Torsion and purity on non-integral schemes & singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane

Alain Leytem Thesis advisor: Prof. Dr Martin Schlichenmaier

University of Luxembourg

The Faculty of Sciences, Technology and Communication

PhD Thesis in Mathematics 16/09/2016 alain.levtem@uni.lu , alain levtem@vahoo.de

2 Part I: Non-integral torsion and purity

3 Part II: Singular sheaves of dimension one

Motivation

Classification problem

• no moduli space which classifies isomorphism classes of locally free sheaves (vector bundles) on a projective scheme (variety)

Classification problem

• no moduli space which classifies isomorphism classes of locally free sheaves (vector bundles) on a projective scheme (variety)

• no moduli space that classifies coherent sheaves neither

Solution: introduce semistable sheaves

• C. Simpson showed existence of a moduli space M that classifies semistable sheaves (with some fixed invariants) on a projective scheme.

Classification problem

• no moduli space which classifies isomorphism classes of locally free sheaves (vector bundles) on a projective scheme (variety)

• no moduli space that classifies coherent sheaves neither

Solution: introduce semistable sheaves

• C. Simpson showed existence of a moduli space M that classifies semistable sheaves (with some fixed invariants) on a projective scheme.

We are interested in pure 1-dimensional sheaves on \mathbb{P}_2 .

- "most" of them can be shown to be locally free on their support
 - \Rightarrow *M* mostly consists of vector bundles on a curve

To prove this one needs to know that pure sheaves are torsion-free on their support.

Problem: The support of a pure 1-dimensional sheaf is in general not an integral scheme (e.g. not a smooth curve).

Problem: The support of a pure 1-dimensional sheaf is in general not an integral scheme (e.g. not a smooth curve).

- What is the torsion of a sheaf on such a space?
- Prove that there is no torsion if the sheaf is pure.

M also contains sheaves which are not locally free on their support.

- such sheaves are called singular
- they form a closed subvariety $M' \subset M$, in general non-empty

We want to find properties of M' such as

- smoothness
- codimension in M

This gives information about the geometry of M.

Part I

Torsion on non-integral schemes and relations with purity

Main result

Reminder:

On an affine Noetherian scheme Spec R there is a 1-to-1 correspondence between coherent sheaves and finitely generated R-modules.

$$\operatorname{\mathsf{Mod}}^f(R) \overset{\sim}{\longrightarrow} \operatorname{\mathsf{Coh}}(\mathcal{O}_R) \; : \; M \longmapsto \widetilde{M}$$

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ for some Noetherian ring R and M be a finitely generated module over R. Assume that the coherent $\mathcal{O}_{\mathcal{X}}$ -module $\mathcal{F} = \widetilde{M}$ is pure and let \mathcal{Z} be its support. Then \mathcal{F} is a torsion-free $\mathcal{O}_{\mathcal{Z}}$ -module.

Main result

Reminder:

On an affine Noetherian scheme Spec R there is a 1-to-1 correspondence between coherent sheaves and finitely generated R-modules.

$$\operatorname{\mathsf{Mod}}^f(R) \overset{\sim}{\longrightarrow} \operatorname{\mathsf{Coh}}(\mathcal{O}_R) \; : \; M \longmapsto \widetilde{M}$$

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ for some Noetherian ring R and M be a finitely generated module over R. Assume that the coherent $\mathcal{O}_{\mathcal{X}}$ -module $\mathcal{F} = \widetilde{M}$ is pure and let \mathcal{Z} be its support. Then \mathcal{F} is a torsion-free $\mathcal{O}_{\mathcal{Z}}$ -module.

- known for integral schemes
- generalization to the non-integral and non-reduced case
- (neither $\mathcal X$ nor $\mathcal Z$ are supposed to be integral or reduced schemes)

Main result

Reminder:

On an affine Noetherian scheme Spec R there is a 1-to-1 correspondence between coherent sheaves and finitely generated R-modules.

$$\operatorname{\mathsf{Mod}}^f(R) \overset{\sim}{\longrightarrow} \operatorname{\mathsf{Coh}}(\mathcal{O}_R) \; : \; M \longmapsto \widetilde{M}$$

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ for some Noetherian ring R and M be a finitely generated module over R. Assume that the coherent $\mathcal{O}_{\mathcal{X}}$ -module $\mathcal{F} = \widetilde{M}$ is pure and let \mathcal{Z} be its support. Then \mathcal{F} is a torsion-free $\mathcal{O}_{\mathcal{Z}}$ -module.

• known for integral schemes

• generalization to the non-integral and non-reduced case (neither \mathcal{X} nor \mathcal{Z} are supposed to be integral or reduced schemes)

Important remark:

$$\mathsf{supp}\,\mathcal{F} = \big\{\, x \in \mathcal{X} \,\,\big|\,\,\mathcal{F}_x \neq \{0\}\,\big\}$$

Torsion submodule of a module M over a ring R:

 $\mathcal{T}_R(M) = \{ m \in M \mid \exists r \in R, r \neq 0 \text{ a NZD such that } r * m = 0 \}$

M is called torsion-free if $\mathcal{T}_R(M) = \{0\}$.

Torsion submodule of a module M over a ring R:

 $\mathcal{T}_{R}(M) = \left\{ m \in M \mid \exists r \in R, r \neq 0 \text{ a NZD such that } r * m = 0 \right\}$

M is called torsion-free if $\mathcal{T}_R(M) = \{0\}$.

For a sheaf \mathcal{F} on a scheme \mathcal{X} , we define the torsion subsheaf $\mathcal{T}(\mathcal{F})$.

