also called a linear form) and the associated primes describe the

irreducible components of C. Since there are only finitely many it suffices to

choose a non-constant s which does not belong to any of them, which is possible

as Prime Avoidance (see Lemma B.1.3) implies that a union of finitely many

prime ideals cannot be equal to the whole ring.

Proposition 4.4.5. cf. [ [23], p.24 ]

If F ∈ Coh(OP2) has linear Hilbert polynomial am+ b, then its Fitting support is

a projective curve of degree a (i.e. the vanishing set of a homogeneous polynomial

of degree a).

Proof. Choose an F -regular section s with vanishing set H = V (s). This gives

the exact sequence

0 −→ OP2(−1)
s−→ OP2 −→ OH −→ 0 .

Tensoring by F and using that s is F -regular we get

0 −→ F(−1)
s−→ F −→ F|H −→ 0 , (4.20)

where F|H = F ⊗ OH is the restriction of F to the line H. So the Hilbert

polynomial of F|H is

PF|H (m) = PF(m)− PF(m− 1) = am+ b−
(
a(m− 1) + b

)
= a ,

i.e. F|H has constant Hilbert polynomial and is supported on finitely many

points. But (B.11) implies that supp(F|H) = C ∩ H, so the intersection of C

and the line H consists of a points (with multiplicities, but generically all points

are simple), meaning that C is a curve of degree a.

Notation 4.4.6. [ [67], p.14 ]

Fix an ordering of the monomials in the variables X0, X1, X2, for example the

188



LEYTEM Alain 4.4. Support and singular sheaves

lexicographical order with X0 > X1 > X2. Every homogeneous polynomial

f ∈ K[X0, X1, X2] of degree d ≥ 1 can be uniquely written as a sum

f =
∑
|i|=d

ai0i1i2 ·X i0
0 X

i1
1 X

i2
2 ,

where |i| = i0 + i1 + i2. For N =
(
d+2

2

)
= (d+2)(d+1)

2
we denote by 〈f〉 ∈ KN

the vector of coefficients ai0i1i2 , e.g. f = a0X0 + a1X1 + a2X2 gives the vector

〈f〉 = (a0, a1, a2). In particular 〈f〉 6= 0 means that f is not the zero polynomial.

Via this identification the space of all such homogeneous polynomials can be

given the structure of the affine space AN endowed with the Zariski topology.

Remark 4.4.7. We also use this notation when considering the vanishing set

in P2 defined by f , i.e. the curve Z(f) ⊂ P2 may be identified with an element

〈f〉 ∈ PN−1 as multiplication by constants does not change the vanishing set.

For example the line defined by f = a0X0 + a1X1 + a2X2 is represented by

(a0 : a1 : a2), a quadric is given by a point in P5 and a cubic can be described

by elements of P9.

Definition 4.4.8. Let Cd(P2) denote the Hilbert scheme of all curves in P2 of

degree d. By the notation in Remark 4.4.7 it may be identified with the projective

space PN−1 for N =
(
d+2

2

)
. Indeed one can show that PN−1 satisfies the properties

of being a fine moduli space for the Quot-functor18 represented by Cd(P2).

Proposition 4.4.9. cf. [ [47], p.6 ]

There is a morphism of projective varieties σ : Mam+b −→ Ca(P2), given by

[F ] 7−→ Zf (F).

Proof. In order to prove this we use the fact that Mam+b is corepresenting the

Simpson moduli functor. Let N =
(
a+2

2

)
. Since PN−1 is connected we have

Ca(P2) ∈ Schc(K).

Consider the natural transformation β : Mam+b → Hom
(
· , Ca(P2)

)
given by

β(S) : Mam+b(S) −→ Hom
(
S, Ca(P2)

)
: [E ] 7−→

(
s 7→ Zf (E|s)

)
,

18We refer to [ [67], Chapter 8, p.42-50] for more information about Quot-functors and Hilbert

schemes.
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which is well-defined since the fibers E|s are independent of the equivalence class

in Mam+b(S) by Lemma 4.2.3 and have Hilbert polynomial am+ b, so Proposi-

tion 4.4.5 implies that their Fitting support is a curve of degree a. The corepre-

sentation property from Definition 4.2.10 thus implies existence of a morphism

σ : Mam+b → Ca(P2) such that β(S) = σ ◦ α(S), ∀S ∈ Schc(K). Formula (4.12)

from Lemma 4.2.12 and Remark 4.2.13 now allow to compute

Zf (E|s) = β(S)[E ](s) =
(
σ ◦ α(S)

)
[E ](s) = σ

(
α(S)[E ](s)

)
= σ

(
[E|s]

)
.

Hence we see that σ : [F ] 7→ Zf (F).

4.4.2 Singular sheaves

If F ∈ Coh(OP2) has linear Hilbert polynomial it cannot be locally free as an

OP2–module since dimF < 2. But as it is torsion-free on C (Proposition 4.4.1)

we may ask whether F is locally free on its support, i.e. we can consider C as a

projective variety (C,OC) and ask if F is a locally free OC–module ?

By coherence it suffices to check that the stalk Fx is a free OC,x–module for all

x ∈ C.

Definition 4.4.10. [ [47], 2.7, p.6 ]

Let F ∈ Coh(OP2) with linear Hilbert polynomial PF(m) = am+ b. We say that

F is a non-singular sheaf if it is locally free on its support. If this is not the case,

F is called singular.

Remark 4.4.11. The definition of being (non-)singular does not make sense

for (classes of) sheaves in Mam+b since non-isomorphic sheaves of the same s-

equivalence class may have different stalks ; an illustration is given in Exam-

ple F.1.7. So one cannot speak of singular sheaves in the Simpson moduli space

as soon as there exist properly semistable sheaves. In particular there is no “sub-

variety” of singular sheaves in Mam+b.
19

On the other hand the notions are well-defined for isomorphism classes, hence

being (non-)singular makes sense in the open dense subvariety M s
am+b of stable

sheaves.
19However there is a way of defining (non-)singular sheaves for s-equivalence classes as well

by choosing a specific representative of the class. We briefly explain this idea in Section F.2.
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The first important result about singular sheaves is the following.

Proposition 4.4.12. [ [47], 3.2, p.10 ]

The closed subset Ωsing of Ω from (4.13) of points that parametrize singular

sheaves is of codimension at least 2, i.e.

codimΩ(Ωsing) ≥ 2 .

Our next goal is to reprove Freiermuths result which states that sheaves in M s
am+b

are non-singular if their support defines a smooth curve in P2, hence that singular

sheaves can only appear if C has singular points.

Remark 4.4.13. We first refer to Proposition D.1.17, which says that a point

x of an irreducible curve V ⊂ P2 is smooth if and only if the local ring OV,x is

a principal ideal domain. By Lemma D.1.18, this equivalence also holds true for

curves defined by reducible polynomials as one can replace the coordinate ring

at a smooth point by the coordinate ring of the irreducible component (since

smooth points do not lie on an intersection of two components).

We also recall the Structure Theorem of finitely generated modules over PIDs

(Theorem D.1.13).

Definition 4.4.14. The (formal) partial derivatives of a homogeneous polyno-

mial f ∈ K[X0, X1, X2] of degree d ≥ 1 are homogeneous polynomials of degree

d− 1 and we denote them by ∂if := ∂f
∂Xi

.

Lemma 4.4.15. Let f be a non-constant homogeneous polynomial.

1) If the curve Z(f) ⊂ P2 is smooth, then f is irreducible.

2) The set of singular points is closed in Z(f).

3) In particular if Z(f) is irreducible, the set of its smooth points is open and

dense (if non-empty).

Proof. 1) Assume that f is reducible and writes as a product f = f1 · f2 for

some non-constant homogeneous polynomials f1, f2. By Bézout’s Theorem on

P2 (Theorem D.1.14), the curves Z(f1) and Z(f2) intersect in at least 1 point,

so Z(f) will not be smooth at that point.
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2) The set of singular points in Z(f) can be described as

S(f) =
{
x ∈ Z(f)

∣∣ ∂0f(x) = ∂1f(x) = ∂2f(x) = 0
}

= Z(f) ∩ Z(∂0f) ∩ Z(∂1f) ∩ Z(∂2f) .

Thus S(f) is closed in Z(f).

3) then follows since non-empty open sets in irreducible spaces are dense.

Proposition 4.4.16. cf. [ [23], 3.1, p.23-25 ] and [ [48], p.6 ]

Let F ∈M s
am+b.

1) If C = Zf (F) is a smooth curve, then F is a locally free OC–module. Thus

every stable sheaf with smooth 1-dimensional support is non-singular.

2) More generally, F is locally free on the smooth part of C.

Proof. 1) The stalks OC,x correspond to localizations of the coordinate ring of

the curve C. Thus if C is smooth, OC,x is a principal ideal domain for all x ∈ C
(see Remark 4.4.13). By Proposition 4.4.1 we also know that F is a torsion-free

OC–module, i.e. Fx is torsion-free over OC,x for all x ∈ C (alternatively this

can be seen by the fact that smooth curves do not have embedded components).

But freeness and torsion-freeness over PIDs are equivalent. Hence Fx is a free

OC,x–module, ∀x ∈ C. Coherence of F then implies that it is locally free of

finite rank.

2) As the set of singular points is closed in C by Lemma 4.4.15, we can also

consider F as a sheaf on U = C \ S(f). But since the stalks Fx and OC,x
for x ∈ U do not change, the same argument gives that F|U is a locally free

OC |U–module.

Remark 4.4.17. In [ [45], 4.14, p.49 ] we are given an example of a semistable

sheaf that is torsion-free but not locally free on its support. So it is important

to check whether the support of the sheaf is indeed smooth or not.

Next we are interested in knowing “how many” of the sheaves in M s
am+b are

singular. By Proposition 4.4.16 this question is already related to the one of how

many curves in P2 are singular.

192



LEYTEM Alain 4.4. Support and singular sheaves

Proposition 4.4.18. The set of smooth curves of degree d in P2 is open and

dense in the Hilbert scheme Cd(P2) ∼= PN−1 of all curves of degree d.

Proof. The singular curves can be described by the set of coefficients

S =
{
〈f〉 ∈ PN−1

∣∣ ∃x ∈ P2 such that

f(x) = ∂0f(x) = ∂1f(x) = ∂2f(x) = 0
}
. (4.21)

It is non-empty and proper. We shall show that it is closed.

If we write x = (x0 : x1 : x2), then each ∂if(x) defines a homogeneous polynomial

equation in the xi and the coefficients of f . Hence the set

S ′ =
{ (
〈f〉 , x

)
∈ PN−1 × P2

∣∣ f(x) = ∂0f(x) = ∂1f(x) = ∂2f(x) = 0
}

is closed in the projective variety PN−1×P2 (here one uses the Segre embedding

to see that the image of S ′ is closed in P3N−1). We denote the first projection by

π : PN−1 × P2 → PN−1. Since P2 is a complete variety (see Proposition D.1.16),

we know that π is a closed map. Hence π(S ′) = S is closed as well.

Remark 4.4.19. This result is a particular case of Bertini’s Theorem, which

similarly states that the set of smooth hypersurfaces of degree d in Pn is open

and dense in PN−1 for N =
(
n+d
n

)
.

Definition 4.4.20. We say that a set in an irreducible topological space is

generic if it contains a non-empty open set. Hence generic sets are in particular

dense. The reason why we want to consider such sets is that they are “very big”,

so we are “not losing too much information”. Elements from generic sets are

called generic elements.

Corollary 4.4.21. cf. [ [48], p.6 ] and [ [45], 3.8, p.36 ]

The singular sheaves in M s
am+b are all contained in a closed subset. Hence the set

of non-singular sheaves is generic and a generic F ∈ M s
am+b is a vector bundle

on a smooth curve of degree a.

Proof. Consider the morphism of projective varieties σ : Mam+b → Ca(P2) from

Proposition 4.4.9, restricted to the open subvariety M s
am+b. Since stable sheaves
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with smooth support are non-singular, the singular sheaves must lie in the preim-

age of the set of singular curves S, which is closed. σ being continuous, all sin-

gular sheaves thus lie in the closed set σ−1(S), which is also proper as there exist

stable sheaves with smooth support (e.g. structure sheaves of lines). So the set

of non-singular sheaves contains the non-empty open set M s
am+b \ σ−1(S) and is

generic. Choosing some F from this generic set, we know that it has smooth

support and is therefore a locally free OC–module, i.e. a vector bundle on its

support C, which is a smooth curve of degree a.

Remark 4.4.22. Using [ [47], 2.8, p.6-8 ] one can show that the subset of singular

sheaves in M s
am+b is even closed itself. In Corollary 5.1.39 later on we will give a

proof in some particular case.

Remark 4.4.23. We will see in Proposition 4.5.14 that a generic F ∈ M s
am+b

is even a line bundle over a smooth curve of degree a, i.e. that Fx is a free

OC,x–module of rank 1 for all x ∈ C.

Definition 4.4.24. The set of singular sheaves being closed we already con-

clude that “almost all” sheaves in M s
am+b are non-singular. Denote the closed

subvariety of singular sheaves in M s
am+b by M ′

am+b. Now we want some more

precise information about “how many” sheaves in M s
am+b are singular, i.e. we

are interested in the codimension

codimMs
am+b

(
M ′

am+b

)
.

Computing this codimension for certain values of a and b will be our aim for the

rest of the thesis.

4.5 Finite resolutions and first examples

Locally free resolutions of coherent sheaves are very useful as they allow to

give a concrete description. In this section we briefly explain some methods

of constructing them. Moreover we give conditions under which a morphism be-

tween direct sums of line bundles in injective (Proposition 4.5.8), resp. surjective

(Proposition 4.5.9). Then we apply these methods in Proposition 4.5.14 to show

that a generic sheaf in M s
am+b is a line bundle on a smooth curve of degree a.

194



LEYTEM Alain 4.5. Finite resolutions and first examples

4.5.1 Syzygies

Definition 4.5.1. [ [69], p.456 ]

Let R be a ring and M a finitely generated R-module with a set of generators

{m1, . . . ,mn}. A syzygy of M is an element (r1, . . . , rn) ∈ Rn such that

r1 ∗m1 + . . .+ rn ∗mn = 0 .

Hence syzygies encode the relations between the generators. The set of all syzy-

gies is a submodule of Rn, called the module of syzygies. It is equal to the kernel

of the R-module homomorphism

ε : Rn −→M : ei 7−→ mi . (4.22)

Syzygies can be used recurrently to compute free resolutions of finitely generated

R-modules.

Notation 4.5.2. An R-module homomorphism f : R → R is uniquely deter-

mined by its value f(1) and may thus be identified with some λ ∈ R. We extend

this concept to morphisms of the type Rn → Rm, which may thus be seen as

n × m–matrices with entries in R. From now one we will always write such a

morphism as

Rn A−→ Rm .

Here we point out that, contrary to the usual convention, we consider elements

of Rn as rows vectors and multiply them by the matrix A from the right to get

a row vector in Rm.

Example 4.5.3. [ [69], p.456 ]

Let R = K[X, Y ], M = 〈X, Y 〉 and M = R/M. M is generated by 1̄, which

satisfies the relations X ∗ 1̄ = 0 and Y ∗ 1̄ = 0. Hence the module of syzygies

of M is M ≤ R1. Now we consider M as an R-module. Since this is not free,

we can again compute the corresponding module of syzygies. M is generated

by X, Y , which satisfy the relation (−Y ) ∗ X + X ∗ Y = 0. Hence the module

of syzygies of M is generated by (−Y,X) ∈ R2. This element does no longer
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satisfy a non-trivial relation, hence the module is free of rank 1. Combining all

the previous steps, we obtain an exact sequence

0 −→ R
ϕ−→ R2 A−→ R

ε−→ R/M −→ 0 ,

where ϕ = (−Y,X) and

A =

(
X

Y

)
.

This gives a finite free resolution of the R-module R/M.

Theorem 4.5.4 (Hilbert’s Syzygy Theorem). [ [17], 1.1, p.6 ] and [ [69], p.456]

Let K be a field and R = K[X1, . . . , Xn]. Then every finitely generated module

over R has a free resolution of length at most n (the length of a resolution is

one less than the number of free modules in the resolution). More precisely, the

procedure described in Example 4.5.3 ends in n + 1 steps and gives an exact

sequence

0 −→ Fn −→ . . . −→ F1 −→ F0
ε−→M −→ 0 , (4.23)

where each Fi is a free R-module of finite rank.

Remark 4.5.5. 1) Hilbert’s Syzygy Theorem indeed only holds true for polyno-

mial rings. It is e.g. no longer true for quotients of polynomial rings. Consider

R = K[X, Y ]/〈XY 〉 and the module M = R/〈 X̄ 〉 ∼= K[Ȳ ], which is generated

by 1̄. Then the free resolution of M obtained by the procedure described in

Example 4.5.3 is

. . . −→ R
·Ȳ−→ R

·X̄−→ R
·Ȳ−→ R

·X̄−→ R −→M −→ 0 .

2) Theorem 4.5.4 does not mean that every resolution is of length at most n.

Consider e.g. R = K[X] and the trivial resolution

0 −→ R
ψ−→ R2 A−→ R2 ϕ−→ R −→ 0

with

ψ = (0, 1) , A =

(
1 0

0 0

)
, ϕ =

(
0

1

)
.

On the other hand this sequence is not of the type (4.23) since the surjective

morphism on the right must always be ε, hence it does not contradict Theo-

rem 4.5.4.
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4.5.2 Global resolutions

Proposition 4.5.6. Every F ∈ Coh(OP2) has a global resolution of the form

0 −→ E −→ E1 −→ E0 −→ F −→ 0 , (4.24)

where E , E0, E1 are locally free and E0, E1 are finite direct sums of twisted structure

sheaves, i.e. if ri = rk Ei, then ∃ aij ∈ Z such that

Ei =

ri⊕
j=1

OP2(aij) .

Proof. Serre’s Theorem A (Theorem 4.1.3) says that ∃n0 ∈ N such that F(n0)

is generated by its global sections, i.e. the sequence

ON0
P2
−→ F(n0) −→ 0

is exact with N0 = h0(F). Twisting back we obtain

N0OP2(−n0)
ϕ−→ F −→ 0 .

Let K = kerϕ ; the same argument then gives n1 ∈ N such that K(n1) is gener-

ated by its global sections and

N1OP2(−n1) −→ K −→ 0 ,

hence

N1OP2(−n1)
ψ−→ N0OP2(−n0) −→ F −→ 0 .

So if K′ = kerψ, we finally obtain the resolution

0 −→ K′ −→ N1OP2(−n1) −→ N0OP2(−n0) −→ F −→ 0 . (4.25)

Restricting (4.25) to an affine open set U ⊂ P2 such that F|U ∼= M̃ , we get the

exact sequence of finitely generated R-modules

0 −→ K ′ −→ RN1 −→ RN0 −→M −→ 0 ,

where R = K[X, Y ]. As explained in (4.22) the sequence (4.25) is obtained by

the same procedure as a resolution using syzygies since finding generators of
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a kernel exactly corresponds to finding syzygies. Hence Theorem 4.5.4 implies

that K ′ is a free R-module as such resolutions have length at most 2. Repeating

this argument on all affines, we obtain that K′ is locally free. Thus (4.24) now

immediately follows from the global sequence (4.25).

Example 4.5.7. In general, the locally free sheaf E in (4.24) cannot be written

as a direct sum of line bundles. Consider the following example on P3. We recall

from [ [35], II, 8.20.1, p.182 ] that the tangent sheaf on Pn is locally free and given

by the resolution

0 −→ OPn
ϕ−→ (n+ 1)OPn(1) −→ TPn −→ 0 ,

where ϕ = (X0, . . . , Xn). Moreover it is indecomposable, i.e. TPn cannot be writ-

ten be as a direct sum of non-zero locally free sheaves. This can be shown by com-

puting its cocycles. In [ [56], 2.2, p.3 ] it is shown that for R = K[X0, X1, X2, X3]

and the homogenous ideal

I = 〈X2
0 , X

2
3 , X1X3 +X0X2 〉

the subscheme Z ⊂ P3 described by R/I (which is contained in a quadruple line)

has a minimal resolution given by

0 −→ OP3(−6)
A3−→ 4OP3(−5)

A2−→ 5OP3(−4)

A1−→ 3OP3(−2)
A0−→ OP3 −→ OZ −→ 0 ,

where A3 = (−X2, X1,−X0, X3). Hence the resolution is of length 4 and one

could think that this contradicts Hilbert’s Syzygy Theorem since locally there

are only 3 variables (setting Xi = 1 on affines). However we can consider

0 −→ kerA1 −→ 5OP3(−4)
A1−→ 3OP3(−2)

A0−→ OP3 −→ OZ −→ 0 (4.26)

0 −→ OP3(−6)
A3−→ 4OP3(−5)

A2−→ cokerA2 −→ 0 (4.27)

with kerA1 = cokerA2 by exactness. Theorem 4.5.4 implies that kerA1 is locally

free since (4.26) is a resolution of maximal length, hence the corresponding mod-

ule is free on affines. On the other hand (4.27) and the form of A3 (up to sign

and permutations) say that cokerA2
∼= TP3(−6). Hence kerA1 is locally free, but
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indecomposable. Finally the resolution of OZ corresponding to the construction

as in (4.23) is

0 −→ E −→ E2
A1−→ E1

A0−→ E0 −→ OZ −→ 0 ,

where all Ei are decomposable, but E = kerA1 is not. Thus it does not contradict

Theorem 4.5.4.

4.5.3 Injective and surjective morphisms

As in (4.24), let a sheaf F ∈ Coh(OP2) be given as the cokernel of a morphism

of direct sums of twisted sheaves, i.e.

k⊕
i=1

OP2(ni)
A−→

l⊕
j=1

OP2(mj) −→ F −→ 0 . (4.28)

Thus A is an k× l–matrix of homogeneous polynomials. In particular this allows

to compute the Fitting ideal Fitt0(F) ⊆ OP2 : it is the sheaf generated by all

l × l–minors of A (since l is the number of generators). Again we consider the

vectors as rows and multiply them by A from the right:

v = (v1, . . . , vk)
A7−→ v · A = (w1, . . . , wl) .

Proposition 4.5.8. A is injective if and only if l ≥ k and at least one of the

k × k–minors is non-zero. In particular if k = l, then A is injective if and only

if detA is not the zero polynomial.

Proof. If we want the morphism defined by A to be injective, we clearly need

that l ≥ k. And if this is the case, the rank-nullity theorem implies that we need

A to be of rank k, i.e. there is at least one non-zero k × k–minor since the rank

is equal to the order of its largest non-zero minor.

Proposition 4.5.9. Let F = cokerA be as in (4.28). If k < l, then suppF = P2.

If k ≥ l, then suppF is given by all points in P2 which vanish on all l× l–minors

of A. Thus A is surjective if and only if this vanishing set is empty. In particular

if k = l, then suppF = Z(detA).
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Proof. Let us compute the support of F . Taking stalks at x ∈ P2 we get

kOP2,x
Ax−→ lOP2,x −→ Fx −→ 0 .

As Fx = coker(Ax), suppF is given by all points for which Ax is not surjective,

i.e. has rank < l. If k < l this is always true, hence suppF = P2 in this case.

So let k ≥ l. If we want that Ax has rank < l in order not to be surjective

(otherwise Fx = {0}), we need all l× l–minors in Ax to vanish. Hence suppF is

given by the points in P2 on which all l× l–minors of A (which are homogeneous

polynomials) vanish. In particular, if k = l and A is a square-matrix, then

suppF is the set of all points x ∈ P2 such that (detA)(x) = 0.

4.5.4 Applications

Example 4.5.10. [ [17], p.6 ]

Consider the morphism of sheaves ϕ : 3OP2(−1)→ OP2 given by

ϕ =


X0

X1

X2

 .

ϕ is surjective since the support of F = cokerϕ is the common vanishing set of

X0, X1, X2, which is empty. To find a locally free resolution we have to compute

the syzygies of ϕ. We have the relations

(−X2) ·X1 +X1 ·X2 = 0 , X2 ·X0 + (−X0) ·X2 = 0 ,

(−X1) ·X0 +X0 ·X1 = 0 ,

so the vectors v1 = (0,−X2, X1), v2 = (X2, 0,−X0) and v3 = (−X1, X0, 0)

generate the module of syzygies. But this is still not free since

X0 · v1 +X1 · v2 +X2 · v3 = (0, 0, 0)

and we get the vector (X0, X1, X2). This one has no more non-trivial relations,

hence we obtain

0 −→ OP2(−3)
ψ−→ 3OP2(−2)

A−→ 3OP2(−1)
ϕ−→ OP2 −→ 0 , (4.29)
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where

ψ = (X0 , X1 , X2) and A =


0 −X2 X1

X2 0 −X0

−X1 X0 0

 .

Definition 4.5.11. The exact sequence (4.29) is called the Koszul resolution on

P2. Similar resolutions also hold true on Pn.

Definition 4.5.12. Let F ∈ Coh(OP2) and p ∈ P2. As Fp is a module over

OP2,p, we can consider the quotient F(p) := Fp/MpFp, where Mp E OP2,p is

the unique maximal ideal of the local ring. F(p) is a vector space over the field

κ(p) = OP2,p/Mp
∼= K since p is a closed point (see Lemma 4.1.26).

Lemma 4.5.13. If

F −→ G −→ H −→ 0 (4.30)

is a short exact sequence of OX–modules, then the sequence of K-vector spaces

F(p) −→ G(p) −→ H(p) −→ 0

is exact as well.

Proof. By Lemma D.2.5, we know that F(p) = Fp/MpFp ∼= Fp ⊗ OP2,p/Mp,

hence taking the stalk of (4.30) at p and tensoring by OP2,p/Mp, which is right

exact, gives the desired statement.

Now we are ready to prove the statement we already mentioned in Remark 4.4.23,

namely that a generic sheaf in M s
am+b is a line bundle over a smooth curve.

Proposition 4.5.14. cf. [ [48], p.6 ]

Let F ∈ M s
am+b be such that its support C = Zf (F) is a smooth curve. Then F

is a locally free OC–module of rank 1.

Proof. By Proposition 4.5.6 we know that F has a locally free resolution of the

type

0 −→ E −→ E1
A−→ E0 −→ F −→ 0 ,
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where Ei =
⊕ri

j=1OP2(aij) and ri is the rank of Ei. Since F has linear Hilbert

polynomial, we have suppF 6= P2 and hence r1 ≥ r0 by Proposition 4.5.9.

Moreover we need r1 = r0, i.e. A must be a square-matrix, otherwise its support

would be given by the common vanishing set of all minors of order r0. This

is either not 1-dimensional or would contain isolated points, which contradicts

purity (an example is given in Remark 4.5.16 below). A being a square-matrix

also implies that detA is not the zero polynomial, otherwise suppF = P2. But

then A is injective by Proposition 4.5.8 and we are left with

0 −→ E1
A−→ E0 −→ F −→ 0 , (4.31)

where r1 = r0. By Corollary 4.4.21 we know that a generic F ∈ M s
am+b is a

vector bundle on its smooth support C, i.e. Fp is a free OC,p–module of finite

rank, ∀ p ∈ C. Suppose that it is of rank n ≥ 2. Using Lemma 4.5.13 we then

consider the corresponding exact sequence of vector spaces

Kr0 A(p)−→ Kr0 −→ F(p) −→ 0

since Ei,p ∼= r0OP2,p, hence Ei(p) ∼= Kr0 . If Fp is of rank n, then Nakayama’s

Lemma (Theorem D.1.11) implies that dimKF(p) = n. But F(p) is the cokernel

of A(p), hence the evaluated matrix A(p) must have rank r0 − n < r0 − 1. So in

particular all its minors of order r0− 1 must vanish. This holds for every p ∈ C.

Hence the homogeneous polynomials given by the submaximal minors of A have

to vanish at infinitely many points, i.e. they are all zero, implying that detA is

zero as well. This contradiction shows that n = 1, i.e. that F is a line bundle

on C.

The fact that 1-dimensional sheaves have a resolution of the type (4.31) is also

compatible with the following result.

Proposition 4.5.15. [ [70], 2.2, p.4 ]

Let F ∈ Coh(OP2) be a sheaf of rank 0. Then F is pure of dimension 1 if and

only if there exists an exact sequence

0 −→ G ⊗OP2(−1) −→ G −→ F −→ 0 , (4.32)

where G is a finite direct sum of line bundles (twisted structure sheaves) on P2.
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Remark 4.5.16. Purity is indeed essential in Proposition 4.5.15. Consider e.g.

the structure sheaf of a line and a point in P2. We may assume that the subscheme

Z ⊂ P2 is described by the homogeneous ideal

I = 〈X0X1, X0X2 〉

since its vanishing set is Z(X0) ∪ {(1 : 0 : 0)}. We have the relation

X2 ·X0X1 −X1 ·X0X2 = 0 ,

but none on the generator (X2,−X1), hence computing syzygies gives the locally

free resolution

0 −→ OP2(−3)
ψ−→ 2OP2(−2)

A−→ OP2(−1) −→ OZ −→ 0 ,

where

ψ = (X2 , −X1) and A =

(
X0X1

X0X2

)
.

This is minimal by the Theorem 4.5.4, but not of the form (4.32).

4.5.5 Hilbert polynomial m+ 1

Now we are ready to study the first examples. We start with the most simple

case Mm+1. As gcd(1, 1) = 1, Corollary 4.3.7 and Corollary 4.3.8 imply that

Mm+1 is a fine moduli space and we get Mm+1 = M s
m+1 as all involved sheaves

are stable. By Theorem 4.3.10 we also know that Mm+1 is smooth, irreducible

and of dimension 2.

Lemma 4.5.17. Let z ∈ Γ
(
P2,OP2(1)

)
be a non-zero linear form, i.e.

z = aX0 + bX1 + cX2

with a, b, c ∈ K, and consider the line L = Z(z). Then OL ∈Mm+1.

Proof. By Proposition 4.3.9 the structure sheaf OL is stable and (4.17) implies

that it has Hilbert polynomial m+ 3−1
2

= m+ 1. Thus OL ∈Mm+1.
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In particular (4.18) also gives the exact sequence

0 −→ OP2(−1)
·z−→ OP2 −→ OL −→ 0 . (4.33)

If we consider this sequence on some affine set Ui ⊂ P2, we get

0 −→ K[X, Y ]
·zi−→ K[X, Y ] −→ K[X, Y ]/〈 zi 〉 −→ 0 ,

where zi is obtained by replacing Xi = 1 in z and K[X, Y ]/〈 zi 〉 is the coordinate

ring K[Li] of the curve Li = Z(zi) ⊂ A2. This is nothing but the local description

of the structure sheaf OL.

The following result now states that all sheaves in Mm+1 are actually given by

such a resolution.

Proposition 4.5.18. [ [15], p.2 ]

Isomorphism classes of sheaves F ∈ Mm+1 are exactly those that are given by a

resolution

0 −→ OP2(−1)
·z−→ OP2 −→ F −→ 0 (4.34)

for some z ∈ Γ
(
P2,OP2(1)

)
with 〈z〉 6= 0.

(4.34) and Proposition 4.5.9 imply that C = Zf (F) is given by all points in P2

on which the linear form z vanishes, i.e. C = Z(z) is a line. But this is the same

sitaution as in (4.33) and so we get F ∼= OC . In particular F is a (locally) free

OC–module, hence non-singular and there are no singular sheaves in Mm+1.

Corollary 4.5.19. [ [47], p.36 ]

Isomorphism classes of stable sheaves in Mm+1 are exactly the structure sheaves

OL of lines L ⊂ P2. Hence Mm+1 may be identified with the space of lines in P2 ;

we get M ′
m+1 = ∅ and Mm+1

∼= C1(P2) ∼= P(3
2)−1 = P2.

4.5.6 Hilbert polynomial 2m+ 1

Similarly gcd(2, 1) = 1, so Theorem 4.3.10 implies that M2m+1 is a fine moduli

space which is smooth, irreducible and of dimension 5. By Proposition 4.3.9 we

know again by that the structure sheaf of a quadratic curve (conic) in P2 is stable

and has Hilbert polynomial

2 ·m+ 3·2−22

2
= 2m+ 1 .
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Proposition 4.5.20. [ [15], p.2 ]

The isomorphism classes of stable sheaves F ∈M2m+1 are exactly those given by

a resolution

0 −→ OP2(−2)
·q−→ OP2 −→ F −→ 0 ,

where q ∈ Γ
(
P2,OP2(2)

)
is a quadratic form with 〈q〉 6= 0.

Exactly the same argument as in Section 4.5.5 shows that F ∼= OC for C = Z(q),

so again there are no singular sheaves.

Remark 4.5.21. Note here that C does not need to be smooth, e.g. q = X2
0

would give a double line. Hence we get examples of non-singular sheaves with

singular support. In particular this shows that the converse of Proposition 4.4.16

is false.

Corollary 4.5.22. [ [47], p.36 ]

The fine moduli space M2m+1 is isomorphic to the space of conics in P2, so we

get M ′
2m+1 = ∅ and M2m+1

∼= C2(P2) ∼= P(4
2)−1 = P5.

4.6 Hilbert polynomial 3m + 1

The first non-trivial example is given by M3m+1. Again gcd(3, 1) = 1 implies

that the moduli space is fine, smooth, irreducible and of dimension 10. Moreover

it only contains isomorphism classes of stable sheaves.

Remark 4.6.1. Note that structure sheaves of cubic curves in P2 (curves of

degree 3) do not define elements in M3m+1 since by (4.17) they have Hilbert

polynomial

3 ·m+ 3·3−32

2
= 3m .

If C = Z(f) is the vanishing set of a homogeneous polynomial f of degree 3,

then OC ∈M3m and OC(1) ∈M3m+3. Hence for M3m+1 we cannot use the same

methods as for m+ 1 and 2m+ 1.
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4.6.1 Description of sheaves in M3m+1

Proposition 4.6.2. [ [25], 3.2, p.6 ] and [ [47], p.37 ]

Let F ∈M3m+1 and C = Zf (F) be its Fitting support. Then there exists a point

p ∈ C and a non-split extension

0 −→ OC −→ F −→ Skyp(K) −→ 0 . (4.35)

Proof. By Proposition 4.4.5 and Remark 4.6.1 we know that C ⊂ P2 is a curve of

degree 3 and its structure sheaf OC has Hilbert polynomial 3m. Let C = Z(f) be

given by the vanishing set of some homogeneous polynomial f ∈ K[X0, X1, X2]

of degree 3. We obtain an injection OC ↪→ F as follows.

Since PF(0) = 1 = h0(F) − h1(F) by (4.16), the sheaf F has a non-zero global

section s ∈ H0(P2,F). Let Ui ⊂ P2 be an affine open set and denote by fi(X, Y )

the polynomial in 2 variables obtained by replacing Xi = 1 in f . If F|Ui corre-

sponds to some module M over K[X, Y ], we define

K[X, Y ]/〈 fi 〉 −→M : ḡ 7−→ g ∗ s|Ui ,

which is well-defined since fi ∈ Fitt0(M) ⊆ AnnK[X,Y ](M). Under ∼ this gives

an injective morphism OC → F since F is a torsion-free OC–module (Proposi-

tion 4.4.1). The quotient

0 −→ OC −→ F −→ F/OC −→ 0

has Hilbert polynomial PF(m)−POC (m) = (3m+1)−3m = 1 and is therefore a

skyscraper sheaf supported on a single point p ∈ P2. This point must belong to C,

otherwise Fp = {0}. Finally the extension is also non-split because OC⊕Skyp(K)

is not pure of dimension 1, thus not stable.

Remark 4.6.3. There exists an equivalent characterization for sheaves in M3m+1

by means of resolutions, which we will see in (4.36). Using this description one

can also write down explicitly the coordinates of the point p ∈ C from (4.35).

This will be the aim of Lemma 4.6.9.
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Proposition 4.6.4. [ [25], 3.3, p.6-7 & 6.1, p.15 ] and [ [15], p.2 ]

The non-trivial extension (4.35) of F ∈ M3m+1 is equivalent to a resolution of

OP2–modules

0 −→ 2OP2(−2)
A−→ OP2(−1)⊕OP2 −→ F −→ 0 (4.36)

with A a matrix of the form

A =

(
z1 q1

z2 q2

)
,

where z1, z2 ∈ Γ
(
P2,OP2(1)

)
are linear forms and q1, q2 ∈ Γ

(
P2,OP2(2)

)
are

quadratic forms such that 〈detA〉 6= 0 and the vectors 〈z1〉, 〈z2〉 ∈ K3 are linearly

independent over K.

Remark 4.6.5. Note that the exact sequence (4.36) is compatible with the

formula of Example 4.3.1 since

PF(m) =
m(m+ 1)

2
+

(m+ 2)(m+ 1)

2
− 2 · m(m− 1)

2
= 3m+ 1 .

Remark 4.6.6. By Proposition 4.5.8 we need 〈detA〉 6= 0 for injectivity in

(4.36). But why do we need the condition on linear independence ?

Assume that 〈z1〉 and 〈z2〉 are linearly dependent, i.e. λ z1 + µ z2 = 0 for some

(λ, µ) 6= (0, 0). Then one can always perform finitely many row transformations

to obtain

A ∼

(
z′1 q′1

0 q′2

)
= B

for some linear, resp. quadratic forms z′1, q
′
1, q
′
2 with 〈z′1〉 6= 0 and 〈q′2〉 6= 0. Let

g ∈ GL2(K) describe the linear transformations of the rows, i.e. B = g ·A. As g

is invertible, the cokernel FB of the morphism defined by B will be isomorphic20

to the one defined by A, i.e.

0 // 2OP2(−2) A // OP2(−1)⊕OP2
// FA // 0

0 // 2OP2(−2) B //

g

OO

OP2(−1)⊕OP2

id

OO

// FB

∼=

OO

// 0

20We will give a rigorous proof of this fact more generally in Lemma 5.1.11.
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Now consider

0 // 2OP2(−2) B // OP2(−1)⊕OP2

π // F // 0

0 // OP2(−2)
(0,q′2)

66

·q′2
//

(0,1)

OO

OP2

(0,1)

OO
88

p
// OQ

i

OO

// 0

0

OO

0

OO

0

OO

where OQ is the structure sheaf of the conic Q = Z(q′2). As

(π ◦ (0, 1)) ◦ (·q′2) = π ◦B ◦ (0, 1) = 0 ,

π◦(0, 1) factorizes through the cokernel and we get a morphism i : OQ → F . This

i is even injective: (with an abuse of notation) let x ∈ OQ such that i(x) = 0.

p surjective ⇒ ∃ y ∈ OP2 such that x = p(y)

0 = i(x) = i
(
p(y)

)
=
(
π ◦ (0, 1)

)
(y) = π(0, y)

⇒ (0, y) ∈ imB ⇒ ∃ a, b ∈ OP2(−2) such that (0, y) = (a, b) ·B

(a, b) ·B = (az′1 , aq
′
1 + bq′2)

⇒ a = 0 since 〈z′1〉 6= 0 ⇒ (0, y) = (0, b) ·B = (0, bq′2)

⇒ y = b · q′2 ⇒ y ∈ im(·q′2) = ker p ⇒ x = p(y) = 0

But this means that OQ is a non-zero proper coherent subsheaf of F . Since

Q is a curve of degree 2 we know from (4.17) that OQ has Hilbert polynomial

2m + 1, hence its reduced Hilbert polynomial is m + 1
2
. But PF(m) = 3m + 1

and pF(m) = m+ 1
3
< m+ 1

2
, which contradicts stability of F . So 〈z1〉 and 〈z2〉

must be linearly independent.

4.6.2 Parameter space and criterion for singularity

We shall determine in which case the matrix A from (4.36) defines a singular

sheaf via F = cokerA. For this, we introduce the following notations.
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Notation 4.6.7. We write the polynomials z1, z2, q1, q2 in A as

z1 = a0X0 + a1X1 + a2X2 , z2 = b0X0 + b1X1 + b2X2

q1 = A00X
2
0 + A01X0X1 + A02X0X2 + A11X

2
1 + A12X1X2 + A22X

2
2 (4.37)

q2 = B00X
2
0 +B01X0X1 +B02X0X2 +B11X

2
1 +B12X1X2 +B22X

2
2

with coefficients ai, bi, Aij, Bij ∈ K, so the space of all such matrices may be

identified with the affine variety A18. Now consider

X :=

{(
z1 q1

z2 q2

) ∣∣∣∣∣ 〈z1〉, 〈z2〉 are lineary independent and 〈z1q2 − z2q1〉 6= 0

}
,

which parametrizes all the matrices from Proposition 4.6.4.

Lemma 4.6.8. [ [41], p.3-4 ]

X is an open subset of A18, hence a quasi-affine variety. In particular, X ⊂ A18

is dense.

Proof. Since we consider A18 as an affine variety, closed subsets are given by

vanishing sets of polynomials in 18 variables. We shall show that A18 \ X is

closed. Note that the coefficients of the polynomial detA = z1q2 − z2q1 are such

polynomials in the 18 variables from (4.37). As it is a homogeneous polynomial

of degree 3, we get
(

5
2

)
= 10 closed conditions, i.e. the condition 〈z1q2−z2q1〉 6= 0

is open. Saying that 〈z1〉 and 〈z2〉 are linearly independent means that at least

one of the 2× 2–minors of

D =


a0 b0

a1 b1

a2 b2

 (4.38)

must be non-zero, so in the complement we get that all minors must vanish, i.e.

again 3 closed conditions. Hence X ⊂ A18 is open.

Lemma 4.6.9. [ [41], 1.1, p.5 ]

The intersection point of the projective lines Z(z1) and Z(z2) in P2 is given by

p = (d0 : d1 : d2) ∈ P2, where

d0 = a1b2 − a2b1 , d1 = −(a0b2 − a2b0) , d2 = a0b1 − a1b0

are the 2× 2–minors of the matrix D in (4.38) defined by 〈z1〉 and 〈z2〉.
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Proof. As 〈z1〉 and 〈z2〉 are linearly independent, we know that at least one of

the minors is non-zero, hence p ∈ P2 is well-defined. Moreover the corresponding

projective lines meet in exactly 1 point by Theorem D.1.14. Now consider
a0 a0 b0

a1 a1 b1

a2 a2 b2

 ,


b0 a0 b0

b1 a1 b1

b2 a2 b2

 .

These matrices have determinant zero. Expanding them along the first column

gives the equations

a0d0 + a1d1 + a2d2 = 0 and b0d0 + b1d1 + b2d2 = 0 ,

which exactly means that (d0 : d1 : d2) is the point where both z1 and z2

vanish.

Now we have the following criterion for a sheaf in M3m+1 that is parametrized

by some A ∈ X to be singular.

Proposition 4.6.10. [ [25], 6.2, p.15 ] and [ [41], 1.2, p.5 ]

Let A ∈ X and p ∈ P2 be as in Lemma 4.6.9. Then the following statements are

equivalent:

1) The sheaf F := cokerA is singular.

2) The quadratic forms q1 and q2 both vanish at p.

3) p is a singular point of the curve C = Z(detA) = Zf (F).

Proof. As F is coherent, we have that F is a locally free OC–module if and only if

Fx is a free OC,x–module, ∀x ∈ P2. We first show that Fx ∼= OC,x, ∀x ∈ P2\{p},
i.e. all these stalks are free OC,x–modules of rank 1. Hence whether F is singular

or not only depends on the stalk Fp.
If x 6= p, at least one of the linear forms z1, z2 does not vanish at x, say e.g.

z1(x) 6= 0. Taking stalks at x of the exact sequence (4.36) gives

0 −→ 2OP2,x
Ax−→ 2OP2,x −→ Fx −→ 0 , (4.39)
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where the entries of Ax are those of A considered as elements in OP2,x. As

z1(x) 6= 0, it is invertible in this local ring with inverse 1
z1
∈ OP2,x. But then

Ax =

(
z1 q1

z2 q2

)
∼

(
1 q1

z1
z2
z1

q2
z1

)
∼

(
1 q1

z1

0 q2
z1
− z2

z1
· q1
z1

)

∼

(
1 0

0 1
z2
1
· (z1q2 − z2q1)

)
=

(
1 0

0 1
z2
1
· detA

)
,

where 1
z2
1

is a unit, hence

Fx ∼= cokerAx = 2OP2,x/ imAx ∼= OP2,x/ im(· detA) = OP2,x/〈 detA 〉 = OC,x

since Ax is an isomorphism in the first component.

1) ⇒ 2) : For p, we already know that z1(p) = z2(p) = 0. If now qi(p) 6= 0 for

some i = 1, 2, then one proceeds as above to obtain

Ap ∼

(
1 0

0 1
q2
i
· detA

)
,

thus Fp ∼= OC,p is free and F is a locally free OC–module. An alternative proof

goes as follows:

From (4.39) and Lemma 4.5.13 we get the exact sequence of K-vector spaces

K2 A(p)−→ K2 −→ F(p) −→ 0 , (4.40)

where

A(p) =

(
z1(p) q1(p)

z2(p) q2(p)

)
∼

(
0 qi(p)

0 ∗

)
is the evaluated matrix at p. Since qi(p) 6= 0, A(p) is of rank 1 and the vector

space F(p) = cokerA(p) has dimension 1. Nakayama’s Lemma then implies that

Fp is generated by 1 element over OP2,p (but not free since it is torsion). The

module structure defined by OP2,p � OC,p implies that Fp is also generated by

1 element over OC,p. Hence the annihilator and the Fitting ideal of Fp coincide

(Lemma 1.4.8). But then no non-zero element from OC,p can annihilate Fp
(since all those that annihilate are divided out). Hence the generator of Fp has

no relations over OC,p and we conclude that Fp ∼= OC,p is free.
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2)⇒ 1) : Let q1(p) = q2(p) = 0. We shall show that Fp is not a freeOC,p–module,

hence that F is singular. Assume that Fp is free. From Proposition 4.5.14 we

know that Fp must be free of rank 1. Hence we get

F(p) = Fp/MpFp ∼= OC,p/MpOC,p = OC,p/MC,p
∼= K , (4.41)

where MC,p E OC,p is the unique maximal ideal. We will prove formula (4.41)

afterwards. On the other hand, we have

K2 A(p)−→ K2 −→ F(p) −→ 0

with z1(p) = z2(p) = q1(p) = q2(p) = 0, thus A(p) = 0 is the zero map and

F(p) ∼= K2. This contradiction shows that Fp cannot be free.

Note : in general, the evaluated matrix A(x) is not well-defined if one of the

entries of A does not vanish at x. But

rk

(
α β

γ δ

)
= rk

(
λα λ2 β

λ γ λ2 δ

)
, ∀λ 6= 0 ,

hence its image and cokernel (as vector spaces) are independent of the chosen

coordinates for x = (x0 : x1 : x2) ∈ P2.

2)⇔ 3) : The vectors 〈X0〉 = (1, 0, 0), 〈X1〉 = (0, 1, 0) and 〈X2〉 = (0, 0, 1) form

a basis of K3. Moreover we know that 〈z1〉 and 〈z2〉 are linearly independent,

hence there exists a third vector v ∈ K3 such that 〈z1〉, 〈z2〉, v is another basis of

K3. Write v = (a, b, c) and let z0 be the linear form defined by 〈z0〉 = v. So
z0

z1

z2

 =


a b c

a0 a1 a2

b0 b1 b2

 ·

X0

X1

X2

 = T ·


X0

X1

X2

 ⇒


X0

X1

X2

 = T−1 ·


z0

z1

z2


and this defines a change of variables as the matrix T is invertible. In particular,

Xi = Xi(z0, z1, z2).

Denote f = detA, which is a homogeneous polynomial of degree 3. Now p is a

singular point of the curve C if and only if

∂f

∂X0

(p) =
∂f

∂X1

(p) =
∂f

∂X2

(p) = 0 . (4.42)
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By the chain rule, we have

∂f

∂zi
=

∂f

∂X0

· ∂X0

∂zi
+

∂f

∂X1

· ∂X1

∂zi
+

∂f

∂X2

· ∂X2

∂zi
,

∂f

∂Xi

=
∂f

∂z0

· ∂z0

∂Xi

+
∂f

∂z1

· ∂z1

∂Xi

+
∂f

∂z2

· ∂z2

∂Xi

,

hence (4.42) is equivalent to

∂f

∂z0

(p) =
∂f

∂z1

(p) =
∂f

∂z2

(p) = 0 ,

where each ∂f
∂zi

has to be seen as a function in z0, z1, z2. Recall Euler’s formula,

which states that

z0 ·
∂f

∂z0

+ z1 ·
∂f

∂z1

+ z2 ·
∂f

∂z2

= 3f .

Note that f(p) = z1(p) = z2(p) = 0. Expanding the invertible matrix T along

the first line, we find

0 6= detT = a · d0 + b · d1 + c · d2 = z0(p) ,

hence ∂f
∂z0

(p) = 0 is always true. As f = z1q2 − z2q1, we moreover have

∂f

∂z1

= q2 + z1 ·
∂q2

∂z1

− z2 ·
∂q1

∂z1

⇒ ∂f

∂z1

(p) = q2(p) ,

∂f

∂z2

= z1 ·
∂q2

∂z2

− q1 − z2 ·
∂f

∂z2

⇒ ∂f

∂z2

(p) = −q1(p) .

Summarizing all the above, we obtain

p is a singular point of C ⇔ (4.42) ⇔ ∂f

∂z1

(p) =
∂f

∂z2

(p) = 0

⇔ q1(p) = q2(p) = 0 ,

which finally proves the equivalence.

Remark 4.6.11. Here we provide the proof of (4.41). As c : C ↪→ P2 is a closed

immersion, the induced surjective map OP2,p � OC,p is a local homomorphism.

So we may reduce the situation to the case of a quotient of local rings

R
π−→ S −→ 0
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with unique maximal ideals M E R and N E S such that π(M) ⊆ N, or

equivalently M = π−1(N). Now we have to show that S/MS = S/N, i.e. that

π−1(N) ∗ S = N. As S is a quotient of R, we may write S ∼= R/I for some ideal

I E R and π is just the canonical quotient map.

⊆ : let r ∈ R such that π(r) = r̄ ∈ N ⇒ r ∗ s̄ = r̄ · s̄ ∈ N, ∀ s̄ ∈ S
⊇ : let r̄ ∈ N and choose r ∈ R such that π(r) = r̄ ⇒ r∗ 1̄ = r̄ with r ∈ π−1(N)

4.6.3 Codimension of the singular sheaves

Proposition 4.6.12. [ [41], p.6-9 ]

Let X ′ ⊂ X be the subset of all matrices which define singular sheaves. Then X ′

is a smooth closed subvariety of X and codimX X
′ = 2.

Proof. Let A ∈ X with the notations as in (4.37). By Proposition 4.6.10, we

know that A ∈ X ′ if and only if q1(p) = q2(p) = 0. Writing out the equations,

this gives

F1 : q1(p) = A00 d
2
0 + A01 d0d1 + A02 d0d2 + A11 d

2
1 + A12 d1d2 + A22 d

2
2 = 0

F2 : q2(p) = B00 d
2
0 +B01 d0d1 +B02 d0d2 +B11 d

2
1 +B12 d1d2 +B22 d

2
2 = 0

with d0 = a1b2 − a2b1, d1 = a2b0 − a0b2 and d2 = a0b1 − a1b0. Hence F1 and F2

define polynomials in 18 variables. These 2 equations completely determine X ′,

which is hence given by their common vanishing set intersected with X, i.e.

X ′ = X ∩ Z(F1, F2) ⊂ A18 . (4.43)

In particular, this shows that X ′ is an (affine) algebraic subvariety of codimension

2 in X.

X ′ �
�

codim=2

closed // X �
� open

// A18

The subvariety X ′ ⊂ X is smooth since the Jacobian matrix J(F1, F2) has max-

imal rank at all points in X:(
∗ . . . ∗ d2

0 d0d1 d0d2 d2
1 d1d2 d2

2 0 0 0 0 0 0

∗ . . . ∗ 0 0 0 0 0 0 d2
0 d0d1 d0d2 d2

1 d1d2 d2
2

)

This matrix has always rank 2 since at least one of the di is non-zero.

214



LEYTEM Alain 4.6. Hilbert polynomial 3m+ 1

4.6.4 Group action and quotient map

Until now we only found a criterion to decide whether a matrix from X defines a

singular sheaf in M3m+1 and that the subvariety X ′ ⊂ X giving singular sheaves

is of codimension 2. But this doesn’t say anything about the codimension of the

subvariety of singular sheaves in M3m+1 yet. We have to find a description of

M ′
3m+1 itself.

For this first note that there is no 1-to-1 correspondence between M3m+1 and

the parameter space X. More precisely, two different matrices A,B ∈ X may

define isomorphic sheaves FA and FB via their cokernels ; we already saw such

an example in Remark 4.6.6. Hence we have to divide out a certain action on X

in order to obtain a bijection with M3m+1. This action is given by the group of

automorphisms of the exact sequence

0 // 2OP2(−2) A // OP2(−1)⊕OP2
// FA // 0

0 // 2OP2(−2) B //

g

OO

OP2(−1)⊕OP2 //

h

OO

FB //

∼=

OO

0

Notation 4.6.13. Consider the group

G := Aut
(
2OP2(−2)

)
× Aut

(
OP2(−1)⊕OP2

)
The first factor is nothing but GL2(K). We denote the second one by H and it

consists of matrices of the form

H =

{ (
λ z

0 µ

) ∣∣∣∣ λ, µ ∈ K, λµ 6= 0, z ∈ Γ
(
P2,OP2(1)

)}
. (4.44)

As a variety H is isomorphic to K∗ × K∗ × K3. The group G = GL2(K) × H
then acts on X by the rule (g, h) . A := g · A · h−1 and this action corresponds

to isomorphisms of exact sequences. Hence the orbits of G are in 1-to-1 corre-

spondence with the isomorphism classes of sheaves defined as cokernels by these

exact sequences, i.e. with points in M3m+1.

Remark 4.6.14. One is tempted to expect that X/G ∼= M3m+1. However this

is not completely true. The reason for this is that points in X have a non-trivial

215



LEYTEM Alain 4.6. Hilbert polynomial 3m+ 1

stabilizer, so the action of G on X is not free. Indeed for all A ∈ X, we have

Γ :=

{ (
λ 0

0 λ

)
×

(
λ 0

0 λ

) ∣∣∣∣ λ ∈ K∗
}
⊆ StabG(A) .

In Corollary 5.2.37 we will show more generally that Γ is indeed equal to the

stabilizer of any A ∈ X. Being independent of A we can hence divide it out

and obtain a new group PG := G/Γ, which now acts freely on X and whose

orbits still correspond bijectively to the points in M3m+1. So we get (at least) a

set bijection X/PG ∼= M3m+1, which is also compatible with dimensions. Indeed

GL2(K) may be identified with an open subset of A4 and H is open in A5, hence

dimG = 9 and Γ ∼= K∗ implies that X/PG is of dimension 18− (9− 1) = 10, the

same as M3m+1. We denote the corresponding quotient map by

ν : X −→ X/PG ∼= M3m+1 .

According to all previous constructions it is given by [A] 7→ [cokerA]. Now we

even have

Theorem 4.6.15. [ [25], 6.3, p.16 ] and [ [41], p.4 ]

1) M3m+1 is a geometric quotient of X by the action of the (non-reductive)

group G.21 In particular, the bijection X/PG ∼= M3m+1 is an isomorphism

of projective varieties.

2) The quotient map ν : X → M3m+1 is a morphism of projective varieties

and defines a principal bundle over M3m+1 with fiber PG.

Proof. We only give certain ideas of how to prove these statements ; they both

follow from a similar version of the Theorem of Gleason from differential geom-

etry. X is a variety on which the group PG acts freely, so the quotient X/PG
can be endowed with a structure of a projective variety with quotient topology

given by ν. Moreover the projection ν : X → X/PG defines a principal bundle

with structure group PG.

Showing that ν is a morphism of projective varieties is done by using that M3m+1

21The notions of “geometric quotient” and “(non-)reductive group” are explained more pre-

cisely in Appendix D.4.
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is a fine moduli space. Indeed, we want to construct an element [E ] ∈M3m+1(X)

(this is a sheaf on P2×X) in order to get a unique morphism X →M3m+1 such

that [E ] is the pullback of the universal family [U ] ∈ M3m+1(M3m+1). Since

X ⊂ A18 is a quasi-affine variety, it may also be seen as a quasi-projective vari-

ety (X,OX). For n ∈ Z, define

OP2×X(n) := OP2(n)�OX .

Using the Künneth formula, one can show that

Γ
(
P2 ×X , OP2×X(n)

) ∼= Γ
(
P2,OP2(n)

)
⊗ Γ(X,OX) ,

i.e. global sections of OP2×X(n) for n ≥ 0 are homogeneous polynomials of degree

n with coefficients in OX(X). Then we define E as the cokernel

0 −→ 2OP2×X(−2)
B−→ OP2×X(−1)⊕OP2×X −→ E −→ 0 , (4.45)

where B is a matrix like x such that detB is non-zero and its linear entries are

linearly independent. Fix x ∈ X and consider the Cartesian diagram

P2
πx //

��

P2 ×X
p1
//

πX
��

P2

{x} // X

In order to compute E|x, note that

OP2×X(n)|x = π∗x
(
OP2×X(n)

)
= π∗x

(
OP2(n)�OX

)
= π∗x

(
p∗1
(
OP2(n)

)
⊗ π∗XOX

)
∼= (p1 ◦ πx)∗

(
OP2(n)

)
⊗ (πX ◦ πx)∗OX ∼= id∗

(
OP2(n)

)
⊗OP2

∼= OP2(n) .

When applying the right exact functor π∗x to (4.45), we thus get

2OP2(−2)
x−→ OP2(−1)⊕OP2 −→ E|x −→ 0 ,

so that E|x ∼= cokerx, which has Hilbert polynomial 3m + 1 since x ∈ X. Thus

[E ] ∈ M3m+1(X). By the universal property of fine moduli spaces, we obtain a

unique morphism

ν : X →M3m+1 : A 7→ [cokerA]
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such that [E ] = ν∗[U ], where

P2 ×X
πX
��

P2 ×M3m+1

πM
��

X
ν //M3m+1

To see that ν : X →M3m+1 defines a locally trivial fibration (i.e. a bundle), recall

that ν(PG.x) = x, ∀x ∈ X. We want to construct a section s : M3m+1|U → X

which should be a local inverse of ν. Let y = [F ] ∈ M3m+1 and choose a

matrix A ∈ X such that F ∼= cokerA. We set s(y) := A. This is locally well-

defined since X/PG ∼= M3m+1, so there exists an open neighborhood V ⊆ X

of A which does not contain any other element from the PG-orbit of A. Hence

s : M3m+1|U → V ⊆ X with U := ν(V ) is well-defined and we have a local

isomorphism

X|V

ν
$$

PG×M3m+1
∼oo

ww

M3m+1|U

given by (ḡ, y) 7→ g.s(y), which is well-defined since ν(g.s(y)) = ν(s(y)) = y.

4.6.5 Universal cubic curve and codimension in M3m+1

Definition 4.6.16. Fix d ≥ 1 and let N =
(
d+2

2

)
. The universal curve of degree

d on P2 is defined as

U(d) =
{

(C, x) ∈ Cd(P2)× P2

∣∣ x ∈ C }
∼=
{ (
〈f〉, x

)
∈ PN−1 × P2

∣∣ f(x) = 0
}
.

By projection it defines a projective bundle U(d) → P2 (a fiber bundle whose

fibers are projective spaces). In particular for d = 3 we obtain the universal

cubic curve U(3). In coordinates, this is

U(3) =

{(
(C00 : C10 : . . . : C03) , (x0 : x1 : x2)

)
∈ P9 × P2 such that∑

i+j+k=3

Cjk x
i
0x

j
1x

k
2 = 0

}
. (4.46)
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The relation between U(3) and the moduli space M3m+1 is the following.

Theorem 4.6.17. [ [47], 5.1, p.36-37 ] and [ [23], 5.4, p.72-73 ]

There is an isomorphism of projective varieties M3m+1
∼= U(3) given by

M3m+1
∼−→ U(3) : [F ] 7−→

(
Zf (F) , p

)
,

where p ∈ Zf (F) is as in the extension (4.35).

In terms of the parameter space X where F ∼= cokerA for some A ∈ X it can be

rewritten as

X/PG ∼−→ U(3) : [A] 7−→
(
〈detA〉 , p

)
∈ P9 × P2 ,

where p ∈ Z(z1) ∩ Z(z2) is as in Lemma 4.6.9.

Remark 4.6.18. This is well-defined since detA = z1q2− z2q1 is a homogenous

polynomial of degree 3 that vanishes at p. 〈detA〉 is also independent of the

class of A since

det
(
(g, h) . A

)
= det

(
g · A · h−1

)
= det g · detA · deth−1 = λ · detA

for some λ ∈ K∗, hence 〈detA〉 = 〈λ detA〉 in P9.

Remark 4.6.19. The inverse morphism is defined as follows: given a cubic curve

C ∈ C3(P2) and a point x ∈ C, consider the exact sequence

0 −→ G −→ OC −→ Skyx(K) −→ 0 ,

where OC → Skyx(K) is the morphism defining the closed subscheme {x} ↪→ C.

Its kernel G can be shown to be stable and has Hilbert polynomial 3m − 1, so

the dual has Hilbert polynomial 3m + 1 by Proposition 4.3.16 and it suffices to

take F := GD (since G is stable if and only if GD is stable). In particular the

point p = (d0 : d1 : d2) from Lemma 4.6.9 is exactly the one occurring in (4.35).