- $\bullet\,$ idea: its stalks are the torsion submodules of the stalks of ${\cal F}$
- different definitions in the literature (equivalent in the integral case)

Torsion submodule of a module M over a ring R:

 $\mathcal{T}_R(M) = \{ m \in M \mid \exists r \in R, r \neq 0 \text{ a NZD such that } r * m = 0 \}$

M is called torsion-free if $\mathcal{T}_R(M) = \{0\}$.

For a sheaf \mathcal{F} on a scheme \mathcal{X} , we define the torsion subsheaf $\mathcal{T}(\mathcal{F})$.

- $\bullet\,$ idea: its stalks are the torsion submodules of the stalks of ${\cal F}$
- different definitions in the literature (equivalent in the integral case)
- the assignment $U \mapsto \mathcal{T}_{\mathcal{O}_{\mathcal{X}}(U)}(\mathcal{F}(U))$ is not a presheaf on non-integral schemes
 - \Rightarrow define it on affines

Definition

Let $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}})$, $U \subseteq \mathcal{X}$ be open and $s \in \mathcal{F}(U)$. s is a torsion section of \mathcal{F} if there exist an affine open covering $U = \bigcup_i U_i$ such that

$$s_{|U_i} \in \mathcal{T}_{\mathcal{O}_{\mathcal{X}}(U_i)}(\mathcal{F}(U_i)), \ \forall i$$

 $\mathcal{T}(\mathcal{F})(U) =$ set of all torsion sections of \mathcal{F} over U

Definition

Let $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}})$, $U \subseteq \mathcal{X}$ be open and $s \in \mathcal{F}(U)$. s is a torsion section of \mathcal{F} if there exist an affine open covering $U = \bigcup_i U_i$ such that

$$s_{|U_i} \in \mathcal{T}_{\mathcal{O}_{\mathcal{X}}(U_i)}(\mathcal{F}(U_i)), \ \forall i$$

 $\mathcal{T}(\mathcal{F})(U) =$ set of all torsion sections of \mathcal{F} over U

On locally Noetherian schemes we have:

- for $U \subseteq \mathcal{X}$ affine, $\mathcal{T}(\mathcal{F})(U) = \mathcal{T}_{\mathcal{O}_{\mathcal{X}}(U)}(\mathcal{F}(U))$
- stalks: $\mathcal{T}(\mathcal{F})_x \cong \mathcal{T}_{\mathcal{O}_{\mathcal{X},x}}(\mathcal{F}_x)$, $\forall x \in \mathcal{X}$

Definition

$$\mathcal{F} \in \mathtt{Coh}(\mathcal{O}_{\mathcal{X}})$$
 is called torsion-free if $\mathcal{T}(\mathcal{F}) = 0$.

Torsion-free sheaves: stalks are torsion-free modules over local rings

Is $\mathcal{T}(\mathcal{F})$ again coherent? In general: No!

Is $\mathcal{T}(\mathcal{F})$ again coherent? In general: No!

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ be an affine Noetherian scheme and \mathcal{F} a coherent sheaf on \mathcal{X} given by $\mathcal{F} \cong \widetilde{M}$ for some R-module M. Then

 $\mathcal{T}(\mathcal{F}) \text{ is coherent } \Leftrightarrow \left(\mathcal{T}_{R}(M)\right)_{P} = \mathcal{T}_{R_{P}}(M_{P}) \;, \quad \forall \; P \in \operatorname{Spec} R \;.$

If $\mathcal{T}(\mathcal{F})$ is coherent, then $\mathcal{T}(\mathcal{F}) \cong \widetilde{\mathcal{T}_R(M)}$.

- · criterion always satisfied for integral and reduced schemes
- but not in general

 $\mathcal{X} = \operatorname{Spec} R$ and $\mathcal{F} = \widetilde{M}$ for

$$R = \mathbb{K}[X, Y, Z] / \langle XY, X^2, XZ \rangle$$
, $M = R / \langle \overline{Y}\overline{Z} \rangle$

• *M* is torsion-free:
$$\mathcal{T}_R(M) = \{0\}$$

- but for $P = \langle \bar{X}, \bar{Y}, \bar{Z} 1 \rangle$, we have $[\bar{Z}]_P \neq 0$ and $[\bar{Z}]_P \in \mathcal{T}_{R_P}(M_P)$
 - $\Rightarrow~$ it cannot come from a global torsion element
 - $\Rightarrow \mathcal{T}(\mathcal{F})$ is not coherent

Geometric interpretation

The support of $\mathcal{T}(\mathcal{F})$ is not closed: $\mathcal{T}_{R_P}(M_P) \neq \{0\}, \forall P \in \text{supp } M \setminus \{\mathfrak{M}\}$

Theorem (Lasker-Noether)

In a Noetherian ring, the zero ideal can be written as a finite intersection $\{0\} = Q_1 \cap \ldots \cap Q_\alpha$ of primary ideals $Q_i \leq R$.

The radicals $P_i = \text{Rad}(Q_i)$ are prime ideals.

- called the associated primes of R: $Ass_R(R) = \{P_1, \dots, P_{\alpha}\}$
- minimal and embedded primes: $P_i \subsetneq P_j$

Theorem (Lasker-Noether)

In a Noetherian ring, the zero ideal can be written as a finite intersection $\{0\} = Q_1 \cap \ldots \cap Q_\alpha$ of primary ideals $Q_i \leq R$.

The radicals $P_i = \text{Rad}(Q_i)$ are prime ideals.

- called the associated primes of R: $Ass_R(R) = \{P_1, \ldots, P_{\alpha}\}$
- minimal and embedded primes: $P_i \subsetneq P_j$

Application: decomposition into irreducible components

$$\mathcal{X} = \operatorname{\mathsf{Spec}} R = Vig(\{0\}ig) = Vig(igcap_i Q_iig) = igcup_i V(Q_i) = igcup_i \mathcal{X}_i$$

If $Q_i \subsetneq P_i$, the component \mathcal{X}_i has a non-reduced structure.