Hence Theorem 4.6.17 says that giving a sheaf in M3m+1 is equivalent to giving

a cubic curve and a point lying on that curve.
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Corollary 4.6.20. [ [41], 1.4, p.5 ]

Let F ∈M3m+1 be given by F ∼= cokerA and represented by
(
〈detA〉 , p

)
∈ U(3).

Then [F ] is the isomorphism class of a singular sheaf if and only if p is a singular

point of the curve Z(detA) ⊂ P2.

Proof. Combine Theorem 4.6.17 and Proposition 4.6.10.

Proposition 4.6.21. [ [41], p.6 ]

The subvariety M ′
3m+1 of (isomorphism classes of) singular sheaves in M3m+1 is

a smooth closed subvariety of codimension 2.

Proof. Theorem 4.6.17 allows to identify M ′
3m+1 with a subvariety of U(3). Corol-

lary 4.6.20 says that a point (〈f〉, x) ∈ U(3) ∼= M3m+1 corresponds to an isomor-

phism class of a singular sheaf if and only if x is a singular point of the curve

Z(f). Using description (4.46), we have

〈f〉 = (C00 : C10 : C01 : C20 : C11 : C02 : C30 : C21 : C12 : C03) ,

x = (x0 : x1 : x2)

and U(3) ⊆ P9 × P2 is given by all points satisfying

C00x
3
0 + C10x

2
0x1 + C01x

2
0x2 + C20x0x

2
1 + C11x0x1x2

+ C02x0x
2
2 + C30x

3
1 + C21x

2
1x2 + C12x1x

2
2 + C03x

3
2 = 0 . (4.47)

For a singular point, we need that all partial derivatives of f vanish at x, i.e.

∂0f(x) = 0

⇔ 3C00x
2
0 + 2C10x0x1 + 2C01x0x2 + C20x

2
1 + C11x1x2 + C02x

2
2 = 0 , (e0)

∂1f(x) = 0

⇔ C10x
2
0 + 2C20x0x1 + C11x0x2 + 3C30x

2
1 + 2C21x1x2 + C12x

2
2 = 0 , (e1)

∂2f(x) = 0

⇔ C01x
2
0 + C11x0x1 + 2C02x0x2 + C21x

2
1 + 2C12x1x2 + 3C03x

2
2 = 0 . (e2)

In particular this shows that M ′
3m+1 is indeed closed. However it does not mean

that the codimension of M ′
3m+1 is 3. Indeed Euler’s relation

x0 · ∂0f(x) + x1 · ∂1f(x) + x2 · ∂2f(x) = 3 · f(x)
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implies that a point also belongs to U(3) as soon as (e0), (e1), (e2) are simultane-

ously satisfied. Thus M ′
3m+1 is of codimension 3 in P9×P2. U(3) being described

by the single equation (4.47), we conclude that U(3) is closed in P9 × P2 of

codimension 1 and hence M ′
3m+1 is of codimension 2 in U(3). Finally

codimM3m+1

(
M ′

3m+1

)
= 2 .

This can also be seen in the following way. Let Ui = {xi 6= 0} ⊂ P2. Euler’s

relation implies that M ′
3m+1 is locally described by only 2 of the equations (ei).

Namely in U(3)∩U0, the equations of M ′
3m+1 are e1 and e2. Similarly in U(3)∩U1,

the equations are e0, e2 and in U(3)∩U2, we have e0, e1. FinallyM ′
3m+1 is a smooth

subvariety of M3m+1 because the Jacobain matrix J(e0, e1, e2)
3x2

0 2x0x1 2x0x2 x2
1 x1x2 x2

2 0 0 0 0 ∗ ∗ ∗
0 x2

0 0 2x0x1 x0x2 0 3x2
1 2x1x2 x2

2 0 ∗ ∗ ∗
0 0 x2

0 0 x0x1 2x0x2 0 x2
1 2x1x2 3x2

2 ∗ ∗ ∗


is always of rank 3 (each row contains a monomial x2

0, x
2
1, x

2
2, so at least one of

them is non-zero).

Proposition 4.6.22. X ′ ⊂ X and M ′
3m+1 ⊂M3m+1 are irreducible subvarieties.

Proof. Note that it is equivalent to say that X ′ is irreducible in X or in A18 since

the induced topologies from X ′ ⊂ X ⊂ A18 coincide. It suffices to show that

Z(F1, F2) is irreducible as a subspace of A18. Then X ′ ⊂ Z(F1, F2) is open by

(4.43), hence irreducible as well.

First consider Z(F1) ⊂ A18, which is irreducible since F1 ∈ K[a0, a1, . . . , B22] is

irreducible and K is algebraically closed. Similarly F̄2 ∈ K[a0, a1, . . . , B22]/〈F1 〉
is irreducible since there does not exist a decomposition

F̄2 = ḡ · h̄ , i.e. F2 = g · h+ l · F1

for some non-constant polynomials g, h, l (here one uses that F1 is linear in

A00, . . . , A22, which do not appear in F2, and that F2 is linear in B00, . . . , B22,

which do not appear in F1). Therefore Z(F1, F2) = Z(F2) ∩ Z(F1) is irreducible

in Z(F1), hence in A18.
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Then we apply the morphism ν : X → M3m+1 to the inclusions X ′ ⊂ X ⊂ A18

and conclude that M3m+1 = ν(X) and M ′
3m+1 = ν(X ′) are irreducible as well

since they are continuous images of irreducible subspaces.

Remark 4.6.23. relation with the space Ω from (4.13).

Recall that the Simpson moduli space was constructed in Section 4.2.2 as a

quotient (4.13) of some space Ω of points that are semistable under the action of

some SL(V ). Looking at the above constructions for M3m+1 one may think that

X is a concrete description of Ω and that the action of PG corresponds to the

action of SL(V ). However this is not true. For technical reasons one prefers to

divide out the constants in the parameter space rather than in the group action

in order to obtain an action of a linear group on a projective space. The general

theory behind this idea is briefly explained in Appendix D.4. For M3m+1 it looks

as follows:

Instead of X we consider the quasi-projective variety PX ⊂ P17, so in some sense

Γ ∼= K∗ is already divided out. Note that this is well-defined since the closed

conditions that define the complement of X in A18 (zero determinant and linear

dependence, see Lemma 4.6.8) are homogeneous polynomials of degree 2 in the

18 variables. Then Ω corresponds to PX. Now we want to divide out a suitable

group action. The action of G on X also induces an action of G on PX via

(g, h) . Ā := 〈 (g, h) . A 〉

for (g, h) ∈ G where A ∈ K18 is a representative of Ā ∈ P17 and 〈 · 〉 denotes

the homogenous coordinates. This is well-defined as the initial action is linear.

Since however we now work with projective spaces, we no longer have to care

about multiplication by constants. In particular it suffices to consider matrices of

determinant 1 (if det g 6= 0, then ∃λ ∈ K∗ such that det(λg) = 1). So we can take

SL in both components of G. This yields the group SG = SL2(K)×SL(H), where

SL(H) is the subgroup of matrices in H from (4.44) with determinant 1. The

new construction is still compatible with dimensions since StabSG(Ā) = {± id}
is finite, hence 0-dimensional for all Ā ∈ P17 and SLn has codimension 1 in GLn.

Thus PX/SG is of dimension 17− (4− 1)− (5− 1) = 10. Finally we obtain that

the action of this group SG is the concrete description of SL(V ).

222



LEYTEM Alain 4.6. Hilbert polynomial 3m+ 1

Similarly we also get a description for the space Ωsing which defines the singular

sheaves in the parameter space. It is given by PX ′, which is again possible since

F1 and F2 are homogeneous polynomials of degree 5 in the 18 variables. In

particular we see that codimPX PX ′ = 2 is compatible with Le Potier’s result in

Proposition 4.4.12.

Summary

X ′

ν

��

� �

codim=2

closed,smooth,irreduc
// X

ν

��

� � open
// A18

M ′
3m+1

� �

codim=2

closed,smooth,irreduc
//M3m+1

∼= U(3) �
� closed // P9 × P2

where smoothness, codimension and irreducibility of the subspaces are preserved

under the map ν.

4.6.6 The case PF(m) = 3m+ 2

By the results of Maican in Proposition 4.3.12 and Theorem 4.3.17 it is not

necessary to study the moduli space M3m+2 since M3m+2
∼= M3m−1

∼= M3m+1.

Hence

Corollary 4.6.24. M3m+2 is a smooth and irreducible projective variety of di-

mension 10. Moreover it is isomorphic to the universal cubic curve and the closed

subvariety of singular sheaves M ′
3m+2 is isomorphic to the universal singular locus

of a cubic curve, thus irreducible and of codimension 2.

Remark 4.6.25. [ [15], p.2 ]

Nevertheless let us mention that sheaves in M3m+2 are given by a resolution

0 −→ OP2(−2)⊕OP2(−1) −→ 2OP2 −→ F −→ 0

and note that this looks indeed like a dual sequence to (4.36).
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a
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Chapter 5

Our case of interest

For the rest of the thesis we want to study the Simpson moduli space of stable

sheaves on P2 with some general Hilbert polynomial am± 1. More precisely, let

n ∈ N, n ≥ 3 and set d := n + 1. Our goal is to find some information such as

codimension and smoothness of the subvariety of singular sheaves

M ′
dm−1 ⊂Mdm−1 .

This will be the content of Theorem 5.5.18, in which we prove that M ′
dm−1 is

singular and of codimension 2.

5.1 Description of an open subset of Mdm−1

Since gcd(d, 1) = 1, the results of Simpson and Le Potier from Theorem 4.2.14

and Theorem 4.3.10 again imply that Mdm−1 is a smooth irreducible projective

variety of dimension d2 + 1 = n2 + 2n+ 2 and that its closed points are in 1-to-1

correspondence with isomorphism classes of stable sheaves of pure dimension 1.

Due to the results of Maican from Section 4.3.3 we can also work with the moduli

spaces Mdm+1 and Mdm+n as these are isomorphic to the one we are studying.

Actually we will switch from one point of view to the other whenever calculations

can be made easier.

The goal of this section is to describe the sheaves F in a dense open subset of

Mdm−1 given by the condition h0(F) = 0. Such sheaves can be described by

exact sequences, and hence by a parameter space (as in the case of M3m+1) on
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which there is an action of a non-reductive group. Dividing out this group we aim

again to obtain a geometric quotient whose points are in 1-to-1 correspondence

with isomorphism classes of the sheaves we are interested in.

5.1.1 Semicontinuity

We start with some general results.

Definition 5.1.1. [ [35], III, 12.7.1, p.287-288 ]

Let X be a topological space. A function f : X → Z is upper semicontinuous

if for all x ∈ X there exists an open neighborhood U such that f(y) ≤ f(x),

∀ y ∈ U . Intuitively this says that in a neighborhood of any point the function

can only decrease. Equivalently, f is upper semicontinuous if and only if the

subsets

Zn :=
{
x ∈ X

∣∣ f(x) ≥ n
}

are closed in X for all n ∈ Z.

Theorem 5.1.2. [ [35], III, 12.8, p.288 ]

Let X → Y be a projective morphism of Noetherian schemes and E a coherent

sheaf on X that is flat over Y. Then for each i ≥ 0, the map

y 7−→ hi(y, E) := dimκ(y) H
i(Xy, E|y)

is an upper semicontinuous function on Y.

Corollary 5.1.3. Assume that Mam+b is a fine moduli space. Then the sets

{F ∈Mam+b | hi(F) = 0 } are open for all i ≥ 0.

Proof. Consider the universal family U on P2 ×Mam+b. For each F ∈ Mam+b

given by a closed point y we have

P2
//

��

P2 ×Mam+b

��

{y} //Mam+b
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and U|y ∼= F by Corollary 4.2.9. Thus

hi(y,U) = dimκ(y) H
i(P2,U|y) = dimKH

i(P2,F) = hi(F)

by Lemma 4.1.26. In other words the function F 7→ hi(F) is upper semicontin-

uous on Mam+b and the sets {F ∈Mam+b | hi(F) ≥ n } are closed for all n ∈ Z.

But now we have

hi(F) = 0 ⇔ hi(F) < 1

since dimensions of vector spaces are non-negative. Hence hi(F) = 0 is an open

condition.

Remark 5.1.4. So for each i ≥ 0 we obtain a stratification of the fine moduli

space Mam+b into a dense open stratum given by the condition hi(F) = 0 and

a closed stratum described by hi(F) 6= 0. It will turn out that the most useful

choices are i = 1 and i = 0.

More generally, we even have

Proposition 5.1.5. [ [48], 2.13, p.9 ]

Let E ∈ Coh(OP2) be a locally free sheaf on P2 and fix i, n ≥ 0. Then the

set of isomorphism classes of stable sheaves F ∈ M s
am+b given by the condition

hi(F ⊗ E) ≥ n is a closed algebraic subset.

5.1.2 Errata and Corrigenda

Freiermuth has stated several errors regarding cohomological bounds in [23],

which are the reason for further false statements in his paper. As these will

however be important for us in order to use certain exact sequences, we point

out and correct some of them here below.

Proposition 5.1.6. cf. [ [23], 3.1, p.23-25 ] and [ [48], 2.3, p.6 ]1

Let F ∈ Coh(OP2) with Hilbert polynomial PF(m) = am+ b where 0 ≤ b < a. If

1The original statement in [23] is wrong ; Maican corrected it by adding an assumption and

stating it differently, but does not provide a proof. Here we are going to undertake this task ;

it is a modification of the proof in [23].
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we assume that h0(F(−1)) = 0, then

1) We have the following bounds for the cohomology of F :

b ≤ h0(F) ≤ a− 1 and 0 ≤ h1(F) ≤ a− b− 1 . (5.1)

2) h1(F(i)) = 0 for i ≥ a− b− 1.

Proof. 1) As in the proof of Proposition 4.4.5 we choose an F -regular section

s with H = V (s) and such that all points in the support of F|H are simple.

Tensoring the exact sequence (4.20) by OP2(n) we get

0 −→ F(n− 1) −→ F(n) −→ F|H −→ 0

since F|H has constant Hilbert polynomial a (see Lemma 4.1.11). Applying the

cohomology functor we obtain

0 −→ H0
(
P2,F(n− 1)

)
−→ H0

(
P2,F(n)

) fn−→ Ka

−→ H1
(
P2,F(n− 1)

) gn−→ H1
(
P2,F(n)

)
−→ 0

for all n ∈ Z since suppF|H consists of a simple points, whose global sections

are given by K, and H1(P2,F|H) = {0} because F|H is 0-dimensional. Now

we analyze the dimensions of these vector spaces. As gn is surjective we get

h1(F(n)) ≤ h1(F(n − 1)), hence the map Z → N : n 7→ h1(F(n)) is decreasing

(not necessarily strictly). By a dimension count we also get

h1(F(n)) = h1(F(n− 1))− a+ h0(F(n))− h0(F(n− 1))

⇒ h0(F(n)) = h0(F(n− 1)) + a+ h1(F(n))− h1(F(n− 1))

≤ h0(F(n− 1)) + a .

In particular for n = 0 we obtain h0(F) ≤ h0(F(−1)) + a = 0 + a. From

b = h0(F)− h1(F) we also conclude that h0(F) ≥ b.

Next one can show that if fn is surjective, then fn+1 is surjective as well. fn

being surjective means that the following map in the exact sequence is the zero

map and hence gn is an isomorphism, i.e. h1(F(n)) = h1(F(n− 1)). Thus if fn0

is surjective for some n0 ∈ Z, then

h1(F(n− 1)) = h1(F(n)) = h1(F(n+ 1)) = . . . , ∀n ≥ n0 . (5.2)

228



LEYTEM Alain 5.1. Description of an open subset of Mdm−1

By Serre’s Theorem B all of these numbers are zero since F(n) becomes acyclic

for n big enough. If fn is not surjective, then gn is not injective and

h1(F(n)) < h1(F(n− 1)) .

So we conclude that the function n 7→ h1(F(n)) is strictly decreasing until it

reaches 0 and if it does not decrease at some step, then it is already 0 at that

step. Also note that F(−1) has Hilbert polynomial a(m−1)+b, hence we obtain

−a+ b = h0(F(−1))− h1(F(−1)) and h1(F(−1)) = a− b.
Now we show that h0(F) ≤ a−1. Assume that h0(F) = a. Since h0(F(−1)) = 0,

the morphism f0 is injective and thus an isomorphism since both vector spaces

have the same dimension. Hence (5.2) implies that h1(F(−1)) = 0, but this

contradicts that b < a. Since b ≤ h0(F) ≤ a− 1 and b = h0(F)− h1(F), we also

see that 0 ≤ h1(F) ≤ a− b− 1.

2) As h0(F) < a, the morphism f0 cannot be surjective and hence

h1(F(−1)) = a− b 6= 0 .

But since n 7→ h1(F(n)) is strictly decreasing, it always decreases by at least 1 at

each step. So in the worst case it reaches 0 after a−b−1 steps, i.e. h1(F(n)) = 0

for all n ≥ a− b− 1.

Corollary 5.1.7. For the Hilbert polynomial dm+ n we have the inclusion{
F ∈Mdm+n

∣∣ h0(F(−1)) = 0
}
⊆
{
F ∈Mdm+n

∣∣ h1(F) = 0
}
. (5.3)

Proof. follows from Proposition 5.1.6 and (5.1) since d− n− 1 = 0.

Remark 5.1.8. In [ [23], 4.1, p.42-43 ] Freiermuth states that every [F ] ∈Mam+b

with a > b ≥ a
2
> 0 and h1(F) = 0 has a resolution of the type

0 −→ (2b− a)OP2(−1)⊕ (a− b)OP2(−2) −→ bOP2 −→ F −→ 0 .

This is wrong as a counter-example is presented in [ [15], p.3 ]. Indeed e.g. in

M4m+3 and M4m+2 one can construct two types of sheaves which both have zero

first cohomology but which are given by different resolutions.

229



LEYTEM Alain 5.1. Description of an open subset of Mdm−1

Remark 5.1.9. In [ [23], 3.1, p.23 & 4.1, p.37-38 ] it is stated that every

sheaf [F ] ∈ Mam+b admits the bounds from (5.1), without the assumption

h0(F(−1)) = 0. In particular this would mean that h1(F) = 0 for all F ∈Mdm+n.

But for d = 4, Drézet and Maican proved the existence of a closed set in

M4m+1 given by the condition h1(F) = 1. If all sheaves in M4m+3 would satisfy

h1(F) = 0, then this closed stratum would not show up in M4m+1
∼= M4m+3

neither.

Remark 5.1.10. In [ [15], 3.2.3, p.20-21 ] it is also shown that in the case of

M4m+1 there are no non-zero sheaves satisfying the relation h1(F) ≥ 2. Hence the

open condition h1(F) = 0 and the closed condition h1(F) = 1 are all possibilities

in that case.

5.1.3 Isomorphisms of exact sequences

From (4.31) we know that all (isomorphism classes of) sheaves in Mdm+n or

Mdm−1 have a resolution of the form

0 −→ E1 −→ E0 −→ F −→ 0 ,

where E0, E1 ∈ Coh(OP2) are locally free. Now let us assume that two sheaves

FA,FB ∈ Coh(OP2) are both given as cokernels of such resolutions, i.e.

0 −→ E1
A−→ E0 −→ FA −→ 0 , 0 −→ E1

B−→ E0 −→ FB −→ 0 .

Under which conditions can we say that FA ∼= FB ?

Lemma 5.1.11. A sufficient condition for FA ∼= FB is that there exist automor-

phisms ϕ : E1 → E1 and ψ : E0 → E0 such that A ◦ ϕ = ψ ◦B.

Proof. Consider

0 // E1
A // E0

πA // FA // 0

0 // E1
B //

??

ϕ

OO

E0

ψ

OO >>

πB // FB

∃f

OO

// 0

As (πA ◦ ψ) ◦ B = (πA ◦ A) ◦ ϕ = 0, the morphism πA ◦ ψ factors through the

cokernel of B and gives a morphism f , which is an isomorphism by diagram

chasing.
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− surjective : if a ∈ FA, then a = πA(b) for b ∈ E0 and b = ψ(c) for c ∈ E0, so

a = πA(ψ(c)) = f(πB(c)) .

− injective : let x ∈ FB such that f(x) = 0. Then x = πB(y) for y ∈ E0 and

πA(ψ(y)) = f(πB(y)) = f(x) = 0 ,

so ψ(y) = A(b) for some b ∈ E1 and b = ϕ(e) for some e ∈ E1. With

ψ(y) = A(ϕ(e)) = ψ(B(e)) ,

we get y = B(e) by injectivity of ψ and finally x = πB(y) = πB(B(e)) = 0.

We want to know if the converse is true as well, i.e. if there is an isomorphism

FA ∼= FB, does there exists automorphisms ϕ and ψ such that ψ◦B = A◦ϕ ? Let

f : FB ∼−→ FA be an isomorphism. First we want to find ψ ∈ Aut(E0) such that

πA ◦ ψ = f ◦ πB. For this we apply the covariant left exact functor Hom(E0, · )
to the exact sequence defining FA. This gives the long exact sequence

0 −→ Hom(E0, E1)
A◦−→ Hom(E0, E0)

πA◦−→ Hom(E0,FA)

−→ Ext1(E0, E1) −→ . . . . (5.4)

So if Ext1(E0, E1) = {0}, the morphism πA◦ would be surjective and using that

f ◦ πB ∈ Hom(E0,FA), one gets a morphism ψ ∈ Hom(E0, E0) as desired. If in

addition such a ψ exists, then the universal property of kernels immediately gives

ϕ ∈ Hom(E1, E1) since πA ◦ (ψ ◦B) = f ◦ (πB ◦B) = 0, so ψ ◦B factors through

E1
∼= kerπA and ψ ◦B = A ◦ ϕ.

However ϕ and ψ are in general not automorphisms (a diagram chasing does not

allow to show that they are bijective). Indeed if we also apply Hom(E0, · ) to the

exact sequence defining FB with f−1 ◦ πA ∈ Hom(E0,FB), we get a morphism

ρ ∈ Hom(E0, E0) such that πB ◦ ρ = f−1 ◦ πA and we obtain the relations

f ◦ πB ◦ ρ = πA ⇔ πA ◦ (ψ ◦ ρ) = πA ,

πA ◦ ψ = f ◦ πB ⇔ f−1 ◦ πA ◦ ψ = πB ⇔ πB ◦ (ρ ◦ ψ) = πB .

In general this does not imply that ψ and ρ are inverse to each other. This is

where we introduce an additional condition, namely that Hom(E0, E1) = {0} as

231



LEYTEM Alain 5.1. Description of an open subset of Mdm−1

well. If this is the case, then πA◦ and πB◦ in (5.4) are isomorphisms, from which

we get that ψ ◦ ρ = id and ρ ◦ ψ = id. Now ψ being an isomorphism, diagram

chasing allows to show that ϕ is bijective too. A◦ϕ = ψ ◦B already implies that

it is injective. For surjectivity let y ∈ E1. Then A(y) = ψ(e) for some e ∈ E0

and f(πB(e)) = πA(ψ(e)) = πA(A(y)) = 0, so πB(e) = 0 and e = B(x) for some

x ∈ E1. Finally A(y) = ψ(B(x)) = A(ϕ(x)) and hence y = ϕ(x).

Summarizing, we have proven the following result.

Proposition 5.1.12. Let

0 −→ E1
A−→ E0 −→ FA −→ 0

be an exact sequence of coherent sheaves. The group of automorphisms

Aut(E0)× Aut(E1)

acts on the vector space of morphisms Hom(E1, E0) via (ψ, ϕ) . A = ψ ◦ A ◦ ϕ−1.

Assume that Ext1(E0, E1) = Hom(E0, E1) = {0}. Then FA ∼= FB if and only if A

and B belong to the same orbit.

In particular this means that the isomorphism classes of sheaves given as coker-

nels of such resolutions are in 1-to-1 correspondence with the orbits of the action

of the automorphism group.

5.1.4 Our setting

Now we describe certain sheaves in Mdm−1 for which we are going to study if

they are singular. It has been shown in [ [48], 4.2, p.12 ] that every F ∈ Mdm+n

with h1(F) = 0 and h0(F(−1)) = 0 is obtained as the cokernel of a resolution of

OP2–modules

0 −→ OP2(−2)⊕ (n− 1)OP2(−1)
A−→ nOP2 −→ F −→ 0 . (5.5)

We will see in Theorem 5.1.28 that this is an equivalence if the sheaf obtained

by such a resolution is indeed stable. The stability of F depends on the form of
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A. The morphism A is given by an n× n–matrix of the type

A =



q1 q2 . . . qn

z11 z12 . . . z1,n

z21 z22 . . . z2,n

...
...

. . .
...

zn−1,1 zn−1,2 . . . zn−1,n


, (5.6)

where qi ∈ Γ(P2,OP2(2)) and zij ∈ Γ(P2,OP2(1)) for all i, j such that 〈detA〉 6= 0

(since A is injective). In order to define a stable sheaf the linear forms must

satisfy some additional properties (compare e.g. with the case of M3m+1 in

Proposition 4.6.4 where the linear forms had to be linearly independent). The

general criterion due to Drézet and Maican will be stated in Proposition 5.1.20

and Theorem 5.1.28.

Remark 5.1.13. In order to obtain a resolution for sheaves in Mdm−1, we apply

the isomorphism

Mdm+n
∼−→Mdm−1 : F 7−→ F(−1) (5.7)

from Proposition 4.3.12 to the exact sequence (5.5) and get

0 −→ OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1) −→ G −→ 0 , (5.8)

where G = F(−1) ∈Mdm−1 and A is again of the form (5.6). Indeed A does not

change under this twist because Lemma 4.3.2 gives

Hom
(
OP2(n),OP2(m)

)
= Hom

(
OP2(n− 1)(1),OP2(m)

)
∼= Hom

(
OP2(n− 1),OP2(m)(−1)

)
= Hom

(
OP2(n− 1),OP2(m− 1)

)
.

Remark 5.1.14. Also note that the twist (5.7) shows that the subset of sheaves

in Mdm+n satisfying h0(F(−1)) = 0 is open since it corresponds to the condition

h0(G) = 0 in Mdm−1, which we know to be open from Corollary 5.1.3. In par-

ticular (5.3) is an inclusion of open sets. More generally this is just a particular

case of Proposition 5.1.5.

For the following statements consider F ∈ Mdm+n with the resolution (5.5) or

F ∈ Mdm−1 with the resolution (5.8). detA is a homogeneous polynomial of
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degree d = n+ 1 in the variables X0, X1, X2. The condition 〈detA〉 6= 0 ensures

injectivity of A. Let C = Zf (F) be the Fitting support of F , which is again a

curve in P2 since PF is linear. As a set we know from Proposition 4.5.9 that it is

given by all the points x ∈ P2 such that (detA)(x) = 0. Thus C = Z(detA) ⊂ P2

is a curve of degree d (compare with Proposition 4.4.5). In particular it defines a

projective variety (C,OC) where the structure sheaf OC has Hilbert polynomial

dm + 3d−d2

2
by Proposition 4.3.9. The curve C is in general neither irreducible,

nor reduced (i.e. it can have multiple structures), depending on the polynomial

detA.

Corollary 5.1.15. There is a 1-to-1 correspondence between isomorphism classes

of sheaves given by the resolution (5.8) and the orbits of the action of the group

of automorphisms on (5.8).

Proof. We want to apply Proposition 5.1.12. For this we recall the following

results from [35]. For X = Pr, we have

[5.1, p.225] H i
(
X ,OX (n)

)
= {0}, ∀n ∈ Z and 0 < i < r.

[6.3, p.234] Exti(OX ,F) ∼= H i(X ,F), ∀F ∈ Mod(OX ) and i ≥ 0.

[6.7, p.235] If L ∈ Mod(OX ) is locally free of finite rank, then

Exti(F ⊗ L , G) ∼= Exti(F , L∗ ⊗ G) .

Since Ext and Hom are additive in both arguments it suffices to check the con-

ditions of Proposition 5.1.12 for a simple pair. For all a, b ∈ Z, we have

Exti
(
OP2(a),OP2(b)

) ∼= Exti
(
OP2 ,OP2(b− a)

) ∼= H i
(
P2,OP2(b− a)

)
= {0} ,

so the condition on Ext1 is always satisfied. For Hom we know that

Hom
(
OP2(a),OP2(b)

)
= {0}

if a > b. In the case of (5.8) this is satisfied since −1 > max(−3,−2).

Notation 5.1.16. cf. [ [48], p.10 ] and [ [23], p.43 ]

Let W denote the K-vector space of morphisms

OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1) , (5.9)
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so that A is as in (5.6). How do automorphisms in (5.8) look like ? We have

0 // OP2(−3)⊕ (n− 1)OP2(−2) A // nOP2(−1) // FA // 0

0 // OP2(−3)⊕ (n− 1)OP2(−2) B //

g

OO

nOP2(−1) //

h

OO

FB //

∼=

OO

0

where g and h are automorphisms. In particular, their determinants are non-zero

polynomials by injectivity (Proposition 4.5.8). Since endomorphisms of OP2(a)

are just constants for all a ∈ Z, we get h ∈ GLn(K). However g has entries which

are morphisms OP2(−3)→ OP2(−2), i.e. linear forms and is thus of the form

g =


λ l1 . . . ln−1

0
... GLn−1(K)

0

 ,

where λ ∈ K∗ and li ∈ Γ
(
P2,OP2(1)

)
for all i ∈ {1, . . . , n−1}. There is an action

of the algebraic group

G′ := Aut
(
OP2(−3)⊕ (n− 1)OP2(−2)

)
× Aut

(
nOP2(−1)

)
(5.10)

on W via (g, h) . A = g · A · h−1. Note that this is well-defined since quadratic

forms can only appear in the first row. It follows from Corollary 5.1.15 that

FA ∼= FB if and only if A and B are in the same orbit of the G′-action. This

holds in particular if A ∼ B in the sense of linear algebra.

Remark 5.1.17. However, as in the case of M3m+1 in Remark 4.6.14, one prefers

to divide out the 1-dimensional subgroup

Γ′ =
{

(λ idn, λ idn)
∣∣ λ ∈ K∗

}
⊂ G′

in order to get an action of PG′ = G′/Γ′ on W. The orbits of this action are

still in 1-to-1 correspondence with isomorphism classes of sheaves given by the

resolution (5.8) as Γ′ ⊆ StabG(A) for all A ∈W. On the other hand this inclusion

may be strict, so the action of PG′ is not free in general, see e.g. Example 5.1.24.
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Now we want to describe (an open subset of) Mdm−1 as a quotient of (an open

subset of) W by the group action of PG′ as in Theorem 4.6.15. For this we

however first need to know under which conditions the sheaf F defined by a

matrix A ∈W in (5.8) is stable, and hence defines an element in Mdm−1. Indeed

note that every sheaf F with a resolution of the form (5.8) has Hilbert polynomial

n · m(m+ 1)

2
− (m− 1)(m− 2)

2
− (n− 1) · m(m− 1)

2
= (n+ 1)m− 1

by Example 4.3.1, which is dm − 1, so the only condition that is missing for F
to belong to Mdm−1 is stability.

5.1.5 Kronecker modules

In order to obtain the condition for stability, we have to introduce the following

objects. The idea of a Kronecker module is to generalize the notion of a matrix

with entries in homogeneous polynomials. Let us first refer to Appendix D.4

for some general facts about Geometric Invariant Theory, which we are going to

apply in this section.

Definition 5.1.18. cf. [ [19], p.86 ]

Let E,F, V be finite-dimensional vector spaces over K with q = dimV ≥ 3 and

W = HomK(E,F ⊗ V ) .

A Kronecker module is a K-linear map ϕ ∈ W .2 After a choice of bases for E

and F with dimE = n, dimF = m, a Kronecker module can hence be written

as a n×m–matrix

ϕ =


v11 . . . v1m

...
. . .

...

vn1 . . . vnm


2Some authors as Drézet [13] and Ellingsrud-Strømme [20] define Kronecker modules as

elements in HomK(E ⊗ V, F ). This is due to technical reasons which may simplify the proofs.

Indeed both definitions are equivalent since all vector space are of finite dimension, hence

Hom(E ⊗ V, F ) ∼= Hom(E,Hom(V, F )) ∼= Hom(E, V ∗ ⊗ F ) and V ∗ ∼= V via a dual basis. Of

course it is not canonical.
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with entries vij ∈ V . Here we again consider row vectors and multiply them by

the matrix on the right, i.e.

E −→ F ⊗ V : e = (e1, . . . , en) 7−→ e · ϕ = (f1, . . . , fm) .

The space of Kronecker modules W can be identified with an affine space, more

precisely W ∼= Ak for k = n ·m · q.

Definition 5.1.19. [ [19], p.86 ] and [ [13], p.12 ]

There is an action of the group G = GL(E) × GL(F ) on W given by the rule

(g, h) . ϕ = (h⊗ idV ) ◦ ϕ ◦ g−1. The 1-dimensional subgroup

Γ =
{ (
λ idE , λ idF

) ∣∣ λ ∈ K∗
}
⊂ G

acts trivially, so there is an induced action of PG = G/Γ ∼= G/K∗ on W . This

action is in general not free as we e.g. illustrate in Example 5.1.24. Going to the

projective space we deduce an action of the reductive group S = SL(E)×SL(F )

on P(W ) ∼= Pk−1. Now we say that a non-zero Kronecker module ϕ ∈ W is

(semi)stable if its image in P(W ) is a (semi)stable point under the action of S

(in the sense of GIT as defined in Appendix D.4). We denote the open subsets

of stable and semistable Kronecker modules in W by W s and W ss.

Drézet has shown the following useful characterization of (semi)stable Kronecker

modules.

Proposition 5.1.20. [ [13], Prop.15, p.12-14 ] and [ [20], 6.2, p.176 ]

A non-zero Kronecker module ϕ ∈ W is semistable if and only if for all vector

subspaces E ′ ⊂ E and F ′ ⊂ F with E ′ 6= {0}, F ′ 6= F and ϕ(E ′) ⊆ F ′ ⊗ V , we

have the inequality
dimF ′

dimE ′
≥ dimF

dimE
=
m

n
.

For stable Kronecker modules the same results holds true with a strict inequality.

Since G is a reductive algebraic group acting linearly on W , Theorem D.4.13

allows to conclude
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Corollary 5.1.21. [ [13], p.14 ] and [ [20], 6.4, p.176 ]

There is a good quotient N = W ss//PG and a geometric quotient Ns = W s/PG
which is open in N . Moreover the action of PG on Ns is free.

Remark 5.1.22. If one wants to indicate the dimensions of the vector spaces,

one also denotes the quotients by N(q, n,m) and Ns(q, n,m).

The Kronecker modules we are going to work with are of the following form.

Notation 5.1.23. Consider the linear part of the matrix A from (5.6), i.e. a

matrix of the form

Φ =


z11 z12 . . . z1,n

z21 z22 . . . z2,n

...
...

. . .
...

zn−1,1 zn−1,2 . . . zn−1,n

 .

This is a Kronecker module as defined above by taking E = Kn−1, F = Kn and

V = Γ(P2,OP2(1)) to be the 3-dimensional vector space of linear forms. The

space of all such matrices is denoted by V = HomK(E,F ⊗ V ). Thus V is the

K-vector space of all morphisms of the form

(n− 1)OP2(−1)
Φ−→ nOP2 .

We have an action of G = GLn−1(K) × GLn(K) on V via (g, h) .Φ = g · Φ · h−1

and the 1-dimensional subgroup

Γ =
{ (
λ idn−1 , λ idn

) ∣∣ λ ∈ K∗
}
⊂ G

is contained in the stabilizer of each Φ ∈ V, hence we also get an action of

PG = G/Γ on V.

Example 5.1.24. The action of PG is not free: consider e.g. n = 3 and the

Kronecker module

Φ =

(
z1 z2 z3

z1 z2 z3

)

238



LEYTEM Alain 5.1. Description of an open subset of Mdm−1

for some z1, z2, z3 ∈ V . Then for all λ, µ ∈ K with λ 6= 0, we have

(
λ+ µ −µ
µ λ− µ

)
·

(
z1 z2 z3

z1 z2 z3

)
·


1
λ

0 0

0 1
λ

0

0 0 1
λ

 =

(
z1 z2 z3

z1 z2 z3

)
,

so that Γ ( StabG(Φ), i.e. StabPG(Φ) is still non-trivial.

Remark 5.1.25. Consider the exact sequence (5.5)

0 −→ OP2(−2)⊕ (n− 1)OP2(−1)
A−→ nOP2 −→ F −→ 0 .

Every Kronecker module Φ ∈ V can be seen as a submatrix of such an A ∈W, so

we may write A =
(
Q
Φ

)
where Q is a row vector consisting of n quadratic forms.

If we set U2 = nΓ(P2,OP2(2)), then the space of morphisms W from (5.9) may

be identified with V× U2 via the isomorphism

V× U2
∼−→W : (Φ, Q) 7−→

(
Q

Φ

)
. (5.11)

Definition 5.1.26. Let F ∈ Coh(OP2) be a sheaf on P2 which is given as the

cokernel of a matrix A =
(
Q
Φ

)
with Q ∈ U2 and Φ ∈ V as in (5.5). We call Φ the

Kronecker module associated to F .

Remark 5.1.27. The Kronecker module associated to a sheaf depends on the

chosen resolution. Indeed let F be given by the cokernel of some A =
(
Q
Φ

)
and F ′

be the cokernel of some A′ =
(
Q′

Φ′

)
. If F ∼= F ′, then Φ and Φ′ may be different.

However Proposition 5.1.12 implies that in this case A and A′ lie in the same

orbit under G′, and hence that Φ and Φ′ are in the same G-orbit.

The relation between stable Kronecker modules and stable sheaves in the moduli

space Mdm+n is now given as follows.

Theorem 5.1.28. [ [48], 4.2, p.12-14 ]

Let F ∈ Coh(OP2) be a sheaf on P2 with linear Hilbert polynomial PF(m) = dm+n

and given as a cokernel of a matrix A =
(
Q
Φ

)
as in resolution (5.5). Assume that
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h0
(
F(−1)

)
= 0, i.e. F(−1) has no non-zero global sections. Then the following

are equivalent:

1) F ∈Mdm+n, i.e. F is semistable (hence stable since the moduli space is fine).

2) Φ ∈ Vs, i.e. the Kronecker module Φ associated to F is stable3.

3) Φ is not equivalent to (i.e. does not lie in the same orbit under PG as) a

matrix of the form (
ψ 0

∗ ∗

)
,

where ψ : mOP2(−1) → mOP2 is an m × m–matrix of linear forms for some

m ∈ {1, . . . , n− 1}.

Remark 5.1.29. In other words, Φ ∈ Vs is not allowed to lie in the same orbit

under PG as a Kronecker module of the form

0 0

ψ 0 0

0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


with a zero block of size j × (n− j) for some j ∈ {1, . . . , n− 1}.

Example 5.1.30. For e.g. n = 4, a matrix A =
(
Q
Φ

)
defines a stable sheaf F in

(5.5) if its Kronecker module Φ does not lie in the same orbit as
× 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ,


× × 0 0

× × 0 0

∗ ∗ ∗ ∗

 ,


× × × 0

× × × 0

× × × 0

 . (5.12)

Remark 5.1.31. By Remark 5.1.27 we know that the Kronecker modules as-

sociated to isomorphic sheaves lie in the same G-orbit. Hence if Φ is associated

to some F as in (5.5), then the isomorphism class [F ] is stable (i.e. belongs to

Mdm+n) if and only if all Kronecker modules in the orbit O(Φ) are stable. So

even if an associated Kronecker module depends on the chosen resolution, its

stability does not (which is reasonable since the stability of [F ] does not).

3as defined in Definition 5.1.19.
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Remark 5.1.32. Similarly as gcd(d, n) = 1 implies that all semistable sheaves in

Mdm+n are stable, it implies that all semistable Kronecker modules are stables.

Hence we have Vs = Vss in this case. Moreover the group PG acts freely on

the open subset Vs of (semi)stable points in V. We will prove a slightly weaker

version of this statement in Corollary 5.2.38.

5.1.6 Parameter space

From now on we always denote M := Mdm−1 and M ′ := M ′
dm−1. Hence the

situation is as follows:

Consider the subvariety M0 ⊂ M of isomorphism classes of sheaves F ∈ M

which are given by the condition h0(F) = 0. Corollary 5.1.3 implies that M0 is

open and dense. Next we restrict ourselves to the study of singular sheaves in

the open stratum M0. In other words if we denote M ′
0 = M ′ ∩M0, we want to

compute

codimM0 M
′
0 .

By a result from Yuan in [70] it turns out that this is actually sufficient. We will

explain this more detailed in the proof of Theorem 5.5.18. By applying the twist

F 7→ F(−1) of Proposition 4.3.12 to Theorem 5.1.28, we now obtain

Corollary 5.1.33. Sheaves F ∈ M0 are exactly those that are given by a reso-

lution (5.8)

0 −→ OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1) −→ F −→ 0 ,

where A ∈W can be written as A =
(
Q
Φ

)
with Q ∈ U2 and Φ ∈ Vs.

Remark 5.1.34. Thus if we denote

W0 :=
{
A ∈W

∣∣ A is injective and A =
(
Q
Φ

)
with Φ ∈ Vs

}
,

we finally get the criterion

F ∈M0 ⇔ A ∈W0 , (5.13)

i.e. the sheaves in M without global sections are exactly the cokernels of mor-

phisms in W0.
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Our next goal is to parametrize all isomorphism classes of stable sheaves in M0

in order to describe M0 as a quotient of a parameter space by a certain group

action.

Notation 5.1.35. The space W can be identified with a quasi-affine variety as

follows. Recall from (5.6) that

A =

(
Q

Φ

)
=


q1 q2 . . . qn

z11 z12 . . . z1,n

...
...

. . .
...

zn−1,1 zn−1,2 . . . zn−1,n

 ,

where qi ∈ Γ(P2,OP2(2)) and zij ∈ Γ(P2,OP2(1)) for all i, j such thatA is injective

and Φ ∈ Vs. A consisting of quadratic and linear forms we may write as in (4.37)

zij = a0
ijX0 + a1

ijX1 + a2
ijX2 (5.14)

qi = A1
iX

2
0 + A2

iX0X1 + A3
iX0X2 + A4

iX
2
1 + A5

iX1X2 + A6
iX

2
2

for some akij, A
k
i ∈ K, ∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n − 1}. This allows to

identify W with the affine space Aw for w = 6n + 3n(n − 1) = 3n(n + 1). In

order to obtain a description of W0 we have to include the conditions on A being

injective and Φ being stable, i.e. using Proposition 4.5.8 we get

W0 =
{
A ∈W

∣∣ detA 6= 0, Φ ∈ Vs
}
.

Hence W0 may be seen as a subset of Aw.

Proposition 5.1.36. W0 ⊂W is open.

Proof. Similarly as in Lemma 4.6.8, we shall show that Aw\W0 is given by closed

conditions. We may write

W0 = {A | detA 6= 0 } ∩ {A | Φ ∈ Vs } = V1 ∩ V2 .

Let us first show that {A | detA = 0 } is closed in Aw. The coefficients of detA

are polynomial expressions in the variables akij, A
k
i . Hence saying that detA is

the zero polynomial gives
(
d+2

2

)
closed conditions (as detA is homogeneous of
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degree d) by putting all coefficients to zero. So V1 is open since its complement

is closed as it is an intersection of vanishing sets of polynomials on Aw.

For V2, we know from general GIT (Lemma D.4.11) that Vs is open in V. Here

we can also prove this directly by showing that V \Vs is closed in V, which can

be identified with Av for v = 3n(n− 1). Let

Yj =
{

Φ ∈ V
∣∣ Φ is a Kronecker module with a zero block of size j × (n− j)

}
for all j ∈ {1, . . . , n − 1} as in (5.12). Hence each Yj is closed in Av since some

coefficients are put to zero. Now consider the orbits PG.Yj under the action of

PG on V. These are still closed. But then we have

V \ Vs = (PG.Y1) ∪ . . . ∪ (PG.Yn−1)

since Kronecker modules which are not stable are exactly those that lie in the

orbits under PG of Kronecker modules with zero blocks. Therefore Vs is open.

Now consider the isomorphism V × U2
∼= W from (5.11). It gives the inclusion

of open sets

V2 = Vs × U2 ↪→ V× U2
∼= W ,

i.e. V2 is open in W ∼= Aw. Hence W0 = V1 ∩ V2 is open as well.

Having found the quasi-affine variety W0 which parametrizes all sheaves in M0

we are now interested in the subspace W′0 ⊂ W0 of coefficients which describe

the singular sheaves of M ′
0. First we have the following criterion.

Proposition 5.1.37. cf. [ [39], 4.1, p.6 ]

A sheaf F ∈ M0 given as a cokernel of some A ∈ W0 as in (5.8) is singular

if and only if there exists a point p ∈ P2 on which all submaximal minors of A

vanish.

Proof. The proof is similar as the one of Proposition 4.6.10.

⇒ : By contraposition, assume that for all points x ∈ P2 there is always at least

one minor of order (n−1)×(n−1) which does not vanish at x. Hence this minor

is a unit in the local ring OP2,x. By performing row and column transformations
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we may assume that the first submaximal minor does not vanish at x, i.e. Ax is

of the form

Ax ∼


a1

B
...

an−1

b1 . . . bn−1 c


with detB being invertible in OP2,x. Hence we can multiply

(
B−1 0

0 1

)
·


a1

B
...

an−1

b1 . . . bn−1 c

 =


1 a′1

1
...

1 a′n−1

b1 . . . bn−1 c

 ∼


1

1

1

C


with

C = c− b1a
′
1 − . . .− bn−1a

′
n−1 =

1

detB
· detA .

So up to a unit we have

Ax ∼

(
idn−1 0

0 detA

)
and Fx ∼= cokerAx ∼= OC,x since C = Z(detA). Therefore F is non-singular.

⇐ : Assume that there is a point p ∈ P2 on which all submaximal minors vanish.

From Lemma 4.5.13 and the resolution (5.8) we obtain the exact sequence of K-

vector spaces

Kn A(p)−→ Kn −→ F(p) −→ 0 .

If all submaximal minors of A vanish at p, then A(p) is a matrix of rank < n− 1

and dimKF(p) ≥ 2. Hence Fp cannot be a free module over OC,p, otherwise it

would be free of rank 1 because of Proposition 4.5.14 and the same proof as in

(4.41) gives F(p) ∼= K. Hence F is singular.

Remark 5.1.38. Proposition 5.1.37 is actually a generalization of Proposi-

tion 4.6.10. Indeed the latter says that a sheaf in M3m+1 is singular if and

only if z1(p) = z2(p) = q1(p) = q2(p) = 0. But for matrices of order 2, all sub-

maximal minors are of order 1, i.e. saying that all submaximal minors vanish at

p means that all entries vanish at p.
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The only difference in the case of M3m+1 is that we have a precise description of

p in Lemma 4.6.9.

Corollary 5.1.39. The subspace W′0 ⊂W0 describing singular sheaves is closed.

Proof. Using Proposition 5.1.37 it comes down to show that the subspace

S =
{
A ∈W

∣∣ ∃ p ∈ P2 such that all submaximal minors of A vanish at p
}

is closed in Aw. It is non-empty and proper. As the coefficients of the submaxi-

mal minors of A are polynomial expressions in the variables akij, A
k
i , we already

conclude that the set

S ′ =
{

(A, p) ∈ Aw × P2

∣∣ all submaximal minors of A vanish at p
}

is closed in the product variety Aw × P2. If π : Aw × P2 → P2 denotes the

projection, we have S = π(S ′). Hence S is closed as well since P2 is complete

and π is closed (Proposition D.1.16).

5.1.7 Group action and geometric quotient

Summarizing, we have that a sheaf F ∈M0 is given by the resolution (5.8)

0 −→ OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1) −→ F −→ 0 ,

with A ∈ W0 by (5.13). Moreover Corollary 5.1.15 says that two morphism in

W0 define isomorphic sheaves via their cokernels if and only if they lie in the

same orbit under the action of the non-reductive group PG′ from (5.10). Hence

we get M0
∼= W0/PG′, at least as a set bijection, since points in the open stratum

are in 1-to-1 correspondence with the orbit space of the action.

Remark 5.1.40. This is also compatible with the dimensions of the spaces.

Theorem 4.3.10 says that M and hence M0 are of dimension d2 +1 = n2 +2n+2.

The parameter space W0 ⊂ Aw has dimension w = 3n(n+ 1) and the group PG′

is of dimension n2 + (n− 1)2 + 1 + 3(n− 1)− 1 = 2n2 + n− 2.

Similarly as the action of PG is free on Vs (Remark 5.1.32), the action of PG′

is free on W0 (in general it is not free on W). The dimension of the quotient

W0/PG′ is therefore 3n(n+ 1)− (2n2 + n− 2) = n2 + 2n+ 2.
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Remark 5.1.41. [ [49], p.8 ] and [ [23], p.69 ]

We would like to construct the quotient of W0 by the action of PG′ as in Theo-

rem 4.6.15. Unfortunately this does not immediately follows from GIT. Indeed

the group G′ is not reductive. The reason for this is because it’s first factor

contains terms of the form OP2(a) ⊕ OP2(b) with a < b. Indeed if we denote

V = Γ
(
P2,OP2(b− a)

)
, the unipotent radical of{ (

λ1 q

0 λ2

) ∣∣∣∣ λ1, λ2 ∈ K∗, q ∈ V
}

is { (
1 q

0 1

) ∣∣∣ q ∈ V }
because the matrices id−

(
1 q
0 1

)
are nilpotent (see Definition D.4.7), and hence

non-trivial.

So GIT does not ensure that the orbit space W0/PG′ is again a projective variety.

However Maican managed to show by some ad hoc construction that

Proposition 5.1.42. [ [48], 7.6, p.39-40 ]

W0 admits a geometric quotient modulo PG′ which is isomorphic to the dense

open subset of Mdm−1 given by the condition h0(F) = 0.4

It is constructed by using that Mdm−1 is a fine moduli space to get a morphism

W0 →Mdm−1. In other words, we indeed have a geometric quotient

M0
∼= W0/PG′ .

Remark 5.1.43. Finally let us also see our parameter spaces in the sense of

(4.13). The classifying space Ω corresponds to P(W0) ⊂ Pw−1 and the subvariety

Ωsing giving singular sheaves is given by P(W′0). The action of SL(V ) follows the

same idea as in Remark 4.6.23 and is hence given by the one of SG′, the closed

subgroup of G′ consisting of pairs of matrices with determinant 1.

4Maican actually proves the statement for Mdm+n and uses G to denote our non-reductive

group PG′. We also point out that [48] contains a misprint as it writes the closed condition

h0(F(−1)) 6= 0.
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5.2 Computations with Kronecker modules

In the following we want to develop some properties of Kronecker modules in

terms of their maximal minors. As usual here below V ∼= Av with v = 3n(n− 1)

denotes the affine variety of Kronecker modules of type (n−1)×n with n ≥ 3 on

which we have the action of G = GLn−1(K)×GLn(K) via (g, h) .Φ := g ·Φ ·h−1.

This just means that we perform linear transformations of the rows (described

by g) and the columns (described by h−1) of Φ. Hence the elements in the orbit

of a fixed Kronecker module Φ ∈ V are exactly all the matrices which are similar

to Φ, i.e. Φ ∼ Φ′ ⇔ Φ′ ∈ O(Φ). Two matrices belong to the same G-orbit if

and only if they can be obtained one from the other by linear transformations of

the rows and columns.

5.2.1 Linear independence of the maximal minors

First let us study certain properties of the Kronecker modules. In particular we

are interested in its maximal minors and want to analyze how they behave under

the action of G.

Definition 5.2.1. The maximal minors of a Kronecker module Φ ∈ V are defined

as di := (−1)i+1·det(Φi), where Φi is the (n−1)×(n−1)–submatrix of Φ obtained

by erasing the ith column.

Lemma 5.2.2. Every matrix in GLn(K) can be written (not uniquely) as a

product of elementary matrices

Ei(λ) :=


1

λ

1

 and Fij(µ) :=


1 µ

1

1

 (5.15)

with λ ∈ K∗ at position (i, i) and µ ∈ K at position (i, j), i 6= j.

Proof. This follows by the Gaussian elimination process. Let T be any matrix

with n rows. Computing Ei(λ) · T means that the ith row of T is multiplied

by the non-zero scalar λ. Computing Fij(µ) · T means that we add µ times the

jth row of T to the ith one. Hence the Ei(λ) and Fij(µ) describe all possible
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linear transformations of the rows. Let C ∈ GLn(C). We know that C ∼ idn by

only performing linear transformations of the rows. Hence there exist elementary

matrices Bi as in (5.15) such that Br · . . . ·B1 · C = idn, where

Br · . . . ·B1 = C−1 and C = B−1
1 · . . . ·B−1

r .

Note that Ei(λ)−1 = Ei
(

1
λ

)
and Fij(µ)−1 = Fij(−µ) since i 6= j, so each B−1

k is

again an elementary matrix.

Example 5.2.3. Consider the matrix

Sij :=



1

0 1

1

1 0

1


,

which interchanges the ith and the jth row (i < j). The zeros on the diagonal

are at position (i, i) and (j, j) and the additional 1’s at position (i, j) and (j, i).

A possible decomposition (it is not unique) of Sij according to the algorithm

described in the proof of Lemma 5.2.2 would be e.g.

Sij = Fij(1)−1 ·Fji(−1)−1 ·Fij(1)−1 ·Ej(−1)−1 = Fij(−1)·Fji(1)·Fij(−1)·Ej(−1) .

Remark 5.2.4. Similar results hold true if we perform linear transformations of

the columns. The only difference is that we have to switch indices and multiply

by the elementary matrices on the right. More precisely, if T is a matrix with n

columns, then T · Ei(λ) multiplies the ith column of T by λ and T · Fji(µ) adds

µ times the jth column to the ith one.

Proposition 5.2.5 (Leytem). Let Φ,Φ′ ∈ V be Kronecker modules such that

Φ′ ∼ Φ, given by Φ′ = g · Φ · h−1 for some (g, h) ∈ G. If d1, . . . , dn are the

maximal minors of Φ and d′1, . . . , d
′
n those of Φ′, then

d′1
...

d′n

 =
det(g)

det(h)
· h ·


d1

...

dn

 . (5.16)

248



LEYTEM Alain 5.2. Computations with Kronecker modules

Proof. Let us first study the cases where g and h are elementary matrices as in

(5.15). We denote the rows of Φ by r1, . . . , rn−1 and its columns by c1, . . . , cn.

1) If g = Ei(λ) ∈ GLn−1(K) for some λ 6= 0, then g · Φ is equal to Φ with ri

replaced by λ ri, hence all minors are multiplied by λ, i.e. d′k = λ dk, ∀ k.

2) If h = Ei(λ) ∈ GLn(K) for some λ 6= 0, then Φ · h−1 is equal to Φ with ci

replaced by 1
λ
ci, hence

d′i = di , d′k = 1
λ
dk, ∀ k 6= i .

3) If g = Fij(µ) ∈ GLn−1(K) for some µ ∈ C, then g · Φ is equal to Φ with ri

replaced by ri + µ rj. So we shall compute the maximal minors of the matrix

r1

...

ri + µ rj
...

rn−1


.

Now we use that the determinant is a multilinear mapping in the rows. Hence

d′k = dk + ek, where ek is the kth maximal minor of the matrix Φ with ri replaced

by µ rj. We see that all maximal minors of this matrix are zero since j 6= i, so

the matrix always contains the (shortened) rows rj and µ rj, which are linearly

dependent. Thus ek = 0 and d′k = dk, ∀ k.

4) If h = Fji(µ) ∈ GLn(K) for some µ ∈ C, then Φ · h−1 is equal to Φ with ci

replaced by ci − µ cj: (
c1 . . . ci − µ cj . . . cn

)
.

Hence we already get d′i = di. For k 6= i, we argue similarly as above by using

multilinearity in the columns. This allows to write again d′k = dk + fk, where fk

is the kth maximal minor of the matrix Φ with ci replaced by −µ cj. If k 6= j,

then fk = 0 since the columns cj and −µ cj are linearly dependent. Moreover

fj = (−1)j+1 · (−1)i−j−1 · (−1)i+1 · (−µ) · di = µ di, so that

d′k = dk, ∀ k 6= j , d′j = dj + µ di .
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So in each of the 4 cases, the elementary matrices behave as described in (5.16)

because

det
(
Ei(λ)

)
= λ and det

(
Fij(µ)

)
= 1 .

The 4 cases of the transformations of the di’s correspond to

1) det
(
Ei(λ)

)
, 2)

Ei(λ)

λ
, 3) det

(
Fij(µ)

)
, 4)

Fji(µ)

1
.

Formula (5.16) now follows because the determinant is multiplicative and from

Lemma 5.2.2, which says that every invertible matrix writes as a product of

elementary matrices.

Remark 5.2.6. A similar statement can also be found in [ [61], Thm.3, p.7 ].

It states that the minors of any order of two equivalent matrices of type p × q
generate the same ideals.

Corollary 5.2.7. Let Φ,Φ′ ∈ V such that they belong to the same G-orbit. Then

the maximal minors of Φ are linearly independent if and only if the maximal

minors of Φ′ are linearly independent.

Proof. By formula (5.16) we see that the G-action can only perform K-linear

combinations on the maximal minors. This will not affect their linear indepen-

dence. Vice-versa we can invert the formula since h in (5.16) is invertible.

Corollary 5.2.8. Fix Φ ∈ V and assume that its maximal minors d1, . . . , dn

are linearly independent, so that the K-vector space V := 〈 d1, . . . , dn 〉 is of

dimension n. Proposition 5.2.5 gives an assignment

ψ : G −→ GL(V ) : (g, h) 7−→ det(g)

det(h)
· h ,

where we identify GL(V ) ∼= GLn(K) via the basis {d1, . . . , dn}. This defines a

group representation of G on V . Moreover ψ is surjective.

Proof. The fact that ψ is a group homomorphism follows from multiplicativity

of the determinant. For surjectivity, we shall prove that the image of ψ contains

every invertible n × n–matrix. But this is clear since for T ∈ GLn(K), one can

choose ψ(g, T ) = T where g is a matrix in GLn−1(K) such that det(g) = det(T ),

e.g. g = λ idn−1 for some λ ∈ K such that λn = det(T ).
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Remark 5.2.9. Linear independence of the maximal minors is only needed to

ensure well-definedness of h as a linear map on V . If we would consider d1, . . . , dn

as formal expressions, the same proof shows that every linear transformation of

the di’s given by some T ∈ GLn(K) can be written in such a way.

Remark 5.2.10. Surjectivity of ψ implies that every invertible linear transfor-

mation on the space of maximal minors, i.e. every basis change in V , is actually

induced by the G-action of an element (g, h) ∈ G and formula (5.16) gives a

constructive way to find the matrices g and h.

Example 5.2.11. The maximal minors of

Φ =

(
z1 z2 z3

l1 l2 l3

)
are

d1 = z2l3 − z3l2 , d2 = z3l1 − z1l3 , d3 = z1l2 − z2l1 .

Now we would like to find a Kronecker module Φ′ ∈ V with maximal minors
d′1 = d1 + d2

d′2 = d3

d′3 = 3d2 − d1

⇔


d′1

d′2

d′3

 =


1 1 0

0 0 1

−1 3 0

 ·

d1

d2

d3

 .

The determinant of the invertible matrix T is−4. Hence one can take for example

Φ′ =

(
2 0

0 −2

)
· Φ · T−1 =

 3
2
z1 + 1

2
z2 2z3

1
2
z2 − 1

2
z1

−3
2
l1 − 1

2
l2 −2l3

1
2
l1 − 1

2
l2

 .

Corollary 5.2.12. If Φ ∈ V, then its maximal minors are linearly dependent if

and only if there exists Φ′ ∈ O(Φ) such that the first maximal minor of Φ′ is zero

(in other words: if and only if there exists (g, h) ∈ G such that the first maximal

minor of g · Φ · h−1 is zero).

Proof. Sufficiency follows from Corollary 5.2.7: if ∃Φ′ ∈ O(Φ) such that the first

maximal minor of Φ′ is zero, then these are linearly dependent, hence so are the

maximal minors of Φ.
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Vice-versa, let d1, . . . , dn be the maximal minors of Φ. If one of them is already

zero, we are done. Otherwise assume that di =
∑

k 6=i λkdk for some λk ∈ K and

some i ∈ {1, . . . , n}. Now we want to perform the transformation

d′1 = di −
∑

k 6=i λkdk

d′2 = d2

. . .

d′i = d1

. . .

d′n = dn

⇔



d′1

d′2
...

d′i
...

d′n


=



−λ1 −λ2 . . . 1 . . . −λn
0 1 . . . 0 . . . 0
...

... 1
...

. . .
...

1 0 . . . 0 . . . 0
...

...
. . .

... 1
...

0 0 . . . 0 . . . 1


·



d1

d2

...

di
...

dn


,

so that d′1 = 0. The determinant of this invertible matrix h is −1, hence the

Kronecker module

Φ′ =

(
−1 0

0 idn−2

)
· Φ · h−1

satisfies the required condition.

Corollary 5.2.13. Let Φ ∈ V and assume that its maximal minors d1, . . . , dn

span a K-vector space of dimension k < n. Then there exists Φ′ ∈ O(Φ) such that

the maximal minors of Φ′ are d′1, . . . , d
′
k, 0, . . . , 0, where d′1, . . . , d

′
k are linearly

independent.

Proof. The proof is similar as in Corollary 5.2.12. First we perform a permuta-

tion such that the first k maximal minors are linearly independent and then a

transformation by substracting the linear combinations from the remaining ones

to get 0 for i ∈ {k + 1, . . . , n}.

Now we are able to generalize a result from [19] which states that Kronecker

modules of the type 2× 3 with linearly independent maximal minors are stable.

Proposition 5.2.14 (Leytem). cf. [ [19], Lemma 1 & Lemma 2, p.87-88 ]5

If Φ ∈ V is such that its maximal minors are linearly independent, then Φ is

5The statement in [19] is only for the case n = 3 and is proven by the means of 1-parameter

subgroups (consider Definition D.4.16).
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a stable Kronecker module, i.e. Φ ∈ Vs. For n = 3, the conditions are even

equivalent.

Proof. If Φ is not semistable, then ∃m ∈ {1, . . . , n − 1} and a matrix ψ of the

type m×m whose entries are linear forms such that

Φ ∼

(
ψ 0

∗ ∗

)
.

We show that the first maximal minor (see Definition 5.2.1) of the matrix on the

RHS is zero. Corollary 5.2.12 then implies that the maximal minors of Φ are

linearly dependent as well. This will prove the statement by contraposition.

When erasing the first column for m = 1, the resulting (n−1)×(n−1)–submatrix

has its first row equal to zero, hence the determinant will be zero. So let m ≥ 2.

We will prove by induction on n ≥ 3 that the first maximal minor of such a

Kronecker module is zero. For n = 3, this is clear as Φ is then of the form(
∗ ∗ 0

∗ ∗ 0

)
.

Now let n ≥ 4 and assume that the result holds true for n − 1 and for any

m′ ∈ {2, . . . , n − 2} (the case m = 1 was discussed above). Consider n and fix

m ∈ {2, . . . , n− 1}. We expand the determinant of

ψ11 . . . ψ1m 0 . . . 0
...

. . .
...

...
. . .

...

ψm1 . . . ψmm 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


along the first row, so the first maximal minor of this (n−1)×n–matrix is equal

to

d = ψ12 · a2 − ψ13 · a3 + . . .± ψ1m · am + 0 + . . .+ 0 ,

where ai is the determinant of the (n− 2)× (n− 2)–submatrix associated to ψ1i.

However each ai is also the first maximal minor of some Kronecker module of the
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type (n− 2)× (n− 1) whith a block ψ′ of size (m− 1)× (m− 1). For example

a2 = det



ψ23 . . . ψ2m 0 . . . 0
...

. . .
...

...
. . .

...

ψm3 . . . ψmm 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


is the first maximal minor of the Kronecker module

ψ22 ψ23 . . . ψ2m 0 . . . 0
...

...
. . .

...
...

. . .
...

ψm2 ψm3 . . . ψmm 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗


=

(
ψ′ 0

∗ ∗

)
.

a3, . . . , am are of a similar form. Hence all ai are zero by induction hypothesis.

It follows that d is zero as well.

To prove the converse for n = 3, let Φ ∈ V such that its first maximal minor is

zero. Then Φ is of the form

Φ ∼

(
∗ z1 z2

∗ z3 z4

)
,

where the zi are linear forms such that z1z4 − z2z3 = 0. Since K[X0, X1, X2] is a

UFD and all the zi are irreducible, the equality z1z4 = z2z3 implies that either

z1 = ± z2 and z4 = ± z3, in which case(
z1 z2

z3 z4

)
=

(
± z2 z2

z3 ± z3

)
∼

(
0 z2

0 ± z3

)
,

or z1 = ± z3 and z4 = ± z2, in which case(
z1 z2

z3 z4

)
=

(
± z3 z2

z3 ± z2

)
∼

(
± z3 z2

0 0

)
.

Hence Φ is of the form

Φ ∼

(
0 ∗ ∗
0 ∗ ∗

)
or Φ ∼

(
∗ ∗ ∗
∗ 0 0

)
and thus not semistable.
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Remark 5.2.15. We no longer have an equivalence for n > 3. A counter-

example for n = 4 is given in Example 5.6.1.

Corollary 5.2.16. Let Vl ⊂ V denote the set of Kronecker modules with linearly

independent minors. Then Vl ⊆ Vs and this is an inclusion of open sets, so Vl

is an open subvariety of V ∼= Av.

Proof. The inclusion follows from Proposition 5.2.14. To show that Vl is open,

note that V \ Vl is closed since the minors of Φ being linearly dependent means

that the matrix consisting of their coefficients, which are polynomial expressions

in the variables akij from (5.14), has all its maximal minors equal to zero. This

is an intersection of vanishing sets in Av. Hence Vl is open.

5.2.2 The Hilbert-Burch Theorem

The following theorem is an important tool as it allows to construct kernels of

Kronecker modules.

Theorem 5.2.17 (Hilbert-Burch). [ [16], 20.15, p.502 ], [ [61], Th.15, p.228-229 ]

Let R be a local ring and assume that I E R is an ideal with a minimal projection

resolution

0 −→ F2
Φ−→ F1

ϕ−→ R −→ R/I −→ 0 . (5.17)

1) Assume that F1
∼= Rn is free of rank n in (5.17), so that ϕ writes as

ϕ =


ϕ1

...

ϕn


for some ϕ1, . . . , ϕn ∈ R. Then F2

∼= Rn−1, so that Φ : Rn−1 → Rn is an

(n− 1)× n–matrix with entries in R and maximal minors d1, . . . , dn, and there

exists a NZD a ∈ R such that ϕi = a · di for all i ∈ {1, . . . , n}. Moreover

I = a · In−1(Φ) ,

where In−1(Φ) = 〈 d1, . . . , dn 〉 is the ideal generated by the minors of Φ, I has

depth 2 as an R-module and the quotient R/I is a Cohen-Macaulay ring of Krull

dimension 0.
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2) Conversely, if we are given a NZD a ∈ R and an (n− 1)× n–matrix Φ with

maximal minors d1, . . . , dn such that the ideal I = In−1(Φ) = 〈 d1, . . . , dn 〉 E R

has depth 2, then the morphism ϕ defined by ϕi = a ·di for all i turns (5.17) into

a free resolution of R/I with I = a · In−1(Φ).

We will use this statement in order to include Kronecker modules into some exact

sequences. From Proposition 4.5.8 and Proposition 4.5.9 we already know

Corollary 5.2.18. Let n,m ∈ N and consider a morphism of sheaves

ψ :
n⊕
i=1

OP2(ki) −→
m⊕
j=1

OP2(lj)

for some ki, lj ∈ Z, so that ψ is a n×m–matrix of homogeneous polynomials.

a) If n ≤ m and at least one of the n× n–minors of ψ is non-zero, then ψ is

injective.

b) If n ≥ m, then cokerψ is supported on the common vanishing set of all

m ×m–minors of ψ. In particular, ψ is surjective if this vanishing set is

empty.

c) For n = m, we thus get: ψ is injective6 if 〈detψ〉 6= 0 and ψ is surjective

if Z(detψ) = ∅.

In order to apply the Hilbert-Burch Theorem to this situation, we have to make

sure that the maximal minors of Φ define a subscheme of dimension 0 (since R/I

must be of Krull dimension 0).

Lemma 5.2.19. Let d1, . . . , dn be the maximal minors of a Kronecker module

Φ ∈ V. Assume that they are not all identically zero and consider their greatest

common divisor g = gcd(d1, . . . , dn). Then the zero scheme

Z = Z(d1, . . . , dn)

given by the vanishing set of the minors is 0-dimensional if and only if g = 1.

6Recall that the notation 〈f〉 means that we consider the vector of coefficients of a homo-

geneous polynomial f .
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Proof. Since not all maximal minors are zero, we already get dimZ < 2 by

Corollary 5.2.18.

⇒ : If dimZ = 0, then g = 1, otherwise g is non-constant and Z(g) ⊆ Z implies

that dimZ ≥ 1.

⇐ : By contraposition, assume that dimZ ≥ 1. Then Z contains an irreducible

subscheme of dimension 1, hence there exists a non-constant homogeneous irre-

ducible polynomial f such that Z(f) ⊆ Z, which implies that each di is divisible

by f .

Definition 5.2.20. Let Φ ∈ V with maximal minors d1, . . . , dn. We say that

these are coprime if gcd(d1, . . . , dn) = 1.

Lemma 5.2.21. If Φ ∈ V and ϕ = t(d1, . . . , dn) is a column vector (here t

denotes the transpose), then ϕ ◦ Φ = 0 (or Φ · ϕ = 0 in terms of matrices).

Proof. We expand the determinant of Φ that has been augmented by its ith row

in the first row, so this determinant is zero:

0 = det


zi1 zi2 . . . zin

z11 z12 . . . z1n

...
...

. . .
...

zn−1,1 zn−1,2 . . . zn−1,n


= zi1d1 + zi2d2 + . . .+ zindn = ith entry of Φ · ϕ .

Remark 5.2.22. But in general a complex defined by Φ and ϕ is not exact at

the step ϕ ◦ Φ = 0. A condition for exactness is given in Proposition 5.2.23.

Proposition 5.2.23. Assume that the maximal minors d1, . . . , dn of a Kronecker

module Φ ∈ V are linearly independent and coprime and let ϕ = t(d1, . . . , dn).

Then the sequence

0 −→ (n− 1)OP2(−n)
Φ−→ nOP2(−n+ 1)

ϕ−→ OP2 −→ OZ −→ 0 (5.18)

is exact. Moreover Z is a 0-dimensional scheme of length
(
n
2

)
= n2−n

2
.
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Proof. Let I = 〈 d1, . . . , dn 〉 and R = K[X0, . . . , Xn]. Since the minors are

linearly independent, they are a minimal set of generators of I and as they are

coprime, the localizations of R/I are Cohen-Macaulay rings of Krull dimension

0. Hence by Hilbert-Burch, the kernel of

nOP2(−n+ 1)
ϕ−→ OP2

is given by an (n − 1) × n–matrix Ψ with entries in linear forms such that

In−1(Ψ) = I. Now by the universal property of the kernel there is a morphism

(n− 1)OP2(−n)
ρ−→ (n− 1)OP2(−n)

such that

0 // (n− 1)OP2(−n) Ψ // nOP2(−n+ 1)
ϕ
// OP2

(n− 1)OP2(−n)

ρ

ii

Φ

OO

0

77

with ϕ ◦ Φ = ϕ ◦ Ψ = 0 and Ψ ◦ ρ = Φ. Since the maximal minors of Φ are

linearly independent, they are in particular not all zero, hence Φ is injective

(Corollary 5.2.18) and so is ρ. Now we consider ρ as a linear map

(n− 1) ·K(X0, X1, X2)
ρ−→ (n− 1) ·K(X0, X1, X2)

of vector spaces over the field of rational functions K = K(X0, X1, X2). Since ρ

is an injective map of finite-dimensional K-vector spaces of the same dimension,

it is thus an isomorphism and hence so is its restriction

(n− 1) ·K[X0, X1, X2]
ρ−→ (n− 1) ·K[X0, X1, X2] .

The sheaf OZ is then defined as the cokernel of ϕ, hence it is supported on the

common vanishing set of d1, . . . , dn. As these are coprime, we get dimZ = 0.

To compute its Hilbert polynomial, we use Example 4.3.1 and additivity in the

exact sequence (5.18) to get

POZ (m) = (m+2)(m+1)
2

− n · (m−n+3)(m−n+2)
2

+ (n− 1) · (m−n+2)(m−n+1)
2

= n2−n
2

.
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Example 5.2.24. The sequence (5.18) from Proposition 5.2.23 is not exact if

the maximal minors of Φ are not coprime. Consider e.g.

Φ =

(
X1 X0 0

X2 0 X0

)
⇒ ϕ =


X2

0

−X0X1

−X0X2

 .

Then Φ · ϕ = 0, but (0, X2,−X1) ∈ kerϕ \ im Φ since

(f, g) · Φ = (fX1 + gX2 , fX0 , gX0) .

In order to obtain (0, X2,−X1), we need f = X2

X0
and g = −X1

X0
, but this choice

is not possible for a stalk in P2 \ U0, where U0 is the set of points (x0 : x1 : x2)

in P2 with x0 6= 0.

The following result gives important invariants of every Hilbert-Burch resolution.

Proposition 5.2.25. [ [17], 3.7 & 3.9, p.47-49 ] and [ [18], III-61, p.133 ]

Let

0 −→
n−1⊕
i=1

OP2(−bi)
Ψ−→

n⊕
j=1

OP2(−aj)
ϕ−→ OP2 −→ OZ

be a minimal graded free resolution of an ideal with depth 2 (generated by n

elements) defining a 0-dimensional scheme Z. We denote the degrees of the

entries on the principal diagonals of Ψ by ei and fi, i.e.

Ψ =


e1 f1 ∗ ∗

e2 f2 ∗

∗ . . . . . .

∗ ∗ en−1 fn−1

 .

If we assume that a1 ≥ . . . ≥ an and b1 ≥ . . . ≥ bn−1, we have the following

bounds and relations:

1) ei ≥ 1 and fi ≥ 1, ∀ i ∈ {1, . . . , n− 1}.
2) ei = bi − ai and fi = bi − ai+1, ∀ i ∈ {1, . . . , n− 1}.
3) ai = e1 + . . .+ ei−1 + fi + . . .+ fn−1, ∀ i ∈ {1, . . . , n− 1}.
4) b1 + . . .+ bn−1 = a1 + . . .+ an.
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5) fi ≥ ei and fi ≥ ei+1, ∀ i ∈ {1, . . . , n− 2}.
Moreover, if N is the number of points in Z (with multiplicities), then

N =
∑
i≤j

eifj .

5.2.3 Properties of coprime maximal minors

The results of the next two sections have mainly been pointed out by O. Iena.

Lemma 5.2.26. Let Φ,Φ′ ∈ V be two Kronecker modules such that their max-

imal minors d1, . . . , dn, resp. d′1, . . . , d
′
n are linearly independent and coprime.

If {di}i and {d′j}j span the same vector space over K, then Φ and Φ′ lie in the

same orbit of the G-action on V.

Proof. Since the maximal minors span the same vector space over K, there is an

invertible matrix h ∈ GLn(K) such that
d1

...

dn

 = h ·


d′1
...

d′n

 ⇔ ϕ = h · ϕ′ .

By Corollary 5.2.8 we thus can define a Kronecker module Φ′′ := g′ · Φ′ · h−1 for

some g′ ∈ GLn−1(K) such that det(g′) = det(h) which has the same maximal

minors as Φ, i.e. ϕ′′ = ϕ. Now consider

0 // kerϕ = (n− 1)OP2(−n) Φ // nOP2(−n+ 1)
ϕ
// OP2

0 // kerϕ′′ = (n− 1)OP2(−n)

g

OO

Φ′′ // nOP2(−n+ 1)
ϕ′′
// OP2

which is exact by Proposition 5.2.23. The morphism g ∈ GLn−1(K) exists by the

universal property of kerϕ (as Φ′′ · ϕ = 0, it factorizes through the kernel) and

is an isomorphism by uniqueness of kernels. So we get

Φ′′ = g · Φ ⇔ Φ = (g−1 · g′) · Φ′ · h−1 ,

i.e. Φ and Φ′ are in the same G-orbit.
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Example 5.2.27. Lemma 5.2.26 does not hold if the maximal minors are not

coprime. Consider

Φ =


X1 0 −X2 0

0 X1 0 −X2

0 0 −X1 X0

 and Φ′ =


0 X1 0 −X2

−X1 X0 0 0

0 0 −X1 X0


⇒ d1 = d′1 = X0X1X2 , d2 = d′2 = X2

1X2 ,

d3 = d′3 = X0X
2
1 , d4 = d′4 = X3

1 .

Both Kronecker modules have the same maximal minors, which have X1 as a

common divisor and are hence not coprime, but they do not lie in the same

G-orbit. Indeed if we are looking for square-matrices g and h with entries in K
such that g · Φ = Φ′ · h, then g = 0 and h = 0, i.e. Φ′ /∈ O(Φ).

Remark 5.2.28. A geometric interpretation illsutrating the difference between

Φ and Φ′ is given in Example 5.6.2.

Proposition 5.2.29. Let Φ ∈ Vs be a stable Kronecker module with maximal

minors d1, . . . , dn. If these are coprime, then they are linearly independent.

Proof. Let gcd(d1, . . . , dn) = 1, so that we can apply Hilbert-Burch and Propo-

sition 5.2.25. Assume that d1, . . . , dn are not linearly independent and that they

span a vector space of dimension k < n. Then by Corollary 5.2.13 we may as-

sume that the maximal minors of Φ are d1, . . . , dk, 0, . . . , 0 such that d1, . . . , dk

are linearly independent. Moreover these are still coprime, otherwise the linear

combinations that have been removed would have the same non-trivial divisor, so

that the initial minors were not coprime. Hence d1, . . . , dk define a 0-dimensional

subscheme Z and if ϕ = t(d1, . . . , dk), then the minimal Hilbert-Burch resolution

of OZ reads

0 −→
k⊕
i=1

OP2(−n+ 1− bi) −→ kOP2(−n+ 1)
ϕ−→ OP2 −→ OZ −→ 0

for some ei ≥ 1 with e1 ≥ . . . ≥ ek−1 by Proposition 5.2.25 since all di are of
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degree n− 1. Moreover we have the relation

k∑
i=1

(n− 1 + ei) =
k∑
i=1

(n− 1) ⇔ (k − 1) · (n− 1) +
k−1∑
i=1

ei = k · (n− 1)

⇔
k−1∑
i=1

ei = n− 1 .

Hence at most k − 2 of the ei may be equal to 1, which means that there are

at most ` ≤ k − 2 linear syzygies of ϕ, i.e. there are exactly ` linear relations

between d1, . . . , dk. However we have

Φ ·

(
ϕ

0

)
= 0 ,

so the Kronecker module ϕ contains n − 1 linear syzygies of ϕ. Since there are

only ` ≤ k − 2 ≤ n− 3, we can perform linear transformations of the rows of Φ

and obtain the form

Φ ∼

(
sy ∗
0 ∗

)
,

where the block of syzygies is of size ` × k and the block of zeroes has size

(n− 1− `)× k. We want to show that this contradicts stability of Φ, for which

we need a block of zeros of size j × (n− j) for some j ≥ 1. We have

j := n− 1− ` ≥ n− 1− (k − 2) = n− k + 1 ≥ n− (n− 1) + 1 = 2

and it remains to show that k ≥ n − j. But n − j = ` + 1 ≤ k − 1, so this

is satisfied. Finally this contradiction shows that d1, . . . , dn cannot be linearly

dependent.

Now we study the dual situation to the one presented in (5.18). Let Φ ∈ V with

maximal minors d1, . . . , dn and consider its dual tΦ, which is a matrix of the

type n× (n− 1). If tϕ = (d1, . . . , dn) is the row vector consisting of the maximal

minors, then tϕ · tΦ = 0 from Lemma 5.2.21 implies that

OP2(−n)
tϕ−→ nOP2(−1)

tΦ−→ (n− 1)OP2

is a complex. We want to compute its kernel.
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Proposition 5.2.30. Assume that not all maximal minors of Φ are identically

zero and denote g = gcd(d1, . . . , dn). Then the sequence

0 −→ OP2(−n+ deg g)
ψ−→ nOP2(−1)

tΦ−→ (n− 1)OP2 (5.19)

is exact, where ψ = (d′1, . . . , d
′
n) with d′i = di

g
for all i ∈ {1, . . . , n}.

Proof. ψ is injective by Corollary 5.2.18 since not all its maximal minors are

zero. ψ · tΦ = 0 implies that (5.19) is moreover a complex. To prove exactness,

we consider tΦ as a linear map of K-vector spaces

n ·K(X0, X1, X2)
tΦ−→ (n− 1) ·K(X0, X1, X2) ,

where K = K(X0, X1, X2). Since not all maximal minors of tΦ are zero, the

matrix is of rank n−1 and hence the kernel of this linear map is a 1-dimensional

vector space over K. But (d′1, . . . , d
′
n) is a non-zero element of that kernel, hence

it is a generator and we get the exact sequence

0 −→ K(X0, X1, X2)
ψ−→ n ·K(X0, X1, X2)

tΦ−→ (n− 1) ·K(X0, X1, X2) .

Taking the intersection

K[X0, X1, X2] ∩ 〈 d′1, . . . , d′n 〉K = (d′1, . . . , d
′
n) ·K[X0, X1, X2] ,

we find that the kernel of the restricted K[X0, X1, X2]–module homomorphism

n ·K[X0, X1, X2]
tΦ−→ (n− 1) ·K[X0, X1, X2]

is also generated by (d′1, . . . , d
′
n), over the polynomial ring.

Remark 5.2.31. The sequence (5.19) shows in particular that the dual sequence

of (5.18) can be made exact if the maximal minors are not coprime. However

this is not possible in the other case. Consider e.g. again Example 5.2.24 where

Φ =

(
X1 X0 0

X2 0 X0

)
with ϕ =


X2

0

−X0X1

−X0X2

 ⇒ ψ =


X0

−X1

−X2


by diving out the gcd X0. We get Φ · ψ = 0, but it is still not exact at this step

because of the same counter-example (0, X2,−X1) ∈ kerψ \ im Φ. Actually the

syzygy of ψ consists of the 3 relations

(X1, X0, 0) , (X2, 0, X0) , (0, X2,−X1) .
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5.2.4 Applications

Definition 5.2.32. We define Y ⊂ V to be the set of all Kronecker modules with

coprime maximal minors. Moreover we set V0 := Y ∩Vs. By Proposition 5.2.29

and Corollary 5.2.16 we thus have the inclusions

V0 ⊆ Vl ⊆ Vs ⊆ V .

The first goals of this section are to prove that a generic Φ ∈ Vs has coprime

maximal minors and that the action of PG is free on V0.

Lemma 5.2.33. Y ⊂ V is a generic set.

Proof. We have to show that the set of coefficients akij, A
k
i from (5.14) which

define coprime minors in Av for v = 3n(n − 1) contains an open set. For this

note that a smooth curve in P2 is irreducible since the intersection point of 2

components would be singular (by Bézout’s Theorem such an intersection point

always exists). For all i ∈ {1, . . . , n} let Si ⊂ Av be the subset of all coefficients

such that the curve defined by the ith maximal minor is smooth. Similarly as

in the proof of Proposition 4.4.18 one finds that Si is open since P2 is complete.

Hence we get S1 ∪ . . . ∪ Sn ⊆ Y since the gcd is 1 as soon as at least one of the

maximal minors defines a smooth curve (and is thus irreducible). So Y is generic

because each Si is open and non-empty.

Lemma 5.2.34. Y ⊂ V is even open itself. In particular V0 ⊂ Vs is open.

Proof. We show that V \ Y, consisting of Kronecker modules whose maximal

minors have a common divisor, is a closed set. Let us first describe the idea:

Let f1, . . . , fn be homogeneous polynomials of degree e ≥ 2. We are inter-

ested in the case where these have a common factor, i.e. when there exists

r ∈ {1, . . . , e − 1}, a homogeneous polynomial h of degree r and homogeneous

polynomials g1, . . . , gn of degree e− r such that fi = h · gi for all i ∈ {1, . . . , n}.
Let

t1 =
(
r+2

2

)
, t2 =

(
e−r+2

2

)
, E =

(
e+2

2

)
.

First we look at the affine space Xr = At1 ×
∏n

1 At2 ×
∏n

1 AE and the subset

Vr :=
{

(h, g1, . . . , gn, f1, . . . , fn)
∣∣ fi = h · gi for all i

}
⊂ Xr .
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Writing out the equality and obtaining polynomial equations in the coefficients of

the polynomials one sees that Vr is closed, hence that its complement Ur = Xr\Vr,
consisting of such tuples of polynomials which have no common factor of degree

r, is open. Next we consider the projection pr : Xr →
∏n

1 AE. Then the

subset of all polynomials f1, . . . , fn which have no common factor is equal to

p1(U1) ∪ . . . ∪ pe−1(Ue−1). Since all projections pr are open (see Lemma 5.2.35),

we obtain that the subset of
∏n

1 AE of polynomials which have no common factor

is open.

The same idea also applies to V \Y. By putting the coefficients of the maximal

minors of a Kronecker module into polynomial equations and using similar open

projections, one obtains that Y is an open subset of Av for v = 3n(n− 1).

Lemma 5.2.35. [ [11], 10.40.10 ] and [ [53], 463845 ]

Let X ,Y be Noetherian schemes over K. Then the projection p : X ×K Y → X
is open.

Remark 5.2.36. [ [11], 10.40.8 & 28.24.9 ] and [ [53], 676533 ]

Actually an even stronger statement holds true: let X ,Y be Noetherian schemes

over K. Then every flat morphism f : X → Y which is locally of finite presen-

tation is open.

As already mentioned in Remark 4.6.14 and Remark 5.1.32, Proposition 5.2.30

now allows to prove

Corollary 5.2.37. Consider the G-action on V. If Φ ∈ V0, then the stabilizer

of Φ is equal to the 1-dimensional subgroup Γ = { (λ idn−1, λ idn) | λ ∈ K∗ } ⊂ G.

Proof. Assume that (g, h) ∈ G is such that gΦh−1 = Φ. Then by dualizing we

get a · tΦ · b = tΦ for a = (th)−1 and b = tg. From (d1, . . . , dn) · tΦ = 0, we also

have (d1, . . . , dn) · a ∈ ker(tΦ) since

(d1, . . . , dn) · a · tΦ = (d1, . . . , dn) · a · tΦ · b · b−1 = (d1, . . . , dn) · tΦ · b−1 = 0 .

By exactness of (5.19) we thus get (d1, . . . , dn)·a = µ (d1, . . . , dn) for some µ ∈ K∗

(µ cannot be zero, otherwise all di = 0 would by zero since a is invertible).

Therefore

(d1, . . . , dn) ·
(
a− µ idn

)
= 0 ⇒ a = µ idn

265



LEYTEM Alain 5.2. Computations with Kronecker modules

because the di are linearly independent by Proposition 5.2.29. Then we have

a · tΦ · b− tΦ = 0 ⇔ tΦ ·
(
µb− idn−1

)
= 0 ⇔

(
µ · tb− idn−1

)
· Φ = 0 .

By injectivity of Φ (not all maximal minors are zero), we hence obtain that

µb = idn−1. Finally if we set λ = 1
µ
, then

g = tb = λ idn−1 and h = (ta)−1 = λ idn ,

i.e. (g, h) ∈ Γ. On the other hand the inclusion Γ ⊆ StabG(Φ) is always true, so

we get equality.

Corollary 5.2.38. The action of PG = G/Γ on V0 is free.

Proof. By Corollary 5.2.37 we know that the stabilizer of any Φ ∈ V0 is equal to

Γ. Hence by dividing it out, all stabilizers become trivial.

Another application of Hilbert-Burch is that one can obtain a locally free reso-

lution for the structure sheaf of every 0-dimensional scheme whose points are in

general position.

Definition 5.2.39. Fix some d ≥ 1, let k =
(
d+2

2

)
and consider k (simple) points

p1, . . . , pk ∈ P2. We say that these points are in general position if they do not

all lie on a curve of degree d. E.g. if d = 1 we have 3 non-collinear points and

for d = 2 we get 6 points that do not lie on a conic.

Lemma 5.2.40. Let e > d and denote E =
(
e+2

2

)
. Then the K-vector space of

homogeneous polynomials of degree e which vanish at k points in general position

has dimension E − k. Therefore the corresponding subspace in Ce(P2) ∼= PE−1 of

curves of degree e passing through p1, . . . , pk has dimension E − k − 1.

Proof. If h ∈ K[X0, X1, X2] is a homogeneous polynomial of degree e, then

h(pi) = 0 gives one linear condition on the coefficients of h. As we have k

different points, we obtain k linearly independent conditions (since the points

are in general position) and a vector subspace of codimension k.
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Remark 5.2.41. The same statement actually also holds true for points with

multiplicities. Indeed saying that a point of multiplicity m belongs to a curve

gives m linearly independent conditions.

Remark 5.2.42. Lemma 5.2.40 does not hold true if the points are not in general

position. Consider for example the 3 collinear points (1 : 0 : 0), (0 : 1 : 0) and

(1 : 1 : 0). They already lie on a curve of degree 1. Now we add the points

(1 : 2 : 0), (1 : 3 : 0) and (1 : 4 : 0), so that d = 2. These 6 =
(

4
2

)
points still lie

on the line given by the equation X2 = 0 and thus e.g. on the conic defined by

X2
2 +X0X2 +X1X2. But for cubics (e = 3), we now have the 10 monomials

X3
0 , X

3
1 , X

3
2 , X

2
0X1 , X

2
0X2 , X0X

2
1 , X0X

2
2 , X0X1X2 , X

2
1X2 , X1X

2
2 ,

and saying that a homogeneous polynomial of degree 3 should vanish at these

6 points only requires that the coefficients in front of X3
0 , X3

1 , X2
0X1 and X0X

2
1

must vanish. So we obtain a vector space of dimension 10 − 4 = 6. However

E − k = 10− 6 = 4.

Proposition 5.2.43. [ [17], 3.8, p.48 ] and [ [18], III-62, p.133 ]

Let I E K[X0, X1, X2] be a homogeneous ideal defining a 0-dimensional sub-

scheme Z ⊂ P2. If all points of Z lie on a curve of degree e or if I contains an

element of degree e, then I can be generated by e+ 1 elements.

Corollary 5.2.44. Let Φ ∈ V such that its maximal minors d1, . . . , dn are co-

prime. Then the points of the 0-dimensional scheme Z(d1, . . . , dn) ⊂ P2 of length(
n
2

)
do not lie on a curve of degree n− 2.

Proof. The ideal generated by the maximal minors only contains non-trivial el-

ements of degree n − 1 (by definition), hence Proposition 5.2.43 implies that it

can be generated by n elements (the minors themselves if they are linearly inde-

pendent). Thus the points of Z cannot lie on a curve of degree n− 2, otherwise

the minimal number of generators would be n− 1.
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Proposition 5.2.45. Fix d ≥ 1, let k =
(
d+2

2

)
and consider a 0-dimensional

scheme Z of k points (with multiplicities). Assume that the points are in general

position, i.e. they do not lie on a curve of degree d. Then OZ has a resolution

0 −→ (d+1)OP2(−d−2)
Φ−→ (d+2)OP2(−d−1)

ϕ−→ OP2 −→ OZ −→ 0 . (5.20)

Proof. Let IZ be the ideal sheaf defining Z. Since Z does not lie on a curve of

degree d, but on some curve of degree d+ 1 (there are always enough coefficients

to satisfy this condition), Proposition 5.2.43 implies that IZ can be generated

by d+ 2 elements. Thus we get the Hilbert-Burch resolution

0 −→
d+1⊕
i=1

OP2(−bi)
Φ−→

d+2⊕
j=1

OP2(−aj)
ϕ−→ OP2 −→ OZ −→ 0 ,

where ei = bi − ai, fi = bi − ai+1 for all i ∈ {1, . . . , d+ 1} and k =
∑

i≤j eifj by

Proposition 5.2.25. Note that the number of summands in this sum is

d+1∑
a=1

a = (d+1)(d+2)
2

=
(
d+2

2

)
= k

since at each step there is one summand less. As ei ≥ 1 and fi ≥ 1, we thus

need that ei = fj = 1 for all i, j, i.e. the matrix Φ consists of linear forms.

Now consider the K-vector space V of homogeneous polynomials of degree d+ 1

vanishing at Z. By Lemma 5.2.40 its dimension is
(
d+3

2

)
− k = d + 2, hence V

is generated by d + 2 linearly independent homogeneous polynomials of degree

d + 1 ; denote them by f1, . . . , fd+2. Since Z ⊆ Z(fi) for all fi ∈ V , we get

〈 fi 〉 = IZ(fi) ⊆ IZ , i.e. each fi also belongs to IZ . But as IZ can be generated

by d + 2 elements, these generators can be chosen to be exactly the fi ∈ V . By

Theorem 5.2.17 we now know that the generators of IZ coincide (up to a NZD)

with the maximal minors of the matrix Φ. So finally we obtain the resolution

(5.20) with

ϕ =


f1

...

fd+2


since all minors are of degree d+ 1 (i.e. all aj are equal) and Φ consists of linear

forms.
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Example 5.2.46. Consider e.g. d = 1 and k = 3. So we are looking at three

non-collinear points. Let us take

Z =
{
z0 = (1 : 0 : 0) , z1 = (0 : 1 : 0) , z2 = (0 : 0 : 1)

}
.

The vector space of all curves of degree 2 is{
f = a0X

2
0 + a1X

2
1 + a2X

2
2 + b0X0X1 + b1X0X2 + b2X1X2

∣∣ ai, bi ∈ K
}
.

If we require that Z ⊆ Z(f), we get the conditions a0 = a1 = a2 = 0, so the

vector space of all conics in P2 containing Z is

V =
{
f = b0X0X1 + b1X0X2 + b2X1X2

∣∣ bi ∈ K
}
.

The 3 generators X0X1, X0X2, X1X2 are coprime and also generated the ideal

sheaf IZ since their common vanishing set is exactly Z = Z(X0X1, X0X2, X1X2).

Remark 5.2.47. A priori the resolution (5.20) seems to be uniquely determined

by Z. However since every quotient OP2 � OZ defines the same ideal sheaf by

0 → IZ → OP2 → OZ → 0, one can always construct a resolution of this type

which is compatible with a given surjective morphism OP2 � OZ (since the proof

of Proposition 5.2.45 only uses IZ in the computations).

Summary

The main results of Section 5.2 are the following. The cokernel of a Kronecker

module Φ ∈ V0 defines a 0-dimensional scheme Z ⊂ P2 of length l =
(
n
2

)
.

Moreover the points of Z do not lie on a curve of degree n − 2. The maximal

minors d1, . . . , dn of Φ are linearly independent and we have a resolution

0 −→ (n− 1)OP2(−n)
Φ−→ nOP2(−n+ 1)

ϕ−→ OP2 −→ OZ −→ 0 , (5.21)

where ϕ = t(d1, . . . , dn).

5.2.5 Remark: relation with perfect ideals

Definition 5.2.48. [ [55], p.131-132 ] and [ [53], 576487 ]

Let I E R be an ideal in a Noetherian ring R. The projective dimension of I,
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denoted pd(I), is the smallest length n of a projective resolution of the R-module

R/I, i.e.

0 −→ Pn −→ . . . −→ P1 −→ P0 −→ R/I −→ 0 ,

where all Pi are projective R-modules. The grade of I, denoted grade(I), is

defined as

grade(I) = min
{
i ≥ 0

∣∣ Exti(R/I,R) 6= {0}
}
.

I is called a perfect ideal if pd(I) = grade(I).

We briefly want to illustrate where perfect and non-perfect ideals show up in the

setting of Hilbert-Burch and Kronecker modules. Consider e.g. n = 3.

Example 5.2.49. Let R = K[X0, X1, X2] and assume that a stable Kronecker

module Φ of size 2×3 is such that its maximal minors d1, d2, d3 define an ideal of

3 different points. So in particular they are coprime. Then for I = 〈 d1, d2, d3 〉,
Hilbert-Burch gives the resolution

0 −→ 2R
Φ−→ 3R

ϕ−→ R −→ R/I −→ 0 , (5.22)

where ϕ = t(d1, d2, d3), hence pd(I) = 2. Recall that

Exti(R/I,R) = H i
(

HomR(P •, R)
)
,

where P • is a projective resolution of R/I. We take (5.22) and get the complex

0 −→ HomR(R/I,R) −→ HomR(R,R) −→ HomR(3R,R) −→ HomR(2R,R)

⇔ 0 −→ HomR(R/I,R) −→ R
tϕ−→ 3R

tΦ−→ 2R .

tϕ is injective since not all di are zero, hence we have

Ext0(R/I,R) = HomR(R/I,R) = {0} .

d1, d2, d3 being coprime, Proposition 5.2.30 also implies that the sequence is

exact at the step tΦ ◦ tϕ = 0, hence Ext1(R/I,R) = {0} as well. However

Ext2(R/I,R) 6= {0} because tΦ is not surjective (e.g. linear forms cannot be

obtained). Thus grade(I) = 2, meaning that I is a perfect ideal.
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Example 5.2.50. Now consider a Kronecker module Φ where the maximal mi-

nors are not coprime, e.g.

Φ =

(
X0 0 X1

0 X0 X2

)
,

so that d1 = −X0X1, d2 = −X0X2 and d3 = X2
0 . If I = 〈 d1, d2, d3 〉, a similar

sequence as in (5.22) is not exact since

(
X2 −X1 0

)
·


−X0X1

−X0X2

X2
0

 = 0 ,

but (X2,−X1, 0) is not in the image of Φ. Note however that

ϕ =


−X0X1

−X0X2

X2
0

 =


−X1

−X2

X0

 ·X0 = ψ ·X0 ,

where ψ can be resolved using syzygies as in Example 4.5.10. We find

0 −→ R
`−→ 3R

A−→ 3R
ψ−→ R

·X0−→ R

with

` = (X0,−X2, X1) , A =


X2 −X1 0

X0 0 X1

0 X0 X2

 , ψ =


−X1

−X2

X0


and hence

0 −→ R
`−→ 3R

A−→ 3R
ϕ−→ R −→ R/I −→ 0 ,

which implies that pd(I) = 3. On the other hand we get Ext0(R/I,R) = {0}
since tϕ is injective. But

0 −→ R
tϕ−→ 3R

tA−→ 3R

is not exact at the step tA ◦ tϕ = 0 since syzygies imply that the kernel of tA is
tψ = (−X1,−X2, X0). Thus Ext1(R/I,R) 6= {0} and grade(I) = 1, i.e. such an

ideal I is not perfect.
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5.3 Classifying quotient bundle

In this section we follow the same strategy as in the proof of [ [48], 7.7, p.40-41 ]

in order to construct a projective bundle B over the quotient N = Vs/PG. It

will turn out that this bundle is a geometric quotient of a subspace of Vs × U2,

contains M0 as an open subset and its points are in 1-to-1 correspondence with

the orbits of the G′-action from (5.10) on W0. The more interesting fact about

B is however that the sheaves in a certain open subvariety B0 ⊆M0 ⊆ B have a

precise description as twisted ideals sheaves of curves of degree d. This will be of

major interest in order to compute the codimension of the subvariety of singular

sheaves in M and is the aim of Proposition 5.3.31, which is a slight variation of

a less general result from Drézet and Maican in [14] and [15].

5.3.1 Elimination of the non-reductive group action

We want to modify the action of the non-reductive group G′ from (5.10) on

W0 in order to construct geometric quotients by the action of reductive groups.

Indeed we know by (5.13) that the sheaves in M0 are parametrized by matrices

in W0 ⊂ Vs×U2 ⊂W, so we are interested in a quotient space whose points are

parametrized by the orbits of the G′-action on Vs × U2. Fix the notation

U2 = nΓ
(
P2,OP2(2)

)
, U1 = (n− 1) Γ

(
P2,OP2(1)

)
.

The idea is to “forget” about the action of the terms λ ∈ K∗ and L ∈ U1 in

(g′, h) ∈ G′, where

g′ =

(
λ L

0 g

)
with g ∈ GLn−1(K), so that all we have to care about is the reductive part of

G′, for which we can use the results from GIT.

Remark 5.3.1. The reductive group G = GLn−1(K) × GLn(K) can be seen as

a subgroup of G′ via the injection

i : G ↪→ G′ : (g, h) 7−→

((
1 0

0 g

)
, h

)
.

So in particular every G′-action also induces an action of G.
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Definition 5.3.2. [ [48], p.41 ] and [ [40], 2.1, p.2 ]

We consider the trivial vector bundles V × U1 and V × U2 over the space of

Kronecker modules V and define a morphism of vector bundles over V by

F : V× U1 −→ V× U2 : (Φ, L) 7−→ (Φ, L · Φ) . (5.23)

Lemma 5.3.3. [ [40], 2.1, p.2-3 ]

F is injective over Vs.

Proof. Let (Φ, L), (Φ′, L′) ∈ V×U1 such that F (Φ, L) = F (Φ′, L′). Thus Φ = Φ′

and we are left with

L · Φ = L′ · Φ ⇔ (L− L′) · Φ = 0 .

So it remains to show that the linear map U1 → U2 : L 7→ L · Φ between the

fibers in injective for stable Kronecker modules. For this, let Φ ∈ Vs and assume

that L · Φ = 0 for some non-zero L = (l1, . . . , ln−1) ∈ U1.

Φ =


z11 z12 . . . z1,n

z21 z22 . . . z2,n

...
...

. . .
...

zn−1,1 zn−1,2 . . . zn−1,n


Since li ∈ Γ(P2,OP2(1)) are linear forms, the dimension of the K-vector space

generated by the li is at most 3. So one there exists some B ∈ GLn−1(K)

such that L · B = (l′1, l
′
2, l
′
3, 0, . . . , 0) where the first non-zero entries are linearly

independent over K. Moreover Theorem 5.1.28 implies that Φ is semistable if

and only if B−1Φ is semistable (since both Kronecker modules lie in the same

orbit). Thus we can write

0 = L · Φ = (LB) · (B−1Φ)

and may assume without loss of generality that L = (l1, l2, l3, 0, . . . , 0) such that

the first non-zero entries of L are linearly independent. Now we distinguish 3

cases:

1) If l1 6= 0 and l2 = l3 = 0, then L · Φ = 0 implies that l1 · z1j = 0 and thus

z1j = 0 for all j ∈ {1, . . . , n}, i.e. the first row of Φ is zero. But this contradicts
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stability of Φ.

2) If l1 6= 0, l2 6= 0 and l3 = 0, then L · Φ = 0 gives l1z1j + l2z2j = 0 for all

j ∈ {1, . . . , n}. But the Koszul resolution from Example 4.5.10 implies that

syzygy module of (l1, l2) is generated by
(−l2
l1

)
. Hence ∀ j, ∃αj ∈ K such that(

z1j

z2j

)
= αj ·

(
−l2
l1

)
,

i.e. the columns of the first two rows of Φ are all scalar multiples of
(−l2
l1

)
. Thus

after performing elementary transformations of the columns of Φ, Φ is equivalent

to a matrix with a zero block of size 2× (n− 1).

Φ ∼


−l2 0 . . . 0

l1 0 . . . 0

∗ ∗ ∗ ∗


But this again contradicts stability of Φ.

3) Now assume that li 6= 0 for i = 1, 2, 3. Then we have l1z1j + l2z2j + l3z3j = 0

for all j and the Koszul resolution says that the syzygy module of (l1, l2, l3) is

generated by the 3 linearly independent generators

v1 =


0

l3

−l2

 , v2 =


−l3
0

l1

 , v3 =


l2

−l1
0

 .

Hence the columns of the first 3 rows of φ are linear combinations of v1, v2, v3,

i.e. ∀ j ∈ {1, . . . , n}, 
z1j

z2j

z3j

 =
3∑
i=1

βij · vi

for some βij ∈ K. But then Φ is equivalent to a matrix with a zero block of size

3× (n− 3), which contradicts again stability.

Φ ∼

(
v1 v2 v3 0 . . . 0

∗ ∗ ∗ ∗ ∗ ∗

)

Finally we conlude that L · Φ = 0 with Φ ∈ Vs is only possible for L = 0.
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Remark 5.3.4. For fixed L ∈ U1, the morphism

V −→ U2 : Φ 7−→ L · Φ

maps a Kronecker module to a Γ(P2,OP2(1))–linear combination of its rows.

Indeed if we look for example at n = 3, we get

(
l1 l2

)
·

(
z11 z12 z13

z21 z22 z23

)
=
(
l1z11 + l2z21 l1z12 + l2z22 l1z13 + l2z23

)
= l1 ·

(
z11 z12 z13

)
+ l2 ·

(
z21 z22 z23

)
.

In particular this implies that

det

(
L · Φ

Φ

)
= 0 , (5.24)

i.e. matrices which are in the image of F have zero determinant.

Corollary 5.3.5. The cokernel of F , denoted E, is a vector bundle of rank 3d.

Proof. Since F is injective over Vs, we may see Vs × U1 as a vector subbundle

of Vs × U2 and get an exact sequence

0 −→ Vs × U1
F−→ Vs × U2

π−→ E −→ 0 ,

where E = cokerF . Recall that the rank of a vector bundle is given by the

dimension of its fiber. As dimK U1 = 3(n − 1) and dimKU2 = 6n, additivity in

exact sequences of the rank gives

rkE = rk(Vs × U2)− rk(Vs × U1) = 6n− 3(n− 1) = 3n+ 3 = 3d .

Remark 5.3.6. The fibers of E are given by

EΦ
∼= cokerFΦ =

(
{Φ} × U2

)
/ imFΦ

∼= {Q ∈ U2 }/{LΦ | L ∈ U1 } ,

so they parametrize quadratic forms which cannot be written as a product of Φ

with linear forms.
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The idea of defining E as the cokernel of F is that the action of the linear part

of G′ should become invisible. We will make this clear in the following steps.

We know that there is an action of G on V via (g, h) .Φ = g · Φ · h−1. Moreover

we have the action of G′ on W via (g′, h) . A = g′ · A · h−1.

Lemma 5.3.7. There is an action of G on Vs.

Proof. The action of G on V preserves the stable Kronecker modules by definition

(since Kronecker modules which are not stable lie in certain orbits under PG,

see Theorem 5.1.28), thus this action restricts to an action of G on Vs.

Lemma 5.3.8. There is an action of G′ on Vs × U2.

Proof. The isomorphism (5.11) allows to consider Vs×U2 as an open subvariety

in W, on which we already have a G′-action. Let us write

g′ =

(
λ `

0 g

)

for (g′, h) ∈ G′, where λ ∈ K∗, ` ∈ U1 and g ∈ GLn−1(K). Hence if we take

(Φ, Q) ∈ Vs × U2 we have

(g′, h) . (Φ, Q) =

(
λ `

0 g

)
·

(
Q

Φ

)
· h−1

=

(
λ `

0 g

)
·

(
Q · h−1

Φ · h−1

)
=

(
λQh−1 + `Φh−1

g · Φ · h−1

)
⇒ (g′, h) . (Φ, Q) =

(
gΦh−1 , λQh−1 + `Φh−1

)
.

In particular, (g, h) . (Φ, Q) = (gΦh−1, Qh−1) for (g, h) ∈ G.

Lemma 5.3.9. There is an action of G′ on Vs×U1 which is compatible with F

and (5.23).

Proof. We want to define the action in a way such that F : Vs ×U1 → Vs ×U2

is a G′-morphism. In other words F should respect the actions of G′ on Vs×U1

and Vs × U2, i.e.

F
(
(g′, h) . (Φ, L)

)
= (g′, h) . F (Φ, L)
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for all (g′, h) ∈ G′, Φ ∈ Vs and L ∈ U1. Writing out the RHS, we get

(g′, h) . F (Φ, L) = (g′, h) . (Φ, L · Φ) =
(
gΦh−1 , λLΦh−1 + `Φh−1

)
=
(
gΦh−1 , (λL+ `)Φh−1

)
(5.25)

since L · Φ ∈ U2. We set (g′, h) . (Φ, L) = (Φ′, L′) for some Φ′ ∈ Vs and L′ ∈ U1

which have to be determined. Then

F
(
(g′, h) . (Φ, L)

)
= F (Φ′, L′) = (Φ′, L′ · Φ′) ,

which has to be equal to (5.25). Hence Φ′ = gΦh−1 and

(λL+ `)Φh−1 = L′Φ′ = L′gΦh−1 ⇒ L′ = (λL+ `)g−1 .

Finally the action of G′ on Vs × U1 is given by

(g′, h) . (Φ, L) = (gΦh−1, (λL+ `)g−1) .

The action of G can then be obtained by setting λ = 1 and ` = 0.

Lemma 5.3.10. There is an action of G′ on E.

Proof. First we prove a more general statement. Assume that we have a short

exact sequence of vector bundles

0 −→ A
F−→ B

π−→ C −→ 0

over a variety X and a group G acting on A and B such that F is a G-morphism.

We define an action of G on C as follows. Let c ∈ C ; thus there is some x ∈ X
such that c is in the fiber Cx. Since π is surjective, there is some b ∈ Bx such

that c = πx(b). Then we set

g.c := πx(g.b) .

This is well-defined. Indeed if b′ ∈ B is such that π(b′) = π(b), then b and b′

belong to the same fiber Bx and b′ − b ∈ kerπx = imFx, hence there is some

a ∈ Ax such that b′ = b+ Fx(a). Thus

πx(g.b
′) = πx

(
g.(b+ Fx(a))

)
= πx

(
g.b+ g.Fx(a)

)
= πx

(
g.b+ Fx(g.a)

)
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since F is a G-morphism and G acts within the fibers (by definition of an action

on a vector bundle). This yields

πx(g.b
′) = πx(g.b) + πx

(
Fx(g.a)

)
= πx(g.b)

as π ◦F = 0. Moreover the definition immediately makes π a G-morphism since

g.π(b) = π(g.b). Now we apply this procedure to the case of the short exact

sequence

0 −→ Vs × U1
F−→ Vs × U2

π−→ E −→ 0

of vector bundles over Vs. An element e ∈ E is represented by (Φ, Q) ∈ Vs×U2,

so the action of (g′, h) ∈ G′ on e is

(g′, h) . e = π
((
gΦh−1 , λQh−1 + `Φh−1

))
.

Lemma 5.3.11. Let Φ,Φ′ ∈ Vs and Q,Q′ ∈ U2. Then

π(Φ, Q) = π(Φ′, Q′) ⇔ Φ′ = Φ and Q′ = Q+ L · Φ for some L ∈ U1 .

Proof. If π(Φ, Q) = π(Φ′, Q′), then Φ′ = Φ since π is a morphism of vector

bundles and respects the fibers. Moreover

π(Φ, Q) = π(Φ, Q′) ⇔ πΦ(Φ, Q′)− πΦ(Φ, Q) = 0

⇔ (Φ, Q′)− (Φ, Q) = (Φ, Q′ −Q) ∈ kerπΦ

⇔ ∃L ∈ U1 such that (Φ, Q′ −Q) = FΦ(Φ, L) = (Φ, L · Φ)

⇔ ∃L ∈ U1 such that Q′ = Q+ L · Φ .

Lemma 5.3.12. Let (Φ, Q) ∈ Vs×U2 and L ∈ U1. Then (Φ, Q) and (Φ, Q+LΦ)

lie in the same orbit under G′. Moreover they only differ by an element in imF ,

so that π(Φ, Q) = π(Φ, Q+ LΦ) as elements in E.

Proof. Let L = (l1, . . . , ln−1) and consider the matrix

g′ =

(
1 L

0 idn−1

)
=


1 l1 . . . ln−1

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 . (5.26)
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Then

(g′, idn) . (Φ, Q) =

(
1 L

0 idn−1

)
·

(
Q

Φ

)
=

(
Q+ LΦ

Φ

)
with (g′, idn) ∈ G′, hence (Φ, Q) and (Φ, Q + LΦ) lie in the same G′-orbit.

Moreover

(Φ, Q+ LΦ) = (Φ, Q) + (Φ, LΦ)

as elements in the vector space {Φ}×U2, where (Φ, LΦ) ∈ imF , hence they are

equal in E.

Corollary 5.3.13. There is a 1-to-1 correspondence between the orbits of Vs×U2

and E under G′.

Proof. If O(Φ, Q) is an orbit in Vs×U2, we may map it to O(π(Φ, Q)) in E. This

is well-defined since if (Φ′, Q′) = (g′, h).(Φ, Q), then π(Φ′, Q′) = (g′, h).π(Φ, Q)

as π respects the action of G′, so elements in the same orbits in Vs ×U2 will be

mapped to elements in the same orbit in E.

Vice-versa, if O(e) is an orbit in E with e = π(Φ, Q), we may map it to O(Φ, Q).

Lemma 5.3.11 and Lemma 5.3.12 imply that this is independent of the represen-

tative of e. Moreover if e′ = (g′, h).e, then e′ = (g′, h).π(Φ, Q) = π((g′, h).(Φ, Q))

and hence the representatives (Φ, Q) and (g′, h).(Φ, Q) of e and e′ again lie in

the same orbit in Vs × U2.

Corollary 5.3.14. The elements (g′, idn) ∈ G′ from (5.26) lie in the stabilizer

of every e ∈ E.

Proof. If e ∈ E is represented by some (Φ, Q) ∈ Vs × U2, we have seen in

Lemma 5.3.12 that

(g′, idn) . (Φ, Q) = (Φ, Q+ LΦ) and e = π(Φ, Q) = π(Φ, Q+ LΦ) .

Thus (g′, idn) . e = e.

Remark 5.3.15. By Corollary 5.3.14 we see that the action of the linear terms

in G′ is trivial, hence we don’t need to take care of them any more. Moreover

Corollary 5.3.13 says that the orbits of G′ on Vs × U2 and E are the same, so if

we want to study the orbits on Vs×U2, it suffices to study those on E, on which

we can forget about the action of the linear terms of G′.
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Now it remains to also get rid of the constant λ ∈ K∗ in(
λ U1

0 GLn−1(K)

)

to eliminate the non-reductive part of G′. This is the aim of the next step.

Lemma 5.3.16. There is an action of PG′ on PE.

Proof. The projectivisation PE of E is a projective bundle over Vs whose fibers

are of dimension 3d − 1 = 3n + 2 since they are given by the projective spaces

of the fibers of E, i.e. (PE)Φ
∼= P(EΦ) for all Φ ∈ Vs. The diagonal group

Γ :=
{

(λ idn, λ idn)
∣∣ λ ∈ K∗

}
⊂ G′

acts trivially on Vs×U2 and hence on E, so there is an action of PG′ = G′/Γ on

PE via

〈(g′, h)〉 . 〈e〉 := 〈(g′, h) . e〉 ,

where 〈 · 〉 denotes the homogeneous coordinates. This is well-defined since

(λ idn, λ idn) . µe = µe for all µ ∈ K∗, so it does not depend on the represen-

tative of 〈e〉, neither of the one of 〈(g′, h)〉.

Lemma 5.3.17. Every element (g′, idn) ∈ G′ of the form

g′ =

(
λ L

0 idn−1

)
with λ ∈ K∗ and L ∈ U1 acts trivially on PE.

Proof. Let 〈e〉 ∈ PE be represented by some e ∈ E, which is represented by some

(Φ, Q) ∈ Vs × U2. Then

(g′, idn) . (Φ, Q) =

(
λ L

0 idn−1

)
·

(
Q

Φ

)
=

(
λQ+ LΦ

Φ

)
,

i.e. (g′, idn) . (Φ, Q) = λ · (Φ, Q) + F (Φ, L). Therefore

〈(g′, h)〉 . 〈e〉 =
〈
(g′, h) . π(Φ, Q)

〉
=
〈
π
(
(g′, h).(Φ, Q)

)〉
=
〈
π
(
λ (Φ, Q) + F (Φ, L)

)〉
= 〈λ · π(Φ, Q) + 0〉 = 〈λe〉 = 〈e〉 .
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Corollary 5.3.18. There is a 1-to-1 correspondence between the orbits of E
under G′ and those of PE under PG′.

Proof. If O(e) is an orbit in E, we may map it to the orbit O(〈e〉) in PE. This

is well-defined since if e′ = (g′, h).e, then 〈e′〉 = 〈(g′, h).e〉 = (g′, h).〈e〉, so their

images are also in the same orbits.

Vice-versa, if O(〈e〉) is an orbit in PE, we may map it to O(e) in E. This is

independent of the representative since λe = (λ idn, idn).e, so any other repre-

sentative will be in the same orbit. Finally if 〈e′〉 = 〈(g′, h)〉.〈e〉 = 〈(g′, h).e〉,
then e′ = λ · (g′, h).e = (λg′, h).e, so e′ ∈ O(e) as well.

Remark 5.3.19. By Corollary 5.3.18 and Corollary 5.3.13, it thus suffices to

study the orbits of PG′ on PE in order to understand the orbits of G′ on Vs×U2.

The advantage of this point of view is that because of Lemma 5.3.17 the non-

reductive part of G′ acts trivially on PE and we are left with

g′ =

(
λ L

0 g

)
⇒ 〈(g′, h)〉 . 〈e〉 = 〈(g, h)〉 . 〈e〉

for 〈e〉 ∈ PE, (g, h) ∈ G, λ ∈ K∗ and L ∈ U1. So the only non-trivial action of

PG′ on PE is the one of the reductive subgroup PG. In some sense we naturally

extended the action of PG on the base space Vs to an action of PG on the fibers

of the bundle p : PE → Vs : 〈e〉 7→ Φ. Moreover p is compatible with the

PG-actions on PE and Vs since p : 〈(g, h)〉.〈e〉 7→ gΦh−1 by definition.

5.3.2 Construction of the projective classification bundle

Before continuing we need a one more notion and result.

Definition 5.3.20. [ [38], p.97 ]

Let G be a reductive algebraic group over K acting on two K-schemes of finite

type X and Y . Assume that we have a morphism π : X → Y that is compatible

with the G-action. We say that a coherent sheaf F ∈ Coh(OX ) descends to Y if

there exists a sheaf E ∈ Coh(OY) such that F ∼= π∗E .
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Theorem 5.3.21. [ [38], 4.2.15, p.98 ]

Let π : X → Y be a good quotient and F ∈ Coh(OX ) be locally free. Then F
descends to Y if and only if for any point x ∈ X in a closed G-orbit the stabilizer

StabG(x) acts trivially on the fiber over x of the vector bundle defined by F .

Proposition 5.3.22. PE descends to a projective P3n+2-bundle B on N such

that PE ∼= γ∗B:

PE Γ //

p
��

B
ν
��

Vs γ
// N

Proof. G being reductive we know from Corollary 5.1.21 that there exists a

geometric quotient N = Vs/PG with Vs = Vss as all semistable sheaves are

stable. So we can apply Theorem 5.3.21 to the quotient morphism γ : Vs → N

with the (projective) bundle p : PE → Vs. Since the action of PG on Vs is

free (see Remark 5.1.32), the stabilizer of every Φ ∈ Vs is trivial and hence acts

trivially on the fibers of PE. Therefore PE descends to N .

Remark 5.3.23. The idea behind this construction is the following: by defini-

tion of E we have the quotient π : Vs ×U2 → E. Now consider the composition

η : X = (Vs × U2) \ imF
π−→ E \ {0} ρ−→ PE Γ−→ B ,

which gives a fiber bundle7 η : X→ B.

Then B classifies the orbits we are interested in. Indeed Maican has shown that

Proposition 5.3.24. [ [48], 7.7, p.40-41 ]8

1) Γ : PE→ B is a geometric quotient for the action of the reductive group PG.

2) η : X→ B is a geometric quotient under the action of the non-reductive group

PG′. Moreover the base space N of ν : B→ N is a smooth projective variety of

dimension n2 − n.

7Maican uses the notation W ss(G,Λ) in [48] for the space X = (Vs × U2) \ imF . His goal

is to extend the definition of semistability to the case of an action of a non-reductive group.
8The statements are actually contained in the proof of [ [48], 7.7, p.40-41 ].
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Remark 5.3.25. Hence we may see the morphism ν as

ν : B −→ N : [A] 7−→ [Φ] ,

where the class of A ∈ X is with respect to PG′ and the class of Φ ∈ Vs is with

respect to PG. In particular the points in B (i.e. the fibers Xb of X→ B for b ∈ B)

are in 1-to-1 correspondence with the orbits of the G′-action on X ⊆ Vs × U2.

[ [53], 463845 ] moreover states that ν is open.

Remark 5.3.26. The dimension of N = Vs/PG can also be computed directly.

As Vs ⊂ V is open and the action of PG on Vs is free (Remark 5.1.32), we find

dimN = dimVs − dimPG = 3n(n− 1)−
(
(n− 1)2 + n2 − 1

)
= n2 − n .

Corollary 5.3.27. M0 may be seen as an open subvariety of B.

Proof. Consider the open subvariety W0 ⊂W of injective morphisms with stable

Kronecker module which parametrize sheaves in M0. We have

W0 ⊆ X = (Vs × U2) \ imF

since matrices in the image of F have determinant zero by Remark 5.3.4. Then

we use that M0 is a geometric quotient of W0 under PG′ (Proposition 5.1.42)

and that B is a geometric quotient of X under PG′ (Proposition 5.3.24). This

gives M0 = W0/PG′ ⊆ X/PG′ = B.

5.3.3 Sheaves in B0

Definition 5.3.28. Let N0 ⊆ N be the subvariety in the quotient space cor-

responding to V0 ⊆ Vs, i.e. stable Kronecker modules with coprime maximal

minors. N0 is open by combining Lemma 5.2.34 and Remark 5.2.36. Alterna-

tively we illustrate that it is open in Remark 5.3.29 below. We also denote by

B0 = B|N0 the restriction of B to the open subscheme N0 ⊆ N .

Remark 5.3.29. By Lemma 5.2.19 and Proposition 5.2.23 we obtain a set the-

oretical map from V0 to the Hilbert scheme of 0-dimensional subschemes of P2
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of length l =
(
n
2

)
, which sends Φ ∈ V0 to the subscheme defined by its maximal

minors. We denote

H = P[l]
2 = Hilbl(P2) .

If we go to the quotient N0, then this indeed gives a morphism of varieties

N0 → H. Since every 0-dimensional scheme of length l whose points do not

lie on a curve of degree n − 2 has a minimal resolution of the type (5.21), see

Proposition 5.2.45 and Corollary 5.2.44, it induces an isomorphism of N0 to the

open subvariety H0 ⊆ H consisting of Z not lying on a curve of degree n − 2.

It is e.g. mentioned in [ [14], 4.7, p.46 ] that the complement of H0, consisting of

0-dimensional schemes which are contained in such a curve, is a closed irreducible

hypersurface. Thus H0
∼= N0 is open.

Proposition 5.3.30. The fibers of B over N0 are contained in M0, i.e. we

have the inclusions of open subschemes B0 ⊆ M0 ⊆ B. Hence the fibers of B0

also parametrize isomorphism classes of stable sheaves given as cokernels in the

resolution (5.8).