Examples

1)
$$R = \mathbb{K}[X, Y, Z] / \langle YZ(X - 1), XZ(X - 1) \rangle$$

 $\{\bar{0}\} = \langle \bar{Z} \rangle \cap \langle \bar{X} - 1 \rangle \cap \langle \bar{X}, \bar{Y} \rangle$

two planes $\{Z = 0\}$, $\{X = 1\}$ and a line $\{X = Y = 0\}$

Examples

1)
$$R = \mathbb{K}[X, Y, Z] / \langle YZ(X - 1), XZ(X - 1) \rangle$$

 $\{\bar{0}\} = \langle \bar{Z} \rangle \cap \langle \bar{X} - 1 \rangle \cap \langle \bar{X}, \bar{Y} \rangle$

two planes $\{Z=0\}$, $\{X=1\}$ and a line $\{X=Y=0\}$

2)
$$R = \mathbb{K}[X, Y, Z] / \langle XY, X^2, XZ \rangle, \ \bar{X}^2 = 0$$

 $\{\bar{0}\} = \langle \bar{X} \rangle \cap \langle \bar{Y}, \bar{Z} \rangle$

plane $\{X = 0\}$ with an embedded double point

$$\mathsf{Rad}\left(\langle\;\bar{Y},\bar{Z}\;\rangle\right) = \langle\;\bar{X},\bar{Y},\bar{Z}\;\rangle \qquad,\qquad \langle\;\bar{X}\;\rangle \subsetneq \langle\;\bar{X},\bar{Y},\bar{Z}\;\rangle$$

The embedded prime $P_j \supseteq P_i$ gives an embedded component $\mathcal{X}_j \subseteq \mathcal{X}_i$.

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ be an affine Noetherian scheme and \mathcal{F} a coherent $\mathcal{O}_{\mathcal{X}}$ -module. If R has no embedded primes, then the torsion subsheaf $\mathcal{T}(\mathcal{F}) \subseteq \mathcal{F}$ is coherent.

Proof uses a result from Epstein & Yao which allows to construct global NZDs from local ones

$$\Rightarrow$$
 we obtain $(\mathcal{T}_R(M))_P = \mathcal{T}_{R_P}(M_P)$

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ be an affine Noetherian scheme and \mathcal{F} a coherent $\mathcal{O}_{\mathcal{X}}$ -module. If R has no embedded primes, then the torsion subsheaf $\mathcal{T}(\mathcal{F}) \subseteq \mathcal{F}$ is coherent.

Proof uses a result from Epstein & Yao which allows to construct global NZDs from local ones

$$\Rightarrow$$
 we obtain $(\mathcal{T}_R(M))_P = \mathcal{T}_{R_P}(M_P)$

Examples of rings with no embedded primes:

- integral domains and reduced rings
- spectrum defining an irreducible scheme
- quotients of polynomial rings by principal ideals

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ be an affine Noetherian scheme and \mathcal{F} a coherent $\mathcal{O}_{\mathcal{X}}$ -module. If R has no embedded primes, then the torsion subsheaf $\mathcal{T}(\mathcal{F}) \subseteq \mathcal{F}$ is coherent.

Proof uses a result from Epstein & Yao which allows to construct global NZDs from local ones

$$\Rightarrow$$
 we obtain $(\mathcal{T}_R(M))_P = \mathcal{T}_{R_P}(M_P)$

Examples of rings with no embedded primes:

- integral domains and reduced rings
- spectrum defining an irreducible scheme
- quotients of polynomial rings by principal ideals

Geometric interpretation of torsion

Is torsion supported in smaller dimension, in the sense that

 $\mathsf{dim}\,\big(\,\mathsf{supp}\,\mathcal{T}(\mathcal{F})\big)<\mathsf{dim}(\mathsf{supp}\,\mathcal{F})\,?$

Geometric interpretation of torsion

Is torsion supported in smaller dimension, in the sense that

 $\dim \big(\operatorname{supp} \mathcal{T}(\mathcal{F})\big) < \dim(\operatorname{supp} \mathcal{F})?$

In general: No! supp $\mathcal{T}(\mathcal{F})$ may even be dense in supp \mathcal{F} :

Geometric interpretation of torsion

Is torsion supported in smaller dimension, in the sense that

 $\dim \big(\operatorname{supp} \mathcal{T}(\mathcal{F})\big) < \dim(\operatorname{supp} \mathcal{F})?$

In general: No! supp $\mathcal{T}(\mathcal{F})$ may even be dense in supp \mathcal{F} :

Theorem

Let M be a finitely generated module over a Noetherian ring R. Denote $\mathcal{F} = \widetilde{M}, \mathcal{X} = \operatorname{Spec} R$ and $\mathcal{X}_i = V(P_i)$ for all i, where P_1, \ldots, P_{α} are the associated primes of R. Then M is a torsion module if and only if the codimension of supp \mathcal{F} is positive along each irreducible component:

 $\operatorname{\mathsf{codim}}_{\mathcal{X}_i}\left(\left(\operatorname{\mathsf{supp}}\mathcal{F}\right)\cap\mathcal{X}_i\right)\geq 1\;,\quad\forall\,i\in\{1,\ldots,\alpha\}\;.$

Example

$$\begin{split} \mathcal{X} &= \operatorname{Spec} R \text{ and } \mathcal{F} = \tilde{M} \text{ for} \\ R &= \mathbb{K}[X, Y, Z] / \langle YZ(X-1), XZ(X-1) \rangle \quad , \qquad M = R / \langle \bar{Y}\bar{Z} \rangle \\ M \text{ not torsion-free with } \mathcal{T}_R(M) &= \langle [\bar{X}\bar{Z}] \rangle \\ R \text{ reduced } \Rightarrow \mathcal{T}(\mathcal{F}) \text{ is coherent and } \mathcal{T}(\mathcal{F}) = \widetilde{\mathcal{T}_R(M)} \end{split}$$

supp \mathcal{F} consists of a plane and 2 lines; $\mathcal{T}(\mathcal{F})$ is supported on a line supp $\mathcal{T}(\mathcal{F}) = V(\bar{X} - 1, \bar{Y})$, the dimension drops in each component of \mathcal{X} .