Proof. B0 = ν−1(N0) is open in B (and hence in M0) by continuity of ν. Now

let us first show that a matrix A =
(
Q
Φ

)
∈ W with Q ∈ U2 and Φ ∈ V0 has zero

determinant if and only if A lies in the image of F . Necessity follows from (5.24).

So assume that detA = 0 ; let us denote the coprime maximal minors of Φ by

d1, . . . , dn and Q = (q1, . . . , qn). Exactness of (5.21) then implies that

detA = 0 ⇔ q1d1 + . . .+ qndn = 0 ⇔ (q1, . . . , qn) ∈ im Φ

⇔ ∃L ∈ U1 such that Q = L · Φ ⇔ A ∈ imF .

However by definition, an element of B is represented by a matrix A ∈ X (geo-

metric quotient), so it cannot belong to imF . Therefore if A =
(
Q
Φ

)
∈ X is such

that Φ ∈ V0, then detA 6= 0. So we get B0 ⊆ M0, i.e. the points of B0 also

represent isomorphism classes of sheaves in M0, see (5.8).

Our main result of this section is the following description of sheaves in B0. It

is motivated by the corresponding assertion of Drézet in [14] and generalizes the

description of Maican in [15].
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Proposition 5.3.31. cf. [ [14], Prop.4.5, p.43-44 ] and [ [15], 3.3.1, p.21-22 ]

The sheaves F in B0 are exactly the twisted ideal sheaves IZ⊆C(d − 3) given by

a short exact sequence

0 −→ F −→ OC(d− 3) −→ OZ −→ 0 , (5.27)

where Z ⊆ C is a 0-dimensional subscheme of length l =
(
n
2

)
lying on a curve C

of degree d such that Z is not contained in a curve of degree d− 3.

Proof. ⇒ : Let F be a sheaf in B0. By Remark 5.3.25 its isomorphism class is

given by the PG′-orbit of some A =
(
Q
Φ

)
∈ X with Φ ∈ V0, so that F ∈ M0 and

has the resolution (5.8)

0 −→ OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1) −→ F −→ 0 .

In particular we obtain the curve C = suppF = Z(detA) of degree d = n + 1.

Denote the maximal minors of Φ by d1, . . . , dn. As they are coprime homogeneous

polynomials of degree n− 1, Proposition 5.2.23 gives Z = Z(d1, . . . , dn) and the

resolution

0 −→ (n− 1)OP2(−n)
Φ−→ nOP2(−n+ 1)

ϕ−→ OP2 −→ OZ −→ 0 , (5.28)

where ϕ = t(d1, . . . , dn) and Z satisfies the required properties by Corollary 5.2.44.

Moreover Z ⊆ C as a point in P2 which vanishes at all maximal minors of Φ also

vanishes at detA = q1d1 + . . .+ qndn. We also have the exact sequence defining

the structure sheaf OC of the curve C by

0 −→ OP2(−n− 1)
detA−→ OP2 −→ OC −→ 0 . (5.29)

Now we twist the sequences (5.28) and (5.29) by OP2(n−2) ; this will not change

OZ as it has 0-dimensional support (see Lemma 4.1.11).

Since A · ϕ =
(

detA
0

)
we can now put everything together into the following

commutative diagram, where f is induced by the universal property of cokernels

since (k2 ◦ϕ) ◦A = (k2 ◦ detA) ◦
(

1
0

)
= 0, so k2 ◦ϕ factors through F ∼= cokerA.
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0

��

0

��

0

��

(n− 1)OP2(−2) id //

(0,1)

��

(n− 1)OP2(−2)

Φ
��

ker f

��

0 // OP2(−3)⊕ (n− 1)OP2(−2)
A=(QΦ)

//

(1
0)
��

nOP2(−1)

ϕ

��

k1 // F
∃ f
��

// 0

0 // OP2(−3) detA //

��

OP2(n− 2)

��

k2 // OC(n− 2)

��

// 0

0 OZ

��

coker f

��

0 0

The Snake Lemma (Proposition D.1.6) then gives an exact sequence

0 −→ (n− 1)OP2(−2)
id−→ (n− 1)OP2(−2)

−→ ker f −→ 0 −→ OZ −→ coker f −→ 0 ,

i.e. ker f = 0 and coker f ∼= OZ , so finally we obtain F as an ideal sheaf

0 −→ F −→ OC(n− 2) −→ OZ −→ 0 .

⇐ : Now assume that F is given by an exact sequence

0 −→ F i−→ OC(d− 3)
g−→ OZ −→ 0

for some curve C of degree d and a 0-dimensional subscheme Z ⊆ C of length

l =
(
n
2

)
such that Z does not lie on a curve of degree d− 3. Then (4.17) implies

that F has Hilbert polynomial dm− 1 since

PF(m) = POC(d−3)(m)− POZ (m) = POC (m+ d− 3)− l

= d · (m+ d− 3) + 3d−d2

2
− (d−1)(d−2)

2
= d ·m− 1 .

Let C = Z(f) for some homogeneous polynomial f of degree d = n + 1. This

gives the resolution

0 −→ OP2(−3)
f−→ OP2(d− 3)

k−→ OC(d− 3) −→ 0 .
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Putting k′ = g ◦ k, we thus get a surjective morphism OP2(d − 3) � OZ . As

pointed out in Remark 5.2.47, there now exists a resolution of OZ as in (5.20)

which is compatible with k′:

0 −→ (d− 2)OP2(−d+ 1) −→ (d− 1)OP2(−d+ 2) −→ OP2 −→ OZ −→ 0 .

Replacing d = n−1 and twisting by OP2(n−2), we then get a Kronecker module

Φ ∈ V0 such that

0 −→ (n− 1)OP2(−2)
Φ−→ nOP2(−1)

ϕ−→ OP2(n− 2)
k′−→ OZ −→ 0

since IZ can be generated by (d− 3) + 2 = n elements. Denote ϕ = t(l1, . . . , ln)

for some coprime homogeneous polynomials li of degree n − 1 such that we get

Z = Z(l1, . . . , ln). Z ⊆ C then implies that f ∈ IZ = 〈 l1, . . . , ln 〉. Hence there

exist homogeneous polynomials qi of degree 2 such that f = q1l1 + . . .+ qnln. We

set Q := (q1, . . . , qn) and A :=
(
Q
Φ

)
∈ U2 × V0, so that detA = f . In particular

detA is non-zero and we have the exact sequence

0 −→ OP2(−3)⊕ (n− 1)OP2(−2)
A−→ nOP2(−1)

k0−→ K −→ 0 ,

where K = cokerA. Now it remains to show that K ∼= F . Consider the commu-

tative diagram

0

��

0

��

0

(n− 1)OP2(−2) id //

(0,1)

��

(n− 1)OP2(−2)

Φ
��

0

��

0

��

0 // OP2(−3)⊕ (n− 1)OP2(−2)
A=(QΦ)

//

(1
0)
��

nOP2(−1)

ϕ

��

k0 // K

CC

f
��

ρ
// F

i

zz

0 // OP2(−3)
f=detA

//

��

OP2(d− 3)

k′

��

k // OC(d− 3)

g

��

// 0

0 OZ

��

id // OZ

��

0 0
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where the morphisms f and ρ are induced by the universal properties of cokernels

and kernels

. . .

0
$$

A // nOP2(−1)

k◦ϕ
��

k0 // K
f

zz

F i // OC(d− 3)
g
// OZ

OC(d− 3) K
ρ

dd

f

OO

0

99

A Snake Lemma argument shows that ker f = 0, hence f is injective. Moreover

g ◦ f = 0 since for computing g(f(x)), we have x = k0(a) by surjectivity of k0,

so f(x) = f(k0(a)) = k(ϕ(a)) and

g
(
f(x)

)
= g
(
k(ϕ(a))

)
= k′

(
ϕ(a)

)
= 0 .

This induces the morphism ρ : K → F , which is injective since f and i are. In

order to prove that F has a resolution of the type (5.8) (and thus belongs to B0

since detA 6= 0), it remains to show that ρ is surjective as well. Let y ∈ F be

given. Then i(y) = k(z) for some z and

0 = g
(
i(y)

)
= g
(
k(z)

)
= k′(z) ⇒ z = ϕ(a) ,

i
(
ρ(k0(a))

)
= f

(
k0(a)

)
= k
(
ϕ(a)

)
= k(z) .

By injectivity of i, we hence obtain that y = ρ(k0(a)). Thus F ∼= K.

Proposition 5.3.32. [ [40], p.4 ]

A fiber of ν : B0 → N0 corresponds to the space of plane curves of degree d

passing through the corresponding subscheme of l =
(
n
2

)
points defined by (5.27).

The identification is given by the map

ν−1([Φ]) −→ Cd(P2) : [A] 7−→ 〈detA〉 . (5.30)

Proof. Let [Φ] ∈ N0 ; an element in the preimage ν−1([Φ]) ⊂ B0 corresponds to

the G′-orbit of some A =
(
Q
Φ

)
∈ X with Φ ∈ V0 (see Remark 5.3.25). Thus (5.30)

is well-defined since if two matrices A,B over [Φ] are equivalent under the action

of G′, i.e. B = g′Ah−1 for some (g′, h) ∈ G′, then detA and detB only differ by

a non-zero constant.
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Vice-versa, assume that the determinants of two matrices A =
(
Q
Φ

)
and B =

(
Q′

Φ

)
over [Φ] only differ by a non-zero constant λ ∈ K∗. If Q = (q1, . . . , qn) and

Q′ = (q′1, . . . , q
′
n), then we have

detB = λ · detA ⇔ q′1d1 + . . .+ q′ndn = λ · (q1d1 + . . .+ qndn) = 0

⇔ (q′1 − λq1) · d1 + . . .+ (q′n − λqn) · dn = 0

⇔ (Q′ − λQ) · ϕ = 0 ,

where ϕ = t(d1, . . . , dn) is the column vector consisting of the maximal minors of

Φ. As these are coprime we have Q′− λQ ∈ kerϕ = im Φ by Proposition 5.2.23,

i.e. Q′ = λQ+ L · Φ for some L ∈ U1. But then(
Q′

Φ

)
=

(
λQ+ L · Φ

Φ

)
=

(
λ L

0 idn−1

)
·

(
Q

Φ

)
,

i.e. B = g′ · A with (g′, idn) ∈ G′, similarly as in Lemma 5.3.12. Thus A and B

lie in the same orbit under G′ and we get [A] = [B], showing that the map in

(5.30) is injective.

To prove that it is surjective onto the space of curves of degree d passing through

the subscheme Z defined by the maximal minors Φ, let C be such a curve. Writing

Z ⊆ C = Z(f) then implies that f = q1d1 + . . .+ qndn for some quadratic forms

qi and hence we can take as preimage [A] for A =
(
Q
Φ

)
with Q = (q1, . . . , qn).

This will then be mapped to 〈detA〉 = 〈f〉.

5.4 On the ideals of points on planar curves

Motivated by sequence (5.27) of twisted ideals sheaves, we are now going to

characterize free ideals of points on planar curves in a local ring. Indeed we shall

determine under which conditions the stalk Fp for p ∈ C is a free module over

OC,p. Here we restrict ourselves to so-called curvilinear points. In particular we

are interested in simple and double points lying on a curve C. The main results of

this section are Lemma 5.4.1 and Proposition 5.4.11, which characterize the free

ideals at simple and double points. The utility of these criteria will be explained

more precisely in Section 5.5.
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5.4.1 Ideals of simple points on a curve

Let C be an arbitrary (abstract) curve and p ∈ C a simple point. We denote

the stalk at p by R = OC,p ; it is a local K-algebra of Krull dimension 1. Let

M = MC,p be the unique maximal ideal of R and denote by kp = R/M the field

(thus a local ring) defining the structure sheaf of the closed one point subscheme

{p} ⊂ C.

Let I E R be an ideal in R. As a submodule of the free module R, I is a torsion-

free R-module. Moreover it is finitely generated since R is Noetherian. From

Proposition D.1.12 and Proposition D.1.17 we know that R is a regular local ring

if and only if R is a principal ideal domain if and only if p is a smooth point of

C. Hence Theorem D.1.13 implies that I is free if R is regular. Therefore, non-

regularity of R is a necessary condition for non-freeness of I. Now we observe

the following elementary fact.

Lemma 5.4.1. Consider the exact sequence of R-modules

0 −→M −→ R −→ kp −→ 0 .

Then M is free (of rank 1) if and only if R is regular, i.e. if and only if p is a

smooth point of C.

Proof. ⇐ : If R is regular, then it is a principal ideal domain by Proposi-

tion D.1.12. As M is a submodule of the free module R, it is torsion-free and

thus free by Theorem D.1.13. Moreover it must be free of rank 1, otherwise

M→ R would not be injective.

⇒ : If M is free, then we necessarily have M ∼= R (again because M → R is

injective). This implies that M is generated by one element as an R-module.

Hence dimR/M(M/M2) = 1 = dimR and Proposition D.1.12 implies that R is

regular.

Remark 5.4.2. Note that M being free of rank 1 does not mean that M→ R

is an isomorphism. Indeed this cannot be true since M 6= R, so kp 6= {0}. In

general it may however happen that a maximal ideal is free, even though it is

different from the ring. Consider e.g.

0 −→ K[X]
·X−→ K[X] −→ K −→ 0 ,
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thus K[X] ∼= 〈X 〉 by injectivity. In particular we see that 〈X 〉 is free, even

though multiplication by X is not an isomorphism.

5.4.2 Preliminaries

The next goal is to find a substitute for Lemma 5.4.1 in the case of double points.

Intuitively a double point is a 1-point-space (on the topological level), but the

scheme consists of two points which are infinitesimally close to each other. For

this we first start with some easy observations.

Lemma 5.4.3. Let

0 −→M1
i−→M

π−→M0 −→ 0

be an exact sequence of R-modules. Assume that M1 is generated by m1, . . . ,mk

and that M0 is generated by n̄1, . . . , n̄`. If we choose some ni ∈ M such that

π(ni) = n̄i, then M is generated by i(m1), . . . , i(mk), n1, . . . , n`.

Proof. Let m ∈ M . Since π(m) ∈ M0, ∃ ri ∈ R such that π(m) =
∑

i ri ∗ n̄i.
Now set u :=

∑
i ri ∗ ni. Then

π(u) =
∑
i

ri ∗ π(ni) =
∑
i

ri ∗ n̄i = π(m) ,

hence π(m−u) = 0 andm−u ∈ kerπ = im i, i.e. ∃ z ∈M1 such thatm−u = i(z).

But then there exist sj ∈ R such that z =
∑

j sj ∗mj, so that

m = i(z) + u =
∑
j

sj ∗ i(mj) +
∑
i

ri ∗ ni .

Lemma 5.4.4. Let Z ⊆ Y ⊆ X be an inclusion of subschemes in An
K such that

Z ⊆ Y and Y ⊆ X are closed. Then we have the exact sequence of the ideal

sheaves

0 −→ IY −→ IZ −→ IZ⊂Y −→ 0 . (5.31)

Proof. We have IY ⊆ IZ and the exact sequences

0 −→ IY −→ OX −→ OY −→ 0 , 0 −→ IZ −→ OX −→ OZ −→ 0 ,

0 −→ IZ⊂Y −→ OY −→ OZ −→ 0 .
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Using that (OY → OZ) ◦ (OX → OY) = (OX → OZ), which is just the corre-

sponding property for projections, and the universal property of kernels we get

the commutative diagram

0

��

0

��

K

��

IY

��

0

��

0 // IZ
f
��

// OX

��

// OZ // 0

0 // IZ⊂Y

��

// OY

��

// OZ

��

// 0

Q

��

0 0

0

where K = ker f and Q = coker f . Using the Snake Lemma (Proposition D.1.6)

we obtain K ∼= IY and Q = 0, which yields the exact sequence (5.31).

Remark 5.4.5. Lemma 5.4.3 allows to find generators of IZ as an OX–module

if those of IY and IZ⊂Y are known. Note that the generators of IZ⊂Y as an

OX–module and as an OY–module are the same since the OX–module structure

is precisely defined via the morphism OX → OY .

Definition 5.4.6. Let R[[X1, . . . , Xn]] denote the ring of formal power series

f(X1, . . . , Xn) =
∞∑
|α|=0

rα ·Xα1
1 · . . . ·Xαn

n

with α = (α1, . . . , αn) ∈ Nn, |α| = α1 + . . . + αn and coefficients rα ∈ R, ∀α.

Note that every formal power series f can be written as a sum of its homogeneous

components

f(X1, . . . , Xn) =
∞∑
i=0

fi(X1, . . . , Xn) =
∞∑
i=0

(∑
|α|=i

rα ·Xα1
1 · . . . ·Xαn

n

)
.
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The order of f , denoted by ord(f), is the smallest integer i ≥ 0 such that fi 6= 0.

For s = ord(f) the homogeneous polynomial fs is also called the leading form of

f and denoted by f∗.

Corollary 5.4.7. Consider the ring K[X, Y ] and let M = 〈X, Y 〉.
The local ring K[X, Y ]M can be embedded into K[[X, Y ]] via f

g
7→ f · g−1.

Proof. g /∈ M, so g has a non-zero constant term and is thus invertible as an

element in K[[X, Y ]] by Proposition D.1.19. Moreover this is well-defined since

if f
g

= h
`
, then f · ` = h · g and thus f · g−1 = h · `−1.

5.4.3 Ideals of double points on a planar curve

Let C = Z(f) = { (x1, x2) ∈ A2 | f(x1, x2) = 0 } be a planar curve given by

the vanishing set of some non-constant polynomial f ∈ K[X, Y ]. Its coordinate

ring K[C] = K[X, Y ]/〈 f 〉 is a (not necessarily integral) Noetherian ring of Krull

dimension 1. Assume that p = (0, 0) ∈ C, i.e. f has no constant term. We denote

the stalk of C at the origin by R = OC,p ; it is given by the local K-algebra

R =
(
K[X, Y ]/〈 f 〉

)
〈 X̄,Ȳ 〉

∼=
(
K[X, Y ]〈X,Y 〉

)/〈
f
1

〉
, (5.32)

which is obtained by localization of the coordinate ring of C.

Definition 5.4.8. The tangent cone of C = Z(f) at the origin9 is the zero set

Z(f∗) of the leading form f∗ of f .10

Example 5.4.9. 1) The tangent cone of the nodal curve, defined by

f(X, Y ) = X2 +X3 − Y 2 ,

at the origin is given by the reducible conic f∗(X, Y ) = X2−Y 2 = (X−Y )(X+Y )

and thus consists of 2 lines.

9The tangent cone at an arbitrary point p ∈ C is obtained by translating this point to the

origin, and then back.
10There also exists a definition of the tangent cone to any affine algebraic variety by using

the leading forms of all polynomials in the ideal that defines the variety.
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aFigure 5.1: The nodal curve (red) and its tangent cone at the origin (blue)

2) If f(X, Y ) = X2 +XY +X15, then f∗(X, Y ) = X2 +XY = X(X +Y ), so we

see that this tangent cone is reducible as well.

3) For f(X, Y ) = X2 − Y 3 we find f∗(X, Y ) = X2, hence the tangent cone

consists of the double line given by X2 = 0.

Remark 5.4.10. In A2 the tangent cone is always a union of finitely many lines

(with multiplicities). Indeed every homogeneous polynomial h ∈ K[X, Y ] can be

written as a product of linear terms. Consider

h(X, Y ) =
d∑
i=0

riX
iY d−i

⇒ h(X, Y )

Y d
=

d∑
i=0

ri Z
i =

d∏
i=1

rd (Z − ai) where Z = X
Y

⇒ h(X, Y ) = Y d ·
d∏
i=1

rd (Z − ai) =
d∏
i=1

rd (X − aiY ) ,

which works since K is algebraically closed. Multiplicities are obtained if some

of the ai are equal.

Next we assume that p ∈ C is a fat double point given by the vanishing set

Z(X, Y 2). As an example of a curve containing this double point consider again

the nodal curve, which satisfies the condition since 〈X2 +X3− Y 2 〉 ⊂ 〈X, Y 2 〉.
This means that the subscheme {p} ⊂ A2 is given by

0 −→ J = 〈X, Y 2 〉 −→ K[X, Y ] −→ K[X, Y ]/J −→ 0
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together with

0 −→ K[X, Y ]
·f−→ K[X, Y ] −→ K[C] = K[X, Y ]/〈 f 〉 −→ 0 ,

which defines C ⊂ A2 and gives K[X, Y ] ∼= 〈 f 〉 by injectivity. The subscheme

{p} ⊂ C also implies that 〈 f 〉 ⊂ J . As in the proof of Lemma 5.4.4 the inclusion

of subschemes {p} ⊂ C ⊂ A2 gives the commutative diagram

0

��

0

��

IC

��

∼ // OA2

��

0 // J

��

// OA2

��

// Odp // 0

0 // I

��

// OC

��

// Odp // 0

0 0

where IC ⊂ OA2 , J ⊂ OA2 , I ⊂ OC are the ideal sheaves and dp means “double

point p”. Now we localize this diagram at the (topological) point p and get

0

��

0

��

〈 fp 〉

��

∼ // R′

��

0 // Jp

��

// R′

��

// Odp // 0

0 // Ip

��

// R

��

// Odp // 0

0 0

where R′ = K[X, Y ]〈X,Y 〉 and fp = f
1
∈ R′. Here we use the RHS of the

description in (5.32), so that R is the quotient of R′ by 〈 fp 〉. Denote I = Ip ;

thus I ⊆ R is the ideal defining the subscheme of the double point {p} ⊂ C in
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the local ring. Let us also denote the classes of X, Y ∈ K[X, Y ] in R′ by Xp = X
1

,

Yp = Y
1

and their classes in R by x =
[
X
1

]
and y =

[
Y
1

]
. Hence we get

Jp = J〈X,Y 〉 = 〈Xp, Y
2
p 〉 E R′ and I = 〈x, y2 〉 E R .

Proposition 5.4.11 (Leytem). Assume that R is a non-regular ring, i.e. that

p = (0, 0) is a singular point of C. Then the following conditions are equivalent:

1) I is a free R-module.

2) I is generated by one element (over R).

3) Jp is of the form 〈 ξ, fp 〉 for some ξ ∈ R′.
4) f contains the monomial Y 2, i.e. the coefficient in front of Y 2 is non-zero.

5) The tangent cone of C at p consists of 2 lines (with multiplicities) not con-

taining the line X = 0.

Moreover if I is free, then it is generated by x and there is an isomorphism

R ∼= I : r 7−→ r · x .

Proof. Let us first collect what we know about f . For d = deg f we write

f(X, Y ) = a00 + a10X + a01 Y +
d∑
i=2

ai,d−iX
iY d−i .

Since p ∈ C, we get a00 = 0. As p is a singular point we also need that ∂f
∂X

and
∂f
∂Y

vanish at (0, 0), i.e. a10 = a01 = 0. So in particular ord(f) ≥ 2. Moreover we

have f ∈ J because of the subscheme {p} ⊂ C, thus ∃u, v ∈ K[X, Y ] such that

f = uX + vY 2 with u(0, 0) = 0 as a10 = 0. We may also assume that v only

depends on Y since all terms containing X can be included in u.

1) ⇒ 2) : If I is free, then it is necessarily generated by one element because

of the exact sequence 0 → I → R → R/I → 0. Note that the converse is not

immediate even if I is torsion-free since the generator may be annihilated by a

zero-divisor.

2)⇒ 3) : follows from Lemma 5.4.3 applied to the exact sequence of R′-modules

0 −→ 〈 fp 〉
i−→ Jp

π−→ I −→ 0 .
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Note that fp ∈ Jp, so i is indeed the inclusion. 〈 fp 〉 is generated by fp and I

is generated by one element (over R), so Jp is generated by two elements (over

R′), one of them being fp.

3) ⇒ 2) : If Jp = 〈 ξ, fp 〉 for some ξ ∈ R′, then I = π(Jp) is generated by π(ξ)

and π(fp) = 0, over R′ and hence over R.

4) ⇒ 3) : If f contains Y 2, then v(0) 6= 0 and Y 2
p = f

v
− uX

v
as elements in R′.

Hence

Jp = 〈Xp, Y
2
p 〉 =

〈
Xp ,

f
v
− uX

v

〉
=
〈
Xp ,

1
v
· f

1

〉
= 〈Xp, fp 〉 .

3) ⇒ 4) : Assume that Jp = 〈 ξ, fp 〉 for some ξ ∈ R′, thus ∃ a, b ∈ R′ such

that ξ = a · Xp + b · Y 2
p . By Corollary 5.4.7 we may see elements in R′ as

formal power series in X, Y . As Xp ∈ 〈 ξ, fp 〉, there also exist c, d ∈ R′ such

that X = c · ξ + d · f = caX + cbY 2 + df (now seen as power series). But

ord(cbY 2) ≥ 2 and ord(df) ≥ 2 with ord(X) = 1, so we conclude that a and c

are units in K[[X, Y ]], i.e. a(0, 0) 6= 0 and c(0, 0) 6= 0. Then we set

ξ′ := 1
a
· ξ = X + η(X, Y )

for some η ∈ K[[X, Y ]] with ord(η) ≥ 2. In order to show that f contains Y 2,

we assume the contrary, i.e. that f does not contain Y 2.

As Y 2
p ∈ 〈 ξ, fp 〉 = 〈 ξ′, fp 〉 but by our assumption f does not contain Y 2, we

conclude that ξ′ and hence η must contain Y 2. Substituting X by 0 in the

equality X = c · ξ + d · f we get

0 = c(0, Y ) · a(0, Y ) · η(0, Y ) + d(0, Y ) · f(0, Y ) .

c and a being units, they both have a non-zero constant term and hence the

product (c ·a ·η)(0, Y ) contains Y 2. On the other hand, since f does not contain

Y 2, the order of f(0, Y ) as a formal power series in Y is at least 3, so the order

of d(0, Y ) · f(0, Y ) is ≥ 3 as well. This contradiction shows that our assumption

was wrong.

4)⇒ 1) : If f contains Y 2 we conclude from the step 4)⇒ 3) that Jp = 〈Xp, fp 〉
and hence from the step 3)⇒ 2) that I is generated by π(Xp) = x. It remains to

show that there are no relations annihilating x. For this consider the surjective
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morphism

R −→ I : r 7−→ r · x . (5.33)

We want to show that it is also injective and hence that we have an isomorphism

R ∼= I. We write r =
[
g1

g2

]
for some g1 ∈ K[X, Y ] and g2 /∈ 〈X, Y 〉. Then

r · x = 0 ⇔
[
g1

g2

]
·
[
X
1

]
= 0 ⇔

[
g1X
g2

]
= 0 ⇔ g1X

g2
= α

β
· f

1
for some α

β
∈ R′ .

In order to get
[
g1

g2

]
= 0 we need that g1

g2
= h1

h2
· f

1
for some h1

h2
∈ R′, i.e. that

g1h2 = g2h1f . We already have g1Xβ = αfg2. Note that one cannot choose

h2 = Xβ since this vanishes at (0, 0). But g1Xβ = αfg2 is an equality in

K[X, Y ] where 〈X 〉 is a prime ideal. Since f contains Y 2, it is not divisible by

X, hence X must divide αg2. But again g2(0, 0) 6= 0, so X cannot divide g2. It

follows that α = α′X for some α′ ∈ K[X, Y ]. So we get

g1Xβ = αfg2 ⇔ g1Xβ = α′Xfg2 ⇔ g1β = α′fg2 .

Now it suffices to choose h2 = β, which is well-defined, and h1 = α′. Finally

I ∼= 〈x 〉 is free.

4) ⇔ 5) : Since ord(f) ≥ 2, we know that f is of the form

f(X, Y ) = a20X
2 + a11XY + a02 Y

2 + g(X, Y ) with ord(g) ≥ 3 .

If f contains Y 2, then a02 6= 0 and its leading form is

f∗(X, Y ) = a20X
2 + a11XY + a02Y

2 .

This is not divisible by X, so the tangent cone does not contain the line X = 0.

Vice-versa note that the tangent cone consisting of 2 lines (with multiplicities)

means that f is of order 2, i.e. the leading form is of degree 2. By contraposition,

if f does not contain Y 2, then

f∗(X, Y ) = a20X
2 + a11XY = X · (a20X + a11Y ) ,

where a20 and a11 are not both zero, so the tangent cone contains the line given

by X = 0.
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Remark 5.4.12. The assumption that the tangent cone consists of 2 lines with

multiplicities is necessary. Consider for example f ∈ C[X, Y ] given by

f(X, Y ) = X3 − (1 + 2i)X2Y + (2i− 1)XY 2 + Y 3 = (X − Y ) · (X − iY )2 .

f does not contain Y 2, but its tangent cone consists of 2 lines not containing the

line X = 0. However one of them is a double line, so it actually consists of 3

lines (with multiplicities).

Remark 5.4.13. An alternative way to prove that R ∼= I via r 7→ r · x is

the following. Since f contains Y 2, it is not divisible by X. Now consider the

morphism of K[X, Y ]–modules

K[X, Y ]/〈 f 〉 −→ 〈X, f 〉/〈 f 〉 ∼= 〈 X̄ 〉 : ḡ 7−→ gX .

We want to show that it is injective. Indeed if g ·X ∈ 〈 f 〉, then ∃h ∈ K[X, Y ]

such that h · f = g ·X. Again 〈X 〉 is a prime ideal, but f is not divisible by X,

thus X divides h and h = h′X for some h′ ∈ K[X, Y ]. But then hf = h′Xf = gX

which implies that h′f = g, i.e. g ∈ 〈 f 〉 and ḡ = 0̄. Now we localize this

morphism at the maximal ideal 〈 X̄, Ȳ 〉, hence we still have an injection(
K[X, Y ]/〈 f 〉

)
〈 X̄,Ȳ 〉

−→ 〈 X̄ 〉〈 X̄,Ȳ 〉 ∼= 〈x 〉

by exactness of localization. Using the LHS of the description (5.32) we see that

this is nothing but the map R→ 〈x 〉 = I : r 7→ r ·x from (5.33), which is hence

injective.

5.4.4 Ideals of fat curvilinear points on a planar curve

After the case of a fat double point, let us also consider the more general situation

of a point of multiplicity n ≥ 2. Unfortunately we do not yet have a criterion

which is valid for all fat points. So for the moment we restrict ourselves to

so-called curvilinear points.

Definition 5.4.14. A fat curvilinear point of multiplicity n ≥ 2 at the origin in

A2 is a subscheme {p} ⊂ A2 where p = (0, 0) and its defining ideal is given by

〈X − h(Y ) , Y n 〉 E K[X, Y ] for some h ∈ K[Y ] with deg h < n and h(0) = 0.
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Intuitively this means that the fat point is obtained by intersecting the fat line

of multiplicity n given by Y n = 0 with the curve given by X = h(Y ), i.e. the fat

point sits on a curve. For h = 0 we obtain a fat point sitting on the line given

by X = 0.

Example 5.4.15. Examples of fat points which are not curvilinear are e.g.

the triple point described by 〈X2, XY, Y 2 〉 and the quadruple point given by

〈X2, Y 2 〉 ; both do not sit on a smooth curve.

For curvilinear points, a similar result holds true as in the case of double points

in Proposition 5.4.11. The proof is similar, so we are not going to develop all

details again. However some of the facts from Proposition 5.4.11 will no longer

be true and we will point out the main differences.

We will mostly keep the same notations as before. Let C be a planar curve

defined as the vanishing set of some non-constant polynomial f ∈ K[X, Y ] and

assume that p = (0, 0) ∈ C. The subscheme Z ⊂ C of a fat curvilinear point

at p is given by the ideal J = 〈X − h(Y ) , Y n 〉. As before we also consider the

local rings R′ = K[X, Y ]〈X,Y 〉 and R = OC,p, in which we denote the classes of

X, Y ∈ K[X, Y ] by Xp, Yp and x, y respectively. Thus we get the commutative

diagram

0

��

0

��

〈 fp 〉

��

∼ // R′

��

0 // Jp

��

// R′

��

// Opn // 0

0 // I

��

// R

��

// Opn // 0

0 0

where fp = f
1
∈ R, Jp = 〈Xp − h(Yp) , Y

n
p 〉 E R′, I = 〈x − h(y) , yn 〉 E R and

pn means “point p of multiplicity n”. I ⊆ R is the ideal defining the subscheme

of the fat curvilinear point Z ⊂ C in the local ring. That subscheme moreover
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gives 〈 f 〉 ⊂ J . For technical reasons we rewrite this as

f(X, Y ) = det

(
X − h(Y ) Y n

u(Y ) v(X, Y )

)
= v ·

(
X − h(Y )

)
− u · Y n (5.34)

for some u ∈ K[Y ] and v ∈ K[X, Y ].

Remark 5.4.16. Note that u may be chosen independent of X since all terms

containing (multiples of) X can be eliminated by substracting a suitable multiple

of the first row of the determinant.

Proposition 5.4.17 (Leytem). Assume that R is a non-regular ring, i.e. (0, 0)

is a singular point of C. Then

I is a free R-module ⇔ u(0) 6= 0 .

Moreover if I is free, then it is generated by x−h(y) and there is an isomorphism

R ∼= I given by

r 7−→ r ·
(
x− h(y)

)
.

Proof. Along the same line as the proof in the case of a double point, we will

proceed by showing the equivalence of the statements

1) I is free. , 2) I is generated by one element.

3) Jp = 〈 ξ, fp 〉 for some ξ ∈ R′. , 4) u(0) 6= 0.

Proving 1) ⇒ 2) , 2) ⇒ 3) and 3) ⇒ 2) is done exactly as in the proof of

Proposition 5.4.11.

4) ⇒ 3) : If u(0) 6= 0, then Y n
p = v(X−h(Y ))

u
− f

u
as elements in R′. Hence

Jp = 〈Xp − h(Yp) , Y
n
p 〉 =

〈
Xp − h(Yp) ,

v(X−h(Y ))
u

− f
u

〉
=
〈
Xp − h(Yp) ,

1
u
· f

1

〉
= 〈Xp − h(Yp) , fp 〉 .

3) ⇒ 4) : Assume that Jp = 〈 ξ, fp 〉 for some ξ ∈ R′, thus ∃ a, b ∈ R′ such that

ξ = a ·
(
Xp − h(Yp)

)
+ b · Y n

p .
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Again we may see elements in R′ as formal power series in X, Y . The fact that

Xp− h(Yp) ∈ 〈 ξ, fp 〉 also implies that there exist c, d ∈ R′ such that we have an

equality of power series

X − h(Y ) = c · ξ + d · f = ca
(
X − h(Y )

)
+ cbY n + df .

But ord(cbY n) ≥ n ≥ 2 and ord(df) ≥ 2 since ord(f) ≥ 2. Together with

ord(X − h(Y )) = 1, we conclude that a and c are units in K[[X, Y ]], so we can

set

ξ′ := 1
a
· ξ = X − h(Y ) + η(X, Y ) ,

where η ∈ K[[X, Y ]] is given by b
a
· Y n, thus ord(η) ≥ n.

In order to show that u(0) 6= 0, we assume the contrary, i.e. u(0) = 0. As

Y n
p ∈ 〈 ξ, fp 〉 = 〈 ξ′, fp 〉, there are also γ, δ ∈ K[[X, Y ]] such that Y n = γ ·ξ′+δ ·f .

Evaluating this equality at X = h(Y ) gives

Y n = γ
(
h(Y ), Y

)
· ξ′
(
h(Y ), Y

)
+ δ
(
h(Y ), Y

)
· f
(
h(Y ), Y

)
= γ

(
h(Y ), Y

)
· η
(
h(Y ), Y

)︸ ︷︷ ︸
ord≥n

+ δ
(
h(Y ), Y

)
·
(
− u(Y ) · Y n

)︸ ︷︷ ︸
ord≥n+1

since u(0) = 0 by our assumption. As ord(Y n) = n, γ must therefore have a

constant term (i.e. γ is a unit) and ord
(
η(h(Y ), Y )

)
= n. Next we substitute

X = h(Y ) in the equality X − h(Y ) = c · ξ + d · f to get

0 = c
(
h(Y ), Y

)
· a
(
h(Y ), Y

)
· η
(
h(Y ), Y

)
+ d
(
h(Y ), Y

)
·
(
− u(Y ) · Y n

)
.

c and a being units, they have a non-zero constant term and hence the product

(c · a · η)(h(Y ), Y ) has order n. On the other hand, since u(0) = 0, the order

of d(h(Y ), Y ) · u(Y )Y n is at least n + 1. This contradiction shows that our

assumption was wrong.

4) ⇒ 1) : As in the proof of Proposition 5.4.11, we obtain that I is generated

by x− h(y). Note that the polynomial X − h(Y ) is irreducible in K[X, Y ] since

it is of degree 1 in X, so 〈X − h(Y ) 〉 is a prime ideal. As u(0) 6= 0, f is not

divisible by X − h(Y ), otherwise

u · Y n = v ·
(
X − h(Y )

)
− f ∈ 〈X − h(Y ) 〉 ,

302



LEYTEM Alain 5.5. Singular sheaves

which is impossible since u 6= 0 and u does not depend on X. Similarly as in

Remark 5.4.13 the morphism of K[X, Y ]–modules

K[X, Y ]/〈 f 〉 −→ 〈X − h(Y ) , f 〉/〈 f 〉 : ḡ 7−→ g · (X − h(Y ))

is injective and after localization at the maximal ideal 〈 X̄, Ȳ 〉 we obtain an

isomorphism

R ∼−→ I : r 7−→ r ·
(
x− h(y)

)
.

Remark 5.4.18. A similar statement involving the tangent cone as in Proposi-

tion 5.4.11 is no longer true. Consider e.g. a triple point (n = 3) with h(Y ) = Y ,

v(X, Y ) = X and u(Y ) = 1, so that

f(X, Y ) = X · (X − Y )− 1 · Y 3 = X2 −XY − Y 3

⇒ f∗(X, Y ) = X2 −XY = X(X − Y ) ,

i.e. the tangent cone would only consist of 2 lines, even though u(0) 6= 0.

Remark 5.4.19. The condition u(0) 6= 0 is moreover not equivalent to the

one of f containing the monomial Y n. Consider e.g. n = 3 with h(Y ) = −Y ,

v(X, Y ) = Y 2 and u(Y ) = 1, which gives

f(X, Y ) = Y 2 · (X + Y )− 1 · Y 3 = XY 2 .

If we want such a statement, (5.34) requires us to replace f(X, Y ) by f(h(Y ), Y ):

u(0) 6= 0 ⇔ f
(
h(Y ), Y

)
does not contain the monomial Y n .

5.5 Singular sheaves

Recall that we defined M ′
0 = M ′ ∩M0 to be the closed subvariety of singular

sheaves in M0. Now we consider the restriction of ν : B0 → N0 to M ′
0 and

describe some of its fibers.

Lemma 5.5.1. Let F be a sheaf in B0 with C = suppF and let Z ⊆ C be

its corresponding 0-dimensional subscheme given as in (5.27). Then F is non-

singular at all points p ∈ C \ Z.
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Proof. By Proposition 5.3.31 we have the short exact sequence

0 −→ F −→ OC(d− 3) −→ OZ −→ 0 .

If p ∈ C \ Z, then OZ,p = {0} and Fp ∼= OC,p, which means that Fp is a free

module over OC,p.

Corollary 5.5.2. If a sheaf F ∈ B0 is singular at a point p ∈ C, then

p ∈ Sing(C) ∩ Z .

Proof. By Lemma 5.5.1 sheaves in B0 can only be singular at points of Z. More-

over those points have to be singular, otherwise if p ∈ Z ⊆ C is a smooth point,

then OC,p is a regular local ring of Krull dimension 1, i.e. a PID and thus Fp is

free.

Hence in order to study singular sheaves in B0, it is important to understand

under which conditions an ideal in the local ring of a singular point is not free.

This is the reason why we established the characterizations of free ideals of points

on planar curves in Section 5.4. Now we are going to apply these results in order

to determine “how many” sheaves in B0 are singular, i.e. which subspace of B0

gives singular sheaves. For this we analyze the fibers of B0 over N0 according to

the multiplicity of the points in Z.

5.5.1 Generic fibers

Definition 5.5.3. Let Nc be the open subset of N0 that corresponds to Kro-

necker modules whose maximal coprime minors defining a 0-dimensional sub-

scheme of l =
(
n
2

)
different points.11 Intuitively one can see that this set is open

since by slightly moving a configuration of l points, one still obtains a configura-

tion of l points (i.e. slightly moving simple points does not create double points).

Under the isomorphism N0
∼= H0 from Remark 5.3.29 it corresponds to the open

subvariety Hc ⊆ H0 of the configuration of l points on P2 which do not lie on a

curve of degree d− 3.

11The c in Nc stands for “configuration”.
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Let [Φ] ∈ Nc ; it defines a 0-dimensional subscheme Z = {p1, . . . , pl}. Since all

points are different (i.e. we only have simple points), we obtain OZ,pi ∼= K for

all i ∈ {1, . . . , l}. Let us denote Bc = B|Nc . Then we get the following converse

of Corollary 5.5.2.

Proposition 5.5.4. Let F ∈ Bc be a sheaf over [Φ] ∈ Nc with C = suppF .

Then F is singular if and only if Z contains a singular point of C, i.e. if and

only if Sing(C) ∩ Z 6= ∅.

Proof. By Lemma 5.5.1 we know that it suffices to check the stalks of F at p ∈ Z.

We localize the sequence (5.27) given by Proposition 5.3.31 at a point p ∈ Z, so

0 −→ Fp −→ OC,p −→ OZ,p −→ 0 ⇔ 0 −→M −→ R −→ kp −→ 0 ,

where M = Fp is a maximal ideal of R = OC,p, otherwise the quotient is not a

field. But this is exactly the situation as in Lemma 5.4.1. Hence we know that

the R-module M is free if and only if p is a smooth point of the curve C. By

negation, we conclude that F is singular if and only if there exists a singular

point p ∈ C ∩ Z.

Remark 5.5.5. Proposition 5.5.4 does not hold true if the points are not simple.

A counter-example involving a double point is given in Example 5.6.3.

Proposition 5.5.6. The fibers of M ′
0 over Nc are unions of l different projective

subspaces of P3d−1 of codimension 2.

Proof. Let us study the fibers of ν : Bc → Nc. We fix [Φ] ∈ Nc and denote

F := ν−1([Φ]) ∼= P3d−1 (the fibers of B are of dimension 3n + 2 = 3d − 1, see

Proposition 5.3.22). By Proposition 5.3.32 F may be identified with the space

of curves of degree d passing through Z via the assignment F 7→ suppF . Hence

the words “curve” and “sheaf over [Φ]” can be used equivalently. Without loss

of generality we may also assume that p1 = (1 : 0 : 0).

Let F ∈ F and denote C = suppF = Z(f) for some homogeneous polynomial

f of degree d. Since p1 ∈ C, we need that f does not contain the monomial Xd
0 .

Lemma 5.4.1 and Proposition 5.5.4 then say that F is singular at p1 if and only

if p1 is a singular point of C. The latter holds if and only if the coefficients of f

305



LEYTEM Alain 5.5. Singular sheaves

in front of Xd−1
0 X1 and Xd−1

0 X2 vanish (compute the partial derivatives). So we

obtain a condition which defines a closed subspace of codimension 2. Note that

the condition about the vanishing of the coefficient in front of Xd
0 does not count

here since it is an immediate consequence of the setting and doesn’t contribute

to the criterion of singularity.

Next we need to show that the projective subspace F1 ⊆ F of sheaves over

[Φ] which are singular at p1 is also of codimension 2 in the fiber F . Indeed we

have the inclusions

F1 ⊂ F ⊂ Fp1 ⊂ Cd(P2) ,

where Fp1 is the space of curves of degree d passing through p1. Note that

codimCd(P2) Fp1 = 1 and codimCd(P2) F = l

by Lemma 5.2.40 since Z does not lie on a curve of degree d − 3. Above we

have proved that the space F ′p1
⊂ Fp1 of curves passing through p1 and being

singular at p1 is of codimension 2 in Fp1 . Now we shall prove that F1 = F ′p1
∩F is

still of codimension 2 in F (since the support of the sheaves in F contains all of

Z).12 For this we will show that there exists 2 linearly independent polynomials

which vanish at Z and define non-singular sheaves in F ⊂ Bc, so that we obtain

2 independent sheaves over [Φ] which are not in F1. This will imply that the

codimension of F1 in F is still equal to 2. First note that

l =
(
n
2

)
= n(n−1)

2
= (d−1)(d−2)

2
=
(
d−3+2

2

)
,

thus there are l linearly independent monomials of degree d− 3 in the variables

X0, X1, X2. We denote these monomials e.g. in lexicographical order:

m1 = Xd−3
0 , m2 = Xd−4

0 X1 , m3 = Xd−4
0 X2 , . . . . (5.35)

Hence an arbitrary homogeneous polynomial g of degree d−3 writes as a K-linear

combination g =
∑l

i=1 cimi for some c1, . . . , cl ∈ K. If we want the corresponding

12Indeed the codimension of an intersection can decrease. Consider e.g. a complex line ` in

C3 ; it is of codimension 2. But if we take a complex plane P containing `, then the intersection

` ∩ P = ` is only of codimension 1 in P ∼= C2.
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curve Z(g) to contain Z, then g must vanish at all points p1, . . . , pl, which gives

the l conditions
g(p1) = 0

...

g(pl) = 0

⇔


∑l

i=1 ci ·mi(p1) = 0
...∑l
i=1 ci ·mi(pl) = 0

⇔


m1(p1) . . . ml(p1)

...
. . .

...

m1(pl) . . . ml(pl)

 ·

c1

...

cl

 =


0
...

0

 .

However we know that Z does not lie on a curve of degree d − 3, so this linear

system should have no non-trivial solution c1, . . . , cl. This is the case if and only

if the matrix
(
mj(pi)

)
ij

is invertible. As we assumed that p1 = (1 : 0 : 0), we get

m1(p1) = 1 and mj(p1) = 0 for all j ≥ 2. Hence saying that the matrix
1 0 . . . 0

m1(p2) m2(p2) . . . ml(p2)
...

...
. . .

...

m1(pl) m2(pl) . . . ml(pl)


is invertible means that the matrix

m =


m1(p2) m2(p2) . . . ml(p2)

...
...

. . .
...

m1(pl) m2(pl) . . . ml(pl)


has full rank (equal to l−1) since the first maximal minor is non-zero. Therefore

the kernel of the linear map m : Kl → Kl−1 is 1-dimensional and there exists

a non-trivial solution of m · c = 0, where c = t(c1, . . . , cl). This means that

there exists a homogeneous polynomial q1 of degree d−3 vanishing at the points

p2, . . . , pl and with a non-zero coefficient in front of the monomial m1 = Xd−3
0

(otherwise q1 also vanishes at p1). Thus q1 contains Xd−3
0 and Z \ {p1} ⊆ Z(q1).

The forms X2
0X1q1 and X2

0X2q1 of degree d then vanish at all points of Z.

Now we use that the polynomial defining the support of a singular sheaf does

not contain the monomials Xd−1
0 X1 and Xd−1

0 X2. However X2
0X1q1 contains
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Xd−1
0 X1 since q1 contains m1, but it does not have Xd−1

0 X2. Similarly, X2
0X2q1

has Xd−1
0 X2, but not Xd−1

0 X1. Therefore the sheaves in F corresponding to the

curves given by X2
0X1q1 and X2

0X2q1 are non-singular. As these polynomials are

moreover linearly independent, we finally obtain that codimF F1 = 2.

Repeating the same argument for each point p1, . . . , pl, we conclude that the

sheaves over [Φ] that are singular at pi define a closed linear13 projective sub-

space Fi of codimension 2 in the fiber F . In particular,

F ∈ F is singular ⇔ F ∈ F1 ∪ . . . ∪ Fl

with codimF (F1 ∪ . . . ∪ Fl) = 2. However the 2 closed conditions defining Fi

for i 6= 1 do not correspond to the vanishing of some coefficients in front of

monomials ; this is only the case if the homogeneous coordinates of pi are “nice”.

In general they are given by

(∂1f)(pi) = 0 and (∂2f)(pi) = 0 . (5.36)

Note that we do not need (∂0f)(pi) = 0 because of f(pi) = 0 and Euler’s relation

for homogeneous polynomials, hence these 2 conditions are enough to get singular

points.

Remark 5.5.7. Now let us describe how the subspaces Fi in the fiber F cor-

responding to different points pi intersect with each other. First note that Z

contains a triple of non-collinear points because d ≥ 4 and Z does not lie on a

curve of degree d− 3.14 Hence in addition to the assumption p1 = (1 : 0 : 0), we

may assume by Lemma D.1.20 that p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1). Similarly

as in the proof of Proposition 5.5.6, the conditions for being singular at these 3

points correspond to the absence of the following monomials in the equation of

the support C:

13“linear” means given by linear equations
14So the argument does not work for d = 3 and the moduli space M3m−1, where Z just

consists of 1 point.
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Xd−1
0 X1 , X

d−1
0 X2 for the point p1 , (5.37)

Xd−1
1 X0 , X

d−1
1 X2 for the point p2 , (5.38)

Xd−1
2 X0 , X

d−1
2 X1 for the point p3 . (5.39)

The conditions (5.37), (5.38) and (5.38) are clearly independent of each other.

Moreover they are independent of the conditions imposed on the support by

requiring that Z ⊆ C since those equations involve the coefficients in front of

Xd
0 , Xd

1 and Xd
2 . We want to show that ∀ i 6= j in {1, 2, 3},

codimF (Fi ∩ Fj) = 4 and codimF (F1 ∩ F2 ∩ F3) = 6 .

This is again achieved by constructing 4, resp. 6 linearly independent polyno-

mials which define non-singular sheaves in F ⊂ Bc. As in the proof of Proposi-

tion 5.5.6, we obtain homogeneous polynomials q2 and q3 of degree d−3 vanishing

at Z \ {p2} and Z \ {p3} respectively such that

X2
1X0q2 contains Xd−1

1 X0 but not Xd−1
1 X2 ,

X2
1X2q2 contains Xd−1

1 X2 but not Xd−1
1 X0 ,

X2
2X0q3 contains Xd−1

2 X0 but not Xd−1
2 X1 ,

X2
2X1q3 contains Xd−1

2 X1 but not Xd−1
2 X0 ,

and all polynomials on the LHS vanish at Z. Together with X2
0X1q1 and X2

0X2q1

we thus have 6 linearly independent homogeneous polynomials of degree d which

vanish at Z and define non-singular sheaves as they only contain exactly one of

the monomials from (5.37), (5.38) and (5.38).

Corollary 5.5.8. The fibers of M ′
0 over Nc are unions of l different linear sub-

spaces of F ∼= P3d−1 of codimension 2 such that each pair intersects in codi-

mension 4 and each triple corresponding to 3 non-collinear points intersects in

codimension 6. In particular the fibers are singular at the intersection points.

Remark 5.5.9. Using Lemma D.1.20 for collinear points, one can also show

(e.g. with Singular) that codimF (F1 ∩ Fj ∩ Fk) = 6 for every triple of different

indices i, j, k corresponding to 3 different points pi, pj, pk from Z.
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Remark 5.5.10. But in general the subspaces Fi ⊆ F do not intersect transver-

sally, i.e. in general

codimF (Fi1 , . . . , Fir) 6= 2r

for r ∈ {4, . . . , l}. For example, let d = 6 and Z = {p1, . . . , p10} with

p1 = (1 : 0 : 0) , p2 = (0 : 1 : 0) , p3 = (0 : 0 : 1)

p4 = (0 : 1 : 1) , p5 = (0 : 1 : −1) , p6 = (1 : −2 : 0) , p7 = (1 : 2 : −1)

p8 = (1 : 1 : −2) , p9 = (1 : −1 : 1) , p10 = (1 : 1 : −1)

Then one can compute the conditions (5.36) with Singular and obtain

codimF (F1 ∩ F2 ∩ F3 ∩ F4) = 8 but codimF (F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5) = 9 .

5.5.2 Fibers with a double point

Definition 5.5.11. Let N1 be the open subset of N0\Nc that corresponds to l−2

different simple points and one double point. We denote B1 = B|N1 . Intuitively

this can again be seen to be open since slightly moving this constellation inside of

N0 \Nc produces the same constellation (the simple points remain simple points

and the double point cannot be “separated”, otherwise we end up in Nc).

Remark 5.5.12. In order to show that the codimension of the singular sheaves

in Mdm−1 is 2, we also have to study this case. Indeed the codimension of the

complement of Nc in N0 is 1 and it may a priori happen that all sheaves over

N0 \Nc are singular, so the codimension would be equal to 1.

Let [Φ] ∈ N1 and denote its corresponding 0-dimensional subscheme by

Z = {p1} ∪ {p2, . . . , pl−1} ,

where p1 is a double point. Without loss of generality we may assume that

p1 = (1 : 0 : 0) and that it is given by the ideal J = 〈X2
1 , X2 〉.

Note that if F ∈ B1 is a sheaf over [Φ] with support C = suppF , then p1 ∈ Z ⊆ C

does not mean that p1 is an embedded double point of C. Indeed, if F is given by

someA ∈ X, then C is given by the homogeneous quotient K[X0, X1, X2]/〈 detA 〉
and this ring does not have embedded primes.
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Proposition 5.5.13. The sheaves over [Φ] that are singular at the double point

p1 constitute a closed linear projective subspace of codimension 2 in the fiber

ν−1([Φ]) ∼= P3d−1.

Proof. Let m1, . . . ,ml again be all monomials of degree d− 3 in lexicographical

order as in (5.35). If g =
∑

i cimi is any polynomial of degree d− 3, then saying

that Z ⊆ Z(g) means that

g(p1) = g(p2) = . . . = g(pl−1) = 0 and g ∈ I .

Since m1(p1) = 1 and mj(p1) = 0 for j ≥ 2, we have g(p1) = 0 ⇔ c1 = 0. In

addition we obtain g ∈ I ⇔ c1 = c2 = 0 because g writes as a combination

g = c1 ·Xd−3
0 + c2 ·Xd−4

0 X1 +X2
1 ·
(
. . .
)

+X2 ·
(
. . .
)
.

Thus g ∈ I if and only if the coefficients c1 and c2 in front of m1 = Xd−3
0 and

m2 = Xd−4
0 X1 vanish. As Z does not lie on a curve of degree d − 3, the linear

system 

1 0 . . . 0

0 1 . . . 0

m1(p2) m2(p2) . . . ml(p2)
...

...
. . .

...

m1(pl−1) m2(pl−1) . . . ml(pl−1)


·


c1

...

cl

 =


0
...

0


does not have a non-trivial solution c1, . . . , cl. In other words, the matrix

m =


m1(p2) m2(p2) . . . ml(p2)

...
...

. . .
...

m1(pl−1) m2(pl−1) . . . ml(pl−1)


has full rank equal to l−2. Therefore the kernel of m : Kl → Kl−2 has dimension

2, which means that there exist two linearly independent homogeneous polyno-

mials q and q′ of degree d− 3 which vanish at the points p2, . . . , pl−1. But since

Z(q) and Z(q′) are not allowed to contain all of Z, we can choose q to contain the

monomial Xd−3
0 , but not Xd−4

0 X1, and q′ to contain Xd−4
0 X1, but not Xd−3

0 . In

particular the forms X2
0X2q ∈ 〈X2 〉 and X2

0X1q
′ ∈ 〈X2

1 〉 of degree d vanish at Z.
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Now let F = ν−1([Φ]) and F ∈ B1 be a sheaf over [Φ] ∈ N1 with support

C = suppF = Z(f) for some homogeneous polynomial f of degree d. By Propo-

sition 5.4.11 we conclude that F is singular at p1 if and only if f does not contain

the monomials Xd−2
0 X2

1 and Xd−1
0 X2. Indeed, Proposition 5.3.31 gives the exact

sequence (5.27), which localized at the double point p1 gives

0 −→ Fp1 −→ OC,p1 −→ OZ,p1 −→ 0 ⇔ 0 −→ I −→ R −→ Odp1 −→ 0 .

In the chart U0 ⊂ P2 with X0 6= 0, the ideal I corresponds to 〈X2, Y 〉. Hence

Proposition 5.4.11 says that I is a free R-module if and only if f contains X2.

However this condition is only correct in the case of singular points. So we have

to add the condition on the vanishing of the coefficient in front of Xd−1
0 X2, which

corresponds to Y in U0 (otherwise p1 would be a smooth point and OC,p1 would

be regular). The fact that the coefficient in front of Xd−1
0 X1 has to vanish as well

is already contained in the assumption f ∈ I and does not need to be added.

We obtained that a sheaf F ∈ F is singular at p1 if and only if the coefficients in

front of the monomials of f satisfy 2 closed conditions. Again one has to check

that this 2-codimensional space of curves passing through p1 properly intersects

with F . This is the case since the polynomials X2
0X2q and X2

0X1q
′ above are

linearly independent and define 2 different non-singular sheaves in F ⊂ B1.

Indeed the first one contains Xd−1
0 X2 and the second one contains Xd−2

0 X2
1 .

It remains to study the case of singular sheaves at the simple points.

Proposition 5.5.14. The projective subspace of sheaves over [Φ] which are sin-

gular at a simple point pi is of codimension 2 in the fiber ν−1([Φ]) ∼= P3d−1.

Proof. Let i ∈ {2, . . . , l − 1}. Here we are going to distinguish between the 2

following cases:

1) pi is a simple point which lies on a line with p1

2) pi is a simple point which does not lie on a line with p1.

Note that this makes sense since the double point p1 also defines a “tangent

direction”, which already uniquely determines the line containing it.

If pi lies on a line with p1, then this line is necessarily given by the equation

X2 = 0 because if h = aX0 + bX1 + cX2 has to satisfy h(p1) = 0 and h ∈ I, then
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a = b = 0. Hence we may assume without loss of generality that pi = (0 : 1 : 0).

On the other hand since Z does not lie on a curve of degree d− 3, it is in partic-

ular not contained in a line and hence there is always a point pj which does not

lie on the same line as p1. In this case we may assume without loss of generality

that pj = (0 : 0 : 1).

Let us first study the case where pi = (0 : 0 : 1). By renumbering the points we

may assume that i = 2. Then we obtain the invertible matrix

1 0 0 . . . 0

0 1 0 . . . 0

0 0 0 . . . 1

m1(p3) m2(p3) m3(p3) . . . ml(p3)
...

...
...

. . .
...

m1(pl−1) m2(pl−1) m3(pl−1) . . . ml(pl−1)


since ml = Xd−3

2 . Hence there exists a homogeneous polynomial q′′ of degree

d − 3 vanishing at Z \ {p2} with coefficient 1 in front of the monomial Xd−3
2 .

Then the polynomials X1X
2
2q
′′ and X0X

2
2q
′′ vanish at Z. Moreover the first one

contains X1X
d−1
2 but not X0X

d−1
2 , the latter one has X0X

d−1
2 but not X1X

d−1
2 .

As in Proposition 5.5.6 and Lemma 5.4.1 a sheaf F over [Φ] ∈ N1 is singular at p2

if and only if the coefficients in front of Xd−1
2 X0 and Xd−1

2 X1 vanish, so we obtain

a closed subspace of codimension 2. Since moreover X1X
2
2q
′′ and X0X

2
2q
′′ define

2 independent non-singular sheaves in B1, we obtain that the sheaves over [Φ]

which are singular at p2 constitute a linear projective subspace of codimension

2 in the fiber ν−1([Φ]). Similarly the projective subspace of sheaves over [Φ]

which are singular at some point pi such that p1 and pi do not lie on a line is of

codimension 2 in the fiber ν−1([Φ]) ∼= P3d−1.

Finally we analyze the case where pi = (0 : 1 : 0). In this case we obtain a

homogeneous polynomial q′′′ of degree d−3 vanishing at Z \{pi} with coefficient

1 in front of the monomial Xd−3
1 . Then the polynomials X0X

2
1q
′′′ and X2

1X2q
′′′

vanish at Z, the former one having X0X
d−1
1 but not Xd−1

1 X2, the latter one

containing Xd−1
1 X2 but not X0X

d−1
1 . Similarly as in the previous cases one

concludes again that the sheaves over [Φ] ∈ N1 which are singular at some point
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pi such that p1 and pi lie on a line constitute a linear projective subspace of

codimension 2 in the fiber ν−1([Φ]) ∼= P3d−1.

Corollary 5.5.15. The fibers of M ′
0 over N1 are unions of l− 1 different linear

subspaces of P3d−1 of codimension 2. In particular the fibers are singular at the

intersection points.

5.5.3 Main result

In order to state our main theorem, we need the following result about generic

smoothness of a morphism of varieties.

Theorem 5.5.16. [ [68], 25.3.3, p.673 ]

Let f : X → Y be a morphism of varieties over K such that X is smooth. Then

there is a dense open subset U ⊆ Y such that f|f−1(U) : f−1(U)→ U is a smooth

morphism, i.e. the fibers f−1(y) ⊆ X are smooth varieties for all y ∈ U .

Remark 5.5.17. The set f−1(U) ⊆ X and the fibers f−1(y) may be empty.

Hence if we want the statement to be non-trivial, we have to add the assumption

that f is a surjective morphism15.

Theorem 5.5.18 (Iena-Leytem). Let d ≥ 4 and M = Mdm−1 be the Simpson

moduli space of stable sheaves on P2 with Hilbert polynomial dm−1. If we denote

by M ′ ⊂ M the closed subvariety of singular sheaves in M , then M ′ is singular

and of codimension 2.

Proof. By Proposition 5.3.30 we have the inclusion of open subvarieties

B0 ⊆M0 ⊆M .