Definition

Let \mathcal{X} be a Noetherian scheme and $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}})$. \mathcal{F} is pure of dimension $d \leq \dim \mathcal{X}$ if supp \mathcal{F} has dimension d and every non-zero proper coherent subsheaf $\mathcal{F}' \subset \mathcal{F}$ is also supported in dimension d.

 $\mathcal{X} = \bigcup_i \mathcal{X}_i$ has equidimensional components if dim $\mathcal{X}_i = \dim \mathcal{X}_j$, $\forall i, j$ In particular there are no embedded components.

Definition

Let \mathcal{X} be a Noetherian scheme and $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}})$. \mathcal{F} is pure of dimension $d \leq \dim \mathcal{X}$ if supp \mathcal{F} has dimension d and every non-zero proper coherent subsheaf $\mathcal{F}' \subset \mathcal{F}$ is also supported in dimension d.

 $\mathcal{X} = \bigcup_i \mathcal{X}_i$ has equidimensional components if dim $\mathcal{X}_i = \dim \mathcal{X}_j$, $\forall i, j$ In particular there are no embedded components.

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ be an affine Noetherian scheme and $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}})$. Assume that dim $\mathcal{F} = \dim \mathcal{X} = d$ and that \mathcal{X} has equidimensional components. Then \mathcal{F} is pure of dimension d if and only if \mathcal{F} is torsion-free on \mathcal{X} .

Moreover $\mathcal{T}(\mathcal{F}) = \mathcal{T}_{d-1}(\mathcal{F})$: Torsion sections are exactly those that are supported in dimension < d.

Application

• counter-example to $\mathcal{T}(\mathcal{F}) = T_{d-1}(\mathcal{F})$ if \mathcal{X} is not equidimensional: dim $\mathcal{F} = 1$ and supp $\mathcal{T}(\mathcal{F})$ dense, but $T_0(\mathcal{F})$ is supported at the origin

Application

• counter-example to $\mathcal{T}(\mathcal{F}) = \mathcal{T}_{d-1}(\mathcal{F})$ if \mathcal{X} is not equidimensional: dim $\mathcal{F} = 1$ and supp $\mathcal{T}(\mathcal{F})$ dense, but $\mathcal{T}_0(\mathcal{F})$ is supported at the origin

• important example of a scheme with equidimensional components:

• $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}}) \Rightarrow \operatorname{supp} \mathcal{F} \subseteq \mathcal{X}$ is a closed algebraic subset find a subscheme structure, locally given by a quotient $R \to R/I$

• $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}}) \Rightarrow \operatorname{supp} \mathcal{F} \subseteq \mathcal{X}$ is a closed algebraic subset find a subscheme structure, locally given by a quotient $R \to R/I$

•
$$\mathcal{X} = \operatorname{Spec} R$$
, $\mathcal{F} = \widetilde{M}$; let $I = \operatorname{Ann}_R(M)$ and $I' = \operatorname{Fitt}_0(M)$
Finite presentation

$$R^m \stackrel{A}{\longrightarrow} R^n \longrightarrow M \longrightarrow 0$$

I' is generated by the $n \times n$ -minors of the matrix of relations A; $I' \subseteq I$

• $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}}) \Rightarrow \operatorname{supp} \mathcal{F} \subseteq \mathcal{X}$ is a closed algebraic subset find a subscheme structure, locally given by a quotient $R \to R/I$

• $\mathcal{X} = \operatorname{Spec} R$, $\mathcal{F} = \widetilde{M}$; let $I = \operatorname{Ann}_R(M)$ and $I' = \operatorname{Fitt}_0(M)$ Finite presentation

$$R^m \stackrel{A}{\longrightarrow} R^n \longrightarrow M \longrightarrow 0$$

I' is generated by the $n \times n$ -minors of the matrix of relations A; $I' \subseteq I$

Definition

 $\mathcal{Z}_{a}(\mathcal{F}) := V(I) \cong \operatorname{Spec}(R/I) \text{ and } \mathcal{Z}_{f}(\mathcal{F}) := V(I') \cong \operatorname{Spec}(R/I').$

 $\mathcal{Z}_a(\mathcal{F}) \subsetneq \mathcal{Z}_f(\mathcal{F})$ is in general a proper subscheme (richer structure)

• $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}}) \Rightarrow \operatorname{supp} \mathcal{F} \subseteq \mathcal{X}$ is a closed algebraic subset find a subscheme structure, locally given by a quotient $R \to R/I$

• $\mathcal{X} = \operatorname{Spec} R$, $\mathcal{F} = \widetilde{M}$; let $I = \operatorname{Ann}_R(M)$ and $I' = \operatorname{Fitt}_0(M)$ Finite presentation

$$R^m \xrightarrow{A} R^n \longrightarrow M \longrightarrow 0$$

I' is generated by the $n \times n$ -minors of the matrix of relations A; $I' \subseteq I$