It is shown in [ [70], 4.7, p.11 ] that the codimension of the complement of B0 is

M is ≥ 2. Hence in order to show that codimM M ′ = 2, it suffices to show that

codimB0(B0 ∩M ′) = 2, where B0 ∩M ′ ⊆M ′
0. We also have

Nc ⊆ N0 open and N1 ⊆ N0 \Nc open .

15or, more generally a dominant morphism.
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Since the codimension of the complement of N1 in N0 \Nc is 1, the complement

of Nc ∪N1 in N0 is of codimension 2. Therefore it suffices to show that

codimBc∪B1

(
M ′ ∩ (Bc ∪ B1)

)
= 2 .

But this is exactly what we did in Proposition 5.5.6 and Corollary 5.5.15 : the

codimension of the fibers of M ′
0 over Nc ∪N1 is equal to 2.

To show that M ′ is a singular subvariety of M , it suffices to show that M ′
0 is

singular. Assume that M ′
0 is smooth. Then we restrict the morphism ν : B→ N

to M ′
0 ⊂M0 ⊆ B, i.e. we consider

ν : M ′
0 −→ N ,

which is still surjective. By Theorem 5.5.16 we thus obtain a dense open subset

U ⊆ N such that the fibers ν−1([Φ]) are smooth for all [Φ] ∈ U . But in Corol-

lary 5.5.8 and Corollary 5.5.15 we showed that a generic fiber of M ′
0 over N is

singular. Hence M ′
0 cannot be smooth.

Remark 5.5.19. The proof of Theorem 5.5.18 does not take care of all sheaves

in M ′. For example we will illustrate in Remark 5.6.5 that every sheaf in B0 is

singular at a non-curvilinear triple point. These however only appear in subvari-

eties of N0 of codimension ≥ 2 as they lie in the complement of Nc ∪N1. Hence

sheaves which are singular at such a triple point (and thus belong to M ′) may

only arise in a subvariety of codimension ≥ 2 in the complement of Bc∪B1. This

does not affect the fact that the codimension of M ′ is 2.

Finally we also want to find the smooth points of M ′, i.e. to determine the

smooth locus of M ′.

Definition 5.5.20. Let l =
(
n
2

)
and consider the product variety

∏l
1 P2, on which

we have an action of the group of permutations Sl. The symmetric product SlP2

is defined as the quotient ∏l
1 P2

/
Sl

and can be shown to be a projective variety. It consists of tuples of l points in

P2 with no order.
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Lemma 5.5.21. Let H = P[l]
2 be the Hilbert schemes of l points in P2. Then

there is an assignment H → SlP2 which induces a 1-to-1 correspondence between

Hc
∼= Nc and an open subvariety of SlP2.

Proof. Let Z ∈ H and denote Z = {p1, . . . , pk} for some k ≤ l. If we denote the

multiplicity of each pi by ni, then n1 + . . .+ nk = l. We define the map

H −→ SlP2 : Z = {p1, . . . , pk} 7−→ n1 · p1 + . . .+ nk · pk .

Restricting this map to Hc means that all points in Z are simple and different, i.e.

k = l and ni = 1, ∀ i ∈ {1, . . . , l}. This gives a 1-to-1 correspondence between Hc

and the subvariety of SlP2 consisting of tuples with all l entries being different,

which is open since this is achieved by removing all (closed) diagonals.

Proposition 5.5.22. The smooth locus of M ′ over Nc consists of sheaves corre-

sponding to a 0-dimensional subscheme Z ⊆ C such that only one of the points

in Z is a singular point of C.

Proof. By Lemma 5.5.21 we may identify Nc with an open subscheme of SlP2.

Moreover we can choose a local section16 SlP2 →
∏l

1 P2. We compose this one

with the projection
∏l

1 P2 → P2 to the jth factor. Hence for a given Z0 ∈ Nc we

obtain an open neighborhood U ⊆ Nc and l different local choices pj : U → P2

for j = 1, . . . , l of a point in Z ∈ U .17

By shrinking U if necessary we may assume that B → Nc is a trivial bundle

over U , i.e. B|U is isomorphic to the product variety U × P3d−1. Consider the

subvariety Sj ⊆ B|U of those sheaves given by Z ⊆ C that are singular at the

point pj(Z) ∈ P2. By Proposition 5.5.6 there thus exists an open subset Vj ⊆ U

such that Sj|Vj is isomorphic to a product of Vj with a linear subspace of P3d−1

of codimension 2, i.e. Sj|Vj ∼= Vj × P3d−3. Therefore Sj is smooth (as products

are). Taking V = V1 ∩ . . . ∩ Vl we also get

M ′ ∩ B|V ∼= S1|V ∪ . . . ∪ Sl|V .
16In the analytic case this is clear. For the Zariski topology this has to be made precise by

means of the étale topology since such a section may not be a regular map.
17Roughly speaking we just construct a map {p1, . . . , pl} 7→ pj which locally chooses a point

from Z.
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Hence the smooth points in M ′ over Nc are exactly those which are contained in(⋃
j Sj
)
\
(⋃

j 6=i(Sj ∩ Si)
)
,

i.e. sheaves that are singular at only one of the points in Z.

Example 5.5.23. Let d = 4 and l =
(

3
2

)
= 3. Consider two sheaves with

singular support as given in Figure 5.2 below. The first one is a smooth point of

M ′, the second one is not.

Figure 5.2: Supports of a smooth and of a singular point in M ′

a

5.6 Examples, interpretations, open questions

Let us finally give a few examples and interpretations of the previous results.

5.6.1 Some computational examples

Example 5.6.1. In Proposition 5.2.14 we showed that the conditions for a Kro-

necker module Φ ∈ V to be stable and to have linearly independent minors are

equivalent for n = 3. Here we give an example to show that this is no longer

true for n > 3. Consider e.g. n = 4 and

Φ :=


X0 0 X2 −X1

X1 −X2 0 X0

X2 X1 −X0 0

 .

Its first maximal minor is X2X0X1 −X1X2X0 = 0. But Φ is still semistable.
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For this, we have to show that there are no matrices g ∈ GL3(C) and h ∈ GL4(C)

such that 
g1 g2 g3

g4 g5 g6

g7 g8 g9


︸ ︷︷ ︸

= g

· Φ ·


h1 h2 h3 h4

h5 h6 h7 h8

h9 h10 h11 h12

h13 h14 h15 h16


︸ ︷︷ ︸

=h

is equal to
∗ 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 or


∗ ∗ 0 0

∗ ∗ 0 0

∗ ∗ ∗ ∗

 or


∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

 .

Computing the product and comparing the coefficients of the linear forms in

X0, X1, X2, we get the following conditions to obtain zero at position (i, j):

(1, 2) : g1h2 + g2h14 − g3h10 = 0 , − g1h14 + g2h2 + g3h6 = 0 ,

g1h10 − g2h6 + g3h2 = 0 .

(1, 3) : g1h3 + g2h15 − g3h11 = 0 , − g1h15 + g2h3 + g3h7 = 0 ,

g1h11 − g2h7 + g3h3 = 0 .

(1, 4) : g1h4 + g2h16 − g3h12 = 0 , − g1h16 + g2h4 + g3h8 = 0 ,

g1h12 − g2h8 + g3h4 = 0 .

(2, 3) : g4h3 + g5h15 − g6h11 = 0 , − g4h15 + g5h3 + g6h7 = 0 ,

g4h11 − g5h7 + g6h3 = 0 .

(2, 4) : g4h4 + g5h16 − g6h12 = 0 , − g4h16 + g5h4 + g6h8 = 0 ,

g4h12 − g5h8 + g6h4 = 0 .

(3, 4) : g7h4 + g8h16 − g9h12 = 0 , − g7h16 + g8h4 + g9h8 = 0 ,

g7h12 − g8h8 + g9h4 = 0 .

1) For the first situation we consider (1, 2), (1, 3) and (1, 4). Note that these

equations only depend on g1, g2, g3, which form the first row of g. So we can

consider them as a linear system of equations in these variables. Rewriting the
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equations in matrix form, we get the homogeneous linear system

h2 h14 −h10

h3 h15 −h11

h4 h16 −h12

−h14 h2 h6

−h15 h3 h7

−h16 h4 h8

h10 −h6 h2

h11 −h7 h3

h12 −h8 h4



·


g1

g2

g3

 =


0

0

0

 .

As g is invertible we need a non-zero solution, so the 9×3–matrix must have rank

at most 2. In particular, every 3×3–submatrix must have zero determinant. We

see however that the three blocks of 3 × 3–matrices consist of maximal minors

(up to sign) of the shortened matrix

h′ :=


h2 h3 h4

h6 h7 h8

h10 h11 h12

h14 h15 h16

 .

Hence the 2nd, 3rd and 4th maximal minor of h′ are zero. Since h is invertible,

the first maximal minor is not allowed to be zero as well, thus the 3 last rows of

h′ are linearly independent.

Next we show that at most one of h2, h3, h4 can be zero (actually we only need

that one of them is non-zero). Indeed assume e.g. that h2 = h3 = 0. Then we

get the subsystem of equations

0 h14 −h10

0 h15 −h11

−h14 0 h6

−h15 0 h7

h10 −h6 0

h11 −h7 0


·


g1

g2

g3

 =


0

0

0

 .

319



LEYTEM Alain 5.6. Examples, interpretations, open questions

If any of

det

(
h14 h10

h15 h11

)
, det

(
h14 h6

h15 h7

)
,

(
h10 h6

h11 h7

)
(5.40)

is non-zero, then two of g1, g2, g3 will be zero. To obtain a non-zero value for

the third one, say gi, we need that the ith column is completely zero, which is

impossible as it would imply that 2 of the last 3 rows in h′ are linearly dependent

and hence that its first maximal minor would be zero. So all determinants in

(5.40) must be zero. But also this is impossible since then again the first maximal

minor would be zero.

By permuting rows if necessary, we may thus assume that h2 6= 0. Since the

fourth maximal minor of h′ is zero, we know that its first 3 rows are linear

dependent. Since however the first maximal minor is non-zero, the second and

third row are linearly independent, so we get

(h2, h3, h4) = λ · (h6, h7, h8) + µ · (h10, h11, h12)

for some (λ, µ) 6= (0, 0) since h2 6= 0. If λ 6= 0, then

0 6= det


h6 h7 h8

h10 h11 h12

h14 h15 h16

 = det


1
λ
h2 − µ

λ
h10

1
λ
h3 − µ

λ
h11

1
λ
h4 − µ

λ
h12

h10 h11 h12

h14 h15 h16

 = 0 ,

and similarly if µ 6= 0. This contradiction finally shows that 1) cannot happen.

2) Now consider the second case with (1, 3), (1, 4), (2, 3) and (2, 4). 6 of the

equations only depend on g1, g2, g3, while the other 6 only depend on g4, g5, g6

and satisfy exactly the same conditions:

h3 h15 −h11

−h15 h3 h7

h11 −h7 h3

h4 h16 −h12

−h16 h4 h8

h12 −h8 h4


·


g1

g2

g3

 =



h3 h15 −h11

−h15 h3 h7

h11 −h7 h3

h4 h16 −h12

−h16 h4 h8

h12 −h8 h4


·


g4

g5

g6

 =


0

0

0

 .
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Since g is invertible, we thus need 2 linearly independent solutions of this ho-

mogeneous linear system. This is only possible if the 6 × 3–matrix has rank at

most 1. Hence there exist α, β, γ ∈ K such that each row is a scalar multiple of

(α, β, γ). They are not all zero, otherwise h3 = h7 = h11 = h15 = 0 and h would

not be invertible. In particular ∃λ, µ, ν ∈ K such that

(h3, h15,−h11) = λ · (α, β, γ) , (−h15, h3, h7) = µ · (α, β, γ) ,

(h11,−h7, h3) = ν · (α, β, γ) .

From h3 = λα = µβ and h15 = λβ = −µα, we conclude that h3 and h15 are

either simultaneously zero or simultaneously non-zero. From h3 = λα = νγ,

h11 = −λγ = να and h3 = µβ = νγ, h7 = µγ = −νβ. we conclude that they are

all non-zero since h is invertible. Comparing some more rows, we find

(h4, h16,−h12) = c · (h3, h15,−h11) and (−h16, h4, h8) = c′ · (−h15, h3, h7)

for some c, c′ ∈ K. Since h3 6= 0, we get c = c′, hence

(h4, h8, h12, h16) = c · (h3, h7, h11, h16) .

But this implies that deth = 0, so 2) is impossible as well.

3) Finally we look at (1, 4), (2, 4) and (3, 4). There we obtain the homogeneous

linear system 
h4 h16 −h12

−h16 h4 h8

h12 −h8 h4

 ·

g1+3i

g2+3i

g3+3i

 =


0

0

0


for i = 0, 1, 2. In order for g to be invertible we need 3 linearly independent

solutions, the matrix of type 3× 3 must have rank 0, i.e. all entries must vanish,

which is impossible as it consists of all the entries of the last column of h.

Finally we conclude that Φ ∈ V is a semistable Kronecker module, but its max-

imal minors are linearly dependent (as one of them is zero).

Example 5.6.2. We have seen in Example 5.2.27 that the Kronecker modules

Φ =


X1 0 −X2 0

0 X1 0 −X2

0 0 −X1 X0

 and Φ′ =


0 X1 0 −X2

−X1 X0 0 0

0 0 −X1 X0
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have the same maximal minors

d1 = X0X1X2 , d2 = X2
1X2 , d3 = X0X

2
1 , d4 = X3

1 ,

but do not lie in the same G-orbit. We are interested in a geometric description

of Φ and Φ′. First note that permutations of rows and columns give

Φ′ ∼


0 0 X1 −X2

−X1 0 X0 0

0 −X1 0 X0

 ∼

−X1 0 X0 0

0 −X1 0 X0

0 0 X1 −X2



∼


X1 0 −X0 0

0 X1 0 −X0

0 0 −X1 X2

 .

Hence Φ and Φ′ only differ by a coordinate change (interchange X0 and X2) and

it suffices to study only one of them. The situation of the other one is then

obtained by a geometric reflection.

Let g = gcd(d1, d2, d3, d4) = X1. As the maximal minors of Φ are not coprime,

a sequence as in (5.18) involving Φ cannot be made exact (see Remark 5.2.31),

e.g. we also have

(
X1 −X0 0 0

)
·


X0X2

X1X2

X0X1

X2
1

 = 0 .

So let us consider the dual situation as in Proposition 5.2.30. With n = 4 and

deg g = 1, we obtain the exact sequence

0 −→ OP2(−3)
ψ−→ 4OP2(−1)

tΦ−→ 3OP2 ,

where ψ =
(
X0X2 , X1X2 , X0X1 , X

2
1

)
. Let us also consider the exact sequences

0 −→ OP2(−1)
·X1−→ OP2 −→ OL1 −→ 0

and

0 −→ OP2(−3)
ψ′−→ 3OP2(−1)

Ψ−→ 2OP2 −→ coker Ψ −→ 0 ,
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where

ψ′ =
(
X0X2 , X0X1 , X

2
1

)
and Ψ =


X1 0

−X2 −X1

0 X0

 .

By Example 4.3.1 coker Ψ has Hilbert polynomial

2 · (m+ 2)(m+ 1)

2
− 3 · m(m+ 1)

2
+

(m− 1)(m− 2)

2
= 3 ,

so we can write coker Ψ = OZ , where Z ⊂ P2 consists of finitely many points.

Proposition 4.5.9 implies that Z is given by the common vanishing set of the

maximal minors of Ψ, i.e.

Z = Z(X0X2, X0X1, X
2
1 ) =

{
p1 = (1 : 0 : 0) , p2 = (0 : 0 : 1)

}
.

But POZ (m) = 3, so one of these points must be a double point. Indeed,

X0 6= 0 ⇒


X1 0

−X2 −X1

0 1

 ∼

X1 0

X2 0

0 1

 ,

X2 6= 0 ⇒


X1 0

−1 −X1

0 X0

 ∼


0 −X2
1

1 X1

0 X0

 ∼


0 X2
1

1 0

0 X0

 ∼

X0 0

X2
1 0

0 1

 .

Hence p2 is a double point and we have Z = {p1, dp2} with OZ = Op1⊕Odp2 . The

above exact sequences can now be put into the following commutative diagram:

0

��

0

��

0

��

0 // OP2(−1)
·X1 //

i1
��

OP2
//

i2
��

OL1
//

��

0

0 // OP2(−3)
ψ
//

id
��

4OP2(−1)
tΦ //

j1
��

3OP2

j2
��

// F

��

// 0

0 // OP2(−3)
ψ′
// 3OP2(−1) Ψ //

��

2OP2

��

// OZ

��

// 0

0 0 0
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with

i1 =
(
0, 1, 0, 0

)
, i2 =

(
0, 1, 0

)
, j1 =


1 0 0

0 0 0

0 1 0

0 0 1

 , j2 =


1 0

0 0

0 1


Due to exactness of the rows and the first two columns the 9-Lemma gives the

exact sequence

0 −→ OL1 −→ F −→ OZ −→ 0 ,

i.e. F = coker(tΦ) is an extension of the structure sheaf of a line and the

structure sheaf of a point and a double point. F is supported on the common

vanishing set of d1, d2, d3, d4. Topologically this is just the line L1, but we have

again multiplicities at p1 and p2. Indeed

X0 6= 0 ⇒ 〈 d1, d2, d3, d4 〉 = 〈X1X2, X
2
1X2, X

2
1 , X

3
1 〉 = 〈X1X2, X

2
1 〉 ,

X2 6= 0 ⇒ 〈 d1, d2, d3, d4 〉 = 〈X0X1, X
2
1 , X

2
1X0, X

3
1 〉 = 〈X0X1, X

2
1 〉 ,

so that the support of F consists of the line L1 with double points at p1 and

p2. Now we want to see how F looks like in a neighborhood of the pi. For

p1 = (1 : 0 : 0) and X0 6= 0 we have

tΦ ∼


X1 0 0

0 X1 0

−X2 0 −X1

0 −X2 1

 ∼

X1 0 0

0 X1 0

−X2 −X1X2 0

0 −X2 1



∼


X1 0 0

0 X1 0

−X2 0 0

0 0 1

 ∼

X1 0 0

X2 0 0

0 X1 0

0 0 1

 .

Let R = K[X1, X2] ; this means that F can locally around p1 be described by

the R-module

K[X1, X2]/〈X1, X2 〉 ⊕K[X1, X2]/〈X1 〉 ∼= K⊕K[X2] ;
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which corresponds to the direct sum of a simple point and a line. On the other

hand, p2 = (0 : 0 : 1) with X2 6= 0 gives

tΦ ∼


X1 0 0

0 X1 0

−1 0 −X1

0 −1 X0

 ∼

X1 0 0

0 0 X0X1

1 0 X1

0 1 −X0



∼


X1 0 −X2

1

0 0 X0X1

1 0 0

0 1 0

 ∼

X0X1 0 0

X2
1 0 0

0 1 0

0 0 1

 ,

so one obtains the module K[X0, X1]/〈X0X1, X
2
1 〉, which describes a line with

an embedded double point. Hence even though p1 and p2 are both double points

in the Fitting support of F , we see that their natures are different.

Example 5.6.3. Proposition 5.5.4 does not hold true over N0 \ Nc, i.e. if Z

contains points of multiplicity > 1. Let for example n = 3 and d = 4 with

A =


X2

2 0 X2
1

X0 X1 0

0 X0 X2

 ⇒ Φ =

(
X0 X1 0

0 X0 X2

)

The maximal minors of Φ are d1 = X1X2, d2 = −X0X2 and d3 = X2
0 . These

are coprime, hence Φ ∈ V0. Moreover detA = X2
0X

2
1 + X1X

3
2 is non-zero. By

Proposition 5.3.31 the sheaf [F ] ∈ B0 corresponding to the matrix A ∈ W0 is

thus given as an ideal sheaf

0 −→ F −→ OC(1) −→ OZ −→ 0 ,

where C = Z(detA) is the support of F and Z ⊂ P2 consists of
(

3
2

)
= 3 points

not lying on a line. By Proposition 4.5.9 the latter is given by

Z = Z(d1, d2, d3) =
{
p1 = (0 : 1 : 0) , p2 = (0 : 0 : 1)

}
,

where p1 is a double point since

X1 6= 0 ⇒ 〈 d1, d2, d3 〉 = 〈X2, X0X2, X
2
0 〉 = 〈X2

0 , X2 〉 , (5.41)

X2 6= 0 ⇒ 〈 d1, d2, d3 〉 = 〈X1, X0, X
2
0 〉 = 〈X0, X1 〉 .
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In particular the 2 points do not lie on a line. So we have Z = {dp1, p2} and

OZ = Odp1 ⊕Op2 . This is not a configuration, so [F ] ∈ B0 \Bc. On the other we

see that [F ] ∈ B1 since there is just 1 double point. Note that C is a reducible

curve because detA = X1(X2
0X1 +X3

2 ). We also have

∂(detA)

∂X0

= 2X0X
2
1 ,

∂(detA)

∂X1

= 2X2
0X1 +X3

2 ,

∂(detA)

∂X2

= 3X1X
2
2 ,

which allows to see that p1 ∈ Z is a singular point of C. However F is a non-

singular sheaf. For this is suffices to check freeness of the stalks Fp1 and Fp2 .

Let {U0, U1, U2} be the standard open covering of P2. For p1 = (0 : 1 : 0) ∈ U1

we find

A|U1 ∼


X2

2 0 1

X0 1 0

0 X0 X2

 ∼


X2
2 0 1

X0 1 0

−X2
0 −X3

2 0 0

 ∼

X2

0 +X3
2 0 0

0 1 0

0 0 1

 ,

where X2
0 +X3

2 is equal to detA with X1 = 1. Thus Fp1
∼= OC,p1 .

For p2 = (0 : 0 : 1) ∈ U2 one gets

A|U2 ∼


1 0 X2

1

X0 X1 0

0 X0 1

 ∼


1 0 0

X0 X1 −X0X
2
1

0 X0 1

 ∼


1 0 0

0 X1 −X0X
2
1

0 X0 1



∼


1 0 0

0 X1 +X2
0X

2
1 −X0X

2
1

0 0 1

 ∼

X1 +X2

0X
2
1 0 0

0 1 0

0 0 1

 .

We obtain again Fp2
∼= OC,p2 since X1 + X2

0X
2
1 is equal to detA with X2 = 1.

Together with F|U0 = 0 (as C ∩U0 = ∅) this finally gives F ∼= OC . We conclude

that F is a non-singular sheaf even though p1 ∈ Z ∩ Sing(C).

Remark 5.6.4. On the other hand let us check that Proposition 5.4.11 is indeed

satisfied. As p1 is a double point we have to look at the affine chart U1, in which

the coordinates of p1 become (0, 0). In this case we know from (5.41) that the

double point is defined by 〈X2
0 , X2 〉 and the curve C|U1 is given by the polynomial
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f = X2
0 + X3

2 (so it defines a cusp at p1). We also see that 〈 f 〉 ⊂ 〈X2
0 , X2 〉.

Now the criterion of Proposition 5.4.11 is satisfied since p1 is a singular point of

C and f contains the monomial X2
0 , i.e. A defines a non-singular sheaf.

5.6.2 Interpretations of the Simpson moduli spaces

To close the thesis let us discuss several geometric and physical interpretations

of M = Mdm−1(P2).

Geometry of M

Consider the morphism

σ : M −→ Cd(P2) : [F ] 7−→ Zf (F)

that sends the isomorphism class of a sheaf to its Fitting support. We want to

look at its fibers. Fix a curve C ∈ Cd(P2). First assume that C is smooth. Then

the fiber σ−1(C) consists of (isomorphism classes of) stable line bundles on the

non-singular curve C. Hence all such fibers are Jacobians over smooth curves18.

Over singular curves the fibers can thus be seen as compactified Jacobians ; in-

deed the fibers are closed sets in the compact space M , hence compact as well.

Sheaves that are line bundles on their support constitute an open subvariety

MB ⊂ M (it may be bigger than the union of all fibers over smooth curves as

sheaves on singular curves may also be non-singular). Then the closed subvari-

ety of sheaves that are not locally free on their support is equal to the boundary

M ′ = M \MB. In general it is non-empty, so one can consider M as a compacti-

fication of MB. In other words, M ′ “measures the failure” of MB to be a moduli

space. The codimension of M ′ then gives information about the glueing of this

compactification. We have shown that codimM M ′ = 2 ; the unsatisfactory as-

pect of this fact is that this is not the minimal codimension. So we are losing

information as we glue together too many directions at infinity.19

18The Jacobian of a non-singular curve C is the moduli space of degree 0 line bundles on C.

It can also be described as the connected component of the identity in the Picard group of C.
19Consider for example C2. A 1-point compactification (codimension 2) glues together all

points at infinity to give a sphere. But if we glue along a line (codimension 1) we obtain the

projective line, which already contains more information about “how to approach infinity”.
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A possible way out of this problem is to consider the blow-up of M along M ′,

which can be seen as a modification of the boundary M ′ by vector bundles. This

process is described more precisely in [41] for 3m+ 1 and more generally in [40]

for dm− 1.

Applications in physics

The geometry of M is also studied in other research fields, such as curve counting

theory, strange duality and birational geometry.

1) The virtual curve counting theory focuses on computing certain BPS-invariants

in terms of topological invariants of M , such as Betti numbers, Poincaré poly-

nomials and the top Chern class of its cotangent bundle. The study of M and

its cohomology ring provides explicit and computable examples of this theory.

2) In the case of strange duality, one is interested in comparing the space of theta

divisors in two different moduli spaces of sheaves. By the Grothendieck-Riemann-

Roch Theorem, the cohomology ring and the Chern classes of M provide some

numerical data for this duality.

3) Birational geometry finally studies a connection of M with certain moduli

spaces of objects in the derived category of coherent sheaves.

More precisely information about these 3 approaches can e.g. be found in [8].

5.6.3 Open questions

For the future we are still interested in answering the following questions:

1) Is M ′ irreducible and / or connected ?

2) Can we find a characterization of free ideals of fat non-curvilinear points ?

For the second one, the setting is as follows:

Let C = Z(f) be a planar curve defined by a polynomial f , p = (0, 0) and

J ⊂ OA2 be a fat point given by an ideal J E K[X, Y ]. Let also I ⊂ OC be

the corresponding ideal sheaf of the fat point in C. Assume that the fat point

at p is non-curvilinear, i.e. dimK(K[X, Y ]/J) = n ≥ 3 but J cannot be written

of the form 〈X − h(Y ), Y n 〉 for some h ∈ K[Y ] with deg h < n and h(0) = 0.
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Let R′ = OA2,p = K[X, Y ]〈X,Y 〉 and R = OC,p.
We want to know under which conditions it is possible that I = Ip can be a free

R-module (in which case it is generated by 1 element). Equivalently, when do

we have Jp = 〈 ξ, fp 〉 for some ξ ∈ R′ ?

Remark 5.6.5. If the minimal number of generators of J is ≥ 3, then it is

clearly not possible. So e.g. for the triple point given by J = 〈X2, XY, Y 2 〉, the

ideal Ip can never be free. Therefore the question only makes sense if J can be

generated by 2 elements.
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Appendix A

Basic facts on localization

In this appendix we want to recall some facts about localization of rings and

modules. The results can be found in almost every textbook on Commutative

Algebra. Our main references here are Atiyah-MacDonald [2], Gathmann [26]

and [11], Section 10.9. At some places we also added more technical details to

get some explicit formulas which are useful in certain computations.

A.1 Definition and first properties

Definition A.1.1. A subset S ⊆ R is called multiplicatively closed if 1 ∈ S and

a · b ∈ S for all a, b ∈ S. For such a multiplicatively closed subset S we define

S−1R := (R× S)/∼ as the set of equivalence classes r
s

where r ∈ R, s ∈ S with
r
s

= a
b
⇔ ∃ t ∈ S such that t · (rb − as) = 0. This is a ring with respect to the

operations
r

s
+
a

b
=
rb+ as

sb
and

r

s
· a
b

=
ra

sb
,

where 0
1

and 1
1

are the neutral elements for addition and multiplication.

S−1R is called the localization of R with respect to S. In the following we always

assume that 0 /∈ S, otherwise S−1R is the zero ring as all fractions would be equal

to 0
1

by choosing t = 0. In particular S does not contain nilpotent elements.

We also define the ring homomorphism iS : R → S−1R : r 7→ r
1
, which is in

general neither injective, nor surjective if S 6= {1}. But it has the following

properties.
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Lemma A.1.2. [ [2], p.37 ] and [ [6], II.§2.n◦1, p.77 ]

1) Elements in iS(S) are units in S−1R (but in general there may be more).

2) iS is injective if and only if S does not contain zero-divisors of R.

3) iS is bijective if and only if S ⊆ R×, i.e. every s ∈ S is a unit in R.

Proof. 1) If s ∈ S, then s
1

is invertible in S−1R with inverse 1
s
: iS(s) ∈ (S−1R)×.

2)

ker iS =
{
r ∈ R

∣∣ r
1

= 0
1

}
=
{
r ∈ R

∣∣ ∃ s ∈ S such that s · r = 0
}
.

This is {0} if S does not contain zero-divisors. Vice-versa, if ∃ s ∈ S which is a

zero-divisor, then ∃ r ∈ R, r 6= 0 such that s · r = 0 and iS(r) = r
1

= 0
1
, so iS is

not injective.

3)⇒ : If iS is bijective, then the inverse of s ∈ S is given by i−1
S (1

s
) because

s · i−1
S

(
1
s

)
= i−1

S

(
iS(s)

)
· i−1
S

(
1
s

)
= i−1

S

(
iS(s) · 1

s

)
= i−1

S

(
s
1
· 1
s

)
= i−1

S

(
1
1

)
= 1 .

⇐ : If all elements in S are invertible, then S does not contain zero-divisors,

so iS is already injective. Surjectivity follows from r
s

= rs−1

1
= iS(rs−1) since

r · 1− rs−1 · s = 0.

Definition A.1.3. Fundamental examples of multiplicatively closed subsets are

S = R \ P for some prime ideal P E R or S = { rn |n ∈ N0 } for some r ∈ R
which is not nilpotent. We denote the corresponding localizations by RP , called

the localization of R at P , respectively Rr, which we call the localized ring at r.

It turns out that RP is a local ring with unique maximal ideal given by

PP =
{
r
s

∣∣ r ∈ P, s /∈ P } = RP \ (RP )× .

If R is an integral domain, then P = {0} is a prime ideal and R{0} = Quot(R)

is a field since all non-zero elements are invertible. It is called the quotient field

(or fraction field) of R.

Proposition A.1.4. [ [2], 3.1, p.37 ] , [ [6], II.§2.n◦1.Prop.1, p.75 ], [ [11], 10.9.3 ]

Let S ⊂ R be a multiplicatively closed subset and consider the covariant functor

F : Ring −→ Set : T 7−→
{
ϕ : R→ T ring homomorphism

∣∣ ϕ(S) ⊆ T×
}
,
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where Ring denotes the category of commutative unital rings. The functor F is

representable by S−1R, i.e.

F(T ) ∼= HomRing(S
−1R, T ) , (A.1)

functorially with respect to T . In other words, S−1R satisfies the following uni-

versal property: For any ring homomorphism ϕ : R→ T such that ϕ maps S to

units in T , there exists a unique ring homomorphism φ : S−1R → T such that

φ ◦ iS = ϕ.

S−1R
∃!φ
// T

S ⊆ R

iS

OO

ϕ

<<

Proof. F is covariant since a ring homomorphism f : T → T ′ induces a morphism

by composition

f◦ : F(T ) −→ F(T ′) : g 7−→ f ◦ g ,

where ring homomorphisms map units to units, so f
(
g(S)

)
⊆ f(T×) ⊆ (T ′)×.

In order to prove formula (A.1) first note that iS ∈ F(S−1R) by Lemma A.1.2.

A ring homomorphism φ : S−1R→ T defines an element in F(T ) via

iS ∈ F(S−1R)
φ◦−→ F(T ) .

Now let ϕ ∈ F(T ) be any ring homomorphism that maps elements from S to

units in T . Since we want that φ ◦ iS = ϕ, the only possible definition of φ is

ϕ(r) = φ
(
iS(r)

)
= φ

(
r
1

)
for r ∈ R with the restriction

1 = φ(1) = φ
(
s
s

)
= φ

(
s
1

)
· φ
(

1
s

)
= ϕ(s) · φ

(
1
s

)
for some s ∈ S, so ϕ(s) is invertible and

φ
(
r
s

)
= φ

(
r
1

)
· φ
(

1
s

)
:= ϕ(r) · ϕ(s)−1 , ∀ r

s
∈ S−1R . (A.2)

This is also well-defined since for r
s

= a
b

with t · (rb− as) = 0 for some t ∈ S, we

get

ϕ(t) ·
(
ϕ(r) · ϕ(b)− ϕ(a) · ϕ(s)

)
= 0 ,

where ϕ(t) is a unit, hence multiplying by its inverse gives

ϕ(r) · ϕ(s)−1 = ϕ(a) · ϕ(b)−1 .
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It remains to show that both constructions are inverse to each other. Given a

morphism ϕ : R→ T one constructs φ as in (A.2) and then

(φ ◦ iS)(r) = φ
(
r
1

)
= ϕ(r) ,

so we recover ϕ. Vice-versa, given φ : S−1R → T one sets ϕ = φ ◦ iS and

definition (A.2) implies

ϕ(r) · ϕ(s)−1 = φ
(
r
1

)
· φ
(
s
1

)−1
= φ

(
r
1

)
· φ
(

1
s

)
= φ

(
r
s

)
,

which gives again the initial φ. Functoriality in T finally follows from the fact

that the functors F and Hom(S−1R, · ) are both functorially covariant via f◦.

A.2 Localization of modules

Definition A.2.1. Similarly as for rings one can also consider localizations of

modules. If M is an R-module and S ⊂ R a multiplicatively closed subset, we

define S−1M := (M × S)/∼ as the set of fractions m
s

where m ∈ M , s ∈ S

and m
s

= n
u
⇔ ∃ t ∈ S such that t ∗ (u ∗ m − s ∗ n) = 0, i.e. if and only if

ut ∗m = st ∗ n. This is a module over S−1R with respect to the operations

m

s
+
n

u
=
u ∗m+ s ∗ n

s · u
and

r

s
∗ m
a

=
r ∗m
s · a

.

Along the same definition as RP and Rr, we also have the localizations MP and

Mr for r ∈ R and a prime ideal P E R. The goal of the next sections is to study

some properties of the assignment S−1 : M 7→ S−1M .

A.2.1 Functoriality and exactness

Lemma A.2.2. [ [2], 3.5, p.39 ] and [ [26], 6.19, p.57 ]

For any multiplicatively closed subset S ⊂ R and any R-module M , there is an

isomorphism of S−1R–modules

S−1M ∼= M ⊗R S−1R . (A.3)

The isomorphism1 is given by ϕ : m
s
7→ m⊗ 1

s
with inverse ψ : m⊗ r

s
7→ r∗m

s
.

1In Bourbaki [6] (A.3) is actually taken as the definition of S−1M .
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Proof. ϕ is well-defined: if m
s

= n
u
, then ∃ t ∈ S such that ut ∗m = st ∗ n and

m⊗ 1
s

= m⊗ ut
uts

= (ut ∗m)⊗ 1
uts

= (st ∗ n)⊗ 1
uts

= n⊗ st
uts

= n⊗ 1
u
.

The assignment (m, r
s
) 7→ r∗m

s
is bilinear, so ψ is well-defined as well. It remains

to check that

ψ
(
ϕ(m

s
)
)

= ψ
(
m⊗ 1

s

)
= 1∗m

s
= m

s
,

ϕ
(
ψ(m⊗ r

s
)
)

= ϕ
(
r∗m
s

)
= (r ∗m)⊗ 1

s
= m⊗ r

s
,

hence ψ ◦ ϕ and ϕ ◦ ψ are the identity maps.

Lemma A.2.3. [ [2], p.38 ] , [ [26], 6.20, p.57 ] and [ [61], p.38 ]

The assignment S−1 : Mod(R)→ Mod(S−1R) : M 7→ S−1M is functorial.

Proof. Let f : M → N be an R-module homomorphism and consider the map

fS : S−1M −→ S−1N :
m

s
7−→ f(m)

s
, (A.4)

which is well-defined since if m
s

= n
u

and ut ∗ m = st ∗ n for some t ∈ S, then

ut∗f(m) = st∗f(n), so f(m)
s

= f(n)
u

. Moreover fS is a morphism of modules over

S−1R and the assignment f 7→ fS behaves well with respect to composition, i.e.

(g ◦ f)S = gS ◦ fS for all g ∈ HomR(N,L).

Lemma A.2.4. cf. [ [2], 3.4, p.39 ]

The functor S−1 : Mod(R)→ Mod(S−1R) is additive, i.e. localization commutes

with direct sums.

Proof. Let {Mi}i be a family of R-modules. Using Lemma A.2.2 and the fact

that tensor products commute with direct sums we find

S−1
(⊕

iMi

) ∼= (
⊕

iMi)⊗R S−1R ∼=
⊕

i

(
Mi ⊗R S−1R

) ∼= ⊕
i(S
−1Mi) .

How does this isomorphism look like ? Recall that (
⊕

iMi)⊗RN ∼=
⊕

i

(
Mi⊗RN

)
is given by

{mi}i ⊗ n 7−→ {mi ⊗ n}i with inverse {mi ⊗ ni}i 7−→
∑

i

(
εi(mi)⊗ ni

)
,
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where εj : Mj ↪→
⊕

iMi are the canonical injections. Hence we obtain the map

S−1
(⊕

iMi

) ∼−→
⊕

i(S
−1Mi) : {mi}i

s
7→ {mi}i ⊗ 1

s
7→
{
mi ⊗ 1

s

}
i
7→
{
mi
s

}
i

with inverse{
mi
si

}
i
7→
{
mi ⊗ 1

si

}
i
7→
∑
i

(
εi(mi)⊗ 1

si

)
7→
∑
i

(
εi(mi)
si

)
.

For example, in the case of S−1(M ⊕ N) ∼= S−1M ⊕ S−1N , the isomorphism is

given by
(m,n)

s
7→
(m
s
,
n

s

)
with inverse (m

s
,
n

u

)
7→ (m, 0)

s
+

(0, n)

u
=

(u ∗m, s ∗ n)

s · u
.

Remark A.2.5. [ [53], 860087 ]

In general localization does not commute with infinite direct products. Consider

e.g. R = Z, S = Z \ {0} and Mn = Z/nZ for n ≥ 2. Then S−1Mn = {0},
∀n ≥ 2 since n ∗ x̄ = n · x = 0̄ with n ∈ S, hence x̄

s
= 0̄

1
for all x̄ ∈ Mn. But

S−1
(∏

nMn

)
6= {0} because the element

(1̄, 1̄, 1̄, . . .)

1

is non-zero. Indeed if it was zero, ∃ s ∈ S such that s ∗ (1̄, 1̄, 1̄, . . .) = (0̄, 0̄, 0̄, . . .)

and thus (s̄, s̄, s̄, . . .) = (0̄, 0̄, 0̄, . . .), which means that s ∈ Z is divisible by every

n ≥ 2, i.e. s = 0. But s 6= 0 by definition of S.

Proposition A.2.6. [ [2], 3.3, p.39 ] , [ [11], 10.9.12 ] and [ [26], 6.2.1, p.58 ]

The functor S−1 : Mod(R)→ Mod(S−1R) is exact.

Proof. Let

0 −→M
f−→ N

g−→ L −→ 0

be a short exact sequence of R-modules2. We shall show that the sequence of

S−1R–modules

0 −→ S−1M
fS−→ S−1N

gS−→ S−1L −→ 0 (A.5)

2Actually it suffices to check exact sequences of the form M → N → L, but for completion

let us also check that injectivity and surjectivity are preserved.
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is still exact. By definition (A.4) we see that gS ◦ fS = 0, so the sequence is still

a complex.

− fS is injective: if fS
(
m
s

)
= f(m)

s
= 0, then ∃ t ∈ S such that t ∗ f(m) = 0 and

f(t ∗m) = 0. Hence by injectivity of f we get t ∗m = 0 and hence m
s

= 0.

− gS is surjective: let l
s
∈ S−1L. As g is surjective, we know that ∃n ∈ N such

that l = g(n) and we get

gS
(
m
s

)
= g(n)

s
= l

s
.

− ker gS = im fS: if n
s
∈ ker gS, then g(n)

s
= 0 and ∃ t ∈ S such that t ∗ g(n) = 0

and g(t ∗n) = 0. By exactness of the initial sequence, this gives t ∗n = f(m) for

some m ∈M , hence we can take

fS
(
m
s·t

)
= f(m)

s·t = t∗n
s·t = n

s
.

Corollary A.2.7. If

0 −→M
f−→ N

g−→ L −→ 0

is a short exact sequence of R-modules, then the sequence of localizations

0 −→MP
fP−→ NP

gP−→ LP −→ 0

is an exact sequence of RP -modules for all prime ideals P E R.

Corollary A.2.8. [ [2], 3.6, p.40 ] and [ [11], 10.38.19 ]

S−1R is a flat R-module.

Proof. S−1R is an R-module via the ring homomorphism iS : R → S−1R, see

Lemma D.1.2. Let

0 −→M −→ N −→ L −→ 0

be a short exact sequence of R-modules. Combining Lemma A.2.2 and Proposi-

tion A.2.6 we obtain that

0 −→M ⊗R S−1R −→ N ⊗R S−1R −→ L⊗R S−1R −→ 0

is isomorphic to the sequence (A.5), which is exact. Hence the functor ⊗R S−1R

is exact.
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Proposition A.2.9. [ [6], II.§2.n◦7.Prop.18, p.97-98 ] , [ [53], 41750 & 271057 ]

Localization commutes with tensor products. More precisely, if M and N are

R-modules, then

S−1(M ⊗R N) ∼= (S−1M)⊗S−1R (S−1N) (A.6)

via the canonical isomorphism m⊗n
s
7→ m

1
⊗ n

s
with inverse m

s
⊗ n

t
7→ m⊗n

s·t .

Proof. We will prove a slightly more general result3. Let ϕ : A → B be a ring

homomorphism and M,N be A-modules. We denote MB = M ⊗A B, which

hence becomes a module over B. Then

MB ⊗B NB
∼= (M ⊗A B)⊗B (N ⊗A B) ∼= M ⊗A (N ⊗A B)

∼= (M ⊗A N)⊗A B = (M ⊗A N)B .

Hence formula (A.6) follows by taking iS : R→ S−1R and applying (A.3). The

explicit form of the isomorphism can then be found by following the steps above:

m⊗n
s
7→ (m⊗ n)⊗ 1

s
7→ m⊗ (n⊗ 1

s
) 7→ (m⊗ 1

1
)⊗ (n⊗ 1

s
) 7→ m

1
⊗ n

s
= m

s
⊗ n

1
,

m
s
⊗ n

t
7→ (m⊗ 1

s
)⊗ (n⊗ 1

t
) 7→ m⊗

(
1
s
∗ (n⊗ 1

t
)
)

= m⊗ (n⊗ 1
st

)

7→ (m⊗ n)⊗ 1
st
7→ m⊗n

st
.

Note that is does not matter whether we take m
1
⊗ n

s
or m

s
⊗ n

1
since 1

s
can freely

change its position within the tensor product over S−1R.

Lemma A.2.10. [ [2], 3.4, p.39 ] , [ [26], 6.22, p.58 ] and [ [11], 10.9.13 ]

1) For all f ∈ HomR(M,N), ker(fS) = S−1(ker f) and im(fS) = S−1(im f).

2) If N ≤M is a submodule, then S−1(M/N) ∼= S−1M/S−1N .

Proof. 1) The inclusions ⊇ are immediate: If m
s

is such that m ∈ ker f , then

fS(m
s

) = f(m)
s

= 0. If n
s

is such that n = f(x) for x ∈M , then n
s

= f(x)
s

= fS(x
s
).

Now assume that fS(m
s

) = 0, i.e. ∃ t ∈ S such that t ∗ f(m) = f(t ∗ m) = 0.

Then m
s

= t∗m
s·t with t ∗m ∈ ker f . Finally if n

s
= fS(m

a
), then

n
s

= f(m)
a
⇔ ∃ t ∈ S such that at ∗ n = st ∗ f(m) = f(st ∗m) ,

3An even more general statement can be found in Bourbaki [4], II.§5.n◦1.Prop.3, p.83-84.
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hence n
s

= at∗n
at·s with at ∗ n ∈ im f .

2) If we localize the exact sequence 0→ N →M →M/N → 0, Proposition A.2.6

gives the exact sequence

0 −→ S−1N −→ S−1M −→ S−1(M/N)→ 0 ,

which allows to see S−1N as a submodule of S−1M . Moreover we then obtain

S−1(M/N) ∼= S−1M/S−1N as S−1R–modules by uniqueness of cokernels.

A.2.2 Local properties

Proposition A.2.11. [ [2], 3.8, p.40 ] and [ [26], 6.27, p.60 ]

Let M be an R-module. Then M is the zero module if and only if the localization

MP is the zero module for all prime ideals P E R.

Proof. Necessity is clear. Vice-versa, assume that ∃m ∈M such that m 6= 0 and

set N = 〈m 〉 ≤M . Consider the R-module homomorphism ϕ : R→ N defined

by ϕ(r) = r ∗m and the exact sequence

0 −→ I −→ R
ϕ−→ N −→ 0 ,

where I = kerϕ. Since ϕ(1) = m 6= 0, ϕ is not the zero map. Hence I is

a proper ideal in R and thus contained in some maximal ideal M E R. By

exactness of localization the submodule N ≤ M gives an injection NM ↪→ MM

with MM = {0} by assumption, so NM = {0} as well. But this module is

generated by the element m
1
∈ MM, so we need that m

1
= 0, i.e. ∃x /∈ M such

that x ∗ m = ϕ(x) = 0. Thus x ∈ kerϕ = I ⊆ M, which contradicts that

x /∈M.

Corollary A.2.12. Let m ∈ M . Then m = 0 if and only if m
1

= 0 in MP for

all prime ideals P E R. In other words, if m 6= 0, there is a prime ideal P E R

such that m
1
6= 0 in MP .

Proof. Let m 6= 0 and consider the submodule N = 〈m 〉. If m
1

= 0 in MP for all

prime ideals P , then NP = 〈 m
1
〉 = {0} for all P and Proposition A.2.11 implies

that N = {0}, which contradicts m 6= 0. Thus there is at least some P such that
m
1
6= 0 ∈MP .
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Proposition A.2.13. [ [2], 3.9, p.40-41 ]

Let M,N be R-modules and f ∈ HomR(M,N). Then f is injective (resp. sur-

jective, an isomorphism, or zero) if and only if fP : MP → NP is injective (resp.

surjective, an isomorphism, or zero) for all prime ideals P E R.

Proof. 1) First we consider the case where f is injective. Necessity follows from

Proposition A.2.6 (or alternatively from Lemma A.2.10). Vice-versa, denote

K = ker f , so that we have the exact sequences

0 −→ K −→M
f−→ N and 0 −→ KP −→MP

fP−→ NP

for all prime ideals P E R, again because localization is exact. Now if fP is in-

jective for all P , then ker(fP ) = (ker f)P = KP = {0} for all P by Lemma A.2.10

and Proposition A.2.11 implies that K = {0}, i.e. ϕ is injective.

2) The cases where f is surjective or an isomorphism are done similarly.

3) If f = 0, then fP is zero too. Conversely if fP = 0 for all P , then for any fixed

m ∈ M we find f(m)
1

= fP (m
1

) = 0 for all P , i.e. f(m) = 0 by Corollary A.2.12

and thus f = 0.

Corollary A.2.14. [ [26], 6.27, p.60-61 ]

The converse of Corollary A.2.7 holds true as well.

Proof. Assume that

0 −→MP
fP−→ NP

gP−→ LP −→ 0 (A.7)

is an exact sequence of RP -modules for all prime ideals P E R. Proposi-

tion A.2.13 already implies that f is injective and that g is surjective. Moreover

gP ◦fP = (g ◦f)P = 0, so g ◦f = 0 as well and we have im f ⊆ ker g. This allows

to consider the quotient ker g/ im f and

(ker g/ im f)P ∼= (ker g)P/(im f)P = ker(gP )/ im(fP ) = {0}

by Lemma A.2.10 and exactness of (A.7) for all P . Thus ker g/ im f = {0} by

Proposition A.2.11 and we get ker g = im f .
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A.2.3 Localization and Hom

Next we are going to analyze the relation between the localization-functor and

the Hom-bifunctor. More precisely we want to know if and/or under which

conditions these functors commute.

Remark A.2.15. Let us first recall that for any R-module M and n ∈ N, we

have the isomorphism

HomR(Rn,M) ∼= Mn ,

given by f 7→
(
f(e1), . . . , f(en)

)
, where ei = (0, . . . , 1, . . . , 0) ∈ Rn are the basis

vectors. The inverse map is

(m1, . . . ,mn) 7−→
(
u : Rn →M : (r1, . . . , rn) 7→

∑
i ri ∗mi

)
.

Proposition A.2.16. [ [11], 10.10.2 ]

Let M,N be R-modules and S ⊂ R a multiplicatively closed subset. If M is of

finite presentation, then

S−1
(

HomR(M,N)
) ∼= HomS−1R

(
S−1M,S−1N

)
. (A.8)

In particular, for every prime ideal P E R, we have(
HomR(M,N)

)
P
∼= HomRP (MP , NP ) .

Proof. Choose a finite presentation

Rm −→ Rn −→M −→ 0 .

By left exactness of the contravariant functor HomR( · , N) we get

0 −→ HomR(M,N) −→ HomR(Rn, N) −→ HomR(Rm, N)

⇔ 0 −→ HomR(M,N) −→ Nn −→ Nm .

Exactness and additivity of localization (Proposition A.2.6 and Lemma A.2.4)

moreover give

0 −→ S−1
(

HomR(M,N)
)
−→ (S−1N)n −→ (S−1N)m .
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On the other hand, we can also start by the finite presentation of M and first

apply localization, which gives

(S−1R)m −→ (S−1R)n −→ S−1M −→ 0 ,

and then apply the left exact functor HomS−1R( · , S−1N), so that

0 −→ HomS−1R

(
S−1M,S−1N

)
−→ (S−1N)n −→ (S−1N)m .

Hence both modules are isomorphic as they are both kernels of the morphism

(S−1N)n → (S−1N)m.

Remark A.2.17. One may ask whether the two constructions indeed give the

same morphism. To check this we denote the basis vectors of Rn and Rm by

e1, . . . , en, resp. e′1, . . . , e
′
m. We start with

Rm ϕ−→ Rn f−→M −→ 0 . (A.9)

Denote ϕ : Rm → Rn with ϕ(e′i) =
∑

j rijej, i.e. ϕ(e′i) = (ri1, . . . , rin) for all i.

To get the morphism φ : Nn → Nm, consider

HomR(Rn, N)
◦ϕ
//

∼
��

HomR(Rm, N)

∼
��

Nn φ
// Nm

Let (a1, . . . , an) ∈ Nn. This induces a morphism u : Rn → N which is defined

by u(r1, . . . , rn) =
∑

i ri ∗ ai. Then let v = u ◦ ϕ : Rm → N . Evaluating at the

basis vectors, this finally gives the element

v(e′i) = u
(
ϕ(e′i)

)
= u

(∑
j rijej

)
=
∑

j rij ∗ u(ej) =
∑

j rij ∗ (1 ∗ aj) =
∑

j rij ∗ aj

and

φ : Nn −→ Nm : (a1, . . . , an) 7−→
(∑

j r1j ∗ aj , . . . ,
∑

j rmj ∗ aj
)
.

Next we have to localize and commute localization with the direct sum, i.e.

S−1(Nn)
φS //

∼
��

S−1(Nm)

∼
��

(S−1N)n Φ // (S−1N)m
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Let
{
ni
si

}
i
∈ (S−1N)n. Using the identifications from Lemma A.2.4 and applying

φS, we get

Φ :
{
ni
si

}
i
7−→

∑
i

(
εi(ni)
si

)
=
∑
i

(0, . . . , ni, . . . , 0)

si

φS7−→
∑
i

φ(0, . . . , ni, . . . , 0)

si
=
∑
i

(r1i ∗ ni, . . . , rmi ∗ ni)
si

7−→
∑
i

(r1i ∗ ni
si

, . . . ,
rmi ∗ ni
si

)
=
(∑

i

r1i ∗ nisi , . . . ,
∑
i

rmi ∗ nisi
)

=
{∑

j

rij ∗ njsj
}
i
.

Now let’s go the other way round. We denote the basis vectors of (S−1R)m by

E ′1, . . . , E
′
m.

S−1(Rm)
ϕS //

∼
��

S−1(Rn)

∼
��

(S−1R)m
φ′
// (S−1R)n

HomS−1R

(
(S−1R)n, S−1N

) ◦φ′
//

∼
��

HomS−1R

(
(S−1R)m, S−1N

)
∼
��

(S−1N)n Φ′ // (S−1N)m

φ′ :
{
ai
si

}
i
7−→

∑
i

(
εi(ai)
si

)
=
∑
i

(0, . . . , ai, . . . , 0)

si

ϕS7−→
∑
i

ϕ(0, . . . , ai, . . . , 0)

si
=
∑
i

ai · (ri1, . . . , rin)

si

7−→
∑
i

(ri1 · ai
si

, . . . ,
rin · ai
si

)
=
(∑

i

ri1 · aisi , . . . ,
∑
i

rin · aisi
)

=
{∑

j

rji · ajsj
}
i
.

Φ′ :
{
ni
si

}
i
7−→

(
u′ :

(
r1
t1
, . . . , rn

tn

)
7→
∑
i

ri
ti
∗ ni
si

)
7−→ u′ ◦ φ′ 7−→

{
u′
(
φ′(E ′i)

)}
i

=
{∑

j

rij ∗ njsj
}
i

because φ′(E ′i) =
(
ri1
1
, . . . , rim

1

)
and u′

(
φ′(E ′i)

)
=
∑

j rij ∗
nj
sj

. Thus Φ′ = Φ, as

expected.
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Corollary A.2.18. The isomorphism in (A.8) is given by

ρ : S−1
(

HomR(M,N)
) ∼−→ HomS−1R

(
S−1M,S−1N

)
g
s
7−→

(
S−1M → S−1N : m

a
7→ g(m)

a·s

)
.

Proof. Let us denote the LHS of (A.8) by S1 and the RHS by S2. In order to

find the isomorphism ρ we have to use the universal property of kernels, i.e.

S2
F ′ // (S−1N)n Φ // (S−1N)m

S1

F

OO

∃! ρ

dd

and ρ is the unique morphism such that F ′ ◦ ρ = F , where F and F ′ are the

transformations of the initial morphism f : Rn →M from (A.9), similarly as in

Remark A.2.17. To get F , consider

α : HomR(M,N)
◦f−→ HomR(Rn, N) ∼−→ Nn

g 7−→ g ◦ f 7−→
{
g(f(ei))

}
i
,

F : S1
αS−→ S−1(Nn) ∼−→ (S−1N)n

g

s
7−→ α(g)

s
=
{g(f(ei))}i

s
7−→

{g(f(ei))

s

}
i
.

Let E1, . . . , En be a basis of (S−1R)n. Going the other way round we get F ′ by

β : (S−1R)n ∼−→ S−1(Rn)
fS−→ S−1M{

ri
si

}
i
7−→

∑
i

(
εi(ri)
si

)
7−→

∑
i

f(εi(ri))

si
,

F ′ : S2
◦β−→ HomS−1R

(
(S−1R)n, S−1N

) ∼−→ (S−1N)n

h 7−→ h ◦ β 7−→
{
h(β(Ei))

}
i
,

where β(Ei) = f(εi(1))
1

= f(ei)
1

. Now let ρ(g
s
) = h where h(m

a
) = g(m)

a·s .

Then F ′ ◦ ρ = F because

g

s

ρ7−→ h
F ′7−→
{
h
(f(ei)

1

)}
i

=
{g(f(ei))

s

}
i

= F
(
g
s

)
.

This shows that ρ is the unique morphism making the diagram commute. More-

over it is an isomorphism since S1 and S2 are both kernels of Φ, hence they are

canonically isomorphic via the unique isomorphism given by ρ.
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Remark A.2.19. In general formula (A.8) does not hold when M is just finitely

generated instead of finitely presented. Indeed, if we have a presentation

R(I) −→ Rn −→M −→ 0 ,

the fact that localization does not commute with infinite direct products (see

Remark A.2.5) will give an exact sequence

0 −→ S1 −→ (S−1N)n −→ S−1(N I)

as HomR(R(I), N) ∼= N I , whereas the other way contains S−1(R(I)) ∼= (S−1R)(I)

and hence gives

0 −→ S2 −→ (S−1N)n −→ (S−1N)I .

The last terms being different, one cannot conclude. Note however that every

finitely generated module over a Noetherian ring is also finitely presented (see

Proposition D.1.5), so in this case it will still work.

Remark A.2.20. If R is an integral domain, then formula (A.8) also holds true

under an additional assumption if M is just finitely generated instead of finitely

presented. The exact statement and proof are given in Proposition C.4.9.
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a
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Appendix B

Primary Ideal Decomposition

and Associated Primes

B.1 Preliminaries

Let R be a ring and recall that the annihilator of an R-module M is given by all

elements that act trivially on M :

AnnR(M) =
{
r ∈ R

∣∣ r ∗m = 0, ∀m ∈M
}
.

One checks that AnnR(M) is an ideal in R. The annihilator of a specific element

m ∈M is denoted by AnnR(m). Thus

AnnR(M) =
⋂
m∈M

AnnR(m) .

Let ZD(R) denote the set of all zero-divisors in R ; by convention 0 ∈ ZD(R),

although 0 is by definition not a zero-divisor. Hence R is an integral domain if

and only if ZD(R) = {0}. If we consider R as a module itself and take x ∈ R,

then

x ∈ ZD(R) ⇔ AnnR(x) 6= {0} .

Let us also recall that the radical of an ideal I E R, which is again an ideal, is

defined as

Rad(I) :=
{
r ∈ R

∣∣ ∃n ∈ N such that rn ∈ I
}
.
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Proposition B.1.1. [ [2], 1.15, p.9 ] and [ [53], 371929 ]

ZD(R) =
⋃
x 6=0

AnnR(x) =
⋃
x 6=0

Rad
(

AnnR(x)
)
. (B.1)

Proof. The first equality follows from the fact that r ∈ R is a zero-divisor if and

only if ∃x ∈ R, x 6= 0 such that r · x = 0. For the second one, we obtain the

inclusion ⊆ because of AnnR(x) ⊆ Rad(AnnR(x)). Vice-versa assume that r is

not a zero-divisor with r ∈ Rad(AnnR(x)) for some x 6= 0. Then ∃n ∈ N such

that rn ∈ AnnR(x), i.e. rn · x = 0. Since r is not a zero-divisor, we need that

rn−1 · x = 0. Continuing the same way, we obtain that r · x = 0 and finally that

x = 0. This contradiction shows that
⋃
x 6=0 Rad(AnnR(x)) ⊆ ZD(R).

Remark B.1.2. We do not necessarily have AnnR(x) = Rad(AnnR(x)) for all

x 6= 0 in (B.1).

We finish the preliminaries by the following important lemma which we will be

using throughout the whole paper.

Lemma B.1.3 (Prime Avoidance). [ [2], 1.11, p.8 ]

1) Let P1, . . . , Pk E R be prime ideals and I an ideal such that I ⊆ P1 ∪ . . .∪Pk.

Then there is an index i ∈ {1, . . . , k} such that I ⊆ Pi.

2) Let I1, . . . , Ik be ideals and P a prime ideal such that I1 ∩ . . .∩ Ik ⊆ P . Then

Ii ⊆ P for some i ∈ {1, . . . , k}. And if P = I1 ∩ . . .∩ Ik, then P = Ii for some i.

Proof. 1) By contraposition we show that

I * Pi, ∀ i ∈ {1, . . . , k} ⇒ I * P1 ∪ . . . ∪ Pk .

The proof goes by induction on k. It is true for k = 1. Now assume that k > 1

and that the result holds true for k − 1. By induction hypothesis, for all fixed

j ∈ {1, . . . , k} we have I *
⋃
i 6=j Pi, i.e. ∃xi ∈ I such that xi /∈ Pj, ∀ j 6= i. If

there is some ` ∈ {1, . . . , k} such that x` /∈ P`, then

x` ∈ I \ (P1 ∪ . . . ∪ Pk)

and we are done. If not, then xj ∈ Pj for all j. With this consider the element

y =
k∑
j=1

(x1 · . . . · xj−1 · xj+1 · . . . · xk) .
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We have y ∈ I and each summand belongs to
(⋃

i 6=j Pi
)
\ Pj since Pj is a prime

ideal. Hence y /∈ Pj for all j ∈ {1, . . . , k} since all but one summands do. Finally

y ∈ I \ (P1 ∪ . . . ∪ Pk).

2) By contraposition, assume that Ii * P for all i, so that ∃xi ∈ Ii such that

xi /∈ P , ∀ i ∈ {1, . . . , k}. But x1 · . . . · xk ∈ (I1 ∩ . . . ∩ Ik) \ P since P is prime,

hence I1 ∩ . . . ∩ Ik * P . And if P = I1 ∩ . . . ∩ Ik, then P ⊆ Ij for all j and by

the previous result there is some i such that Ii ⊆ P , hence Ii = P .

B.2 Primary Ideal Decomposition

Primary Ideal Decomposition is an important tool in Commutative Algebra. We

will see our main application in Section 1.2. The general ideal is to write an ideal

in a ring as a finite intersection of “easier” ideals, the so-called primary ideals.