Definition

$$\mathcal{Z}_{\mathsf{a}}(\mathcal{F}) := V(I) \cong \operatorname{Spec}(R/I) \ \, ext{and} \ \, \mathcal{Z}_{\mathsf{f}}(\mathcal{F}) := V(I') \cong \operatorname{Spec}(R/I').$$

 $\mathcal{Z}_a(\mathcal{F}) \subsetneq \mathcal{Z}_f(\mathcal{F})$ is in general a proper subscheme (richer structure)

• General fact: $J \subseteq \operatorname{Ann}_R(M) \Rightarrow M$ is also a module over R/JHence $\mathcal{F} = \widetilde{M}$ can be seen as a sheaf on the schemes $\mathcal{Z}_a(\mathcal{F})$ and $\mathcal{Z}_f(\mathcal{F})$. \rightarrow study torsion-freeness of pure sheaves on their support

Criterion for purity

Associated points:

• for an *R*-module *M*: set of associated primes

$$\mathsf{Ass}_R(M) = ig\{ P = \mathsf{Ann}_R(m) ext{ prime } \mid m \in M ig\}$$

• for
$$\mathcal{F} \in \mathtt{Coh}(\mathcal{O}_{\mathcal{X}})$$
 on a scheme \mathcal{X} :

$$\mathsf{Ass}(\mathcal{F}) = \big\{ x \in \mathcal{X} \mid \mathfrak{M}_x \in \mathsf{Ass}_{\mathcal{O}_{\mathcal{X},x}}(\mathcal{F}_x) \big\}$$

Criterion for purity

Associated points:

• for an *R*-module *M*: set of associated primes

$$\mathsf{Ass}_R(M) = ig\{ P = \mathsf{Ann}_R(m) ext{ prime } \mid m \in M ig\}$$

• for
$$\mathcal{F} \in \mathtt{Coh}(\mathcal{O}_{\mathcal{X}})$$
 on a scheme \mathcal{X} :

$$\mathsf{Ass}(\mathcal{F}) = \big\{ x \in \mathcal{X} \mid \mathfrak{M}_x \in \mathsf{Ass}_{\mathcal{O}_{\mathcal{X},x}}(\mathcal{F}_x) \big\}$$

Theorem (Huybrechts-Lehn)

Let \mathcal{X} be a Noetherian scheme and $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathcal{X}})$ with $d = \dim \mathcal{F}$. Then \mathcal{F} is pure of dimension d if and only if all points in Ass (\mathcal{F}) are of dimension d.

• affine case: $\mathcal{X} = \text{Spec } R$, $\mathcal{F} = \widetilde{M}$ all primes $P_i \in \text{Ass}_R(M)$ define components $\mathcal{X}_i = V(P_i)$ of dimension d

Criterion for the annihilator support

Does this imply that the components of supp ${\mathcal F}$ are equidimensional?

Criterion for the annihilator support

Does this imply that the components of supp ${\mathcal F}$ are equidimensional?

No; rings R/I and $R/I' \Rightarrow$ decomposition into irreducible components

$$\mathcal{Z}_{a}(\mathcal{F}) = \bigcup_{i} \mathcal{Z}_{i} \qquad , \qquad \mathcal{Z}_{f}(\mathcal{F}) = \bigcup_{i} \mathcal{Z}'_{i}$$

- the minimal primes for both are the same as those in $Ass_R(M)$
- but there may be more embedded primes

Criterion for the annihilator support

Does this imply that the components of supp \mathcal{F} are equidimensional?

No; rings R/I and $R/I' \Rightarrow$ decomposition into irreducible components

$$\mathcal{Z}_{a}(\mathcal{F}) = \bigcup_{i} \mathcal{Z}_{i} \qquad , \qquad \mathcal{Z}_{f}(\mathcal{F}) = \bigcup_{i} \mathcal{Z}'_{i}$$

- the minimal primes for both are the same as those in $Ass_R(M)$
- but there may be more embedded primes

 $Ass_R(M)$ has no information about the embedded components.

Proposition (L)

Let $\mathcal{X} = \operatorname{Spec} R$ be affine and $\mathcal{F} \cong \widetilde{M}$ be coherent with $d = \dim \mathcal{F}$. If the annihilator support $\mathcal{Z}_a(\mathcal{F})$ of \mathcal{F} has a component of dimension < d, then \mathcal{F} is not pure.

The annihilator support of a pure sheaf has equidimensional components. \Rightarrow purity and torsion-freeness on $\mathcal{Z}_a(\mathcal{F})$ are equivalent However...

The Fitting support of a pure sheaf may have embedded components!

Proposition (L)

Let $\mathcal{F} = \widetilde{M}$ for some finitely generated module M over a Noetherian ring R and $I, I' \subseteq \operatorname{Ann}_R(M)$ be two ideals defining different subscheme structures on supp \mathcal{F} . Assume that \mathcal{F} is torsion-free on V(I) which has no embedded components. Then \mathcal{F} is also torsion-free on V(I').

However...

The Fitting support of a pure sheaf may have embedded components!

Proposition (L)

Let $\mathcal{F} = \widetilde{M}$ for some finitely generated module M over a Noetherian ring R and $I, I' \subseteq \operatorname{Ann}_R(M)$ be two ideals defining different subscheme structures on supp \mathcal{F} . Assume that \mathcal{F} is torsion-free on V(I) which has no embedded components. Then \mathcal{F} is also torsion-free on V(I').

"Pure sheaves are torsion-free on their Fitting support."

Proof. \mathcal{F} pure

- $\Rightarrow \mathcal{Z}_{a}(\mathcal{F})$ has equidimensional components
- $\Rightarrow \mathcal{F}$ is torsion-free on $\mathcal{Z}_{a}(\mathcal{F})$
- $\Rightarrow \mathcal{F}$ is torsion-free on $\mathcal{Z}_f(\mathcal{F})$

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ for some Noetherian ring R and M be a finitely generated module over R. Assume that the coherent $\mathcal{O}_{\mathcal{X}}$ -module $\mathcal{F} = \widetilde{M}$ is pure of dimension $d \leq \dim \mathcal{X}$. We denote $I = \operatorname{Fitt}_0(M)$ and $\mathcal{Z} = V(I) \cong \operatorname{Spec}(R/I)$. Then \mathcal{F} is a torsion-free $\mathcal{O}_{\mathcal{Z}}$ -module.

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ for some Noetherian ring R and M be a finitely generated module over R. Assume that the coherent $\mathcal{O}_{\mathcal{X}}$ -module $\mathcal{F} = \widetilde{M}$ is pure of dimension $d \leq \dim \mathcal{X}$. We denote $I = \operatorname{Fitt}_0(M)$ and $\mathcal{Z} = V(I) \cong \operatorname{Spec}(R/I)$. Then \mathcal{F} is a torsion-free $\mathcal{O}_{\mathcal{Z}}$ -module.

The behaviour of torsion can be very counter-intuitive when there are embedded primes. But

Theorem (L)

Let $\mathcal{X} = \operatorname{Spec} R$ for some Noetherian ring R and M be a finitely generated module over R. Assume that the coherent $\mathcal{O}_{\mathcal{X}}$ -module $\mathcal{F} = \widetilde{M}$ is pure of dimension $d \leq \dim \mathcal{X}$. We denote $I = \operatorname{Fitt}_0(M)$ and $\mathcal{Z} = V(I) \cong \operatorname{Spec}(R/I)$. Then \mathcal{F} is a torsion-free $\mathcal{O}_{\mathcal{Z}}$ -module.

The behaviour of torsion can be very counter-intuitive when there are embedded primes. But

Purity always implies torsion-freeness of a sheaf on its support.

Part II

Singular sheaves in the fine Simpson moduli spaces of one-dimensional sheaves on the projective plane

Hilbert polynomial of a sheaf

Projective plane \mathbb{P}_2 with structure sheaf $\mathcal{O}_{\mathbb{P}_2}$ of regular functions

• $\mathcal{O}_{\mathbb{P}_2}(1)$ = very ample invertible sheaf, called Serre's twisting sheaf:

$$\mathcal{O}_{\mathbb{P}_2}(1)|_{U_i} \cong \mathcal{O}_{\mathbb{P}_2}|_{U_i}$$
 with cocycles $u_{ij}(x) = rac{x_j}{x_i}$

alternative definition: dual of the tautological bundle, denoted $\mathcal{O}_{\mathbb{P}_2}(-1)$ $\mathcal{O}_{\mathbb{P}_2}(k) = \mathcal{O}_{\mathbb{P}_2}(1) \otimes \ldots \otimes \mathcal{O}_{\mathbb{P}_2}(1), \ k \in \mathbb{Z}$

Hilbert polynomial of a sheaf

Projective plane \mathbb{P}_2 with structure sheaf $\mathcal{O}_{\mathbb{P}_2}$ of regular functions

+ $\mathcal{O}_{\mathbb{P}_2}(1) = \text{very}$ ample invertible sheaf, called Serre's twisting sheaf:

$$\mathcal{O}_{\mathbb{P}_2}(1)|_{U_i}\cong \mathcal{O}_{\mathbb{P}_2}|_{U_i}$$
 with cocycles $u_{ij}(x)=rac{x_j}{x_i}$

alternative definition: dual of the tautological bundle, denoted $\mathcal{O}_{\mathbb{P}_2}(-1)$ $\mathcal{O}_{\mathbb{P}_2}(k) = \mathcal{O}_{\mathbb{P}_2}(1) \otimes \ldots \otimes \mathcal{O}_{\mathbb{P}_2}(1), \ k \in \mathbb{Z}$

• Euler characteristic of a sheaf $\mathcal{F} \in \mathtt{Coh}(\mathcal{O}_{\mathbb{P}_2})$: $h^i(\mathcal{F}) = \dim_{\mathbb{K}} H^i(\mathcal{F})$,

$$\chi(\mathcal{F}) = \sum_{i\geq 0} (-1)^i \cdot h^i(\mathcal{F}) = h^0(\mathcal{F}) - h^1(\mathcal{F}) + h^2(\mathcal{F})$$

Hilbert polynomial of a sheaf

Projective plane \mathbb{P}_2 with structure sheaf $\mathcal{O}_{\mathbb{P}_2}$ of regular functions

• $\mathcal{O}_{\mathbb{P}_2}(1)$ = very ample invertible sheaf, called Serre's twisting sheaf:

$$\mathcal{O}_{\mathbb{P}_2}(1)|_{U_i}\cong \mathcal{O}_{\mathbb{P}_2}|_{U_i}$$
 with cocycles $u_{ij}(x)=rac{x_j}{x_i}$

alternative definition: dual of the tautological bundle, denoted $\mathcal{O}_{\mathbb{P}_2}(-1)$ $\mathcal{O}_{\mathbb{P}_2}(k) = \mathcal{O}_{\mathbb{P}_2}(1) \otimes \ldots \otimes \mathcal{O}_{\mathbb{P}_2}(1), \ k \in \mathbb{Z}$

• Euler characteristic of a sheaf $\mathcal{F} \in \mathtt{Coh}(\mathcal{O}_{\mathbb{P}_2})$: $h^i(\mathcal{F}) = \dim_{\mathbb{K}} H^i(\mathcal{F})$,

$$\chi(\mathcal{F}) = \sum_{i\geq 0} (-1)^i \cdot h^i(\mathcal{F}) = h^0(\mathcal{F}) - h^1(\mathcal{F}) + h^2(\mathcal{F})$$