Several constructions are possible ; here we follow Atiyah-MacDonald [2].

B.2.1 Primary ideals

Definition B.2.1. cf. [ [2], p.50 ]

Let R be a ring. An ideal Q E R is called a primary ideal if Q 6= R and if for all

r, s ∈ R,

r · s ∈ Q ⇒ r ∈ Q or s ∈ Rad(Q) .

Since R is commutative, this definition is symmetric with respect to r and s and

we have the equivalence((
r ∈ Q

)
or
(
s ∈ Rad(Q)

))
and

((
s ∈ Q

)
or
(
r ∈ Rad(Q)

))
⇔
(
r ∈ Q

)
or
(
s ∈ Q

)
or
((
r ∈ Rad(Q)

)
and

(
s ∈ Rad(Q)

))
, (B.2)

hence Q 6= R is a primary ideal if whenever r · s ∈ Q, then either r ∈ Q or s ∈ Q
or r, s ∈ Rad(Q).

Proposition B.2.2. [ [2], 4.1 & 4.2, p.50-51 ] and [ [53], 504551 ]

1) Prime ideals are primary.

2) Q E R is a primary ideal if and only if R/Q 6= {0} and every zero-divisor in

R/Q is nilpotent.
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3) If Q is primary, then Rad(Q) is a prime ideal. It is also the smallest prime

ideal containing Q.

4) An ideal is prime if and only if it is primary and radical.

5) If Q E R is such that Rad(Q) is a maximal ideal, then Q is primary.

Proof. 1) follows from (B.2).

2) If r̄ · s̄ = 0̄ with r̄ 6= 0̄ and s̄ 6= 0̄, then r · s ∈ Q with r, s /∈ Q, hence by (B.2)

we have r ∈ Rad(Q), i.e. r̄ is nilpotent in R/Q. Vice-versa if r · s ∈ Q, then

r̄ · s̄ = 0̄ and r̄ is a zero-divisor, hence nilpotent so that rn ∈ Q, i.e. r ∈ Rad(Q).

3) We shall show that Rad(Q) is a prime ideal. Let r · s ∈ Rad(Q), i.e. ∃n ∈ N
such that (rs)n ∈ Q. Therefore rn ∈ Q or snm ∈ Q for some m ∈ N since Q is

primary, which implies that r ∈ Rad(Q) or s ∈ Rad(Q). It is the smallest prime

ideal containing Q since Rad(Q) is equal to the intersection of all prime ideals

containing Q (see Lemma D.1.3).

4) Necessity follows from the definition and sufficiency follows from the fact that

Rad(Q) = Q is prime.

5) Let I E R be such that J = Rad(I) is a maximal ideal in R. If π : R→ R/I,

then

nil(R/I) = π
(

Rad(I)
)

= π(J)

and π(J) is a maximal ideal in R/I since π is surjective. Indeed it is proper

(as it is equal to the nilradical, which does not contain 1), hence contained in a

maximal ideal M . But π(J) ⊆M implies that J ⊆ π−1(M) where J is maximal,

so J = π−1(M) and π(J) = π(π−1(M)) = M ; here we use again surjectivity.

Now since nil(R/I) is the intersection of all prime ideals in R/I (Lemma D.1.3),

there cannot exist other maximal ideals, otherwise their intersection would be

smaller. Hence R/I is a local ring with unique maximal ideal π(J). In particular

it only contains nilpotent elements and R/I \ π(J) only consists of units (which

are not zero-divisors). Thus all zero-divisors in R/I are nilpotent.

Example B.2.3. [ [2], p.51 ]

1) The primary ideals of Z are {0} and 〈 pn 〉 for each prime number p and each

n ∈ N. Indeed ∀ a ∈ Z such that a /∈ {0, 1,−1},

Rad
(
〈 a 〉

)
= Rad

(
〈 pn1

1 · . . . · p
nk
k 〉
)

= 〈 p1 · . . . · pk 〉 (B.3)
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by factorizing a into a product of prime numbers, hence in order to obtain a

prime ideal we need that k = 1. This necessary form is also sufficient since

r · s ∈ 〈 pn 〉 ⇒ r, s ∈ 〈 p 〉 = Rad
(
〈 pn 〉

)
. Alternatively one can also use

Proposition B.2.2 since non-zero prime ideals are maximal.

2) Not every power of a prime ideal is primary (although their radical is a prime

ideal, see Lemma D.1.4). Consider for example R = K[X, Y, Z]/〈XY −Z2 〉 with

the ideals P = 〈 X̄, Z̄ 〉, which is prime since R/P ∼= K[Ȳ ] is an integral domain,

and Q = P 2 = 〈 X̄2, X̄Z̄, Z̄2 〉. Q is not primary since

X̄ · Ȳ = Z̄2 ∈ Q but X̄ /∈ Q , Ȳ /∈ Q , Ȳ /∈ Rad(Q) = P .

3) Combining 2) and Lemma D.1.4, we see that there are ideals which have a

prime radical without being primary. Hence we need the assumption on Rad(Q)

being maximal in 5) of Proposition B.2.2.

4) There also exist primary ideals which are not powers of the prime ideal given

by their radical. Let R = K[X, Y ] and Q = 〈X, Y 2 〉. Q is primary since

R/Q ∼= K[Y ]/〈Y 2 〉 is a ring in which all zero-divisors are multiples of Ȳ and

hence nilpotent. Alternatively, P = Rad(Q) = 〈X, Y 〉 is a maximal ideal.

Moreover P 2 = 〈X2, XY, Y 2 〉, so P 2 ( Q ( P and Q is not a power of Rad(Q).

Definition B.2.4. [ [2], p.51 ]

Let P E R be a prime ideal. An ideal Q E R is called P -primary if it is primary

with Rad(Q) = P .

As shown in Example B.2.3 we see that not all powers of a prime ideal P are

P -primary and not all P -primary ideals need to be powers of P .

Lemma B.2.5. [ [2], 4.3, p.51 ]

If Q1, . . . , Qk E R are P -primary, then Q = Q1 ∩ . . .∩Qk is P -primary as well.

Proof. From Lemma D.1.4 it follows that

Rad(Q) = Rad(Q1 ∩ . . . ∩Qk) = Rad(Q1) ∩ . . . ∩ Rad(Qk) = P ∩ . . . ∩ P = P .

To see that Q is still primary, let r · s ∈ Q with r /∈ Q. Then r · s ∈ Qi for some

i with r /∈ Qi, so s ∈ Rad(Qi) = P = Rad(Q) since Qi is primary.
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B.2.2 Primary decompositions

Definition B.2.6. [ [2], p.51 ]

Let I E R be any ideal. A primary decomposition of I is an expression of I as a

finite intersection of primary ideals

I =
α⋂
i=1

Qi .

In general, such a primary decomposition may not exist and it does not need

to be unique neither. We say that an ideal is decomposable if it admits such a

decomposition. A primary decomposition is called minimal if α is minimal, i.e.

if there does not exist a decomposition with less intersecting primary ideals.

Remark B.2.7. [ [2], p.51-52 ]

A minimal primary decomposition satisfies the following properties:

−
(⋂

i 6=j Qi

)
* Qj, ∀ j ∈ {1, . . . , α} : no one of the Qi is superfluous

− Rad(Qi) 6= Rad(Qj), ∀ i, j ∈ {1, . . . , α} : all radicals are distinct

The first one is obvious, since every superfluous Qi can simply be omitted. To

see why the second one holds true, assume e.g. that Rad(Qi) = Rad(Qj) = P

for some i, j ∈ {1, . . . , α}. This means that Qi and Qj are P -primary, hence

Q′ := Qi ∩ Qj is P -primary as well. But then one could replace Qi and Qj

by Q′, so α would not be minimal. Hence by removing and / or replacing the

primary ideals causing problems, every primary decomposition can be modified

in order to obtain a minimal one. So we may always assume that a given primary

decomposition is minimal.

Example B.2.8. 1) If Q E R is already a primary ideal (e.g. prime or maximal),

its minimal prime decomposition is trivial.

2) In Z we have 〈 12 〉 = 〈 3 〉 ∩ 〈 4 〉 since an integer is a multiple of 12 if and

only if it is a multiple of 3 and 4. Here Q1 = 〈 3 〉 = Rad(Q1) is prime and

Q2 = 〈 4 〉 = 〈 22 〉 is primary with Rad(Q2) = 〈 2 〉. Actually, we have the

generalization

〈 a 〉 = 〈 pn1
1 〉 ∩ . . . ∩ 〈 pnαα 〉

for a /∈ {0, 1,−1} with p1, . . . , pα as in (B.3).
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Example B.2.9. [ [2], p.52-53 ]

1) Minimal primary decompositions still don’t need to be unique. Consider e.g.

R = K[X, Y ] and I = 〈X2, XY 〉. I is not primary since Ȳ is a zero-divisor in

R/I which is not nilpotent. Then

I = 〈X 〉 ∩ 〈X2, Y 〉 = 〈X 〉 ∩ 〈X2, XY, Y 2 〉 = 〈X 〉 ∩ 〈X2, X + Y 〉 . (B.4)

All ideals on the right are primary as their radicals are 〈X, Y 〉, which is maximal.

Hence all decompositions in (B.4) are minimal with α = 2. Moreover

Rad(I) = Rad(Q1 ∩Q2) = Rad(Q1) ∩ Rad(Q2) = 〈X 〉 ∩ 〈X, Y 〉 = 〈X 〉 .

2) Let R = K[X, Y ]/〈XY 〉 and I = {0̄}, which is neither prime since X̄ · Ȳ = 0̄,

nor primary since X̄ and Ȳ are non-nilpotent zero-divisors in R/I = R. But we

have {0̄} = 〈 X̄ 〉∩ 〈 Ȳ 〉, where 〈 X̄ 〉 and 〈 Ȳ 〉 are both prime as R/〈 X̄ 〉 ∼= K[Ȳ ]

and R/〈 Ȳ 〉 ∼= K[X̄] are integral domains. Note however that they are not

maximal as 〈 X̄ 〉, 〈 Ȳ 〉 ( 〈 X̄, Ȳ 〉.
3) Consider the ideal Q = 〈 X̄2, X̄Z̄, Z̄2 〉 in R = K[X, Y, Z]/〈XY − Z2 〉. We

already know from Example B.2.3 that Q is not primary. A possible (minimal)

primary decomposition of Q can be given as Q = 〈 X̄ 〉 ∩ 〈 X̄2, X̄Z̄, Ȳ 〉. Note

that 〈 X̄ 〉 is not a prime ideal since Z̄2 = X̄Ȳ ∈ 〈 X̄ 〉, but Z̄ /∈ 〈 X̄ 〉. However it

is primary because R/〈 X̄ 〉 ∼= K[Z]/〈Z2 〉 only contains nilpotent zero-divisors.

Moreover one can compute

Rad
(
〈 X̄ 〉

)
= 〈 X̄, Z̄ 〉 and Rad

(
〈 X̄2, X̄Z̄, Ȳ 〉

)
= 〈 X̄, Ȳ , Z̄ 〉 ,

which shows that 〈 X̄2, X̄Z̄, Ȳ 〉 is primary since its radical is a maximal ideal.

Proposition B.2.10. [ [2], p.53 ]

Let I, J E R be ideals such that I ⊆ J and assume that J is decomposable

with minimal primary decomposition J =
⋂α
i=1 Qi. Then the ideal J̄ E R/I is

also decomposable with primary decomposition J̄ =
⋂α
i=1 Q̄i, which can be made

minimal. In particular for J = I, we obtain a minimal primary decomposition

of the zero ideal {0̄} E R/I.
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Remark B.2.11. If J does not contain I, one has to consider a primary de-

composition of J + I in order to get a decomposition of J̄ in the quotient. For

example if I and J are both finitely generated by r1, . . . , rn, resp. s1, . . . , sm,

then I + J is generated by r1, . . . , rn, s1, . . . , sm.

We have seen, e.g. in (B.4), that the primary ideals Qi in a primary decomposi-

tion of I may not be unique. However this example also already illustrated the

upcoming uniqueness result, for which we need the following auxiliary definition.

Definition B.2.12. Let I E R be an ideal and x ∈ R. We denote

(I : x) =
{
r ∈ R

∣∣ r · x ∈ I } ,
which is an ideal since we may consider R/I as an R-module and x̄ ∈ R/I, so

AnnR(x̄) =
{
r ∈ R

∣∣ r ∗ x̄ = 0̄
}

=
{
r ∈ R

∣∣ r̄ · x̄ = 0̄
}

=
{
r ∈ R

∣∣ r · x ∈ I } = (I : x) . (B.5)

Lemma B.2.13. [ [2], 4.4, p.52 ]

Let Q E R be a P -primary ideal and x ∈ R. Then we have the 3 possibilities:

1) If x ∈ Q, then (Q : x) = R.

2) If x /∈ Q, then (Q : x) is P -primary.

3) If x /∈ P , then (Q : x) = Q.

In particular, if x /∈ Q, then Rad(Q : x) = P .

Proof. 1) is clear.

3) follows from the fact that Q is a primary ideal. Indeed Q ⊆ (Q : x) and

r ∈ (Q : x) ⇒ r · x ∈ Q with x /∈ Rad(Q) ⇒ r ∈ Q .

2) Let us first compute the radical of (Q : x). If y ∈ (Q : x), then x · y ∈ Q

with x /∈ Q, hence y ∈ Q or y ∈ Rad(Q) = P . In both cases we get the

inclusions Q ⊆ (Q : x) ⊆ P . Taking radicals then gives Rad(Q : x) = P . To

see that (Q : x) is primary, let y · z ∈ (Q : x) with y /∈ Rad(Q : x) = P . Then

xyz = y · zx ∈ Q with y /∈ P , so zx ∈ Q and z ∈ (Q : x).
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Theorem B.2.14 (First Uniqueness Theorem). [ [2], 4.5, p.52 ]

Let I E R be a decomposable ideal with minimal primary decomposition given by

I =
⋂α
i=1 Qi and denote the radicals by Pi := Rad(Qi). The set of primes ideals

{P1, . . . , Pα} is independent of the chosen minimal primary decomposition of I.

More precisely, the Pi are exactly the prime ideals that occur in the set of ideals{
Rad(I : x)

∣∣ x ∈ R} .
In particular, ∀ i ∈ {1, . . . , α}, ∃xi ∈ R such that Pi = Rad

(
AnnR(x̄i)

)
for

x̄i ∈ R/I with x̄i 6= 0̄.

Proof. By definition we get (I : x) =
(⋂

iQi : x
)

=
⋂
i(Qi : x), ∀x ∈ R. Thus

by Lemma B.2.13 and Lemma D.1.4,

Rad(I : x) = Rad
(⋂

i(Qi : x)
)

=
⋂
i

Rad(Qi : x) =
⋂
x/∈Qj

Pj . (B.6)

Now suppose that Rad(I : x) is a prime ideal. Then by (B.6) and Prime Avoid-

ance (Lemma B.1.3), we have Rad(I : x) = Pj for some j. Conversely as the

decomposition of I is minimal, Remark B.2.7 implies that there exists xi /∈ Qi

with xi ∈
⋂
j 6=iQj for each i ∈ {1, . . . , α}. Then Rad(I : xi) = Pi.

⊆ : if rn ·xi ∈ I =
⋂
j Qj with xi /∈ Qi, then rn ∈ Qi or rn ∈ Rad(Qi), so in both

cases we have r ∈ Pi.
⊇ : if r ∈ Pi = Rad(Qi), then rn · xi ∈

⋂
j Qj, i.e. rn ∈ (I : xi).

B.2.3 Properties

Proposition B.2.15. [ [2], 4.7, p.53 ]

Let I =
⋂α
i=1Qi be minimal primary decomposition with Pi = Rad(Qi). Then

P1 ∪ . . . ∪ Pα =
{
x ∈ R

∣∣ (I : x) 6= I
}

=
{
x ∈ R

∣∣ x̄ ∈ ZD(R/I)
}
.

Proof. We always have I ⊆ (I : x). But (I : x) = AnnR(x̄) by (B.5), thus

I ( (I : x) ⇔ I ( AnnR(x̄) ⇔ {0̄} ( AnnR/I(x̄) =
{
r̄ ∈ R/I

∣∣ r̄ · x̄ = 0̄
}

⇔ x̄ ∈ ZD(R/I) .
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To see why the elements of the Pi’s are zero-divisors modulo I and vice-versa,

note that (B.1) gives the description

ZD(R/I) =
⋃
x̄ 6=0̄

Rad
(

AnnR/I(x̄)
)
.

From Theorem B.2.14 we know that Pi = Rad(AnnR(x̄i)) for some xi ∈ R \ I.

Moreover

r ∈ Rad(AnnR(x̄)) ⇔ rn ∗ x̄ = 0̄ ⇔ r̄ n · x̄ = 0̄ ⇔ r̄ ∈ Rad(AnnR/I(x̄))

for all x ∈ R \ I. Hence we get r ∈ P1 ∪ . . . ∪ Pα ⇔ r̄ ∈ ZD(R/I). Note that

this includes the case r̄ = 0̄ since I ⊆ Rad(I) = P1∩ . . .∩Pα ⊆ P1∪ . . .∪Pα.

Corollary B.2.16. [ [2], p.53 ]

Let R be a ring in which the zero ideal is decomposable with {0} =
⋂α
i=1Qi

and denote the corresponding prime ideals by Pi = Rad(Qi). Then the set of

zero-divisors and nilpotent elements can be described as

ZD(R) = P1 ∪ . . . ∪ Pα and nil(R) = P1 ∩ . . . ∩ Pα .

Proof. The formula for zero-divisors follows from Proposition B.2.15. For the

nilpotent elements, consider

nil(R) = Rad
(
{0}
)

= Rad(Q1 ∩ . . . ∩Qα

)
= P1 ∩ . . . ∩ Pα

by using Lemma D.1.4.

Definition B.2.17. [ [2], p.52 ]

If I E R is a decomposable ideal with minimal primary decomposition

I = Q1 ∩ . . . ∩Qα ,

the prime ideals Pi = Rad(Qi) are called the primes associated to I (or belonging

to I). We denote Ass(I) := {P1, . . . , Pα}. The minimal elements (with respect to

inclusion) of Ass(I) are called the minimal primes (or isolated primes) of I. The

other ones are called embedded prime ideals. The idea behind this terminology

is explained in Section 1.2.
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Lemma B.2.18. cf .[ [2], Ex.1 & 2, p.55 ]

Let I E R be a decomposable ideal with I =
⋂α
i=1Qi and Pi = Rad(Qi). Then

1) Spec(R/I) has finitely many irreducible components (as a topological space).

2) In particular, Spec(R/Q) is irreducible for every primary ideal Q E R.

3) If I is a radical ideal, then I has no embedded primes, i.e. all elements in

Ass(I) are minimal.

Proof. 1) Recall that we have V (I) ∪ V (J) = V (I ∩ J) and V (I) = V
(

Rad(I)
)

as topological spaces. Hence

Spec(R/I) ∼= V (I) = V
( α⋂
i=1

Qi

)
=

α⋃
i=1

V (Qi) =
α⋃
i=1

V (Pi) , (B.7)

where each V (Pi) ∼= Spec(R/Pi) is an irreducible scheme because R/Pi is an

integral domain.

2) Take α = 1 in (B.7) : V (Q) = V
(

Rad(Q)
)
, where Rad(Q) is a prime ideal.

3) Assume that I =
⋂α
i=1Qi is a minimal primary decomposition. As I is radical,

we obtain another decomposition

I = Rad(I) = Rad
( α⋂
i=1

Qi

)
=

α⋂
i=1

Rad(Qi) =
α⋂
i=1

Pi .

If I has embedded primes, then ∃ j, k ∈ {1, . . . , α} such that Pj ( Pk and

I =
⋂
i 6=k Pi would contradict minimality of α. Hence there are no embedded

primes.

Proposition B.2.19. [ [2], 4.6 & 4.11, p.52-54 ]

Let I E R be a decomposable ideal with I =
⋂α
i=1Qi and Pi = Rad(Qi). Then

1) Every prime ideal containing I also contains a minimal prime belonging to I.

Hence the minimal prime ideals of I are precisely the minimal ones among all

prime ideals containing I.

2) If Pi is a minimal prime of I, then the corresponding Qi in the decomposition

is unique.

Proof. We only prove the first statement. If P is a prime ideal containing the

ideal I = Q1 ∩ . . . ∩Qα, then Q1 ∩ . . . ∩Qα ⊆ P implies that

Rad
(
Q1 ∩ . . . ∩Qα

)
= P1 ∩ . . . ∩ Pα ⊆ Rad(P ) = P .
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Prime Avoidance (Lemma B.1.3) then says that Pi ⊆ P for some i. In particular,

P contains a minimal prime.

B.2.4 Behaviour under localization

Next we want to see how primary ideal decomposition behaves under localization.

Lemma B.2.20. [ [2], 4.8, p.53 ]

Let S ⊂ R be a multiplicatively closed subset and Q E R be P -primary.

1) If S ∩ P 6= ∅, then S−1Q = S−1R.

2) If S ∩ P = ∅, then S−1Q is S−1P -primary.

3) The primary ideals in S−1R are in 1-to-1 correspondence with primary ideals

in R whose radical does not meet S via the bijection Q 7→ S−1Q.

Proposition B.2.21. [ [2], 4.9, p.54 ]

Let I E R be a decomposable ideal with minimal primary decomposition

I =
⋂α
i=1 Qi .

Denote Pi = Rad(Qi) for all i and assume that the Qi are numbered in such a

way that S has empty intersection with all P1, . . . , Pγ for some γ ∈ {1, . . . , α},
but not with Pγ+1, . . . , Pα. Then

S−1I =

γ⋂
i=1

S−1Qi

is a minimal primary decomposition of the ideal S−1I E S−1R.

Corollary B.2.22. Let R be a ring in which the zero ideal is decomposable with

associated primes P1, . . . , Pα. So we know that ZD(R) = P1∪ . . .∪Pα. Let r ∈ R
and P E R be a prime ideal. Then the sets of zero-divisors in the localizations

Rr and RP are given by

ZD(Rr) = (P1)r ∪ . . . ∪ (Pγ1)r , ZD(RP ) = (P1)P ∪ . . . ∪ (Pγ2)P

for some γ1, γ2 ≤ α and the associated primes are numbered in such a way that

r /∈ P1, . . . , Pγ1, resp. P1, . . . , Pγ2 ⊆ P .
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B.2.5 The Noetherian case

An interesting question is to know under which conditions an ideal is decompos-

able. The answer is actually quite easy.

Theorem B.2.23 (Lasker–Noether). [ [2], 7.11–7.13, p.83 ]

If R is a Noetherian ring, then every proper ideal I E R is decomposable.

Lemma B.2.24. [ [2], 7.14 & 7.15, p.83 ]

1) In a Noetherian ring R, every ideal I E R contains a power of its radical.

2) In particular, the nilradical of a Noetherian ring is nilpotent.

Proof. 1) Assume that Rad(I) is generated by x1, . . . , xk with xnii ∈ I for all

i ∈ {1, . . . , k} and set m =
∑k

i=1(ni − 1) + 1. Then Rad(I)m is generated by

monomials of the form xr11 · . . . ·x
rk
k with r1 + . . .+ rk = m. So by definition of m,

there is always at least one index i such that ri ≥ ni. Hence all these monomials

lie in I, i.e. Rad(I)m ⊆ I.

2) Take I = {0}, so ∃m ∈ N such that nil(R)m = Rad({0})m ⊆ {0}.

Proposition B.2.25. [ [2], 7.17, p.83-84 ]

Let R be a Noetherian ring and I E R a proper ideal. Then the primes P1, . . . , Pα

belonging to I are exactly the prime ideals that occur in the set of ideals{
(I : x) | x ∈ R

}
.

For I = {0} we hence find element y1, . . . , yα ∈ R with yi 6= 0 such that

Pi = AnnR(yi) =
{
r ∈ R

∣∣ r · yi = 0
}
, ∀ i ∈ {1, . . . , α} .

Proof. Let I =
⋂
iQi be a minimal primary decomposition with Rad(Qi) = Pi.

If we fix i and denote Ii :=
⋂
j 6=iQj, then I ( Ii as the decomposition is minimal.

As in the proof of Theorem B.2.14 we have

Rad(I : x) = Rad
(

AnnR(x̄)
)

= Pi , ∀x ∈ Ii \ I , (B.8)

hence AnnR(x̄) ⊆ Pi. Since Qi is Pi-primary, Lemma B.2.24 implies that Pm
i is

contained in Qi for some m ∈ N and hence

Ii · Pm
i ⊆ Ii ∩ Pm

i ⊆ Ii ∩Qi = I .
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Let m ≥ 1 be the smallest integer such that Ii · Pm
i ⊆ I and let x ∈ Ii · Pm−1

i

be such that x̄ 6= 0̄. So in particular x ∈ Ii \ I and we have (B.8). But then

Pi · x ⊆ I and Pi ⊆ AnnR(x̄). So we showed that for each fixed i, the associated

prime Pi can be written as some annihilator ideal.

Conversely, if AnnR(x̄) for x ∈ R is a prime ideal P , then Rad(AnnR(x̄)) = P

and hence by Theorem B.2.14 this P is a prime ideal belonging to I.

So in the case of a Noetherian ring we do no longer need to take radicals of

annihilators for the associated primes. On the other hand, similarly as in Re-

mark B.1.2, the elements xi, yi ∈ R in the descriptions Pi = Rad(AnnR(x̄i))

and Pi = AnnR(ȳi) do not need to be the same. Also note that the proof of

Proposition B.2.25 is independent of Theorem B.2.23 (once we know that I is

decomposable).

We finish the section by an important corollary.

Corollary B.2.26. [ [46], 13.23, p.431-432 ]

If R is a Noetherian ring and I E R entirely consists of zero-divisors, then

AnnR(I) 6= {0}. Hence if an ideal satisfies AnnR(I) = {0}, then it must contain

an element which is not a zero-divisor.

Proof. Let P1, . . . , Pα be the associated primes of {0}. Saying that I entirely

consists of zero-divisors means that I ⊆ P1 ∪ . . . ∪ Pα by Proposition B.2.15.

Thus I ⊆ Pi for some i ∈ {1, . . . , α} by Prime Avoidance and Proposition B.2.25

gives a non-zero element y ∈ R such that Pi = AnnR(y). But then I ⊆ AnnR(y)

and hence y ∈ AnnR(I). It follows that {0} 6= 〈 y 〉 ⊆ AnnR(I).

Remark B.2.27. One could think of proving this result by saying that I is

finitely generated, i.e. I = 〈 r1, . . . , rn 〉 since R is Noetherian and where each ri

is a zero-divisor, so ∃ s1, . . . , sn ∈ R such that ri · si = 0, ∀ i ∈ {1, . . . , n} and

s := s1 · . . . · sn would satisfy s · I = {0}. But this does not work since maybe

s = 0. For example, consider the Noetherian ring

R = K[X, Y, Z, T ]/〈XT, Y T, ZT,XY 〉 .
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The associated primes of {0̄} are P1 = 〈 X̄, T̄ 〉, P2 = 〈 Ȳ , T̄ 〉 and P3 = 〈 X̄, Ȳ , Z̄ 〉,
hence the ideal I = 〈 Ȳ , Z̄ 〉 ⊆ P3 only consists of zero-divisors. We also have

Ȳ · X̄ = 0̄ and Z̄ · T̄ = 0̄, so s1 = X̄ and s2 = T̄ , but s1 · s2 = X̄ · T̄ = 0̄.

B.3 Associated primes of a module

The idea of defining associated primes of an R-module M is to generalize the

notion of the associated primes of an ideal I E R (as every ideal can also be

seen as a module over R). The main references here are Igusa [42], Chapter 5.3,

Matsumura [54], Chapter 3, Section 7, Matsumura [55], Chapter 2, Section 6 and

Bourbaki [6], Chapter IV, Section §1.

B.3.1 Associated primes

Let R be a ring and M a module over R. The definition of an associated prime

of M is inspired from the one of the prime ideals associated to the zero ideal in

a Noetherian ring.

Definition B.3.1. [ [42], 5.10, p.29 ] and [ [54], 7.A, p.49 ]

We say that a prime ideal P E R is an associated prime of M if there exists an

element x ∈ M such that P = AnnR(x). Hence the associated primes of M are

the prime ideals in the set

M =
{

AnnR(x)
∣∣ x ∈M, x 6= 0

}
. (B.9)

Note that we can remove x = 0 since AnnR(0) = R is not prime. The set of

associated primes of M is denoted by AssR(M).

Remark B.3.2. Thus if R is a Noetherian ring, we have Ass(I) = AssR(R/I)

for any ideal I E R since P ∈ Ass(I) is given as P = AnnR(x̄) for some x̄ ∈ R/I.

In particular Ass
(
{0}
)

= AssR(R).

Lemma B.3.3. [ [42], 5.10 & 5.11, p.29 ] and [ [54], 7.A, p.49 ]

1) A prime ideal P E R belongs to AssR(M) if and only if there exists an injec-

tion of R-modules R/P ↪→M .
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2) If P E R is a prime ideal and M ≤ R/P a non-zero submodule, then

AssR(M) = {P}.

Proof. 1)⇒ : If P = AnnR(x) for some x ∈ M , we can consider the morphism

R/P →M : r̄ 7→ r ∗ x, which is well-defined and injective since

r ∗ x = 0 ⇔ r ∈ AnnR(x) ⇔ r̄ = 0̄ .

⇐ : Let ϕ : R/P ↪→M and x = ϕ(1̄). Then P = AnnR(x) by injectivity of ϕ:

r ∈ AnnR(x) ⇔ r ∗ ϕ(1̄) = 0 ⇔ ϕ(r ∗ 1̄) = 0 ⇔ ϕ(r̄) = 0

⇔ r̄ ∈ kerϕ ⇔ r̄ = 0̄ ⇔ r ∈ P .

2) If M = R/P this follows from Remark B.3.2 as P is already primary. In

general we have to show that there are no other associated primes of M . For

any m̄ ∈M with m̄ 6= 0̄, we get AnnR(m̄) = P because

r ∈ AnnR(m̄) ⇔ r ∗ m̄ = 0̄ ⇔ r ·m ∈ P ⇔ r ∈ P (since m /∈ P ) ,

so P ∈ AssR(M) and this is the only associated prime since every m̄ has the

same annihilator.

Proposition B.3.4. [ [54], 7.B, p.49-50] and [ [6], IV.§1.n◦1.Prop.2, p.308 ]

1) If P is a maximal element in the set M from (B.9), then P ∈ AssR(M).

2) Let R be a Noetherian ring. Then AssR(M) = ∅ if and only if M = {0}.

Proof. 1) We show a maximal element P ∈ M is prime. Let P = AnnR(x) for

some x ∈ M , x 6= 0 and r · s ∈ P . Assume that s /∈ P , i.e. s ∗ x 6= 0, but

0 = (r · s) ∗ x = r ∗ (s ∗ x), hence r ∈ AnnR(s ∗ x). On the other hand, we have

P = AnnR(x) ⊆ AnnR(s ∗ x). By maximality of P , we thus get

r ∈ AnnR(s ∗ x) = P .

2) If M = {0}, thenM is empty since AnnR(0) = R is not prime, hence {0} has

no associated primes. Conversely, assume that M 6= {0}, so M is a non-empty

set of ideals. R being Noetherian, it thus contains a maximal element, which is

prime by 1) and hence belongs to AssR(M).
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Proposition B.3.5. [ [42], 5.22, p.33 ] , [ [54], 7.F, p.51-52 ] and [ [55], 6.3, p.38 ]

Let

0 −→ N −→M −→ L −→ 0

be a short exact sequence of R-modules. Then

AssR(N) ⊆ AssR(M) ⊆ AssR(N) ∪ AssR(L) .

Proof. First we use Lemma B.3.3. The inclusion AssR(N) ⊆ AssR(M) holds

because R/P can also be embedded into M if it can be embedded into N .

Now let P ∈ AssR(M) with P = AnnR(x) for some x ∈ M , so that we have an

injection R/P ↪→M . Then R/P ∼= 〈x 〉 since the injection is given by r̄ 7→ r ∗ x
(Lemma B.3.3). Now there are 2 cases:

If 〈x 〉 ∩N = {0}, then R/P ↪→M/N : r̄ 7→ r ∗ x because

r ∗ x = 0̄ ⇔ r ∗ x ∈ N ⇔ r ∗ x = 0 ⇔ r ∈ AnnR(x) = P ⇔ r̄ = 0̄

with L ∼= M/N , thus R/P ↪→ L and P ∈ AssR(L). If 〈x 〉 ∩ N 6= {0}, then

∃ y ∈ N such that y = a ∗ x 6= 0 for some a ∈ R. But then P = AnnR(y) since

a /∈ AnnR(x) = P and

r ∈ AnnR(y) ⇔ r ∗ y = r ∗ (a ∗ x) = 0 ⇔ r · a ∈ AnnR(x) = P ⇔ r ∈ P .

Hence P ∈ AssR(N). We get AssR(M) ⊆ AssR(N) ∪AssR(L) in both cases.

Corollary B.3.6. [ [42], 5.23, p.33 ] and [ [6], IV.§1.n◦1.Cor.1, p.309 ]

1) If M and N are two R-modules, then AssR(M ⊕N) = AssR(M) ∪ AssR(N).

2) More generally, for a finite family of R-modules {Mi}i=1,...,n we have

AssR

( n⊕
i=1

Mi

)
=

n⋃
i=1

AssR(Mi) . (B.10)

Proof. 1) Consider the exact sequence

0 −→M −→M ⊕N −→ N −→ 0 .

Proposition B.3.5 gives the inclusions

AssR(M) ⊆ AssR(M ⊕N) , AssR(N) ⊆ AssR(M ⊕N) ,

AssR(M ⊕N) ⊆ AssR(N) ∪ AssR(N) .

Hence both sets are equal. 2) then follows by induction.
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The behaviour of associated primes under localization is given as follows.

Proposition B.3.7. [ [54], 7.C, p.50 ], [ [55], p.38 ], [ [6], IV.§1.n◦2.Prop.5, p.310 ]

Let R be Noetherian and S ⊂ R a multiplicatively closed subset. The assignment

P 7→ S−1P gives a bijection between prime ideals in AssR(M) not intersecting S

and AssS−1R(S−1M). More precisely,

AssR(S−1M) = {P ∈ AssR(M)
∣∣ P ∩ S = ∅

}
,

AssS−1R(S−1M) = S−1
(

AssR(S−1M)
)
.

Remark B.3.8. Proposition B.3.7 does not hold true if the ring is not Noethe-

rian. In general the map P 7→ S−1P may not be surjective ; an example is given

in [ [6], Ex.1, p.339 ].

Another reason why it is useful to consider Noetherian rings is the following.

Theorem B.3.9. [ [54], 7.G, p.51 ], [ [55], 6.5, p.39 ], [ [6], IV.§1.n◦4.Cor, p.313 ]

If M is a finitely generated module over a Noetherian ring R, then AssR(M) is

finite.

B.3.2 Relations with the support

Definition B.3.10. The support of an R-module M is the set of all prime ideals

with non-zero localization, i.e.

suppM =
{
P E R prime

∣∣ MP 6= {0}
}
.

This is equal to the support of the quasi-coherent sheaf M̃ on X = SpecR, hence

the name.

Proposition B.3.11. [ [61], Thm.13, p.42-43 ]

If M is a finitely generated R-module, then the prime ideals in suppM are pre-

cisely the prime ideals that contain AnnR(M).

Proof. If P is a prime ideal such that MP 6= {0}, then AnnR(M) ⊆ P , otherwise

∃ r ∈ AnnR(M) \ P with r ∗m = 0 and hence m
1

= 0 for all m ∈M since r /∈ P .
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Vice-versa let AnnR(M) ⊆ P and assume that MP = {0}. If m1, . . . ,mn are

generators of M , then mi
1

= 0 for all i, so there are elements ∃ r1, . . . , rn ∈ R \P
such that ri ∗mi = 0, ∀ i. We set r := r1 · . . . · rn. Then r ∗m = 0 for all m ∈M ,

i.e. r ∈ AnnR(M). Moreover r /∈ P since P is a prime ideal, so in particular

r 6= 0. But this contradicts the assumption that AnnR(M) ⊆ P . Hence we need

MP 6= {0}.

Proposition B.3.12. [ [42], 5.18, p.31 ]

Let

0 −→ N −→M −→ L −→ 0

be a short exact sequence of R-modules. Then suppM = suppN ∪ suppL.

Proof. By exactness of the localization functor (Proposition A.2.6), we have

P ∈ suppM ⇔ MP 6= {0} ⇔ NP 6= {0} or LP 6= {0}

⇔ P ∈ suppN or P ∈ suppL .

Proposition B.3.13. [ [6], II.§4.n◦4.Prop.18, p.134 ]

If M and N are two finitely generated R-modules, then

supp
(
M ⊗R N

)
= suppM ∩ suppN . (B.11)

Proof. By Proposition A.2.9 we have (M ⊗R N)P ∼= MP ⊗RP NP for all prime

ideals P E R. This already gives the inclusion ⊆ since a tensor product being

non-zero implies that both factors are non-zero as well. In order to prove formula

(B.11), it now suffices to show the following:

Let R be a local ring and E,F two finitely generated R-modules such that

E 6= {0} and F 6= {0}. Then E ⊗R F 6= {0}. This can e.g. be found in [ [6],

II.§4.n◦4.Lemma.3, p.134 ].

(B.11) allows to prove the following interesting criterion to decide whether a

tensor product is zero. The proof however uses some facts from Proposition 1.4.4.
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Corollary B.3.14. [ [53], 93228 ]

Let M and N be two finitely generated modules over R. Then

M ⊗R N = {0} ⇔ AnnR(M) + AnnR(N) = R .

Proof. For sufficiency, assume that 1 ∈ R can be written as 1 = r + s for

r ∈ AnnR(M) and s ∈ AnnR(N). Then for all m⊗ n ∈M ⊗R N ,

m⊗ n = 1 · (m⊗ n) = (r + s) · (m⊗ n) =
(
(r ∗m)⊗ n

)
+
(
m⊗ (s ∗ n)

)
= 0 .

Necessity can be proven directly, but it is easier using formula (B.11). We have

Z : = V
(

AnnR(M ⊗R N)
)

= supp
(
M ⊗R N

)
= suppM ∩ suppN

= V
(

AnnR(M)
)
∩ V

(
AnnR(N)

)
= V

(
AnnR(M) + AnnR(N)

)
.

Hence M ⊗R N = {0} ⇔ AnnR(M ⊗R N) = R ⇔ Z = ∅, which is the case if

and only if AnnR(M) + AnnR(N) = R.

The relation between the associated primes and the support of a finitely gener-

ated R-module M is the content of the next two results.

Theorem B.3.15. [ [42], 5.19, p.31-32 ] , [ [54], 7.D, p.50-51 ] and [ [55], 6.5, 39 ]

AssR(M) ⊆ suppM .

If R is moreover Noetherian, then the minimal elements of suppM are associated

primes of M .

Proof. We only prove the inclusion. If P ∈ AssR(M), we have the short exact

sequences
0 −→ R/P

ϕ−→M −→ cokerϕ −→ 0 ,

0 −→ (R/P )P −→MP −→ (cokerϕ)P −→ 0 .

Now we have (R/P )P 6= {0} since

r̄
s

= 0̄
1
⇔ ∃ b /∈ P such that b ∗ r̄ = 0̄ ⇔ b · r ∈ P ⇔ r ∈ P ⇔ r̄ = 0̄ .

Hence MP 6= {0} as well, i.e. P ∈ suppM .
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Corollary B.3.16. [ [6], IV.§1.n◦3.Cor.1, p.312 ] and [ [55], 6.5, p.39 ]

If R is Noetherian, the minimal primes of AssR(M) and suppM are the same.

Proof. A minimal prime P ∈ AssR(M) is in suppM and it is minimal there as

well, otherwise a minimal prime contained in P would also belong to AssR(M),

so that P is no longer minimal. Conversely, if P is minimal in suppM , then it

belongs to AssR(M) by Theorem B.3.15 and is minimal there as well, otherwise

an associated prime contained in P would also belong to suppM and P would

no longer be minimal.

Corollary B.3.17. [ [42], 5.20, p.32-33 ]

If R is a Noetherian ring and M is finitely generated, then⋂
P∈AssR(M)

P =
⋂

P∈suppM

P = Rad
(

AnnR(M)
)
.

Proof. The intersections are equal since AssR(M) and suppM have the same

minimal primes by Corollary B.3.16. Also note that AssR(M) is finite by Theo-

rem B.3.9, while suppM is usually not.

⊃ : We have AnnR(M) ⊆ AnnR(x) for all x ∈ M , so AnnR(M) is contained in

every associated prime of M , hence so is its radical.

⊂ : Let {m1, . . . ,mn} be a finite generating set of M and r /∈ Rad(AnnR(M)).

Hence by Lemma D.1.3 there exists a prime ideal P containing AnnR(M) such

that r /∈ P . Assume that MP = {0}. Then ∀ i, ∃ bi /∈ P such that bi ∗mi = 0

and the element b := b1 · . . . · bn /∈ P satisfies b ∗ m = 0, ∀m ∈ M , hence

b ∈ AnnR(M) ⊆ P : contradiction. So we get MP 6= {0} and P ∈ suppM . But

since r /∈ P , it cannot belong to the intersection neither.

Remark B.3.18. [ [6], IV.§1.n◦3.Cor.2, p.312 ]

In particular, the nilradical of a Noetherian ring R is equal to the intersection

of all prime ideals P ∈ AssR(R) because AnnR(R) = {0}. Alternatively this

can be seen by the fact that nil(R) is the intersection of all prime ideals in R

(Lemma D.1.3). But SpecR = suppR since RP 6= {0} for all primes P , thus

nil(R) =
⋂

P prime

P =
⋂

P∈SpecR

P =
⋂

P∈suppR

P =
⋂

P∈AssR(R)

P .
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a
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Appendix C

Complements on torsion and

modules

In this appendix we want to analyze the notion of torsion. In the integral case,

torsion elements of a module are just elements that are annihilated by some

non-zero element from the ring. But this definition does no longer work when

zero-divisors are involved. In the following we develop some basic properties

about torsion elements in the general case. We also compare several notions of

torsion and study their relation with reflexive and projective modules. Finally we

establish some properties which hold true for integral domains and give counter-

examples in the non-integral case. The notion of torsion is due to H. Bass.

Definition C.0.1. Let R be a ring and M a module over R. The set of all

torsion elements of M is

TR(M) =
{
m ∈M

∣∣ ∃ r ∈ R, r 6= 0 such that

r is not a zero-divisor and r ∗m = 0
}
.

In the following we write NZD for elements that are not zero-divisors (sometimes

such elements are also called regular). TR(M) is a submodule of M , called the

torsion submodule of M . Indeed, 0 is a torsion element since 1 ∗ 0 = 0 and if

r, s ∈ TR(M) with r ∗m = 0 and s ∗ n = 0, then

(r · s) ∗ (m+ n) = 0 and r ∗ (t ∗m) = 0, ∀ t ∈ R ,

where r · s is non-zero and still a NZD.
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Remark C.0.2. The condition about including NZDs in the definition of TR(M)

is necessary, otherwise it may not be a submodule. Omitting “r 6= 0 is a NZD”

is only possible if R is an integral domain. Consider the 2 following examples:

1) [ [4], II.§7.n◦10, p.115 ]

Take R = Z/6Z and M = R with m = 3̄ and n = 4̄. Then 2̄∗ 3̄ = 0̄ and 3̄∗ 4̄ = 0̄,

where 2̄ and 3̄ are zero-divisors, but 3̄ + 4̄ = 1̄ and 1̄ cannot be annihilated by

any non-zero element.

2) R = K[X, Y ]/〈XY 〉 and M = R with m = X̄ and n = Ȳ ; they are annihi-

lated by zero-divisors

Ȳ ∗m = Ȳ · X̄ = 0̄ , X̄ ∗ n = X̄ · Ȳ = 0̄ ,

but no element from R can annihilate m + n since X̄Ȳ is zero (rigorous proof :

we have the primary decomposition

〈XY 〉 = 〈X 〉 ∩ 〈Y 〉 ,

so by Proposition B.2.10 the associated primes of {0̄} in R are 〈 X̄ 〉 and 〈 Ȳ 〉
and the zero-divisors of R are given by 〈 X̄ 〉 ∪ 〈 Ȳ 〉, see Proposition B.2.15, to

which m+ n = X̄ + Ȳ does not belong).

C.1 Torsion-free modules

Definition C.1.1. An R-module M is called torsion-free if it contains no non-

zero torsion elements, i.e. if TR(M) = {0}. We say that M has torsion if it is not

torsion-free. If TR(M) = M , then M is called a torsion module. By convention,

the zero module {0} is considered to be a torsion module.

A submodule N ≤ M is a torsion submodule if it is itself a torsion module over

R, i.e. TR(N) = N .

Lemma C.1.2. 1) {0} and TR(M) are always torsion submodules of M .

2) N ≤M is a torsion submodule ⇔ N ⊆ TR(M).

3) If AnnR(M) contains a NZD, then M is a torsion module.

4) The converse of 3) holds true if M is finitely generated.

5) M is torsion-free ⇔ {0} is the only torsion submodule of M .
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Proof. 1) clear for {0} ; moreover

TR
(
TR(M)

)
=
{
m ∈ TR(M)

∣∣ ∃ r ∈ R, r 6= 0 which

is a NZD such that r ∗m = 0
}

= TR(M) .

2)
TR(N) = N ⇔ ∀n ∈ N, ∃ a NZD r ∈ R, r 6= 0 such that r ∗ n = 0

⇔ N ⊆ TR(M) .

3) If AnnR(M) contains a NZD r, then r ∗m = 0, ∀m ∈M , so every m ∈M is

a torsion element.

4) Let {m1, . . . ,mn} be a finite generating set of M . As M is a torsion module,

there are NZDs r1, . . . , rn ∈ R such that ri ∗mi = 0, ∀ i. Set r := r1 · . . . ·rn ; then

r is also a NZD (otherwise some ri would be a zero-divisor) and r ∗m = 0 for all

m since every m ∈M is an R-linear combination of the mi. Thus r ∈ AnnR(M).

5)⇒ : If TR(M) = {0}, then every torsion submodule satisfies N ⊆ {0} by 2).

⇐ : Assume that ∃m ∈ TR(M) with m 6= 0 and consider the submodule

N = 〈m 〉. Let r ∈ R be a NZD such that r ∗m = 0. Hence r ∈ AnnR(N) and

3) implies that N is a non-zero torsion submodule of M : contradiction.

Remark C.1.3. A counter-example which shows that 4) may fail for modules

that are not finitely generated is given in C.1.6.

Proposition C.1.4. [ [4], II.§7.n◦10.Prop.25, p.116 ]

Let {Mi}i∈I be a (not necessarily finite) family of R-modules. Then

TR
(⊕

iMi

)
=
⊕

i TR(Mi) .

Proof. ⊂ : Let {mi}i be a torsion element with a NZD r ∈ R which satisfies

r ∗ {mi}i = 0 ⇔ r ∗mi = 0 for all i. Thus mi ∈ TR(M), ∀ i.
⊃ : Let {mi}i be such that mi ∈ TR(M), ∀ i. Hence there are NZDs ri ∈ R such

that ri ∗mi = 0, ∀ i (for mi = 0, one may choose ri = 1). Define r :=
∏

i ri ; then

r is a NZD such that r ∗ {mi}i = 0.
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Example C.1.5. [ [4], II.§7.n◦10, p.115-116 ] and [ [11], 15.16.12 ]

1) Free modules are torsion-free. In particular, vector spaces are torsion-free.

2) Direct sums and submodules of torsion(-free) modules are again torsion(-free).

3) In particular, projective modules are torsion-free.

4) M/TR(M) and M∗ = HomR(M,R) are always torsion-free.

5) More generally, if N is torsion-free, then HomR(M,N) is torsion-free as well.

6) Infinite products of torsion-free modules are again torsion-free. In particular,

RI is torsion-free.

Proof. 1) Let {ei}i∈I be a basis of M ∼= R(I). If m ∈ TR(M) is a torsion element

with NZD r ∈ R, then ∃ ai ∈ R such that m =
∑

i ai ∗ ei and only finitely many

terms are non-zero. Moreover

0 = r ∗m =
∑
i∈I

(r · ai) ∗ ei ⇒ r · ai = 0, ∀ i ∈ I ,

which implies that ai = 0, ∀ i ∈ I since r is a NZD. Thus m = 0.

2) a) For directs sums, Proposition C.1.4 gives

TR
(⊕

iMi

)
=
⊕

i TR(Mi) =
⊕

iMi or TR
(⊕

iMi

)
=
⊕

i TR(Mi) = {0} .

b) Let N ≤ M and n ∈ N . If M is a torsion module, there is a NZD r ∈ R

such that r ∗ n = 0, thus n ∈ TR(N) and N is a torsion module itself. If M is

torsion-free, there cannot be a NZD annihilating n for n 6= 0, otherwise this n

would be a torsion element in M .

3) since projective modules are direct summands (hence submodules) of free

modules.

4) a) Let r ∈ R, r 6= 0 which is a NZD such that r ∗ m̄ = 0̄ in M/TR(M). Then

r ∗ m̄ = 0̄ ⇔ r ∗m ∈ TR(M)

⇔ ∃ s ∈ R, s 6= 0, s is a NZD such that s ∗ (r ∗m) = 0 ,

thus (s · r) ∗ m = 0, where s · r 6= 0 and s · r is still a NZD. It follows that

m ∈ TR(M) and m̄ = 0̄.

b) Let f ∈ TR(M∗), i.e. f : M → R and there is a NZD r ∈ R such that

r ∗ f = 0, which means that r · f(m) = 0 for all m ∈ M . As r is a NZD, this
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implies that f(m) = 0, ∀m ∈M , hence f = 0 and TR(M∗) = {0}.
5) Let f : M → N be a R-module homomorphism such that r ∗ f = 0 for some

NZD r ∈ R, which means that r ∗ f(m) = 0, ∀m ∈ M . r being a NZD and N

being torsion-free, we need that f(m) = 0, ∀m ∈M , i.e. f = 0.

6) The same proof as in Proposition C.1.4 shows that TR
(∏

iMi

)
⊆
∏

i TR(Mi),

hence if all Mi are torsion-free, then so is their product.

Example C.1.6. cf. [ [4], II.§7.n◦10, p.115-116 & Ex.31, p.197 ]

1) Let R be an integral domain. Then the quotient field K = Quot(R) is a

torsion-free R-module.

2) ∀n ≥ 2, Z/nZ is a torsion module over Z.

3) More generally, all finite Z-modules (finite abelian groups) are torsion modules.

4) If M and N are torsion-free R-modules, then M⊗RN may not be torsion-free

any more.

5) Infinite products of torsion modules may no longer be torsion modules.

6) There exists (infinitely generated) torsion modules with zero annihilator.

Proof. 1) The R-module structure on K is defined by r ∗ a
b

= r·a
b

. Let r 6= 0 (so

it is a NZD) and

r ∗ a
b

= 0 ⇔ r·a
b

= 0
1
⇔ ∃ s ∈ R, s 6= 0 such that s · r · a = 0 ⇒ a = 0

since R is an integral domain, hence a
b

= 0 and TR(K) = {0}.
2) Note that 1̄ is a generator of Z/nZ as a module over Z, so it suffices to find

a non-zero element (which is hence a NZD as Z is integral) that annihilates 1̄.

But n ∗ 1̄ = n̄ = 0̄. More precisely, we have AnnZ(Z/nZ) = nZ, which contains

infinitely many NZDs.

3) Let G be any finite abelian group. By Fermat’s Theorem, we know that

g|G| = e, ∀ g ∈ G. Using the additive notation, this yields |G| ∗ g = 0, ∀ g ∈ G,

hence TZ(G) = G.

4) For example, let K be a field, R = K[X, Y ], which is an integral domain, and

M = 〈X, Y 〉. Being a submodule of a free module (the ring R as a module over

itself), we get that M is torsion-free. But M ⊗RM is not torsion-free any more:

consider the element X ⊗ Y − Y ⊗X. It is non-zero because 1 /∈ M . However
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it is a torsion element as it is annihilated by X 6= 0:

X ∗ (X ⊗ Y − Y ⊗X) = X ∗ (X ⊗ Y )−X ∗ (Y ⊗X)

= X ⊗XY −XY ⊗X = Y ∗ (X ⊗X)− Y ∗ (X ⊗X) = 0 .

5) The inclusion TR
(∏

iMi

)
⊆
∏

i TR(Mi) can be strict if all Mi are torsion

modules. For example, let I = N, R = Z and Mn = Z/nZ, ∀n ∈ N, so that

TZ(Mn) = Mn, ∀n. But the element (1̄, 1̄, 1̄, . . .) in the product

M =
∏
n∈N

Mn =
∏
n∈N

(
Z/nZ

)
is not torsion since each 1̄ is annihilated by a higher integer n ≥ 1. Actually

TZ
(∏

nMn

)
=
⊕

nMn.

6) By Lemma C.1.2 we know that the annihilator of a finitely generated torsion

module contains a NZD and is thus non-zero. So a torsion module with zero

annihilator cannot be finitely generated. Consider
⊕

nMn with Mn = Z/nZ,

which is a torsion module by Example C.1.5, so every element is annihilated by

a NZD. But there is no NZD annihilating all elements as
⊕

nMn is generated by

e1 = (1̄, 0̄, 0̄, . . .) , e2 = (0̄, 1̄, 0̄, . . .) , e3 = (0̄, 0̄, 1̄, . . .) , . . .

with AnnZ(en) = nZ for all n ∈ N and the intersection of all these ideals is

zero.

Remark C.1.7. The references given for the next 4 results actually just give

statements in the case of integral domains. However they remain true in general

as we are going to show here below.

Proposition C.1.8. cf. [ [11], 15.16.9 ]

Flat modules are torsion-free.

Proof. Fix a NZD r ∈ R, r 6= 0, so that the morphism R → R : a 7→ r · a is

injective. This gives an exact sequence 0 → R → R. M being flat, the functor

⊗RM is exact, hence we obtain the exact sequence

0 −→ R⊗RM −→ R⊗RM ⇔ 0 −→M −→M ,
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where M →M : m 7→ r ∗m since

M ∼−→ R⊗RM −→ R⊗RM ∼−→M : m 7−→ 1⊗m 7−→ r ⊗m 7−→ r ∗m .

As the morphism M → M is injective, we have r ∗m = 0 ⇒ m = 0 where r is

any NZD, thus M is torsion-free.

Lemma C.1.9. cf. [ [4], II.§7.n◦10.Prop.24, p.115 ]

Let ϕ : M → N be an R-module homomorphism. Then ϕ
(
TR(M)

)
⊆ TR(N). If

ϕ is moreover injective, we have in addition ϕ
(
TR(M)

)
= TR(N) ∩ imϕ.

Proof. If m ∈ TR(M) is such that r ∗m = 0 for a NZD r ∈ R, then r ∗ϕ(m) = 0

and ϕ(r ∗ m) = 0, i.e. ϕ(m) ∈ TR(N). Now assume that ϕ is injective. The

inclusion ϕ
(
TR(M)

)
⊆ TR(N) ∩ imϕ is clear. Vice-versa, let n ∈ TR(N) such

that n = ϕ(x) for some x ∈ M and r ∗ n = 0 for a NZD r ∈ R. This implies

0 = r∗n = r∗ϕ(x) = ϕ(r∗x), i.e. r∗x = 0 by injectivity of ϕ and x ∈ TR(M).

Corollary C.1.10. cf. [ [4], II.§7.Ex.29, p.197 ]

If M is any R-module, then

M∗ ∼=
(
M/TR(M)

)∗
.

Proof. Let f : M → R be an R-module homomorphism. As R is free (hence

torsion-free) over itself, we know from Lemma C.1.9 that f
(
TR(M)

)
⊆ {0}. Thus

the morphism

f̄ : M/TR(M)→ R : m̄ 7→ f(m)

is well-defined. Vice-versa, if g : M/TR(M) → R is given, it suffices to define

ĝ : M → R : m 7→ g(m̄), so that ĝ
(
TR(M)

)
⊆ {0}.

Corollary C.1.11. cf. [ [11], 15.16.5 ]

If

0 −→M
ϕ−→ N

ψ−→ L

is an exact sequence of R-modules where M and L are torsion-free, then N is

torsion-free as well.
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Proof. Let n ∈ TR(N) with a NZD r ∈ R such that r ∗ n = 0. As n is a torsion

element, we obtain ψ(n) ∈ TR(L) by Lemma C.1.9, i.e. ψ(n) = 0 since L is

torsion-free. Thus n ∈ kerψ = imϕ and ∃m ∈ M such that n = ϕ(m). Then

0 = r ∗ n = ϕ(r ∗ m) implies that r ∗ m = 0 by injectivity of ϕ. But as M is

torsion-free, we have m = 0, hence n = ϕ(0) = 0 and N is torsion-free.

Remark C.1.12. Proposition 1.3.1 gives an alternative way of proving Corol-

lary C.1.11. Indeed if

0 −→M
ϕ−→ N

ψ−→ L

is an exact sequence of R-modules where M and L are torsion-free, then by left

exactness we obtain

0 −→ TR(M) −→ TR(N) −→ TR(L) ⇔ 0 −→ 0 −→ TR(N) −→ 0 ,

which is exact and hence implies that TR(N) = {0} as well.

Remark C.1.13. We finish the section about torsion-freeness by briefly men-

tioning some more results without proof.

1) We have seen in Example C.1.5 that projective modules are torsion-free. The

converse is false, e.g. Quot(R) is not projective over R.

2) We also saw in Proposition C.1.8 that flat modules are torsion-free. The con-

verse is false in general, but true over Dedekind rings.

3) The Structure Theorem of finitely generated modules over PIDs (see Theo-

rem D.1.13) implies that a finitely generated module over a principal ideal domain

is free if and only if it is torsion-free.

C.2 Torsionless modules

The notions of a torsion-free module and a torsionless module are often treated

as equivalent, but in general they are not. In this section we want to point out

the main differences.

Definition C.2.1. For an R-module M , we consider the canonical R-module

homomorphism from M to its bidual

j : M −→M∗∗ : m 7−→
(

evm : M∗ → R : f 7→ f(m)
)
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and denote KR(M) := ker j, which is a submodule of M .

Note that j(m) = evm = 0 ⇔ f(m) = 0 for all f ∈M∗, hence

KR(M) =
⋂
f∈M∗

ker f . (C.1)

M is called torsionless if j is injective, i.e. if KR(M) = {0}.

Lemma C.2.2. [ [63], B.1.7, p.534 ]

We have TR(M) ⊆ KR(M). In particular, torsionless modules are torsion-free.

Proof. Let m ∈ TR(M), i.e. ∃ r ∈ R, r 6= 0 which is a NZD such that r ∗m = 0.

∀ f ∈M∗, 0 = f(0) = f(r ∗m) = r ∗ f(m) = r · f(m) ⇒ f(m) = 0 ,

so that f(m) = 0, ∀ f ∈M∗, hence m ∈ KR(M).

Proposition C.2.3. [ [44], 4.65, p.144 ] and [ [53], 851485 ]

Torsionless modules can be characterized as follows. The conditions below are

equivalent:

1) M is torsionless.

2) ∀m ∈M with m 6= 0, ∃ f ∈M∗ such that f(m) 6= 0.

3) M can be embedded into some (maybe infinite) direct product RI .

Proof. 1)⇔ 2) follows from (C.1).

3) ⇒ 2) : denote g : M ↪→ RI and let m 6= 0. Hence g(m) 6= 0 by injectivity,

but this means that

0 6= g(m) =
{
gi(m)

}
i

⇒ ∃ i ∈ I and gi : M → R (gi ∈M∗) such that gi(m) 6= 0 .

2)⇒ 3) : let {fi}i∈I be a (maybe infinite) generating set of M∗ as an R-module

and define

g : M −→ RI : m 7−→
{
fi(m)

}
i
.

g is injective : let g(m) = 0 ⇔ fi(m) = 0, ∀ i ∈ I. Since {fi}i is a generating set

of M∗, we may write every f ∈M∗ as a finite sum f =
∑

i ri fi, hence f(m) = 0,

∀ f ∈M∗. As M is torsionless this implies that m = 0.
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Corollary C.2.4. [ [53], 851485 ]

Let M be a finitely generated module over a Noetherian ring R. Then M is

torsionless if and only if it can be embedded into a finite direct product Rm.

Proof. Since M is finitely generated there exists a surjective morphism Rn �M .

Applying the left exact functor HomR( · , R) to the exact sequence Rn →M → 0,

we obtain the exact sequence

0 −→ HomR(M,R) −→ HomR(Rn, R) ⇔ 0 −→M∗ −→ Rn ,

which means that M∗ may be seen as an R-submodule of Rn. Being a sub-

module of the finitely generated module Rn over a Noetherian ring, M∗ is also

finitely generated (see Proposition D.1.5). So we can do the same proof as in

Proposition C.2.3 with I = {1, . . . ,m} for some m ∈ N.

Remark C.2.5. [ [10], 2.5, p.2-3 ]

1) The proof of Corollary C.2.4 shows that if a module over a Noetherian ring is

finitely generated, then so is its dual. But the number of generators may not be

the same. Consider e.g. the Z-module Z/2Z, which is generated by 1̄, so for a

morphism f : Z/2Z→ Z, it suffices to know f(1̄) = a ∈ Z. Since 2 ∗ 1̄ = 0̄, this

gives

0 = f(0̄) = f(2 ∗ 1̄) = 2 ∗ f(1̄) = 2 · a ,

hence a = 0 and (Z/2Z)∗ = {0}.
2) More generally, if G is any finite abelian group (Z-module), then G∗ = {0}.
Again by Fermat, every g ∈ G is annihilated by |G|, so if f ∈ G∗ = HomZ(G,Z),

0 = f(0) = f
(
|G| ∗ g

)
= |G| ∗ f(g) = |G| · f(g) , ∀ g ∈ G .