• twisted sheaf $\mathcal{F}(k) = \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_2}(k)$

• Hilbert polynomial of \mathcal{F} : $P_{\mathcal{F}}(m) = \chi(\mathcal{F}(m)) \in \mathbb{Q}[m]$ dim $\mathcal{F} = d \Rightarrow$ polynomial expression in *m* of degree *d*

Semistability

Write the Hilbert polynomial of ${\mathcal F}$ as

$$P_{\mathcal{F}}(m) = \sum_{i=0}^{d} \alpha_i(\mathcal{F}) \cdot \frac{m^i}{i!}$$

• reduced Hilbert polynomial: $p_{\mathcal{F}} = \frac{P_{\mathcal{F}}}{\alpha_d(\mathcal{F})}$

Write the Hilbert polynomial of ${\mathcal F}$ as

$$P_{\mathcal{F}}(m) = \sum_{i=0}^{d} \alpha_i(\mathcal{F}) \cdot \frac{m^i}{i!}$$

• reduced Hilbert polynomial: $p_{\mathcal{F}} = \frac{P_{\mathcal{F}}}{\alpha_d(\mathcal{F})}$

Definition

Let $\mathcal{F} \in \operatorname{Coh}(\mathcal{O}_{\mathbb{P}_2})$ with $d = \dim \mathcal{F}$. \mathcal{F} is semistable if 1) \mathcal{F} is of pure dimension d, i.e. $\dim \mathcal{F}' = d$ for any proper non-zero coherent subsheaf $0 \neq \mathcal{F}' \subsetneq \mathcal{F}$. 2) Any proper non-zero coherent subsheaf $\mathcal{F}' \subsetneq \mathcal{F}$ satisfies $p_{\mathcal{F}'} \leq p_{\mathcal{F}}$.

 \mathcal{F} is stable if this inequality is strict: $p_{\mathcal{F}'} < p_{\mathcal{F}}$.

Theorems of Simpson and Le Potier

Classification of semistable sheaves with fixed Hilbert polynomial

Theorem (Simpson)

Let $P \in \mathbb{Q}[m]$ be a fixed numerical polynomial of degree $d \leq 2$. There exists a moduli space $M_P(\mathbb{P}_2)$ of semistable sheaves on \mathbb{P}_2 of pure dimension d and Hilbert polynomial P. Moreover $M_P(\mathbb{P}_2)$ is a projective variety itself.

Theorems of Simpson and Le Potier

Classification of semistable sheaves with fixed Hilbert polynomial

Theorem (Simpson)

Let $P \in \mathbb{Q}[m]$ be a fixed numerical polynomial of degree $d \leq 2$. There exists a moduli space $M_P(\mathbb{P}_2)$ of semistable sheaves on \mathbb{P}_2 of pure dimension d and Hilbert polynomial P. Moreover $M_P(\mathbb{P}_2)$ is a projective variety itself.

We are interested in linear Hilbert polynomials P(m) = am + b, $a \ge 1$.

Theorem (Le Potier)

If gcd(a, b) = 1, then the closed points of $M_{am+b}(\mathbb{P}_2)$ parametrize isomorphism classes of stable sheaves on \mathbb{P}_2 of pure dimension d and Hilbert polynomial am + b.

Proposition

There is a morphism of projective varieties

$$\sigma : M_{am+b}(\mathbb{P}_2) \longrightarrow \mathcal{C}_a(\mathbb{P}_2) : [\mathcal{F}] \longmapsto \mathcal{Z}_f(\mathcal{F})$$

• Part I implies:

 $\mathcal{F} \in M_{am+b}(\mathbb{P}_2), \ \mathcal{C} = \mathcal{Z}_f(\mathcal{F}) \ \Rightarrow \ \mathcal{F} \text{ is a torsion-free } \mathcal{O}_{\mathcal{C}}\text{-module}$

Proposition

There is a morphism of projective varieties

$$\sigma : M_{am+b}(\mathbb{P}_2) \longrightarrow \mathcal{C}_a(\mathbb{P}_2) : [\mathcal{F}] \longmapsto \mathcal{Z}_f(\mathcal{F})$$

• Part I implies:

 $\mathcal{F} \in M_{am+b}(\mathbb{P}_2), \ \mathcal{C} = \mathcal{Z}_f(\mathcal{F}) \ \Rightarrow \ \mathcal{F} \text{ is a torsion-free } \mathcal{O}_{\mathcal{C}}\text{-module}$

• If C is a smooth curve, then \mathcal{F} is a locally free \mathcal{O}_C -module. (proof uses the Structure Theorem of finitely generated modules over principal ideal domains: equivalence of freeness and torsion-freeness)

Proposition

There is a morphism of projective varieties

$$\sigma : M_{am+b}(\mathbb{P}_2) \longrightarrow \mathcal{C}_a(\mathbb{P}_2) : [\mathcal{F}] \longmapsto \mathcal{Z}_f(\mathcal{F})$$

Part I implies:

 $\mathcal{F} \in M_{am+b}(\mathbb{P}_2), \ C = \mathcal{Z}_f(\mathcal{F}) \Rightarrow \mathcal{F}$ is a torsion-free \mathcal{O}_C -module

• If C is a smooth curve, then \mathcal{F} is a locally free \mathcal{O}_C -module. (proof uses the Structure Theorem of finitely generated modules over principal ideal domains: equivalence of freeness and torsion-freeness)

• Bertini's Theorem:

The set of smooth curves of degree *a* is open and dense in $\mathcal{C}_a(\mathbb{P}_2)$.