As |G| 6= 0, this gives f(g) = 0, ∀ g ∈ G and G∗ = {0}.

Example C.2.6. cf. [ [44], 4.65, p.144-145 ]

1) Free modules are torsionless. In particular, vector spaces are torsionless.

2) Direct sums and submodules of torsionless modules are torsionless.

3) In particular, projective modules are torsionless.
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4) M/KR(M) and M∗ are always torsionless.

5) KR(M) = M ⇔ M∗ = {0}. In particular,

a) If G is a finite abelian group, then TZ(G) = KZ(G) = G.

b) If M is a torsion module, then M∗ = {0}.

Proof. 1) 2) since they can all be embedded into a direct product. An alterna-

tively proof for 1) is:

Let {ei}i∈I be a basis of M ∼= R(I) and consider the projections πi : M → R,

πi(m) = ri where m =
∑

i(ri ∗ ei) is the unique decomposition of m in the basis.

If m ∈ ker j, then f(m) = 0 for all f ∈ M∗, so in particular for f = πi. But

πi(m) = 0, ∀ i means that ri = 0 for all i, i.e. m = 0. Hence ker j = {0}.
3) as they are direct summands (hence submodules) of free modules, which are

torsionless.

4) a) Let m̄ 6= 0̄, i.e. m /∈ KR(M) = ker j, hence ∃ f ∈ M∗ such that f(m) 6= 0.

We define

f̄ : M/KR(M) −→ R : x̄ 7→ f(x) ,

which is well-defined since f
(
KR(M)

)
⊆ {0}. But then f̄(m̄) 6= 0, thusM/KR(M)

is torsionless.

b) Let

R(J) −→ R(I) −→M −→ 0

be a presentation of M (this always exists). Applying the left exact duality

functor yields

0 −→ HomR(M,R) −→ HomR

(
R(I), R

)
−→ HomR

(
R(J), R

)
⇔ 0 −→M∗ −→ RI −→ RJ ,

so M∗ can be embedded into a direct product RI , i.e. M∗ is torsionless.

5) If KR(M) = M , then M = ker j and evm = 0, ∀m ∈ M . Thus if we fix

f ∈ M∗, we get f(m) = 0 for all m ∈ M , which means that f = 0. Conversely

if M∗ = {0}, then

ker j =
⋂
f∈M∗

ker f = ker 0 = M .

a) From Example C.1.6 and Remark C.2.5 we know that TZ(G) = G and that

G∗ = {0}, thus KZ(G) = G.

381



LEYTEM Alain C.2. Torsionless modules

b) If M is a torsion module, then M = TR(M) ⊆ KR(M) ⊆ M implies that

KR(M) = M as well.

Example C.2.7. If I E R is an ideal that contains a NZD, then

TR(R/I) = KR(R/I) = R/I .

In particular, if R is an integral domain, then HomR(R/I,R) = {0} for I 6= {0}.

Proof. Let x ∈ I, x 6= 0 be a NZD. Then x ∗ r̄ = 0̄ for all r̄, so R/I is a torsion

module. To show directly that KR(R/I) = R/I, we prove that its dual is zero.

Let f ∈ (R/I)∗. Since R/I is generated by 1̄ as an R-module, it suffices to know

the value of y := f(1̄) ∈ R. We consider the projection π : R→ R/I and define

φ : R → R by φ := f ◦ π, so that φ is an R-module homomorphism satisfying

φ(I) ⊆ {0}. In particular φ(x) = 0. But then

0 = φ(x) = φ(x · 1) = x · φ(1) = x · f(1̄) = x · y .

If y 6= 0, this contradicts the fact that x is a NZD. Thus y = 0 and f = 0.

The relation TR(M) ⊆ KR(M) from Lemma C.2.2 shows that torsionless modules

are torsion-free and that torsion modules also satisfy KR(M) = M . However this

inclusion can be strict, so the notions of a torsion-free module and a torsionless

module are in general not equivalent.

Example C.2.8. [ [10], 2.5, p.2-3 ] and [ [63], B.1.7, p.534 ]

Consider R = Z and M = Q as a module over Z. Then

{0} = TZ(Q) ( KZ(Q) = Q .

By the general result about quotient fields of integral domains from Exam-

ple C.1.6, we know that Q = Quot(Z) is torsion-free over Z. However, it is

not torsionless. We will show that Q∗ = {0} and thus KZ(Q) = Q by Exam-

ple C.2.6. Let f ∈ Q∗ = HomZ(Q,Z). We have f(0) = 0 and f(1) = k for some

k ∈ Z. Since f is a Z-module homomorphism, we obtain ∀n ∈ N,

k = f(1) = f
(
n
n

)
= f

(
n · 1

n

)
= n · f

(
1
n

)
,
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which means that k is divisible by all n. Thus k = 0 and f
(

1
n

)
= 0 for all

n as well. So if we write elements in Q as a
b

with a ∈ Z and b ∈ N, then

f
(
a
b

)
= a ·f

(
1
b

)
= 0, i.e. f(q) = 0, ∀ q ∈ Q. Note that it is important to consider

the Z-module HomZ(Q,Z) because HomQ(Q,Q) ∼= Q.

Example C.2.9. cf. [ [52], 11908 ]

Take again R = Z and consider the subring Z[1
2
] ⊂ Q, which consists of polyno-

mial expressions in 1
2
∈ Q with coefficients in Z, i.e.

Z[1
2
] =

{
q
(

1
2

) ∣∣ q ∈ Z[X]
} ∼= Z[X]/〈 2X − 1 〉 .

This is a Z-module via multiplication Z×Z[1
2
]→ Z[1

2
]. Moreover it is torsion-free

since Q is an integral domain. But we will again show that
(
Z[1

2
]
)∗ = {0}, hence

that KZ
(
Z[1

2
]
)

= Z[1
2
].

A Z-module homomorphism f : Z[1
2
]→ Z is uniquely determined by the values

f(1) and f
(

1
2k

)
for all k ∈ N since

f
(
q
(

1
2

))
= f

( n∑
k=0

ak ·
(

1
2

)k)
=

n∑
k=0

ak · f
((

1
2

)k)
= a0 · f(1) +

n∑
k=1

ak · f
(

1
2k

)
,

where ak ∈ Z. But 2k · f
(

1
2k

)
= f

(
2k

2k

)
= f(1), which means that f(1) is divisible

by 2k for all k, i.e. f(1) = 0. It follows that f
(

1
2k

)
= 0 for all k, hence f = 0.

Remark C.2.10. We will show in Section C.4 that being torsion-free and being

torsionless is nevertheless equivalent in the case of finitely generated modules

over integral domains. More precisely, we will get TR(M) = KR(M) in that

case. An example of a finitely generated module (over a non-integral ring) that

is torsion-free but not torsionless will be given in Example C.4.23.

Remark C.2.11. [ [44], 4.65, p.145 & 19.38, p.519 ] and [ [63], B.1.7, p.534 ]

We have seen in Example C.2.6 that M∗ is always torsionless. This can also be

proven using the canonical morphisms. Consider

j : M −→M∗∗ : m 7−→
(

evm : M∗ → R : f 7→ f(m)
)
,

j∗ : M∗∗∗ −→M∗ : (ε : M∗∗ → R) 7−→ (ε ◦ j : M → R) , (C.2)

k : M∗ −→M∗∗∗ : f 7−→
(

evf : M∗∗ → R : g 7→ g(f)
)
,
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where k is the canonical morphism associated to the R-module M∗. Then we

have j∗ ◦ k = idM∗ , which shows that k is injective. Indeed ∀ f ∈M∗,

j∗
(
k(f)

)
= j∗(evf ) = evf ◦ j = f

because

evf
(
j(m)

)
= evf (evm) = evm(f) = f(m), ∀m ∈M .

It also follows that j∗ is surjective. Actually it turns out that every torsionless

module is a submodule of a dual module (no proof).

C.3 Reflexive and projective modules

Definition C.3.1. Let M be an R-module and consider again the canonical mor-

phism j : M →M∗∗. M is called reflexive if j is an isomorphism. Hence reflexive

modules are in particular torsionless and thus torsion-free by Lemma C.2.2.

Remark C.3.2. There exist modules which are isomorphic to their bidual, how-

ever without being reflexive, see for example [ [52], 76000 ]. Reflexivity always

requires that the canonical morphism j is an isomorphism.

C.3.1 Standard facts

Remark C.3.3. In this section we shall always work with finitely generated

modules.

1) Indeed even vector spaces of infinite dimension (i.e. free modules of infinite

rank over fields!) are in general not reflexive. Consider e.g. M ∼= R(I), so that

M∗ = HomR

(
R(I), R

) ∼= RI .

As an example let R = C and M = C[X] ∼= C(N), the complex polynomials

in 1 variable, which is an infinite-dimensional C-vector space. Then the dual is

M∗ = HomC
(
C[X],C

) ∼= CN ∼= C[[X]], the space of formal complex power series.

So it is clear that M∗∗ 6∼= M . On the other hand we know by Example C.2.6 that

all vector spaces are torsionless.

2) Actually it turns out that an infinite-dimensional vector space V (over R or

C) is never isomorphic to its bidual. This is why in analysis one often redefines
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the dual vector space as being the space of continuous linear maps V → K (with

respect to some norm), see e.g. [ [10], 4.7 & 4.8, p.9 ].

3) But even under this continuity condition reflexivity is not always true. Con-

sider for example the vector space RN of R-valued sequences. We denote

c0 =
{

(an)n ∈ RN ∣∣ lim
n→+∞

an = 0
}

, `1 =
{

(an)n ∈ RN ∣∣ ∑
n∈N

|an| <∞
}

and let `∞ ⊂ RN be the R-vector subspace of bounded sequences. One can

show that the dual space defined by continuous linear maps satisfies (c0)∗ ∼= `1

and (`1)∗ ∼= `∞. Thus we get c0 ⊂ `∞, which is also clear by definition since

sequences converging to zero are bounded, but it is not an isomorphism as not

every bounded sequence converges to zero.

Proposition C.3.4. [ [10], 2.4, p.2 & 4.2, p.6-8 ]

Let M be a free module of finite rank. Then M∗ is free of the same rank and M

is reflexive.

Proof. If M ∼= Rn, then M∗ ∼= HomR(Rn, R) ∼= Rn, so that M∗ ∼= M . Note

however that this isomorphism is not canonical (as for vector spaces) since it

needs the fixing of a basis first. If {e1, . . . , en} is a basis of M , then the dual

basis is given by {ε1, . . . , εn} where the εi : M → R are defined by εi(ej) = δij,

∀ i, j ∈ {1, . . . , n} since any R-module homomorphism f : M → R is uniquely

determined by its values f(e1), . . . , f(en) and hence writes as a finite R-linear

combination

f =
n∑
i=1

f(ei) ∗ εi .

To prove that free modules (of finite rank) are reflexive, there are 2 ways.

1) directly: let M = 〈 e1, . . . , en 〉 and M∗ = 〈 ε1, . . . , εn 〉. By Example C.2.6 we

already know that j : M →M∗∗ is injective. To prove surjectivity, we take any

R-module homomorphism φ : M∗ → R and denote ri := φ(εi), ∀ i. Then

j
(∑

j rj ∗ ej
)
(εi) = εi

(∑
j rj ∗ ej

)
=
∑

j rj · εi(ej) =
∑

j rj · δij = ri = φ(εi) ,

i.e. φ and j
(∑

j rj ∗ ej
)

coincide on all basis elements and are hence equal. In

particular, φ ∈ im j. Here we see that M must be finitely generated, otherwise

the sum would be infinite.
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2) Using that

M∗ = HomR(M,R) ∼= HomR

(
Rn, R

) ∼= Rn ∼= M ,

hence M∗∗ ∼= M∗ ∼= M . However here one needs to check that all these isomor-

phisms are compatible with the morphism j. Recall from Remark A.2.15 that

we have the isomorphism

HomR(Rn, R) ∼= Rn : f 7−→
(
f(e1), . . . , f(en)

)
,

where ei = (0, . . . , 1, . . . , 0) ∈ Rn. How do j and M∗∗ look under this isomor-

phism ?

A functional f ∈ M∗ is identified with the n-tuple
(
f(e1), . . . , f(en)

)
∈ Rn. For

m =
∑

i ri ∗ ei, we get evm(f) = f
(∑

i ri ∗ ei
)

=
∑

i ri · f(ei). Since M∗ ∼= Rn,

evm : M∗ → R can again be identified with such an n-tuple. The corresponding

morphism Rn → R then looks like

g : Rn −→ R : (a1, . . . , an) 7−→
∑

i ri · ai

and g(e1) = r1, . . . , g(en) = rn, i.e. the map g is identified with (r1, . . . , rn):

j : M −→M∗∗ : m 7−→ evm ' g

⇔ j : Rn −→ Rn : (r1, . . . , rn) 7−→ (r1, . . . , rn) ,

so under this identification j is nothing but the identity, which is obviously an

isomorphism.

Remark C.3.5. If M is free of infinite rank, then M∗ is in general no longer

free. An example with R = Z, M = Z(N), M∗ ∼= ZN is given in [ [10], 3.5, p.5 ].

Proposition C.3.6. [ [44], 19.38, p.519 ]

If M is a reflexive module, then M∗ is reflexive as well.

Proof. Consider the same morphisms as in (C.2) where j : M → M∗∗ is an

isomorphism, hence so is j∗ : M∗∗∗ → M∗ (as functors send isomorphisms to

isomorphisms) and the relation j∗ ◦ k = idM∗ implies that

k = (j∗)−1 : M∗ −→M∗∗∗

is an isomorphism as well. Note again that it is not sufficient just to check that

M ∼= M∗∗ (obviously) implies M∗ ∼= M∗∗∗.
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Proposition C.3.7. If M and N are reflexive, then M ⊕N is reflexive as well.

Proof. Denote the canonical morphisms by j1 : M →M∗∗ and j2 : N → N∗∗. By

assumption they are isomorphisms. Taking the direct sum of the exact sequences

0 −→M
j1−→M∗∗ −→ 0 and 0 −→ N

j2−→ N∗∗ −→ 0

gives

0 −→M ⊕N −→M∗∗ ⊕N∗∗ −→ 0 .

We shall show that the isomorphism j1 ⊕ j2 is indeed the canonical map

j : M ⊕N −→ (M ⊕N)∗∗ .

For this note that additivity of the Hom-functor gives

(M⊕N)∗ = HomR(M⊕N,R) ∼= HomR(M,R)⊕HomR(N,R) = M∗⊕N∗ (C.3)

via h 7→ (h ◦ ε1, h ◦ ε2) where εi are the injections, with inverse

(f, g) 7→
(
(m,n) 7→ f(m) + g(n)

)
.

Hence (M ⊕N)∗∗ ∼= M∗∗ ⊕N∗∗ as well. Now

j : M ⊕N −→ (M ⊕N)∗∗

(m,n) 7−→
(

ev(m,n) : (M ⊕N)∗ → R : h 7→ h(m,n)
)
,

j1 ⊕ j2 : M ⊕N −→M∗∗ ⊕N∗∗ : (m,n) 7−→ (evm, evn) ,

and it remains to show that ev(m,n) is equal to (evm, evn) under the identification

(C.3) which is used twice.

l : (M ⊕N)∗ ∼−→M∗ ⊕N∗ : h 7−→ (h ◦ ε1, h ◦ ε2) ,

◦ l : (M∗ ⊕N∗)∗ ∼−→ (M ⊕N)∗∗ : α 7−→ α ◦ l .

We have again (M∗ ⊕N∗)∗ ∼= M∗∗ ⊕N∗∗, under which (evm, evn) is mapped to

(evm, evn) 7−→
(
ψ : M∗⊕N∗ → R : (f, g) 7→ evm(f) + evn(g) = f(m) + g(n)

)
and

(ψ ◦ l)(h) = ψ(h ◦ ε1, h ◦ ε2) = h(ε1(m)) + h(ε2(n))

= h((m, 0) + (0, n)) = h(m,n) = ev(m,n)(h) ,

which finally is what we want.
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Definition C.3.8. An R-module P is called projective if the functor HomR(P, · )
is exact. So for example free modules are projective since HomR(R(I), · ) ' ( · )I

is an exact functor.

Proposition C.3.9. 1) An R-module P is projective if and only if it is a direct

summand of a free module F , i.e. ∃Q ∈ Mod(R) such that F ∼= P ⊕Q.

2) Every exact sequence

0 −→ N −→M −→ P −→ 0

of R-modules where P is projective splits, i.e. M ∼= N ⊕ P .

Proposition C.3.10. [ [9], 3.28, p.46 ], [ [5], X.§1.n◦4.Pro.5, p.10 ], [ [53], 588311 ]

1) A direct summand of a finitely generated module is finitely generated as well.

2) If P is a finitely generated projective module, then it is a direct summand of

a free module of finite rank.

3) Finitely generated projective modules are finitely presented (even if R is not

Noetherian).

4) If P,Q are both finitely generated projective modules, then HomR(P,Q) is also

finitely generated and projective.

5) In particular, if P is projective and finitely generated, then P ∗ is projective

and finitely generated.

Proof. 1) Let M ⊕N ∼= L where L is finitely generated. Combining the surjec-

tions Rn � L and L� M , we get Rn � M , so M is finitely generated as well.

Similarly for N .

2) P being finitely generated, there is a surjection ϕ : Rn � P , which gives an

exact sequence

0 −→ kerϕ −→ Rn −→ P −→ 0 . (C.4)

This exact sequence splits by Proposition C.3.9, hence Rn ∼= P ⊕ kerϕ and P is

a direct summand of the free module Rn.

3) As kerϕ is a direct summand of Rn, which is finitely generated, it is finitely

generated as well and we get a surjection Rm � kerϕ. Combining with (C.4),

we get an exact sequence

Rm −→ Rn −→ P −→ 0 .
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4) Let L1, L2 be two (finitely generated) modules that are the direct summands,

i.e. Rn ∼= P ⊕ L1 and Rm ∼= Q⊕ L2. Applying HomR( · , Q), we get

HomR(Rn, Q) ∼= HomR(P,Q)⊕ HomR(L1, Q) ⇔ Qn ∼= HomR(P,Q)⊕ L′1 .

Thus Rmn ∼= Qn ⊕ Ln2 ⇔ Rmn ∼= HomR(P,Q) ⊕ L′1 ⊕ Ln2 , which shows that

HomR(P,Q) is a direct summand of the free module Rmn, hence projective. In

particular, it is finitely generated as well.

5) Take Q = R, which is projective as it is free of rank 1.

Proposition C.3.11. [ [53], 620239 ]

Let P be a finitely generated projective module. Then P is reflexive.

Proof. Let Q be such that Rn ∼= P ⊕ Q. Let us denote this isomorphism by

ϕ : Rn ∼−→ P ⊕Q and consider the following commutative diagram

Rn ϕ
//

j
��

P ⊕Q
(jP ,jQ)

��

(Rn)∗∗
ϕ∗∗
// P ∗∗ ⊕Q∗∗

Indeed, let r ∈ Rn and denote (p, q) := ϕ(r). Then

(jP , jQ)
(
ϕ(r)

)
= (jP , jQ)(p, q) = (evp, evq) : (f, g) 7→

(
f(p), g(q)

)
,

ϕ∗∗
(
j(r)

)
= evr ◦ϕ∗ : (f, g) 7→ evr

(
ϕ∗(f, g)

)
= evr

(
(f, g) ◦ ϕ

)
= (f, g)

(
ϕ(r)

)
=
(
f(p), g(q)

)
.

Now we know that ϕ and hence ϕ∗∗ are isomorphisms. Moreover j is an isomor-

phism by Proposition C.3.4 since Rn is free of finite rank. Thus we need that

(jP , jQ) is an isomorphism as well, in particular jP : P ∼−→ P ∗∗.

Proposition C.3.12. Projective modules are flat.

Proof. We will use the fact that if the direct sum of 2 sequences is exact, then

the individual sequences are exact. Indeed if

A
ϕ−→ B

ψ−→ C and X
f−→ Y

g−→ Z
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are such that A ⊕X → B ⊕ Y → C ⊕ Z is exact, then in particular ψ ◦ ϕ = 0

and if ψ(b) = 0, then (ψ, g)(b, 0) = (0, 0), so (b, 0) = (ϕ, f)(a, x) =
(
ϕ(a), f(x)

)
and b = ϕ(a). So let us consider an exact sequence of R-modules

M
ϕ−→ N

ψ−→ L .

Let P be projective with P ⊕ Q ∼= F where F ∼= R(I). Since free modules are

flat and tensoring commutes with direct sums, we get

M ⊗R (P ⊕Q) −→ N ⊗R (P ⊕Q) −→ L⊗R (P ⊕Q)

⇔ (M ⊗ P )⊕ (M ⊗Q) −→ (N ⊗ P )⊕ (N ⊗Q) −→ (L⊗ P )⊕ (L⊗Q) .

In order to conclude that M ⊗ P → N ⊗ P → L⊗ P is exact as well, it remains

to show that the morphisms are indeed the ones that come from the direct sum

of the individual tensored sequences. The compositions are

(M ⊗ P )⊕ (M ⊗Q) ∼−→M ⊗R (P ⊕Q) −→ N ⊗R (P ⊕Q)

∼−→ (N ⊗ P )⊕ (N ⊗Q)

(m⊗ p, n⊗ q) 7−→ m⊗ (p, 0) + n⊗ (0, q) 7−→ ϕ(m)⊗ (p, 0) + ϕ(n)⊗ (0, q)

7−→
(
ϕ(m)⊗ p, 0

)
+
(
0, ϕ(n)⊗ q

)
,

i.e. (m⊗p, n⊗q) 7→
(
ϕ(m)⊗p , ϕ(n)⊗q

)
= (ϕ⊗ idP , ϕ⊗ idQ)(m⊗p, n⊗q).

C.3.2 More advanced results

Here below we state some deeper theorems, mostly without proof. The goal is

just to give an idea of what happens in some frequent situations.

Proposition C.3.13. [ [9], 3.13 & 3.14, p.47 ]

A finitely generated projective module over a principal ideal domain is free.

Proof. This follows from Theorem D.1.13: finitely generated projective modules

are direct summands of free modules, hence torsion-free and thus free.

Remark C.3.14. Actually one can show that this is true for any projective

module over a PID.
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Theorem C.3.15. [ [9], 3.16, p.48 ]

A finitely generated projective module over a local ring is free.

Remark C.3.16. [ [9], 3.72, p.71 ]

I. Kaplansky actually showed that this is even true for any projective module

over a local ring.

Remark C.3.17. [ [9], p.47 ]

Theorem C.3.15 may fail for non-local rings. Let R be a non-trivial Noetherian

ring, e.g. R = K[X], and define the product ring T = R × R. Then consider

the ideals P = R × {0} and Q = {0} × R as T -modules. These are finitely

generated by 1 element (e.g. if e = (1, 0) ∈ P , then 〈 e 〉 = P ) and hence of

finite presentation since R and T are Noetherian (see Lemma D.1.8). Moreover

P ⊕ Q = T , so P and Q are projective. However they cannot be free. Indeed,

let F ∼= T n be any free T -module of finite rank. Then e ∗ F 6= {0} since

(e, . . . , e) ∈ F . But e ∗Q = {0} and similarly (0, 1) ∗ P = {0}. So P and Q are

examples of non-free projective modules.

Note that one cannot conclude via e ∗ Q = {0} that Q has torsion since e is a

zero-divisor in T . Actually P and Q are torsion-free T -modules since they are

submodules of T , which is free.

Theorem C.3.18. [ [9], 7.26 & 7.27, p.151-152 ] and [ [61], Thm.14, p.43-44 ]

Let M be an R-module. The following are equivalent:

1) M is a finitely generated projective module.

2) M is of finite presentation and MP is a free RP -module of finite rank for all

prime ideals P E R.

3) M̃ is a locally finitely free sheaf on SpecR (here on needs in addition that R

is Noetherian).

Proof. 2)⇔ 3) follows since M̃ is coherent with stalks MP .

For the rest we only prove 1)⇒ 2) :

M being finitely generated and projective, we know by Proposition C.3.10 that

it is of finite presentation. Moreover M ⊕Q ∼= Rn for some (finitely generated)

R-module Q. Now fix a prime ideal P E R. Since localization commutes with
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direct sums (Proposition A.2.4), we get MP ⊕QP
∼= Rn

P . Hence MP is a finitely

generated projective RP -module. But RP is a local ring, so MP is a free RP -

module by Theorem C.3.15.

Corollary C.3.19. [ [9], 3.50, p.64 ]

Let R be a local ring and M an R-module of finite presentation. Then

M is free ⇔ M is projective ⇔ M is flat .

Proof. The only part which still needs to be proven is flat ⇒ projective. Indeed

the first equivalence follows from Theorem C.3.15 and the second implication is

just Proposition C.3.12.

Remark C.3.20. [ [9], 7.29, p.152 ]

The second equivalence even holds true for any finitely generated module over a

Noetherian ring.

Lemma C.3.21. [ [10], 5.10, p.13-14 ]

If M,N are free modules of finite rank, then the assignment f 7→ f ∗ gives an

isomorphism

HomR(M,N) ∼= HomR(N∗,M∗) .

Proposition C.3.22. [ [10], 5.12 & 5.14, p.14-15 ]

1) Let ϕ : M → N be an R-module homomorphism. If ϕ is surjective, then ϕ∗

is injective.

2) Let ϕ : V → W be a linear map of K-vector spaces. If ϕ is injective, then ϕ∗

is surjective.

Proof. We only prove 1). We have ϕ∗ : N∗ → M∗ where ϕ is surjective. Let

f ∈ N∗ such that ϕ∗(f) = f ◦ ϕ = 0, i.e. f
(
ϕ(m)

)
= 0, ∀m ∈ M . As ϕ is

surjective, ∀n ∈ N , ∃m ∈ M such that n = ϕ(m) and thus f(n) = 0, ∀n ∈ N ,

so f = 0.

Remark C.3.23. [ [10], 5.13, p.15 ]

The second statement of Proposition C.3.22 uses existence of the complement
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of a vector subspace and is in general false for modules over a ring. A counter-

example is e.g. the following:

Consider R = Z, M = 2Z and N = Z with the inclusion map ϕ : M ↪→ N .

We will show that the dual map ϕ∗ : N∗ → M∗ is not surjective. Consider for

example f ∈ M∗ given by M → Z : 2a 7→ a. If f is in the image of ϕ∗, then

∃ g ∈ N∗ such that f = g ◦ ϕ. In particular, g
(
ϕ(2)

)
= g(2) = f(2) = 1. On the

other hand, we also have g(2) = g(2 · 1) = 2 · g(1), so in the end 2 · g(1) = 1,

which is impossible as g(1) ∈ Z. Thus ϕ∗ is not surjective. Actually,

imϕ∗ =
{
f ∈M∗ ∣∣ im f ⊆ 2Z

}
.

⊂ : If g ∈ N∗, then (g ◦ ϕ)(2a) = g(2a) = 2 · g(a) ∈ 2Z, thus im(g ◦ ϕ) ⊆ 2Z.

⊃ : Let f ∈M∗ such that im f ⊆ 2Z and set g(b) := f(2b)
2

. Then ϕ∗(g) = f since

(g ◦ ϕ)(2a) = g(2a) = 2 · g(a) = f(2a) , ∀ 2a ∈M .

C.4 The integral case

In this section we always assume that R is an integral domain. Hence the quotient

field K = Quot(R) always exists and TR(M) is given by all elements that are

annihilated by some non-zero element from the ring as the condition about NZDs

does not show up. Let S = R \ {0}, so K = S−1R and recall that MK
∼= S−1M

by Lemma A.2.2. If M is an R-module we set MK := M ⊗R K, so we have the

canonical morphism

` : M −→MK : m 7−→ m⊗ 1
1
. (C.5)

Proposition C.4.1. [ [4], II.§7.n◦10.Prop.26, p.116-117 ]

If R is an integral domain, then TR(M) = ker `.

Proof. If we consider the map i : M → S−1M : m 7→ m
1

, then TR(M) = ker i

since m
1

= 0 if and only if ∃ s ∈ R, s 6= 0 such that s ∗m = 0. Moreover we have

the composition

` =
(

M
i−→ S−1M ∼−→M ⊗R K : m 7−→ m

1
7−→ m⊗ 1

1

)
,

hence ker ` = ker i since the second map is an isomorphism.
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Remark C.4.2. There exists a similar description of TR(M) in the non-integral

case. That one can be found in Lemma 2.4.2.

Proposition C.4.3. [ [4], II.§7.n◦10.Cor.1, p.117 ]

Let R be an integral domain. Then

1) M is torsion-free ⇔ ` : M →MK is injective.

2) M is a torsion module if and only if MK = {0}.

Proof. 1) follows immediately from Proposition C.4.1 and TR(M) = ker `.

2)
TR(M) = M ⇔ ∀m ∈M, ∃ r ∈ R, r 6= 0 such that r ∗m = 0

⇔ ∀m ∈M, ∃ r ∈ S such that r ∗m = 0

⇔ m
s

= 0, ∀ m
s
∈ S−1M

⇔ S−1M = {0} ⇔ MK = {0} .

Lemma C.4.4. [ [4], II.§7.n◦10.Prop.27, p.118 ]

If M → N → L is an exact sequence of R-modules, then MK → NK → LK is

an exact sequence of K-vector spaces.

Proof. Exactness of the sequence follows from exactness of localization (Propo-

sition A.2.6). The fact that MK is a K-vector space can be seen in 2 ways:

1) MK
∼= S−1M is a module over S−1R = K, thus a K-vector space.

2) MK = M⊗RK is given a vector space structure by k∗(m⊗l) = m⊗(k ·l).

C.4.1 Equivalence of “torsion-free” and “torsionless”

Now we will see why it is useful to study MK instead of M . As a vector space,

we e.g. know that it always admits a basis. Let {mi}i∈I be a (maybe infinite)

generating set of M as an R-module. Then {mi ⊗ 1
1
}i∈I is a generating set of

MK as a K-vector space, so one can extract a basis {mj ⊗ 1
1
}j∈J for some J ⊆ I.

Assume for example that we have a relation on the generators

a1 ∗m1 + . . .+ aj ∗mj + . . .+ ak ∗ rk = 0 ⇔ aj ∗mj = −
∑
i 6=j

(ai ∗mi)
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with aj 6= 0 (but not necessarily a unit, so we cannot extract mj). However

mj⊗ 1
1

= mj⊗(aj · 1
aj

) = (aj∗mj)⊗ 1
aj

=
(
−
∑
i 6=j

(ai∗mi)
)
⊗ 1

aj
=
∑
i 6=j

−ai
aj
∗(mi⊗ 1

1
) ,

so mj⊗ 1
1

can be omitted in the basis of MK as it is a K-linear combination of the

other mi ⊗ 1
1

(whereas mj cannot be omitted in the generating set of M). Thus

we have MK
∼= K(J) given by mi ⊗ 1

1
7→ ei. A priori this is only an isomorphism

of K-vector spaces, but it is also compatible with the R-module structures since

R ⊂ K:

m⊗ k =
∑
j

kj ∗ (mj ⊗ 1
1
) 7−→

∑
j

kj · ej ,

r ∗ (m⊗ k) = r ∗
∑
j

kj ∗ (mj ⊗ 1
1
) =

∑
j

(r · kj) ∗ (mj ⊗ 1
1
)

7−→
∑
j

(r · kj) · ej = r ·
∑
j

kj · ej .

Thus MK
∼= K(J) is also an isomorphism of R-modules. Moreover we showed

Corollary C.4.5. [ [4], II.§7.n◦10.Cor.4, p.117 ]

If M is a finitely generated module over an integral domain R, then MK is

a finite-dimensional K-vector space. More precisely, if M is generated by n

elements, then MK
∼= K l for some l ≤ n (as R-modules and as K-vector spaces).

Remark C.4.6. [ [4], II.§7.n◦10, p.118 ]

The converse of this statement is false. Consider for example R = Z and M = Q.

Thus K = Quot(Z) = Q and MK = Q⊗ZQ is a 1-dimensional vector space over

Q, generated by 1⊗ 1. However Q is not finitely generated over Z.

In Section C.2 we have seen on several examples that the notions of torsion-

freeness and torsionlessness are not equivalent in general. However

Proposition C.4.7. [ [44], 4.65, p.145 & 2.31, p.44 ] and [ [11], 15.16.7 ]

If R is an integral domain and M a finitely generated torsion-free module, then

M is also torsionless.

Proof. Let M be torsion-free with generators {m1, . . . ,mn}. We will show that

M can be embedded into Rl for some l ∈ N, hence that it is torsionless (see

Proposition C.2.3).
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As M is torsion-free and finitely generated, we get ` : M ↪→MK and MK
∼= K l as

R-modules for some l ≤ n, hence we have an injective R-module homomorphism

M ↪→ K l. Denote the images of the generators by

m1 7−→
( r1

1

s1
1

, . . . ,
r1
l

s1
l

)
, . . . , mn 7−→

( rn1
sn1
, . . . ,

rnl
snl

)
and define s :=

∏
ij s

j
i . Then s ∗ M ↪→ Rl since s cancels all denominators.

Moreover M ↪→ s ∗M since M is torsion-free. Combining everything, we get

M ↪→ Rl, hence M is torsionless.

This shows that a finitely generated module over an integral domain is torsion-

free if and only if it is torsionless. Actually an even stronger statement holds

true.

Corollary C.4.8. If M is a finitely generated module over an integral domain

R, then

TR(M) = KR(M) .

Proof. By Lemma C.2.2 we already know that TR(M) ⊆ KR(M). To prove the

other inclusion, let M be finitely generated, so that M/TR(M) is torsion-free and

still finitely generated, hence torsionless. If we assume that TR(M) ( KR(M),

then ∃m0 ∈ KR(M) such that m0 /∈ TR(M), i.e. m̄0 6= 0̄. M/TR(M) being

torsionless, there is an R-module homomorphism f̄ : M/TR(M)→ R such that

f̄(m̄0) 6= 0. From Corollary C.1.10, we then get f ∈M∗ such that f(m) = f̄(m̄)

for all m ∈ M . In particular f(m0) 6= 0, which contradicts m0 ∈ KR(M). Thus

TR(M) = KR(M).

C.4.2 Some formulas holding true in the integral case

If R is an integral domain, we can prove some more formulas which do not hold

true in general. We start with the following generalization of (A.8).

Proposition C.4.9. cf. [ [4], II.§7.Ex.29, p.197 ]

Let M,N be modules over an integral domain R and S ⊂ R a multiplicatively

closed subset. If N is torsion-free and M is finitely generated, then

S−1
(

HomR(M,N)
) ∼= HomS−1R

(
S−1M,S−1N

)
. (C.6)
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Proof. Consider the morphism ρ as given in Corollary A.2.18:

ρ : S−1
(

HomR(M,N)
)
−→ HomS−1R

(
S−1M,S−1N

)
(C.7)

g
s
7−→

(
ρ
(
g
s

)
: S−1M → S−1N : m

t
7→ g(m)

s·t

)
.

We will prove directly that it is an isomorphism under the given assumptions.

a) For injectivity, assume that ρ
(
g
s

)
= 0, i.e. g(m)

s·t = 0 for all m
t
∈ S−1M . In

particular this means that

∀m ∈M, ∃ sm ∈ S such that sm ∗ g(m) = 0 in N .

As N is torsion-free and sm 6= 0 is a NZD (here we use that R is an integral

domain), we need g(m) = 0, ∀m ∈M and thus g
s

= 0.

b) For surjectivity, let ψ : S−1M → S−1N be any morphism of S−1R-modules. If

{m1, . . . ,mn} is a generating set of M , then
{
m1

1
, . . . , mn

1

}
is a generating set of

S−1M over S−1R. We set ai
si

:= ψ
(
mi
1

)
for some ai ∈ N , si ∈ S, ∀ i ∈ {1, . . . , n}

and let s := s1 · . . . · sn. Then we define

g : M −→ N : m 7−→ s ∗ ψ
(
m
1

)
,

which is well-defined since s cancels all denominators, so the result indeed lies

in N . Now we get

ρ
(
g
s

)
: m

t
7−→ g(m)

s · t
=
s ∗ ψ

(
m
1

)
s · t

=
ψ
(
m
1

)
t

= 1
t
∗ ψ
(
m
1

)
= ψ

(
m
t

)
(C.8)

by using S−1R-linearity of ψ and hence ρ
(
g
s

)
= ψ.

Corollary C.4.10. cf. [ [52], 37497 ]

Let R be an integral domain and M a finitely generated R-module. Then

M∗ ⊗R K = HomR(M,R)⊗R K ∼= HomK(MK , K) . (C.9)

Proof. If S = R \ {0}, we have S−1R = K and MK
∼= S−1M , so taking N = R

in (C.6) gives

HomR(M,R)⊗R S−1R ∼= S−1
(

HomR(M,R)
)

∼= HomS−1R(S−1M,S−1R) ∼= HomK(MK , K)
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by Lemma A.2.2. How does this isomorphism look like ? We have the diagram

S−1
(

HomR(M,R)
) ρ

//

OO

∼

HomS−1R

(
S−1M,S−1R

)
∼
��

HomR(M,R)⊗R S−1R // HomS−1R

(
M ⊗R S−1R , S−1R

)
Using the isomorphism from (A.3) we get the composition

f ⊗ r
s
7−→ r∗f

s
7−→

(
ψ : m

t
7→ r·f(m)

s·t

)
7−→ ψ′ ,

where

ψ′ : M ⊗R S−1R −→ S−1R : m⊗ a
t
7−→ ψ

(
a∗m
t

)
= r·f(a∗m)

s·t = f(m) · r
s
· a
t
.

Hence the isomorphism (C.9) is given by f ⊗ r
s
7−→ ψ′.

Remark C.4.11. In other words, Corollary C.4.10 says that taking the dual

space of a finitely generated module commutes with localization at the prime

ideal {0}, i.e.

S−1(M∗) ∼= (S−1M)∗ resp. (M∗)K ∼= (MK)∗ ,

where the dual on each RHS is taken with respect to K = S−1R = Quot(R).

Proposition C.4.12. [ [53], 858331 ]

If M is a module over an integral domain R, then TR(M) ∼= Tor1(M,K/R). In

particular, we get TR(M) = {0} if M is flat.

Proof. Consider the short exact sequence of R-modules

0 −→ R −→ K −→ K/R −→ 0 ,

from which we get the long exact sequence

. . . −→ Tor1(M,R) −→ Tor1(M,K) −→ Tor1(M,K/R)

−→M ⊗R R −→M ⊗R K −→M ⊗R K/R −→ 0 .
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As K is a flat R-module (Corollary A.2.8), we have Tor1(M,K) = {0} since Torj

is symmetric and vanishes for any flat module. Thus the sequence simplifies to

0 −→ Tor1(M,K/R) −→M
`−→MK −→M ⊗R K/R −→ 0 ,

where ` is the morphism (C.5) sinceM ∼= M⊗RR→MK viam 7→ m⊗1 7→ m⊗ 1
1
.

It follows that Tor1(M,K/R) ∼= ker ` = TR(M) by Proposition C.4.1.

Remark C.4.13. This is a generalization (in the integral case) of the fact that

flat modules are torsion-free (see Proposition C.1.8). In Lemma 2.4.2 we even

give a formula that holds true for any commutative ring.

Proposition C.4.14. cf. [ [11], 15.16.3 ]

Let R be an integral domain, M an R-module and S ⊂ R a multiplicatively closed

subset. Then

S−1
(
TR(M)

)
= TS−1R

(
S−1M

)
. (C.10)

In particular, if M is torsion-free over R, then S−1M is torsion-free over S−1R.

Proof. ⊂ : Let m ∈ TR(M) with r ∈ R, r 6= 0 such that r ∗m = 0 and s ∈ S.

Then r
1
∗ m

s
= 0 where r

1
6= 0 since R is an integral domain, i.e. r · t 6= 0, ∀ t ∈ S.

So m
s
∈ TS−1R(S−1M). Note that this includes the case where m

s
= 0 since 0 is a

torsion element anyway.

⊃ : Let m
s

be a torsion element with r
t
∗ m

s
= 0 and r

t
6= 0. Thus r∗m

s·t = 0, which

means that (a · r) ∗m = 0 for some a ∈ S, a 6= 0. Moreover a · r 6= 0 since r
t
6= 0.

Hence m ∈ TR(M) and m
s
∈ S−1

(
TR(M)

)
.

Remark C.4.15. The equality (C.10) does not hold true in the non-integral

case since zero-divisors are involved in the computations (e.g. a · r may be a

zero-divisor even if r
t

is none). An example is given in Section 2.3 where we

consider a non-integral ring R with S = R \ P for some prime ideal P and a

torsion-free R-module M such that TRP (MP ) 6= {0}.

C.4.3 Characterization of reflexive modules

Lemma C.4.16. [ [11], 15.17.5 ]

Let R be an integral domain, S = R \ {0} and ϕ : M → N an R-module
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homomorphism and assume that M is torsion-free. If the induced K-linear map

ϕS : S−1M → S−1N is injective, then ϕ is injective.

Proof. Let m ∈ M such that ϕ(m) = 0. Then 0 = ϕ(m)
1

= ϕS
(
m
1

)
. ϕS being

injective, we get m
1

= 0, i.e. ∃ s ∈ S such that s ∗m = 0. Since s 6= 0 and M is

torsion-free, we thus have m = 0.

Lemma C.4.17. Let R be an integral domain, S = R\{0} and M an R-module

such that M and M∗ are finitely generated. Then S−1M is reflexive.

Proof. Consider the canonical morphism j : M → M∗∗. Localizing this gives

the K-linear map

jS : S−1M → S−1(M∗∗) .

Now we use Remark C.4.11 twice, which holds since M and M∗ are finitely

generated:

S−1(M∗∗) ∼=
(
S−1(M∗)

)∗ ∼= (S−1M)∗∗ .

Thus jS : S−1M → (S−1M)∗∗ and this is indeed the canonical morphism since

similarly as the expression in (C.7) we have the isomorphisms

S−1(M∗)
ρ−→ (S−1M)∗ , (S−1M)∗∗

◦ρ−→ (S−1(M∗))∗ ,

S−1(M∗∗)
ρ′−→ (S−1(M∗))∗ ,

so that jS
(
m
s

)
= evm

s
for m

s
∈ S−1M and

S−1(M∗∗) −→ (S−1(M∗))∗ −→ (S−1M)∗∗

evm
s
7−→ ρ′

(
evm
s

)
7−→ ρ′

(
evm
s

)
◦ ρ−1 .

This is equal to evm/s since if f ∈ (S−1M)∗ and we denote g
t

= ρ−1(f), then

ρ
(
g
t

)
= f and

ρ′
(

evm
s

)(
ρ−1(f)

)
= ρ′

(
evm
s

)(
g
t

)
= evm(g)

s·t = g(m)
s·t = ρ

(
g
t

)(
m
s

)
= f

(
m
s

)
.

On the other hand, S−1M ∼= MK is a finite-dimensional vector space over K,

hence reflexive by Proposition C.3.4 and it follows that jS is an isomorphism (of

K-vector spaces).
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Proposition C.4.18. [ [11], 15.17.5 ] and [ [36], 1.1, p.124 ]

Let R be a Noetherian integral domain and M a finitely generated R-module.

Then M is reflexive if and only if there exists a short exact sequence of R-modules

0 −→M −→ F −→ N −→ 0 ,

where F,N are finitely generated, F is free (of finite rank) and N is torsion-free.

Proof. ⇒ : Let M be reflexive. M being finitely generated, we know by Re-

mark C.2.5 that the dual M∗ is also finitely generated since R is Noetherian,

thus also finitely presented (Proposition D.1.5). Choose a finite presentation

Rm ϕ−→ Rn ψ−→M∗ −→ 0 .

Dualizing, we obtain

0 −→M∗∗ ψ∗−→ Rn ϕ∗−→ Rm ,

where M∗∗ ∼= M , so

0 −→M −→ Rn −→ imϕ∗ −→ 0

is an exact sequence and imϕ∗ ≤ Rm is torsion-free as it is a submodule of Rm,

which is free.

⇐ : Let an exact sequence

0 −→M
ϕ−→ F

ψ−→ N −→ 0

as above be given. Note that this already implies that M is torsion-free since it

is a submodule of a free module. Dualizing the sequence twice, we obtain the

commutative diagram

M∗∗ a // F ∗∗
b // N∗∗

0 //M
ϕ
//

j

OO

F
ψ
//

∼ l

OO

N

k

OO

// 0

where a = ϕ∗∗, b = ψ∗∗ and j, l, k are the canonical morphisms. Indeed ∀ f ∈ F ∗,

a
(
j(m)

)
(f) = (evm ◦ϕ∗)(f) = evm(f ◦ ϕ) = f

(
ϕ(m)

)
,

l
(
ϕ(m)

)
(f) = evϕ(m)(f) = f

(
ϕ(m)

)
,
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and similarly for b ◦ l = k ◦ ψ. We know that the top row is a complex (only

the bottom row is exact) and that l is an isomorphism since F is free of finite

rank. Now let us localize the diagram. By Remark C.4.11 we obtain the K-linear

maps jS : S−1M → (S−1M)∗∗ and kS : S−1N → (S−1N)∗∗ since all modules

and their duals are finitely generated (R being Noetherian). As in the proof of

Lemma C.4.17, S−1M and S−1N are finite-dimensional K-vector spaces, thus

reflexive, so that jS and kS are isomorphisms. Lemma C.4.16 now implies that

j and k are injective since M and N are torsion-free. j being injective, we

conclude that M is also torsionless. The same argument and torsion-freeness of

M∗∗ (duals are always torsion-free by Example C.1.5) show that a is injective as

aS = lS ◦ ϕS ◦ j−1
S is injective.

Showing that j is surjective is done by some diagram chasing. Let f ∈M∗∗ ; we

want to find m ∈ M such that f = j(m). As a(f) ∈ F ∗∗, surjectivity of l gives

r ∈ F such that a(f) = l(r). Next we have

0 = b
(
a(f)

)
= b
(
l(r)
)

= k
(
ψ(r)

)
by commutativity of the diagram. Injectivity of k implies that ψ(r) = 0, thus

∃m ∈M such that r = ϕ(m) as the bottom row is exact. Then

a(f) = l(r) = l
(
ϕ(m)

)
= a
(
j(m)

)
and hence f = j(m) by injectivity of a. Finally j is an isomorphism, i.e. M is

reflexive.

Corollary C.4.19. If R is a Noetherian integral domain, then kernels of mor-

phisms between free modules of finite rank are reflexive: if ϕ : Rn → Rm is an

R-module homomorphism, then kerϕ is a reflexive R-module.

Proof. Let M = kerϕ. Since R is Noetherian, M is finitely generated. Moreover

we have an exact sequence

0 −→M −→ Rn ϕ−→ Rm ,

from which we get

0 −→M −→ Rn −→ imϕ −→ 0 ,

where imϕ ≤ Rm is torsion-free as submodule of a free module. Hence M is

reflexive since there exists an exact sequence as in Proposition C.4.18.

402



LEYTEM Alain C.4. The integral case

Remark C.4.20. Corollary C.4.19 is false in the non-integral case, see Exam-

ple C.4.24.

Corollary C.4.21. [ [36], 1.2, p.124-125 ]

Let R be a Noetherian integral domain. If M is a finitely generated R-module,

then M∗ is reflexive.

Proof. Since R is Noetherian, we can choose a finite presentation

Rm ϕ−→ Rn ψ−→M −→ 0

of M and obtain by dualization

0 −→M∗ −→ Rn −→ Rm and 0 −→M∗ −→ Rn −→ N −→ 0 ,

where the last one is exact as in Proposition C.4.18 since N = imϕ∗ ≤ Rm is

torsion-free, hence M∗ is reflexive.

Corollary C.4.22. [ [11], 15.17.6 ]

Let R be a Noetherian integral domain and M,N finitely generated R-modules.

If N is reflexive, then HomR(M,N) is reflexive too.

Proof. If

Rm ϕ−→ Rn ψ−→M −→ 0

is a finite presentation of M , we apply the left exact functor HomR( · , N) and

get

0 −→ HomR(M,N)
ψ∗−→ Nn ϕ∗−→ L1 −→ 0 ,

where L1 = imϕ∗. This already shows that HomR(M,N) is finitely generated

as it is a submodule of Nn and R is Noetherian. Since N is reflexive, it is in

particular torsion-free by Lemma C.2.2. Thus Nm and L1 ≤ Nm are torsion-free

as well. By Proposition C.4.18 there exists an exact sequence

0 −→ N −→ F −→ L2 −→ 0 , (C.11)

where F is free of finite rank and L2 is torsion-free. Taking n copies of (C.11)

gives

0 −→ Nn i−→ F n −→ Ln2 −→ 0
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and we get the injective morphism δ = i◦ψ∗ : HomR(M,N)→ F n. Now consider

the commutative diagram

0 // HomR(M,N)
ψ∗
//

δ
��

Nn //

i
��

L1
//

0
��

0

0 // F n id // F n // 0 // 0

The Snake Lemma (see Proposition D.1.6) gives an exact sequence

0 −→ ker δ −→ ker i −→ ker 0 −→ coker δ −→ coker i −→ coker 0 −→ 0

⇔ 0 −→ 0 −→ 0 −→ L1 −→ coker δ −→ Ln2 −→ 0 −→ 0 .

Since L1 and Ln2 are torsion-free, Corollary C.1.11 implies that coker δ is torsion-

free as well. Finally we get

0 −→ HomR(M,N)
δ−→ F n −→ coker δ −→ 0 ,

where F n is free of finite rank, hence HomR(M,N) is reflexive by Proposi-

tion C.4.18.

C.4.4 Counter-examples in the non-integral case

Here below we give two counter-examples to show that Corollary C.4.8 and

Corollary C.4.19 do in general not hold true for finitely generated modules over

non-integral rings.

Example C.4.23. Consider the ring R = K[X, Y, Z]/〈XY,X2, XZ 〉 and the

module M = R/〈 Ȳ Z̄ 〉, which is generated by [1̄]. Then M is an example of a

finitely generated module over a non-integral ring which is torsion-free but not

torsionless.

1)M is torsion-free1: The set of zero-divisors inR is given by ZD(R) = 〈 X̄, Ȳ , Z̄ 〉.
This can either be seen immediately by the definition of R or by computing its

associated primes. Let f̄ ∈ R be a NZD and [ḡ] ∈M such that

f̄ ∗ [ḡ] = [0̄] ⇔ f̄ · ḡ ∈ 〈 Ȳ Z̄ 〉 .
1In Section 2.3 we will give an alternative proof of torsion-freeness of M by using its asso-

ciated primes and the criterion from Proposition 1.3.3.
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If we denote J := 〈XY,X2, XZ, Y Z 〉 E K[X, Y, Z], this gives the primary

decompositions J = 〈X,Z 〉 ∩ 〈X, Y 〉 ∩ 〈X2, Y, Z 〉 and

〈 Ȳ Z̄ 〉 = 〈 X̄, Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 ∩ 〈 Ȳ , Z̄ 〉

because of Proposition B.2.10. So in particular f̄ ·ḡ ∈ 〈 X̄, Z̄ 〉 and f̄ ·ḡ ∈ 〈 X̄, Ȳ 〉.
These ideals being prime (dividing them out gives an integral domain), we need

that ḡ ∈ 〈 X̄, Z̄ 〉 ∩ 〈 X̄, Ȳ 〉, otherwise f̄ is a zero-divisor. Hence

ḡ ∈ 〈 X̄, Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 = 〈 X̄, Ȳ Z̄ 〉

and thus [ḡ] ∈ 〈 [X̄] 〉, i.e. torsion elements are necessary multiples of [X̄]. But

[X̄] is not a torsion element as AnnR(X̄) = 〈 X̄, Ȳ , Z̄ 〉 is a maximal ideal and

AnnR(X̄) ⊆ AnnR([X̄]) 6= R, so [X̄] can only be annihilated by zero-divisors.

Finally we obtain that TR(M) = {0}.
2) M is not torsionless: we first analyze how elements in M∗ look like. Take

any f : M → R ; since M is generated by [1̄], it suffices to know the value of

r = f([1̄]) ∈ R. The relation [Ȳ Z̄] = [0̄] implies that

0̄ = f([0̄]) = f([Ȳ Z̄]) = f(Ȳ Z̄ ∗ [1̄]) = Ȳ Z̄ · r ,

thus Ȳ Z̄ · r ∈ 〈 X̄ 〉, which is a prime ideal. As Ȳ /∈ 〈 X̄ 〉 and Z̄ /∈ 〈 X̄ 〉, we thus

get r ∈ 〈 X̄ 〉 and f([1̄]) = r0X̄ for some r0 ∈ R depending on f . Any f ∈ M∗

is necessarily of this form. Now consider j : M → M∗∗ : m 7→ evm and take

m = [X̄]. Then

ev[X̄](f) = f([X̄]) = f(X̄ ∗ [1̄]) = X̄ · f([1̄]) = r0 · X̄2 = 0̄

for all f ∈M∗, i.e. [X̄] ∈ KR(M). So we have TR(M) = {0} and KR(M) 6= {0}.

Example C.4.24. [ [53], 221280 ]

Consider the Noetherian ringR = K[X, Y ]/〈X2, XY, Y 2 〉 andM = K, where the

R-module structure of M is given by f̄ ∗ λ = f(0) · λ. Actually M = R/〈 X̄, Ȳ 〉,
so we see that M is generated by 1 ∈ K and get an exact sequence

Rm −→ R −→M −→ 0
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for some m ∈ N. Dualizing, this gives

0 −→M∗ −→ R −→ Rm ,

i.e. M∗ is the kernel of a morphism R → Rm. However we will show that

M∗ ∼= M ⊕M , so M∗ cannot be reflexive.

We have R ∼= K⊕KX̄ ⊕KȲ as K-vector spaces, so any element r ∈ R may be

written as a K-linear combination of 1̄, X̄ and Ȳ . Let g ∈ M∗ = HomR(M,R).

As M is generated by 1, it suffices to know the value of g(1) ∈ R. Denote

g(1) = α+βX̄+γȲ for some α, β, γ ∈ K. The relations X̄ ∗1 = 0 and Ȳ ∗1 = 0

imply that

0̄ = g(0) = g(X̄ ∗ 1) = X̄ · g(1) = X̄ · (α + βX̄ + γȲ )

= αX̄ + βX̄2 + γX̄Ȳ = αX̄ ,

and similarly αȲ = 0̄. Thus α = 0 and the values of β, γ determine the morphism

g completely. In one formula,

g(λ) = g(λ ∗ 1) = λ · g(1) = βλX̄ + γλȲ , ∀λ ∈M ,

where λ ∈ R is seen as a constant function. So we have M∗ ∼= K⊕K = M⊕M via

the isomorphism g 7→ (β, γ). Note that this is indeed a morphism of R-modules

since ∀ f̄ ∈ R,

f̄ ∗ g 7−→ (f̄ ∗ g)(1) = f̄ · g(1) = f̄ · (βX̄ + γȲ ) = f(0) · (βX̄ + γȲ )

7−→
(
f(0) · β , f(0) · γ

)
= f̄ ∗ (β, γ) ,

where multiplication by f̄ is the same as multiplication by f(0) since all non-

constant terms in f̄ will vanish by either X̄ or Ȳ . More generally we get that

the nth dual of M is equal to a direct sum of 2n copies of M .

Remark C.4.25. The exact finite presentation of M can be found as follows.

Consider the exact sequences of R-modules

0 −→ 〈 X̄, Ȳ 〉 i−→ R
π−→ R/〈 X̄, Ȳ 〉 −→ 0 and R2 φ−→ 〈 X̄, Ȳ 〉 −→ 0 ,

where φ(f̄ , h̄) = f̄ X̄ + h̄Ȳ . Hence the finite presentation of M is given by

R2 −→ R −→M −→ 0 .
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C.4.5 Alternative proofs of TR(M) = KR(M)

In the previous sections we developed some tools which now allow some alter-

native proofs of the fact that torsion-freeness and torsionlessness are equivalent

for finitely generated modules over integral domains. Unfortunately these need

the additional assumption that M and M∗ are both finitely generated. On the

other hand, this is e.g. satisfied over Noetherian rings if we only assume that M

is finitely generated.

alternative proof 1. Let M be a torsion-free module over an integral domain

R such that M and M∗ are finitely generated. Let S = R \ {0} and consider the

canonical morphism j : M →M∗∗. As in the proof of Lemma C.4.17, we get that

jS : S−1M → (S−1M)∗∗ is an isomorphism. M being torsion-free, Lemma C.4.16

then implies that j is injective, i.e. M is torsionless.

alternative proof 2. cf. [ [52], 37497 ]

We shall show the inclusion KR(M) ⊆ TR(M). Tensoring j : M → M∗∗ by K

and using Remark C.4.11, we get

j⊗ : M ⊗R K −→M∗∗ ⊗R K : m⊗ k 7−→ evm⊗ k

⇔ j⊗ : MK −→M∗∗ ⊗R K ∼= (M∗ ⊗R K)∗ ∼= (M ⊗R K)∗∗ = (MK)∗∗

since M and M∗ are finitely generated. Thus j⊗ : MK
∼−→ (MK)∗∗ is an iso-

morphism (of K-vector spaces) since MK is free over K, hence reflexive (we will

check later that it is indeed the canonical morphism). Now let m ∈ KR(M), i.e.

evm = 0. Then

j⊗
(
m⊗ 1

1

)
= evm⊗ 1

1
= 0 ,

so m⊗ 1
1

= 0 by injectivity of j⊗. But m⊗ 1
1

= 0 means that m ∈ ker ` = TR(M)

by Proposition C.4.1. Now it only remains to check commutativity of the diagram

M ⊗K j⊗
//

j′
++

M∗∗ ⊗K i1 // (M∗ ⊗K)∗

i2
��

(M ⊗K)∗∗

where
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j⊗ : m⊗ k 7−→ evm⊗ k , j′ : m⊗ k 7−→ evm⊗k

i1 : ϕ⊗ k 7−→
(
ψϕk : M∗ ⊗K → K : f ⊗ l 7→ ϕ(f) · k · l

)
h : M∗ ⊗K ∼−→ (M ⊗K)∗ : f ⊗ k 7−→

(
m⊗ l 7→ f(m) · k · l

)
and i2 = ◦h−1. All of them are given similarly as in (C.9) and in the proof of

Corollary C.4.10. To conclude we want to get (i2 ◦ i1 ◦ j⊗)(m ⊗ k) = evm⊗k for

all m⊗ k. Let g ∈ (M ⊗K)∗ be arbitrary.

i1
(
j⊗(m⊗ k)

)
= i1(evm⊗ k) =

(
ψ : f ⊗ l 7→ evm(f) · k · l = f(m) · k · l

)
,

i2(ψ) = ψ ◦ h−1 .

If {m1, . . . ,mn} is a generating set of M , denote ai
si

:= g
(
mi ⊗ 1

1

)
for all i and

set s := s1 · . . . · sn. Now we define f(m) = s ∗ g
(
m⊗ 1

1

)
, so that f(m) ∈ R and

f ∈M∗. Then h
(
f ⊗ 1

s

)
= g since

h
(
f ⊗ 1

s

)
(m⊗ l) = f(m) · 1

s
· l = g

(
m⊗ 1

1

)
· l = g(m⊗ l)

by K-linearity of g. This construction is similar as the one in (C.8). Finally

ψ
(
h−1(g)

)
= ψ

(
f ⊗ 1

s

)
= f(m) · k · 1

s
= k · g

(
m⊗ 1

1

)
= g(m⊗ k) = evm⊗k(g)

and both morphisms agree.
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Collection of other results

In this appendix we state some well-known results which we are going to use at

some places. Most of them are given without proof and can be found in almost

every textbook on Commutative Algebra. The idea is just to recall the exact

statements, so that the reader can immediately look them up.

D.1 General results

Lemma D.1.1. The Hom-bifunctor commutes with finite products and direct

sums in both arguments. But in the infinite case we only have

HomR

(⊕
iMi, N

) ∼= ∏
i

HomR(Mi, N) ,

HomR

(
M,
∏

iNi

) ∼= ∏
i

HomR(M,Ni) .

In particular, HomR

(
R(I),M

)
6∼= M (I) and HomR

(
RI ,M

)
6∼= M I . However,

HomR

(
R(I),M

) ∼= M I ,(⊕
iMi

)∗
= HomR

(⊕
iMi, R

) ∼= ∏
i

HomR(Mi, R) =
∏

iM
∗
i .

Lemma D.1.2. 1) Let ϕ : A→ B be a ring homomorphism. If M is a module

over B, then M is also a module over A via a ∗m := ϕ(a) ∗m.

2) Similarly for sheaves: if (X ,OX ) and (Y ,OY) are schemes such that there
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is a morphism of schemes OY → OX and F ∈ Mod(OX ), then F is also an

OY–module.

Lemma D.1.3. Let I E R be an ideal. Its radical Rad(I) is given by the

intersection of all prime ideals containing I, i.e.

Rad(I) =
⋂

I⊆P prime

P .

In particular, the nilradical of R is equal to the intersection of all prime ideals.

Lemma D.1.4. [ [6], II.§2.n◦6.Cor.2, p.95-96 ] and [ [2], 1.13, p.9 ]

1) Let I, J E R be two ideals. Then

Rad(I ∩ J) = Rad(I) ∩ Rad(J) = Rad(I · J) .

2) If I is a radical ideal, then Rad(In) = I, ∀n ∈ N. In particular this holds

true for prime ideals.

Proof. 1) I ·J ⊆ I∩J already implies that Rad(I ·J) ⊆ Rad(I∩J). If rn ∈ I∩J
for some n ∈ N, then rn ∈ I and rn ∈ J . And if rn ∈ I and rm ∈ J for n,m ∈ N,

then rnm ∈ I · J ⊆ I ∩ J .

2) In ⊆ I implies that Rad(In) ⊆ Rad(I) = I since I is radical. Moreover if

r ∈ I, then rn ∈ In, hence r ∈ Rad(In).

Proposition D.1.5. Let R be a Noetherian ring and M a finitely generated R-

module. Then M is of finite presentation and every submodule of M is finitely

generated as well.

Proposition D.1.6 (Snake Lemma). Consider the commutative diagram of R-

modules

M
f
//

a
��

N
g
//

b
��

L //

c
��

0

0 //M ′ f ′
// N ′

g′
// L′

If the rows are exact, then there exists an exact sequence

ker a
F−→ ker b −→ ker c −→ coker a −→ coker b

G−→ coker c .

If f is injective, then F is injective and if g′ is surjective, then G is surjective.
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Lemma D.1.7 (9-Lemma). Let Mi, Ni, Li for i = 1, 2, 3 be R-modules and as-

sume that the diagram

0

��

0

��

0

��

0 //M1

��

// N1

��

// L1

��

// 0

0 //M2

��

// N2

��

// L2

��

// 0

0 //M3

��

// N3

��

// L3

��

// 0

0 0 0

commutes such that all columns are exact. Then

1) If the two bottom rows are exact, then the top row is exact as well.

2) If the two top rows are exact, then the bottom row is also exact.

By symmetry, both statements also remain true when interchanging the words

“columns” and “rows”.

Lemma D.1.8. [ [53], 868510 ]

If R and T are Noetherian rings, then R× T is Noetherian as well.

Proof. Let I1 ⊆ I2 ⊆ . . . be an increasing chain of ideals in R × T . We identify

R with the ideal R × {0} in the product and consider the projection morphism

π : R× T → T . Then

(I1 ∩R) ⊆ (I2 ∩R) ⊆ . . . and π(I1) ⊆ π(I2) ⊆ . . .

are increasing chains of ideals in R and T respectively (here we need surjectivity

of π to get ideals in T ). As these are Noetherian, there exists N ∈ N such that

Ii∩R = IN∩R and π(Ii) = π(IN), ∀ i ≥ N . Now fix j ≥ N ; we want to show that

Ij = IN as well. Since IN ⊆ Ij, we only have to prove the remaining inclusion.

Let (a, b) ∈ Ij. Then b ∈ π(Ij) = π(IN), so ∃ r ∈ R such that (r, b) ∈ IN .

Moreover we have (a− r, 0) ∈ R×{0} and (a− r, 0) = (a, b)− (r, b) ∈ Ij, so that

(a− r, 0) ∈ Ij ∩R = IN ∩R ,
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hence (a, b) = (a− r, 0) + (r, b) ∈ IN , i.e. Ij ⊆ IN . Finally Ii = IN , ∀ i ≥ N , so

the chain becomes stationary.

Remark D.1.9. Not every ideal in R × T is of the form I × J for some ideals

I E R and J E T . Consider e.g. the principal ideal 〈 (2, 3) 〉 in Z× Z and recall

that Z is a principal ideal domain. This ideal cannot be of the form 〈 a 〉 × 〈 b 〉
for some a, b ∈ Z since the latter e.g. contains infinitely many elements of the

form (λa, · ) for every fixed λ ∈ Z.

Proposition D.1.10. [ [2], 7.3 & 7.4, p.80 ]

Let S ⊂ R be a multiplicatively closed subset. If R is a Noetherian ring, then

S−1R is Noetherian too. In particular, RP is Noetherian for all prime ideals P .

Proof. Similarly as in Proposition 1.1.1 one shows that every ideal in S−1R is

of the form S−1I for some ideal I E R. This I is finitely generated since R is

Noetherian, say by r1, . . . , rn ∈ R. Then S−1I is generated by r1
1
, . . . , rn

1
over

S−1R.

Theorem D.1.11 (Nakayama’s Lemma). Let R be a local ring with maximal

ideal M and M a finitely generated R-module. Assume that ∃x1, . . . , xn ∈ M

such that the classes x̄1, . . . , x̄n are generators of the quotient M/MM as a mod-

ule over R/M. Then x1, . . . , xn generate M as an R-module.

Proposition D.1.12. Let R be a local Noetherian ring with unique maximal

ideal M. Then

1) dimR/M(M/M2) is the minimal number of generators of the ideal M.

2) If R is of Krull dimension 1, then R is regular if and only if R is a principal

ideal domain.

Theorem D.1.13 (Structure Theorem of finitely generated modules over PIDs).

Let R be a principal ideal domain and M a finitely generated R-module. Then

there exists an integer m ∈ N such that

M ∼= TR(M)⊕Rm ,

where TR(M) ≤M is the torsion submodule. In particular, M is free if and only

if it is torsion-free.
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Theorem D.1.14 (Bézout’s Theorem on P2). Let f, g ∈ K[X0, X1, X2] be 2 ho-

mogeneous polynomials of degree n,m ≥ 1 respectively and denote their vanishing

sets in P2 by C = Z(f) and D = Z(g). Then C ∩D 6= ∅, i.e. C and D always

intersect in at least 1 point. If moreover gcd(f, g) = 1, then C and D intersect

in exactly nm points with multiplicities.

Corollary D.1.15. Let f ∈ K[X0, X1, X2] be an irreducible homogeneous poly-

nomial of degree 2. Then there exists a projective change of variables such that

f can be written as X2
0 −X1X2. Hence all irreducible conics in P2 are smooth.

Proposition D.1.16. Pn is a complete variety, i.e. for every m ≥ 1 and every

quasi-projective variety X ⊆ Pm, the projection map π : X ×Pn → Pn is closed.

Proposition D.1.17. Let f ∈ K[X, Y ] be a non-constant irreducible polynomial

and denote

V =
{

(x, y) ∈ A2

∣∣ f(x, y) = 0
}

the resulting irreducible curve in the affine plane A2. Then

1) The coordinate ring K[V ] = K[X, Y ]/〈 f 〉 is a Noetherian integral domain of

Krull dimension 1.

2) Let (x, y) ∈ V and M = 〈 X̄−x , Ȳ −y 〉 E K[V ] be the corresponding maximal

ideal. The following statements are equivalent:

(a) (x, y) is a smooth point, i.e. the derivatives ∂f
∂X

and ∂f
∂Y

do not vanish

simultaneously at (x, y).

(b) K[V ]M is a regular local ring of Krull dimension 1.

(c) K[V ]M is a principal ideal domain.

Lemma D.1.18. Let f, g ∈ K[X, Y ] be non-constants polynomials with f irre-

ducible and consider a point p ∈ A2 such that f(p) = 0, but g(p) 6= 0. If we

denote C = Z(f) and D = Z(fg), then

K[D]Mp
∼= K[C]M′p ,
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where Mp E K[D] and M′
p E K[C] are the maximal ideals corresponding to p. In

other words: The localization of the coordinate ring of a curve at a point which

only belongs to one irreducible component of the curve is equal to the localization

of the coordinate ring of this irreducible component at that point.

Proof. Since 〈 fg 〉 ⊂ 〈 f 〉, we have the commutative diagram

K[X, Y ]

$$ $$����

K[D]
ϕ
// // K[C]

where K[C] = K[X, Y ]/〈 f 〉 and K[D] = K[X, Y ]/〈 fg 〉, which is not an integral

domain since 〈 fg 〉 is not a prime ideal. The map ϕ : K[D]� K[C] : ā 7→ [a] is

not injective in general. We localize the coordinate rings at the maximal ideals

Mp =
{
ā ∈ K[D]

∣∣ ā(p) = 0
}
E K[D] ,

M′
p =

{
[a] ∈ K[C]

∣∣ [a](p) = 0
}
E K[C] ,

where evaluations at p are well-defined since f(p) = 0. The morphism ϕ induces

a ring homomorphism

φ : K[D]Mp −→ K[C]M′p :
ā

b̄
7−→ [a]

[b]
.

This is well-defined : if ā
b̄

= c̄
d̄
, then ∃ t̄ ∈ K[D] \Mp such that

t̄ · (ā · d̄− b̄ · c̄) = 0 ⇔ t̄ · ad− bc = 0 ⇒ [t] · [ad− bc] = 0 ⇒ [ad] = [bc]

since [t] 6= 0, otherwise t ∈ 〈 f 〉 and t̄(p) = 0, which contradicts t̄ /∈ Mp.

Moreover φ is surjective because b̄ /∈ Mp whenever [b] /∈ M′
p (since b̄(p) = 0

implies that [b](p) = 0 as well). To show that φ is injective, let [a]
[b]

= 0, which

implies that a ∈ 〈 f 〉 since K[C] is an integral domain, hence ag = 0. Note that

ḡ /∈Mp since g(p) 6= 0. But then ā
b̄

= 0 because ḡ · (ā · 1− b̄ · 0) = ḡ · ā = 0. It

follows that φ is a ring isomorphism between local rings, hence an isomorphism

of local rings.

Proposition D.1.19. A formal power series f is a unit in R[[X1, . . . , Xn]] if and

only if its constant term is a unit in R. In particular a power series f ∈ K[[X, Y ]]

is invertible if and only if it has non-zero constant term.
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Lemma D.1.20. Let a, b, c ∈ P2 be 3 different (simple) points. If they are

non-collinear, then there exists a projective transformation which maps a, b, c to

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1).

If they are collinear, then they can be mapped to (1 : 0 : 0), (0 : 0 : 1), (1 : 0 : 1).

D.2 Some facts about intersections of ideals

Definition D.2.1. We say that 2 ideals I, J E R are coprime if I + J = R.

Lemma D.2.2. [ [2], p.6-7 ]

Let I, J E R be ideals in a ring R. Then (I + J) · (I ∩ J) ⊆ I · J ⊆ I ∩ J . This

follows from the distributive law

(I + J) · (I ∩ J) = I · (I ∩ J) + J · (I ∩ J) ⊆ I · J . (D.1)

In particular we obtain I ∩ J = I · J for coprime ideals.

Remark D.2.3. The inclusion (D.1) may be strict and the converse in the case

of coprime ideals is false as well. Take for example I = 〈X 〉 and J = 〈Y 〉 in

R = K[X, Y ]. Then I + J = 〈X, Y 〉 and

I∩J = 〈XY 〉 , I ·J = 〈XY 〉 , (I+J) ·(I∩J) = 〈X2Y,XY 2 〉 .

We don’t have equality and the product equals the intersection althought I and

J are not coprime. In order to obtain strict inclusions everywhere, consider e.g.

I = 〈X2 〉 and J = 〈XY 〉. Then

I + J = 〈X2, XY 〉 , I ∩ J = 〈X2Y 〉 , I · J = 〈X3Y 〉 ,

(I + J) · (I ∩ J) = 〈X4Y,X3Y 2 〉 .

Remark D.2.4. However (D.1) is an equality in Dedekind rings ; a proof is given

in [ [53], 263027 ].

We only prove the statement for R = Z. Let I = 〈 a 〉, J = 〈 b 〉 for some a, b ∈ Z.

If we denote d = gcd(a, b) and l = lcm(a, b), then we have

I + J = 〈 d 〉 , I ∩ J = 〈 l 〉 , I · J = 〈 a · b 〉
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and thus

(I + J) · (I ∩ J) = 〈 d · l 〉 and I · J = 〈 a · b 〉 .

These are equal since gcd(a, b) · lcm(a, b) = a · b (consider the prime factorization

of a and b).

Lemma D.2.5. [ [53], 742473 ]

Let M be an R-module and I E R an ideal. Then M ⊗R R/I ∼= M/(I ∗M).

Proof. Consider the morphisms

ϕ : M ⊗R/I −→M/IM : m⊗ r̄ 7−→ [r ∗m] ,

ψ : M/IM −→M ⊗R/I : [m] 7−→ m⊗ 1̄ .

They are well-defined since ϕ : m⊗ ī 7→ [i ∗m] = 0 and

ψ : [i ∗m] 7→ (i ∗m)⊗ 1̄ = m⊗ (i ∗ 1̄) = m⊗ ī = 0

for all i ∈ I. Moreover they are inverse to each other:

m⊗ r̄ 7−→ [r ∗m] 7−→ (r ∗m)⊗ 1̄ = m⊗ r̄ ,

[m] 7−→ m⊗ 1̄ 7−→ [1 ∗m] = [m] .

Corollary D.2.6. Let I, J E R be two ideals. Then

I ⊗R R/J ∼= I/(I · J) and R/I ⊗R R/J ∼= R/(I + J) .

Proof. a) Taking M = I in Lemma D.2.5 gives I⊗RR/J ∼= I/(J ∗ I) = I/(I ·J).

b) If we take M = R/I (and interchange the roles of I and J), then

R/I ⊗R R/J ∼= (R/I)/(J ∗R/I) .

We will show that J ∗R/I ∼= (I + J)/I, so that

R/I ⊗R R/J ∼=
(
R/I

)/(
(I + J)/I

) ∼= R/(I + J) .

Consider the morphism J ∗R/I → (I+J)/I : j ∗ r̄ 7→ j · r, which is well-defined.

It is injective since if j · r ∈ I, then j ∗ r̄ = j · r = 0̄. If x̄ ∈ (I + J)/I is given,

then x = i+ j for some i ∈ I, j ∈ J and j ∗ 1̄ = j̄ = x̄ since ī = 0̄, so we also get

surjectivity. (Note that we need (I+J)/I since J/I may not exist if I * J .)
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Proposition D.2.7. [ [52], 49259 ]

Let I, J E R be two ideals. Then

I ∩ J = I · J ⇔ Tor1(R/I,R/J) = {0} .

Proof. Consider the sequence

0 −→ I −→ R −→ R/I −→ 0 ,

which is exact. Tensoring by R/J we get

. . . −→ Tor1(I, R/J) −→ Tor1(R,R/J) −→ Tor1(R/I,R/J)

−→ I ⊗R R/J −→ R⊗R R/J −→ R/I ⊗R R/J −→ 0 .

Since R is flat (free modules are flat), we have Tor1(R,R/J) = {0} and the

sequence simplifies to

0 −→ Tor1(R/I,R/J) −→ I/(I · J)
π−→ R/J −→ R/(I + J) −→ 0 . (D.2)

Let us compute the kernel of π. Under all identifications, we get

π : I/(I · J) ∼−→ I ⊗R/J −→ R⊗R/J ∼−→ R/J

[i] 7−→ i⊗ 1̄ 7−→ i⊗ 1̄ 7−→ i ∗ 1̄ = ī ,

so that ī = 0̄ ⇔ i ∈ J , thus i ∈ I ∩ J and [i] ∈ (I ∩ J)/(I · J) = ker π. But this

is also equal to Tor1(R/I,R/J) by exactness of (D.2). Thus

I ∩ J = I · J ⇔ (I ∩ J)/(I · J) = {0} ⇔ Tor1(R/I,R/J) = {0} .

D.3 A useful application of essential ideals

Definition D.3.1. [ [44], 3.26, p.74 ]

Let M be an R-module. We say that N ≤ M is an essential submodule if

N ∩M ′ 6= {0} for any non-zero submodule M ′ ≤ M . In the case of M = R, we

get the notion of an essential ideal I E R. In other words, I is an essential ideal

if ∀ J E R, the intersection is zero if and only if J is zero:

I ∩ J = {0} ⇔ J = {0} .
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Lemma D.3.2. [ [44], 3.27, p.74 ]

N ≤ M is an essential submodule if and only if ∀m ∈ M , m 6= 0, ∃ r ∈ R such

that 0 6= r ∗m ∈ N .

In particular, I E R is an essential ideal if and only if ∀ a ∈ R, a 6= 0, ∃ r ∈ R
such that 0 6= a · r ∈ I.

Proof. ⇒ : Let m 6= 0 and consider the submodule N ∩ 〈m 〉. This is non-zero

since N is essential. Thus ∃n ∈ N , n 6= 0 such that n = r ∗m for some r ∈ R.

⇐ : Let M ′ ≤ M be any non-zero submodule and m ∈ M ′, m 6= 0. By

assumption ∃ r ∈ R such that 0 6= r ∗m ∈ N . Thus r ∗m ∈ N ∩M ′, which is

hence non-zero.

Lemma D.3.3. cf. [ [28], 3.3, p.272 ]

1) Let ϕ : M → L be a morphism of R-modules. If N ≤ L is an essential

submodule, then ϕ−1(N) ≤M is essential.

2) Let ϕ : R → T be a surjective ring homomorphism. If J E T is an essential

ideal, then ϕ−1(J) E R is essential.

Proof. We use the criterion from Lemma D.3.2.

1) Let m ∈M , m 6= 0 ; we shall show that ∃ r ∈ R such that 0 6= r∗m ∈ ϕ−1(N).

If ϕ(m) = 0, one can choose r = 1 since 0 6= m ∈ ϕ−1(N). If ϕ(m) 6= 0, then

∃ r ∈ R such that 0 6= r∗ϕ(m) ∈ N since N is essential. r∗ϕ(m) = ϕ(r∗m) ∈ N ,

so r ∗m ∈ ϕ−1(N) and it is non-zero since ϕ(r ∗m) 6= 0.

2) Let a ∈ R, a 6= 0. If ϕ(a) = 0, one can choose r = 1 as above. If ϕ(a) 6= 0,

then ∃ t ∈ T such that 0 6= ϕ(a) · t ∈ J since J is essential. By surjectivity

we get r ∈ R such that t = ϕ(r) and hence 0 6= ϕ(a) · ϕ(r) = ϕ(a · r) ∈ J , so

a · r ∈ ϕ−1(J) and a · r 6= 0.

Proposition D.3.4. Let I E R be an ideal. If I contains a NZD, then I is

essential. The converse is true if R is reduced and Noetherian.

Proof. Assume that I contains a NZD r and let a ∈ R, a 6= 0. Then 0 6= a ·r ∈ I,

so I is essential.

Now let R be a reduced Noetherian ring and I an essential ideal. Assume that I
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entirely consists of zero-divisors. By Corollary B.2.26 we have AnnR(I) 6= {0}.
Now consider I ∩ AnnR(I). If this intersection is non-empty, there exists i ∈ I
which annihilates all elements in I, in particular it annihilates itself, i.e. i2 = 0.

But then i = 0 as R is reduced. Hence I ∩ AnnR(I) = {0}, which contradicts

that I is essential.

Remark D.3.5. To see that the converse of Proposition D.3.4 may fail in the

non-reduced case, we consider R as in Example E.4. The ideal I = 〈 X̄, Ȳ , Z̄ 〉
only consists of zero-divisors. However it is essential. Let f̄ ∈ R, f̄ 6= 0̄. We

have to find ḡ ∈ R such that 0̄ 6= f̄ · ḡ ∈ I. If f̄ ∈ I, it suffices to choose ḡ = 1̄. If

f̄ /∈ I, then it has a non-zero constant term f(0) 6= 0. Multiplying by ḡ = X̄ will

cancel all non-constant terms by definition of R and we get f̄ · ḡ = f(0) · X̄ ∈ I.

Proposition D.3.6. cf. [ [28], 3.4, p.272 ]

Let R be a reduced Noetherian ring, M an R-module and I ⊆ AnnR(M). If M

is torsion-free over R, then M is also torsion-free over R/I.

Proof. Let m ∈ M be arbitrary and denote ϕ : R � R/I. r̄ ∗m = r ∗m = 0

implies that

ϕ−1
(

AnnR/I(m)
)

= AnnR(m) .

Now let m ∈M be a torsion element over R/I, i.e. AnnR/I(m) contains a NZD

and is thus essential. Taking the preimage under the surjective ring homomor-

phism ϕ, we find by Lemma D.3.3 that AnnR(m) is an essential ideal in R. As

R is reduced, we conclude that AnnR(m) also contains a NZD, thus m = 0 since

M is torsion-free over R. So M is also torsion-free over R/I.

D.4 Basic facts on Geometric Invariant Theory

The main idea of GIT is to rigorously define the notion of a quotient space of

a group action. We start by recalling some basic facts about group actions on

algebraic varieties.
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Definition D.4.1. [ [60], p.42 ]

An algebraic group is a group G which also admits a structure of an algebraic

variety such that the maps

G×G −→ G : (g, h) 7−→ g · h , G −→ G : g 7−→ g−1

of multiplication and inversion are morphisms of algebraic varieties. A morphism

of algebraic groups is a map that is simultaneously a group homomorphism and

a morphism of algebraic varieties.

Definition D.4.2. [ [60], p.43 ]

An action of an algebraic group G on a variety X is a morphism of varieties

G×X → X such that e.x = x and g.(h.x) = (g ·h) . x, ∀ g, h ∈ G, x ∈ X, where

e ∈ G is the identity element.

Example D.4.3. [ [60], p.44 ]

Standard examples of algebraic groups are GLn, which is an open subvariety of

An2 , and SLn, being a closed subgroup of GLn. They act on the affine space An

by left multiplication.

Definition D.4.4. [ [60], p.43 ]

Let G be an algebraic group acting on a variety X. The orbit of an element

x ∈ X is the subset

O(x) = G.X =
{
g.x

∣∣ g ∈ G} ⊆ X

and its orbit map is given by σx : G→ X : g 7→ g.x. In particular it is continuous

and imσx = O(x). The stabilizer of x is the closed subgroup

StabG(x) =
{
g ∈ G

∣∣ g.x = x
}

= σ−1
x

(
{x}
)
.

The orbit space of X is given by X/G = {O(x) |x ∈ X } and identifies points

in X that belong to the same orbit. In general it is no longer a variety. The

action is called free if StabG(x) = {e} for all x ∈ X, transitive if O(x) = G for

all x ∈ X and closed if all orbits are closed.
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Definition D.4.5. [ [60], p.43-44 ]

A subset W ⊆ X is called G-invariant if G.W ⊆ W (hence G.W = W ). In

particular for W = {x} one obtains g.x = x and says that the point x is invariant

under G. If G acts on two varieties X and Y , a morphism φ : X → Y is called

a G-morphism if φ(g.x) = g.φ(x), ∀x ∈ X, g ∈ G. A G-invariant morphism

satisfies φ(g.x) = φ(x) for all x ∈ X and g ∈ G. In other words, G-invariant

morphisms are constant on orbits.

Definition D.4.6. [ [60], p.44 ]

An algebraic group is called linear if it is isomorphic to a closed subgroup of GLn

for some n ∈ N. In particular there is an injection ρ : G ↪→ GLn.

In order to state the main results of GIT, we briefly mention the notion of a

reductive group without explaining details.

Definition D.4.7. [ [60], p.50 ]

The radical of a linear algebraic groupG, denoted byR(G), is the unique maximal

closed connected normal and solvable subgroup of G. Equivalently it is the

identity component of a maximal normal solvable subgroup. The group G is

called reductive if R(G) is isomorphic to a torus, i.e. a direct product of copies

of K∗ (with respect to multiplication).1 One can show that e.g. GLn and SLn

are reductive.

An alternative definition is the following : an element g ∈ G is called unipotent

if the endomorphism id−ρ(g) is nilpotent in GLn. A group is unipotent if all

its elements are unipotent. The unipotent radical of G, denoted by Ru(G), is a

maximal closed connected normal and unipotent subgroup of G. Equivalently it

is the subgroup of all unipotent elements in R(G). Then G is reductive if and

only if Ru(G) = {e}.

Now we focus on actions of linear algebraic groups on projective spaces.

Definition D.4.8. [ [7], 1.4, p.103 ]

Let G be a linear algebraic group acting on the vector space Kn+1 with injection

1In the literature the multiplicative group K∗ is often denoted by Gm = GL(1).
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ρ : G→ GLn+1, i.e. g.v = ρ(g) · v for v ∈ Kn+1. This induces an action of G on

the space of homogeneous polynomials f ∈ K[X0, . . . , Xn] by

(g.f)(v) := f
(
g−1.v

)
.

So in particular we can consider G-invariant polynomials.

Definition D.4.9. [ [60], p.73 ]

Let X ⊆ Pn be a projective variety and G a linear algebraic group acting on

Kn+1 via ρ : G→ GLn+1.

1) For any z ∈ Pn, a point lying over z is a representative ẑ ∈ Kn+1 \ {0}.
2) G also acts on X via ρ: the action for x ∈ X is given by g.x = 〈 ρ(g).x̂ 〉 ∈ X.

One also says that G acts linearly on X.

3) For a non-constant G-invariant homogeneous polynomial f ∈ K[X0, . . . , Xn],

we define the set

Xf =
{
x ∈ X

∣∣ f(x) 6= 0
}
.

This is a G-invariant affine open subset of X.

Definition D.4.10. [ [60], p.73-74 ]

Let X ⊆ Pn be a projective variety and G a linear algebraic group that linearly

acts on X.

1) We say that a point x ∈ X is semistable if there exists a G-invariant homoge-

neous polynomial f with deg f ≥ 1 such that f(x) 6= 0.

2) A point x ∈ X is called stable if StabG(x) is finite and x is semistable such

that the action of G on Xf (to which x belongs) is closed.2 The condition of x

having finite stabilizer is equivalent to the one that dimO(x) = dimG.

Lemma D.4.11. [ [60], 3.13, p.74 ]

The sets Xss and Xs of semistable, resp. stable points are G-invariant open

subsets of X.

2In Mumford-Fogarty [58] this is actually the definition of a “properly stable” point. In

order to be coherent with our results we keep the one used in [60].
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Definition D.4.12. [ [60], p.70 ] , [ [7], 1.1, p.102 ] and [ [15], 2.3.1, p.11-12 ]

Let G be a linear algebraic group that acts linearly on two projective varieties X

and Y . A morphism φ : X → Y of projective varieties is called a good quotient

of X by G if φ is surjective, constant on orbits and satisfies some more technical

conditions.3 This is denoted by Y = X//G.

We say that it is a geometric quotient if it is a good quotient which is also an orbit

space, denoted by Y = X/G. So in particular in case of a geometric quotient

the orbit space of X is again a projective variety.

The essence of reductive groups will now become clear by the following deep

results. Here below Z denotes the closure of a set Z.

Theorem D.4.13. [ [60], 3.14, p.74-77 ] , [ [7], 1.7, p.104 ] and [ [67], 14.4, p.94 ]

Let G be a reductive algebraic group that acts linearly on a projective variety

X ⊆ Pn. Then

1) There exists a good quotient φ : Xss → Y where Y = Xss//G is a projective

variety.

2) There is an open subset Y s of Y such that φ−1(Y s) = Xs and Y s = Xs/G is

a geometric quotient.

3) If x1, x2 ∈ Xss, then φ(x1) = φ(x2) ⇔ O(x1) ∩O(x2) ∩Xss 6= ∅.
4) If x ∈ Xss, then x is stable if and only if it has finite stabilizer and O(x) is

closed in Xss.

Remark D.4.14. The message of this theorem is that if the group G acting on

X is reductive then we are able to construct “nice” quotient spaces of the sets

of stable and semistable points.

Moreover we have the following useful criteria for determining (semi)stable points.

Theorem D.4.15. [ [58], Prop. 2.2, p.50-51 ] and [ [60], 4.7, p.101-102 ]

Let G be a reductive algebraic group that acts linearly on a projective variety

X ⊆ Pn. For any x ∈ X, let x̂ ∈ Kn+1 be a point lying over x. Then, independent

of the representative x̂:

3They are not of our interest here ; for more information, we refer to the given references.
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1) x is semistable ⇔ 0 /∈ O(x̂).

2) x is stable ⇔ the stabilizer of x̂ is finite and O(x̂) is closed in Kn+1.

Condition 2) is moreover equivalent to the one that the morphism defined by

G→ Kn+1 : g 7→ g.x̂ is proper.

Definition D.4.16. [ [60], p.103-104 ]

A 1-parameter subgroup (or for short a 1-PS) of an algebraic group G is a non-

trivial homomorphism of algebraic groups λ : K∗ → G. If G acts linearly on a

projective variety X ⊆ Pn, one can associated to any 1-PS a weight µλ : X → Z
defined by the condition

µλ(x) := the unique integer µ such that

lim
t→0

(
tµ · λ(t).x̂

)
exists in Kn+1 and is non-zero

One can show that this definition is independent of the choice of x̂.

Using this we finally get a last criterion to determine (semi)stable points of X.

Theorem D.4.17 (Hilbert-Mumford). [ [58], Th. 2.1, p.49 ] and [ [60], 4.9, p.105 ]

Let G be a reductive algebraic group that acts linearly on a projective variety

X ⊆ Pn. Then

x ∈ X is semistable ⇔ µλ(x) ≥ 0 for every 1-PS λ of G .

Moreover the same equivalence holds true with a strict inequality when x is stable.

The reason why it is interesting to consider such 1-PS is that they have a simple

form e.g. in the case of SLn.

Proposition D.4.18. [ [60], 4.10, p.108 ] and [ [7], p.117 ]

Every 1-PS of SLn is conjugate to one of the form

λ(t) =


tr1 0 . . . 0

0 tr2 . . . 0
...

...
. . .

...

0 0 . . . trn

 ,

where r1 ≥ . . . ≥ rn such that r1 + . . .+ rn = 0 and not all ri are zero.
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Appendix E

Summary of the main examples

In this appendix we summarize all properties from the main examples in Part I.

For a better visualization we also include figures to show the irreducible compo-

nents of all schemes.

For each ring R, we give a module M and denote X = SpecR, F = M̃ ,

Z = Za(F) = Zf (F). Since all modules here are generated by 1 element, we al-

way get AnnR(M) = Fitt0(M) and don’t need to distinguish between annihilator

support and Fitting support. Moreover all modules are of the type M = R/I, so

Ass
(

AnnR(M)
)

= Ass(I) = AssR(R/I) = AssR(M) .

In particular all sheaves are structure sheaves of some subschemes and thus

torsion-free on their support, i.e. every F here below is torsion-free on Z.
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Example E.1. (line with a double point)

R = K[X, Y ]/〈Y 2, XY 〉 , M = K = R/〈 X̄, Ȳ 〉

{0̄} = 〈 X̄ 〉 ∩ 〈 Ȳ 〉 = Q1 ∩Q2 , AnnR(M) = 〈 X̄, Ȳ 〉 = Q′1

AssR(R) =
{
P1 = 〈 X̄, Ȳ 〉 , P2 = 〈 Ȳ 〉

}
, AssR(M) =

{
P ′1 = 〈 X̄, Ȳ 〉

}

X = X1 ∪ X2 = V (Q1) ∪ V (P2) , dimX = 1

Z = Z1 = V (P ′1) , dimF = 0

M is torsion-free over R and F is torsion-free on X : P ′1 = P1.

F is pure of dimension 0.

Example E.2. (plane and a line normal to it)

R = K[X, Y, Z]/〈ZX,ZY 〉 , M = R/〈 X̄, Ȳ 〉

{0̄} = 〈 X̄, Ȳ 〉 ∩ 〈 Z̄ 〉 = Q1 ∩Q2 , AnnR(M) = 〈 X̄, Ȳ 〉 = Q′1

AssR(R) =
{
P1 = 〈 X̄, Ȳ 〉 , P2 = 〈 Z̄ 〉

}
, AssR(M) =

{
P ′1 = 〈 X̄, Ȳ 〉

}
X = X1 ∪ X2 = V (P1) ∪ V (P2) , dimX = 2

Z = Z1 = V (P ′1) , dimF = 1

M is torsion-free over R and F is torsion-free on X : P ′1 = P1.

F is pure of dimension 1.
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Example E.3. (2 perpendicular planes and a line) a

Figure: X = SpecR , Z = suppF and their superposition

R = K[X, Y, Z]/〈Y Z(X − 1), XZ(X − 1) 〉 , M = R/〈 Ȳ Z̄ 〉

{0̄} = 〈 Z̄ 〉 ∩ 〈 X̄ − 1 〉 ∩ 〈 X̄, Ȳ 〉 = Q1 ∩Q2 ∩Q3

AssR(R) =
{
P1 = 〈 Z̄ 〉 , P2 = 〈 X̄ − 1 〉 , P3 = 〈 X̄, Ȳ 〉

}
AnnR(M) = 〈 Ȳ Z̄ 〉 = 〈 Z̄ 〉 ∩ 〈 X̄ − 1, Ȳ 〉 ∩ 〈 X̄, Ȳ 〉 = Q′1 ∩Q′2 ∩Q′3

AssR(M) =
{
P ′1 = 〈 Z̄ 〉 , P ′2 = 〈 X̄ − 1, Ȳ 〉 , P ′3 = 〈 X̄, Ȳ 〉

}
X = X1 ∪ X2 ∪ X3 = V (P1) ∪ V (P2) ∪ V (P3) , dimX = 2

Z = Z1 ∪ Z2 ∪ Z3 = V (P ′1) ∪ V (P ′2) ∪ V (P ′3) , dimF = 2

M is not torsion-free over R : P ′2 * Pi for all i.

The torsion submodule is TR(M) = 〈 [X̄Z̄] 〉.
F is not torsion-free on X : P ′2 /∈ AssR(R). T (F) is supported on Z2.

F is not pure of dimension 2 : dimZ2 = dimZ3 < dimZ1.
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Example E.4. (plane with an embedded double point) a

Figure: X = SpecR , Z = suppF and supp T (F)

R = K[X, Y, Z]/〈XY,X2, XZ 〉 , M = R/〈 Ȳ Z̄ 〉

{0̄} = 〈 X̄ 〉 ∩ 〈 Ȳ , Z̄ 〉 = Q1 ∩Q2

AssR(R) =
{
P1 = 〈 X̄ 〉 , P2 = 〈 X̄, Ȳ , Z̄ 〉

}
AnnR(M) = 〈 Ȳ Z̄ 〉 = 〈 X̄, Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 ∩ 〈 Ȳ , Z̄ 〉 = Q′1 ∩Q′2 ∩Q′3

AssR(M) =
{
P ′1 = 〈 X̄, Z̄ 〉 , P ′2 = 〈 X̄, Ȳ 〉 , P ′3 = 〈 X̄, Ȳ , Z̄ 〉

}
X = X1 ∪ X2 = V (P1) ∪ V (Q2) , dimX = 2

Z = Z1 ∪ Z2 ∪ Z3 = V (P ′1) ∪ V (P ′2) ∪ V (Q′3) , dimF = 1

M is torsion-free over R : P ′j ⊆ P2 for all j.

F is not torsion-free on X : P ′1, P
′
2 /∈ AssR(R).

T (F) is not coherent and supported on Z \ {P2}.
F is not pure of dimension 1 : dimZ3 < dimZ1 = dimZ2.

428



LEYTEM Alain Appendix E. Summary of the main examples

Example E.5. (simple cross on a plane with embedded double point) a

Figure: Z = suppF and supp T (F)

R = K[X, Y, Z]/〈XY,X2, XZ 〉 , M = R/〈 X̄, Ȳ Z̄ 〉

{0̄} = 〈 X̄ 〉 ∩ 〈 Ȳ , Z̄ 〉 = Q1 ∩Q2

AnnR(M) = 〈 X̄, Ȳ Z̄ 〉 = 〈 X̄, Ȳ 〉 ∩ 〈 X̄, Z̄ 〉 = Q′1 ∩Q′2
AssR(R) =

{
P1 = 〈 X̄ 〉 , P2 = 〈 X̄, Ȳ , Z̄ 〉

}
AssR(M) =

{
P ′1 = 〈 X̄, Ȳ 〉 , P ′2 = 〈 X̄, Z̄ 〉

}
X = X1 ∪ X2 = V (P1) ∪ V (Q2) , dimX = 2

Z = Z1 ∪ Z2 = V (P ′1) ∪ V (P ′2) , dimF = 1

M is torsion-free over R : P ′j ⊆ P2 for all j.

F is not torsion-free on X : P ′1, P
′
2 /∈ AssR(R).

T (F) is not coherent and supported on Z \ {P2}.
F is pure of dimension 1 : dimZ1 = dimZ2.
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Example E.6. (plane with embedded double line and perpendicular line, I) a

Figure: X = SpecR and Z = suppF

R = K[X, Y, Z]/〈XZ, Y Z2 〉 , M = R/〈 X̄ 〉

{0̄} = 〈 Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 ∩ 〈 X̄, Z̄2 〉 = Q1 ∩Q2 ∩Q3

AssR(R) =
{
P1 = 〈 Z̄ 〉 , P2 = 〈 X̄, Ȳ 〉 , P3 = 〈 X̄, Z̄ 〉

}
AnnR(M) = 〈 X̄ 〉 = 〈 X̄, Ȳ 〉 ∩ 〈 X̄, Z̄2 〉 = Q′1 ∩Q′2

AssR(M) =
{
P ′1 = 〈 X̄, Ȳ 〉 , P ′2 = 〈 X̄, Z̄ 〉

}
X = X1 ∪ X2 ∪ X3 = V (P1) ∪ V (P2) ∪ V (Q3) , dimX = 2

Z = Z1 ∪ Z2 = V (P ′1) ∪ V (Q′2) , dimF = 1

M is torsion-free over R and F is torsion-free on X : P ′1 = P2 and P ′2 = P3.

F is pure of dimension 1 : dimZ1 = dimZ2.
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Example E.7. (plane with embedded double line and perpendicular line, II) a

Figure: X = SpecR and Z = suppF

R = K[X, Y, Z]/〈XZ, Y Z2 〉 , M = R/〈 X̄Ȳ 〉

{0̄} = 〈 Z̄ 〉 ∩ 〈 X̄, Ȳ 〉 ∩ 〈 X̄, Z̄2 〉 = Q1 ∩Q2 ∩Q3

AssR(R) =
{
P1 = 〈 Z̄ 〉 , P2 = 〈 X̄, Ȳ 〉 , P3 = 〈 X̄, Z̄ 〉

}
AnnR(M) = 〈 X̄Ȳ 〉 = 〈 X̄, Ȳ 〉 ∩ 〈 Ȳ , Z̄ 〉 ∩ 〈 X̄, Z̄2 〉 = Q′1 ∩Q′2 ∩Q′3

AssR(M) =
{
P ′1 = 〈 X̄, Ȳ 〉 , P ′2 = 〈 Ȳ , Z̄ 〉 , P ′3 = 〈 X̄, Z̄ 〉

}
X = X1 ∪ X2 ∪ X3 = V (P1) ∪ V (P2) ∪ V (Q3) , dimX = 2

Z = Z1 ∪ Z2 ∪ Z3 = V (P ′1) ∪ V (P ′2) ∪ V (Q′3) , dimF = 1

M is not torsion-free over R : P ′2 * Pi for all i.

The torsion submodule is TR(M) = 〈 [X̄] 〉.
F is not torsion-free on X : P ′2 /∈ AssR(R).

T (F) is supported on Z2.

F is pure of dimension 1 : dimZ1 = dimZ2 = dimZ3.
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Example of a Simpson moduli

space that is not fine

In this appendix we present the case of the moduli space M2m+2 of semistable

sheaves on P2 with Hilbert polynomial 2m+ 2. Since gcd(2, 2) 6= 1, it is not fine

and its closed points only represent s-equivalence classes of semistable sheaves

(Theorem 4.2.14). In particular there exist properly semistable sheaves for which

the isomorphism classes differ from the s-equivalence classes.

We want to illustrate how singular sheaves may look like if the moduli space is not

fine. From Theorem 4.3.10 we know that M2m+2 is irreducible and of dimension

5. However we will see that properly semistable sheaves may give rise to certain

problems, e.g. in Example F.1.7 we obtain an s-equivalence class that simultane-

ously contains singular and non-singular sheaves (compare Remark 4.4.11), thus

there is no “subvariety” (in the usual sense) of singular sheaves in M2m+2. In

order to still make sense out of M ′
2m+2, we therefore need a new definition.

The main results of this section, which have all been proven by Trautmann in

[67], are that an s-equivalence class [F ] ∈ M2m+2 may be identified with the

support of F (Theorem F.1.14), hence that M2m+2
∼= P5 and that the singular

sheaves corresponds to those whose support is reducible, hence that M ′
2m+2 is

singular and of codimension 1 (Corollary F.2.6).
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F.1 Description of sheaves in M2m+2

Proposition F.1.1. [ [67], p.76 ] and [ [15], p.2 ]

The isomorphism classes of sheaves F ∈M2m+2 are exactly those which are given

by an exact sequence

0 −→ 2OP2(−1)
A−→ 2OP2 −→ F −→ 0 , (F.1)

where

A =

(
z1 w1

z2 w2

)
for some linear forms z1, z2, w1, w2 ∈ Γ

(
P2,OP2(1)

)
such that 〈detA〉 6= 0.

Remark F.1.2. By Example 4.3.1 one checks again that

PF(m) = 2 · (m+ 2)(m+ 1)

2
− 2 · m(m+ 1)

2
= 2m+ 2 .

Here we don’t need an assumption about 〈z1〉 and 〈z2〉 to be linearly independent.

If we e.g. try a similar argument as for M3m+1 in Remark 4.6.6 we end up with

a structure sheaf of a line L such that OL ↪→ F . But this does not contradict

semistability since

pOL(m) = m+ 1 and pF(m) =
2m+ 2

2
= m+ 1 .

Moreover we see that for linearly dependent 〈z1〉 and 〈z2〉 we can obtain properly

semistable sheaves.

Remark F.1.3. Proposition F.1.1 indeed describes the isomorphism classes of

sheaves in M2m+2. There exist for example non-isomorphic sheaves given as

in (F.1) by non-similar matrices, but which are still s-equivalent (consider e.g.

Example F.1.9).

F.1.1 Stability and support

If F ∈ Coh(OP2) is given by a resolution (F.1), then detA = z1w2 − w1z2 is a

homogeneous polynomial of degree 2 and Proposition 4.5.9 implies that the sup-

port C = Zf (F) is given by the quadratic curve Z(detA). By Proposition 4.4.16

we already know that F is non-singular if C is smooth.
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In the following we are going to discuss all possible cases by distinguishing along

the type of the conic C.

Proposition F.1.4. [ [67], 12.2, p.76-77 ]

Let F be given as in (F.1) with support C = Zf (F). Then F is stable if and

only if C is a smooth conic. In particular this implies that all stable sheaves are

non-singular.

Proof. ⇐ : Assume that C is smooth. Then F is locally free on C by Proposi-

tion 4.4.16 and the structure sheaf OC has Hilbert polynomial 2m + 1 because

of (4.17). Since PF(0) = 2 we can choose a non-zero global section of F and

construct an extension

0 −→ OC −→ F −→ Skyp(K) −→ 0

for some p ∈ C similarly as in Proposition 4.6.2. Using that F is locally free, one

can show that it is isomorphic to the invertible sheaf OC(p) given by the point

divisor p. The latter is defined via the closed subscheme {p} ↪→ C,

0 −→ OC(−p) −→ OC −→ Skyp(K) −→ 0

and can be considered as a hyperplane. Moreover OC(p) is known to be stable,

hence F is stable.

⇒ : Assume that C is not smooth. Then it is either a union of two lines L1∪L2

or a double line. In both cases, using coordinate changes and up to a constant,

detA can then be written as a product l1 · l2 and A is similar to a matrix of the

form

A′ =

(
l1 w

0 l2

)
,

where l1, l2, w ∈ Γ
(
P2,OP2(1)

)
are linear forms such that 〈l1l2〉 6= 0. Note that l1

and l2 may be equal if C is a double line. As already seen in Remark 4.6.6, the

matrices A ∼ A′ then induce an isomorphism of exact sequences in (F.1). Now
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consider the commutative diagram with exact rows

0

��

0

��

0

��

0 // OP2(−1)
l2 //

(0,1)

��

OP2
//

(0,1)

��

OL2
//

��

0

0 // 2OP2(−1) A′ //

(1
0)
��

2OP2
//

(1
0)
��

F //

��

0

0 // OP2(−1)
l1 //

��

OP2
//

��

OL1
//

��

0

0 0 0

(F.2)

The 9-Lemma (Lemma D.1.7) implies that the last column is exact as well. But

then OL2 is a non-zero proper coherent subsheaf of F with the same reduced

Hilbert polynomial m+ 1. Hence F is not stable.

Remark F.1.5. We can construct such an extension for each w ∈ Γ
(
P2,OP2(1)

)
.

For different w they will be non-isomorphic, but s-equivalent since OL1 and OL2

are stable, so we have an extension as in Example 4.1.23. For w = 0 we obtain

the trivial extension F ∼= OL1 ⊕OL2 .

F.1.2 S-equivalence and counter-examples

Lemma F.1.6. Let z1, z2 ∈ Γ
(
P2,OP2(1)

)
be two linear forms such that 〈z1〉 and

〈z2〉 are linearly independent and let p ∈ P2 be the intersection point of the two

lines Z(z1) and Z(z2).

If w ∈ Γ
(
P2,OP2(1)

)
is another linear form such that w(p) = 0, then w is a

linear combination of z1 and z2, i.e. w = α1z1 + α2z2 for some α1, α2 ∈ K.

Proof. Let us write

z1 = a0X0 + a1X1 + a2X2 , z2 = b0X0 + b1X1 + b2X2 ,

w = c0X0 + c1X1 + c2X2 , p = (p0 : p1 : p2) .

for some coefficients ai, bi, ci, pi ∈ K.
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If w(p) = 0, we have the 3 equations
a0 a1 a2

b0 b1 b2

c0 c1 c2

 ·

p0

p1

p2

 =


0

0

0

 ,

hence in order to get a non-trivial solution the matrix consisting of the coefficients

must have determinant zero, i.e. the linear forms are linearly dependent, so w is

a linear combination of z1 and z2.

Example F.1.7. [ [67], 12.2.1, p.77-78 ]

Using this we can now illustrate that it does not make sense to speak about

singular sheaves when s-equivalence classes are involved. Consider the case where

C = L1 ∪ L2 is a union of two different lines, given by the determinant of A′.

Thus it defines a sheaf F ∈ M2m+2 \M s
2m+2 by Proposition F.1.4. Note that it

depends on w, but for all choices of w the results will be s-equivalent. Let p ∈ P2

be the intersection point of the lines Z(l1) and Z(l2). This is the only singular

point of C. In particular it implies that 〈l1〉 and 〈l2〉 are linearly independent.

If w(p) = 0, then w is a linear combination of l1 and l2 because of Lemma F.1.6,

hence A′ is similar to a diagonal matrix and we get F ∼= OL1 ⊕OL2 . This is not

a locally free OL1∪L2–module since the rank jumps at the intersection point p,

thus F is singular. If w(p) 6= 0, a similar argument as in (4.40) gives

K2 A′(p)−→ K2 −→ F(p) −→ 0 ,

where the rank of A′(p) is 1, hence Fp ∼= OC,p. F being locally free on the smooth

part C \ {p}, we conclude that this F is non-singular. Summarizing we obtained

a non-singular sheaf F which is s-equivalent but non-isomorphic to the singular

sheaf OL1⊕OL2 . So we see that an s-equivalence class can simultaneously contain

singular and non-singular sheaves, i.e. the notion of being (non-)singular is not

well-defined in M2m+2 \M s
2m+2.

Remark F.1.8. [ [67], 12.2.2, p.77-78 ]

For completion let us also describe what happens in the case where C is a double

line. The matrix is of the form

A′ =

(
l w

0 l

)
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for some l, w ∈ Γ
(
P2,OP2(1)

)
. Denote L = Z(l). If w = αl for some α ∈ K,

then A′ is again similar to a diagonal matrix and we get F ∼= 2OL, which is not

a locally free OC–module. If l and w are linearly independent, let p denote the

intersection point of L and Z(w). Then F is locally free on C \ {p}, but not at

p since for all x ∈ C we obtain

K2 A′(x)−→ K2 −→ F(x) −→ 0 ,

where A′(x) has rank 1 for x 6= p and A′(p) = 0. So in this case all sheaves in

the s-equivalence class are singular.

Example F.1.9. [ [67], 12.3.3, p.80-81 ]

Let us give some more concrete examples of sheaves that are s-equivalent but

non-isomorphic. Such sheaves usually arise as limits. By Proposition F.1.4 they

must have singular support, otherwise they are stable, in which case isomorphism

and s-equivalence classes coincide. For t ∈ K consider

At =

(
z1 w1

t2z2 w2

)
, Bt =

(
z1 tw1

tz2 w2

)

and the sheaves Ft and Gt they define by taking cokernels as in (F.1). For t 6= 0

we have At ∼ Bt since(
1 0

0 1
t

)
·

(
z1 w1

t2z2 w2

)
·

(
1 0

0 t

)
=

(
z1 tw1

tz2 w2

)

and hence Ft ∼= Gt. But for t = 0 they will no longer be isomorphic. If we

denote L1 = Z(z1) and L2 = Z(w2), then B0 is a diagonal matrix and G0 will be

isomorphic to the direct sum OL1 ⊕OL2 whereas F0 is a non-trivial extension

0 −→ OL2 −→ F0 −→ OL1 −→ 0

if w1 does not vanish at the intersection {p} = L1 ∩ L2. On the other hand OL1

and OL2 are stable, so F0 and G0 are still s-equivalent by Example 4.1.23. This

shows again why it is necessary to consider s-equivalence classes for the points

in M2m+2 otherwise we could define two “sequences” t 7→ [Ft] and t 7→ [Gt] that

are pointwise equal but with different limits in the moduli space.
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Remark F.1.10. Other examples of s-equivalent but non-isomorphic sheaves

can e.g. be found in [ [67], 12.4.2, p.82 ] and [ [23], 2.5, p.33 ]. All of them arise

by similar limit processes.

F.1.3 Description of the moduli space

Now we want to find an “easy” space that parametrizes elements from M2m+2

and a suitable isomorphism which gives a concrete description. The goal is to

show that s-equivalence classes of sheaves in M2m+2 can be identified with their

supports. The first result is the following.

Proposition F.1.11. [ [67], 12.4.1, p.81-82 ]

Let

0 −→ 2OP2(−1)
A−→ 2OP2 −→ FA −→ 0 ,

0 −→ 2OP2(−1)
B−→ 2OP2 −→ FB −→ 0

be two exact sequences as in (F.1) which define sheaves FA,FB ∈ M2m+2 with

supports CA and CB. Assume that the supports are smooth. Then we have

A ∼ B ⇔ FA ∼= FB ⇔ CA = CB .

Proof. The implications ⇒ are clear. We prove that there exist g, h ∈ GL2(K)

such that B = g · A · h if the smooth conics CA and CB are equal. This means

that detA = λ · detB for some λ ∈ K∗. Write

A =

(
z1 w1

z2 w2

)
, B =

(
l1 v1

l2 v2

)

and let p ∈ P2 be the point given by z1(p) = z2(p) = 0. This is possible since CA

is smooth, so 〈z1〉 and 〈z2〉 are linearly independent (otherwise detA is reducible).

In particular p ∈ CA ∩ CB since (detA)(p) = 0. Next we want to determine the

rank of the matrix B(p). It cannot be 2, otherwise B(p) is invertible and this

contradicts detB(p) = (detB)(p) = 0. Moreover it cannot be 0 since CB is

smooth. Indeed

∂ detB

∂Xi

=
∂

∂Xi

(
l1v2 − v1l2

)
= ∂il1 · v2 + l1 · ∂iv2 − ∂iv1 · l2 − v1 · ∂il2
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and this vanishes at p if l1(p) = l2(p) = v1(p) = v2(p) = 0. Hence rkB(p) = 1,

which means that there is a non- trivial relation between the columns(
l1(p) v1(p)

l2(p) v2(p)

)
·

(
α

β

)
=

(
0

0

)
.

Assume e.g. that α 6= 0 and set

k =

(
α 0

β 1

)
∈ GL2(K) .

Then

B · k =

(
y1 v1

y2 v2

)
, detB · det k = y1v2 − v1y2

with yi = αli + βvi for i = 1, 2, so yi(p) = 0 and hence it is a linear combination

of z1 and z2. Write e.g.(
y1

y2

)
=

(
a1 a2

b1 b2

)
·

(
z1

z2

)
= g ·

(
z1

z2

)
,

where g ∈ GL2(K). In particular 〈y1〉 and 〈y2〉 are still linearly independent.

Now we have

g · A =

(
y1 w′1

y2 w′2

)
, det g · detA = y1w

′
2 − w′1y2 .

Combining with y1v2 − v1y2 = det k · detB = det k · detA
λ

, this gives

y1v2 − v1y2 = det k · y1w
′
2 − w′1y2

λ · det g
= µ · (y1w

′
2 − w′1y2)

⇒ y1 · (v2 − µw′2) = y2 · (v1 − µw′1) .

By linear dependence we hence need that v2 = µw′2 and v1 = µw′1. Finally

B · k ·

(
1 0

0 1
µ

)
= g · A ⇒ g · A ·

(
1 0

0 µ

)
· k−1 = B .

Remark F.1.12. Hence the stable sheaves from M s
2m+2 are in 1-to-1 corre-

spondence with smooth conics in P2. From Example F.1.9 we see that this no

longer holds true when the support is singular ; there exist non-isomorphic (but

s-equivalent) sheaves having the same singular support.
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On the other hand a similar bijection holds true for properly semistable sheaves

and singular supports. Indeed

Proposition F.1.13. [ [67], 13.5.2, p.87 ]

There is a 1-to-1 correspondence between s-equivalent classes of properly semistable

sheaves and reducible conics in P2.

Proof. Assume that A is in the orbit of the matrix(
l1 w

0 l2

)
,

then the sheaf FA defined by (F.1) has determinant l1 · l2 and is thus properly

semistable as one can always construct an extension as in (F.2). All these ex-

tensions will be s-equivalent for different w, so they represent the same point

in M2m+2. Thus det ignores the type of the extension and we always get the s-

equivalence class of OL1 ⊕OL2 . So the only way to get different points in M2m+2

is by changing the linear forms l1 and l2 which define the class of OL1 ⊕ OL2 .

Vice-versa given a properly semistable sheaf F , we know from Proposition F.1.4

that it must have a singular support and we can recover F by uniqueness of

cokernels as some FA by the construction above.

Corollary D.1.15, which is a consequence of Bézout’s Theorem on P2, moreover

says that all irreducible curves in P2 of degree 2 can be written as X2
0 −X1X2 up

to a change of variables and are hence smooth (i.e. being irreducible and being

smooth is equivalent for conics in P2).

Summarizing we have proven

Theorem F.1.14. [ [67], 13.5, p.85 ]

There is an isomorphism of projective varieties

M2m+2
∼−→ C2(P2) ∼= P5 : [F ] 7−→ Zf (F) ,

which identifies the open subvariety M s
2m+2 of isomorphism classes of stable

sheaves with the open subvariety of smooth conics and the closed complement

M2m+2 \M s
2m+2 of s-equivalence classes of properly semistable sheaves with the

closed subset of singular quadratic curves from (4.21).
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Remark F.1.15. In particular we see that a point in M2m+2 is completely deter-

mined by its support, in contrast to the moduli space M3m+1 where we identified

a sheaf with its support and a point lying on that curve in order to obtain U(3),

see Theorem 4.6.17. Moreover we saw in Proposition F.1.4 that all sheaves in

M s
2m+2 are non-singular and that it does not make sense to speak about (non-

)singular sheaves for s-equivalence classes in M2m+2 \M s
2m+2.

Corollary F.1.16. The closed subvariety of s-equivalence classes of properly

semistable sheaves in M2m+2 is of codimension 1.

Proof. As the moduli space M2m+2 is isomorphic to the space of conics on P2

(Theorem F.1.14), we conclude that M2m+2 \M s
2m+2 is given by the subset of

singular conics, i.e. reducible homogeneous polynomials of degree 2. These

can be described as follows ; a quadratic form Q is identified with an element

(a0 : . . . : a5) ∈ P5 and can be written as

Q(X0, X1, X2) = a0X
2
0 + a1X0X1 + a2X0X2 + a3X

2
1 + a4X1X2 + a5X

2
2

=
(
X0 X1 X2

)
·


a0

a1

2
a2

2
a1

2
a3

a4

2
a2

2
a4

2
a5

 ·

X0

X1

X2

 .

The polynomial Q is reducible if and only if the determinant of this matrix is

zero. Hence we get

(a0 : . . . : a5) ∈ P5 defines a singular sheaf ⇔ det


a0

a1

2
a2

2
a1

2
a3

a4

2
a2

2
a4

2
a5

 = 0

⇔ 1
4
·
(
4a0a3a5 − a0a

2
4 − a2

1a5 + a1a2a4 − a2
2a3

)
= 0 .

This is just one homogeneous equation, so we obtain that the subset of singular

conics is of codimension 1 in P5
∼= M2m+2.

Remark F.1.17. This is compatible with Theorem 4.3.11, which states that

the closed subvariety M2m+2 \M s
2m+2 has codimension at least 2 · 2− 3 = 1. In

Corollary F.1.16 we showed that here it is indeed equal to 1.
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F.2 Subvariety of singular sheaves

Nevertheless there are solutions out of the problem that (non-)singular sheaves

are not defined for s-equivalence classes. The idea is to make sense of the notion

of a (non-)singular equivalence class. As we know that all stable sheaves in

M2m+2 are non-singular, we only have to look for singular sheaves among the

properly semistable ones. Several attempts are possible.

Definition F.2.1. Let [F ] ∈ M2m+2 \ M s
2m+2 be an s-equivalence class of a

properly semistable sheaf. We say that [F ] is singular if and only if it contains

a singular representative.

Another definition, which actually comes down to the same, is the following.

Definition F.2.2. We say that a semistable sheaf is polystable if it is a direct sum

of stable sheaves. It is shown in [ [38], 1.5.4, p.24 ] that every s-equivalence class

of a semistable sheaf contains exactly one polystable sheaf up to isomorphism.

Then we say that a properly semistable sheaf [F ] ∈ M2m+2 \M s
2m+2 is singular

if and only if its unique polystable representative is singular.

Remark F.2.3. In our case we know that a properly semistable sheaf F has

singular support and its s-equivalence class always contains the direct sum of

structure sheaves of lines OL1 ⊕ OL2 , where L1 = L2 gives the double line.

Moreover this direct sum is the polystable representative of the class since each

OLi is stable by Proposition 4.3.9. But we saw all direct sums to be singular in

Example F.1.7 and Remark F.1.8. Hence every s-equivalence class of a properly

semistable sheaf is singular.

Using this new definition one can again study the question of the codimension

of the subvariety of singular sheaves M ′
2m+2 ⊂ M2m+2. Collecting all the results

from Section F.1.3, we have the following criterion.

Proposition F.2.4. Let [F ] ∈ M2m+2 be an s-equivalence class of a semistable

sheaf. Then the following conditions are equivalent:

1) [F ] is singular.

2) [F ] is the s-equivalence class of a properly semistable sheaf.

3) Zf (F) is a singular conic (or equivalently, a reducible conic).
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Proof. Being singular and being reducible are equivalent for conics in P2 by

Corollary D.1.15.

The equivalence of the first 2 assertions is proven in Remark F.2.3. Moreover

we know by Proposition 4.4.16 that singular sheaves necessarily have singular

support, so it remains to show the converse. If the support of the sheaf is

singular, hence reducible, the sheaf is properly semistable by Proposition F.1.4

and the unique polystable representative of its s-equivalence class is a direct sum

of structure sheaves of lines, which is not locally free on its support. Thus sheaves

in M2m+2 with singular support are singular.

Remark F.2.5. Do not forget that we have shown in Example F.1.7 that there

do exist non-singular sheaves with singular support (and which are thus properly

semistable). The criterion of Proposition F.2.4 only looks at the polystable

representative.

Corollary F.2.6. The closed subvariety M ′
2m+2 ⊂ M2m+2 is singular and of

codimension 1.

Proof. Since all properly semistable sheaves are singular we conclude from Corol-

lary F.1.16 that M ′
2m+2 is of codimension 1 in M2m+2 and hence of dimension 4.

Moreover it is not smooth: let us write

F (a0, . . . , a5) = 4a0a3a5 − a0a
2
4 − a2

1a5 + a1a2a4 − a2
2a3 ,

∂0F (a0, . . . , a5) = 4a3a5 − a2
4 , ∂1F (a0, . . . , a5) = a2a4 − 2a1a5 ,

∂2F (a0, . . . , a5) = a1a4 − 2a2a3 , ∂3F (a0, . . . , a5) = 4a0a5 − a2
2 ,

∂4F (a0, . . . , a5) = a1a2 − 2a4a0 , ∂5F (a0, . . . , a5) = 4a0a3 − a2
1 .

Then we see e.g. that (1 : 0 : 0 : 0 : 0 : 0) is a singular point of this variety.

Remark F.2.7. In particular this shows that the inequality codimΩ(Ωsing) ≥ 2

of Proposition 4.4.12 may no longer hold true in the moduli space (i.e. after

dividing out the SL(V )-action on Ω).
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Remark F.2.8. Another attempt is to define an s-equivalence class [F ] ∈M2m+2

to be non-singular if and only if it contains a non-singular representative. In

this case we have seen in Example F.1.7 and Example F.1.8 that the only s-

equivalence classes in which all representatives are singular are those whose sup-

port is given by a double line. The latter can be be represented by the form

(aX0 + bX1 + cX2)2

= a2X2
0 + b2X2

1 + c2X2
2 + 2abX0X1 + 2acX0X2 + 2bcX1X2

with (a, b, c) 6= (0, 0, 0), so in this case the subvariety of singular sheaves M ′
2m+2

would be of codimension 3.
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