 \Rightarrow "almost all" sheaves in $M_{am+b}(\mathbb{P}_2)$ are vector bundles on curves

Definition

A stable sheaf $\mathcal{F} \in M_{am+b}$ is called singular if it is not locally free on its support.

 $M'_{am+b} = \text{closed subset of non-singular sheaves}$

Definition

A stable sheaf $\mathcal{F} \in M_{am+b}$ is called singular if it is not locally free on its support.

 M'_{am+b} = closed subset of non-singular sheaves We are interested in studying properties of $M' = M'_{am+1}$.

- irreducibility
- smoothness
- codimension in $M = M_{am+b}$

First examples [Le Potier, Trautmann, Freiermuth, Iena]

- M_{m+1} and $M_{2m+1} \Rightarrow M' = \emptyset$
- $M_{3m+1} \Rightarrow \operatorname{codim}_M M' = 2, M'$ smooth and irreducible
- $M_{4m+1} \Rightarrow \operatorname{codim}_M M' = 2, M'$ singular and connected

Duality Theorem of Maican: $M_{am+b} \cong M_{am-b}$

Theorem (lena-Leytem)

For any integer $d \ge 4$, let $M = M_{dm-1}(\mathbb{P}_2)$ be the Simpson moduli space of stable sheaves on \mathbb{P}_2 with Hilbert polynomial dm - 1. If $M' \subset M$ denotes the closed subvariety of singular sheaves in M, then M' is singular and of codimension 2. Duality Theorem of Maican: $M_{am+b} \cong M_{am-b}$

Theorem (lena-Leytem)

For any integer $d \ge 4$, let $M = M_{dm-1}(\mathbb{P}_2)$ be the Simpson moduli space of stable sheaves on \mathbb{P}_2 with Hilbert polynomial dm - 1. If $M' \subset M$ denotes the closed subvariety of singular sheaves in M, then M' is singular and of codimension 2.

- article available as arXiv preprint
- submitted and accepted;

going to be published in the Canadian Mathematical Bulletin

Diagram: proof by reduction

Let $C = \mathcal{Z}_f(\mathcal{F})$; \mathcal{F} is singular if $\exists p \in C$ such that $\mathcal{F}_p \ncong \mathcal{O}_{C,p}$.

Open stratum of M

Theorem (Maican)

There exists an open subset $M_0\subseteq M$ of sheaves ${\mathcal F}$ which have a resolution of the type

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}_2}(-3) \oplus (n-1) \mathcal{O}_{\mathbb{P}_2}(-2) \stackrel{A}{\longrightarrow} n \mathcal{O}_{\mathbb{P}_2}(-1) \longrightarrow \mathcal{F} \longrightarrow 0$$

where $A = \begin{pmatrix} Q \\ \Phi \end{pmatrix}$ is such that $\Phi \in \mathbb{V}^s$ and det $A \neq 0$.

$$A = \begin{pmatrix} Q \\ \Phi \end{pmatrix} = \begin{pmatrix} q_1 & q_2 & \dots & q_n \\ z_{11} & z_{12} & \dots & z_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n-1,1} & z_{n-1,2} & \dots & z_{n-1,n} \end{pmatrix}$$

 $\Phi = \mathsf{stable} \ \mathsf{Kronecker} \ \mathsf{module}$

Such matrices parametrize the sheaves in M_0 : $\mathcal{F} = [A]$.

Maximal minors of a Kronecker module

$$\Phi = \begin{pmatrix} z_{11} & z_{12} & \dots & z_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n-1,1} & z_{n-1,2} & \dots & z_{n-1,n} \end{pmatrix}$$

• maximal minors d_1, \ldots, d_n homogeneous polynomials of degree n-1

Maximal minors of a Kronecker module

$$\Phi = \begin{pmatrix} z_{11} & z_{12} & \dots & z_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n-1,1} & z_{n-1,2} & \dots & z_{n-1,n} \end{pmatrix}$$

• maximal minors d_1, \ldots, d_n homogeneous polynomials of degree n-1

• assume they are coprime: $gcd(d_1, \ldots, d_n) = 1$ \Rightarrow they define a 0-dimensional subscheme

$$Z = Z(d_1, \ldots, d_n)$$
 with $Z \subseteq C = Z(\det A)$

of length $\binom{n}{2} = \frac{n^2 - n}{2}$; the points in Z may have multiplicities.

Maximal minors of a Kronecker module

$$\Phi = \begin{pmatrix} z_{11} & z_{12} & \dots & z_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n-1,1} & z_{n-1,2} & \dots & z_{n-1,n} \end{pmatrix}$$

• maximal minors d_1, \ldots, d_n homogeneous polynomials of degree n-1

• assume they are coprime: $gcd(d_1, \ldots, d_n) = 1$ \Rightarrow they define a 0-dimensional subscheme

$$Z = Z(d_1, \ldots, d_n)$$
 with $Z \subseteq C = Z(\det A)$

of length $\binom{n}{2} = \frac{n^2 - n}{2}$; the points in Z may have multiplicities.

V₀ ⊆ V^s: subset of Kronecker modules with coprime maximal minors
N₀ = V₀/G where G = GL_{n-1}(K) × GL_n(K), (g, h) · Φ = g · Φ · h⁻¹

 $\mathbb{B}_0 =$ open subset of sheaves in M_0 given by $A = \begin{pmatrix} Q \\ \Phi \end{pmatrix}$ and $\Phi \in \mathbb{V}_0$

Proposition

The sheaves \mathcal{F} in \mathbb{B}_0 are exactly the twisted ideal sheaves $\mathcal{I}_{Z\subseteq C}(d-3)$ given by a short exact sequence

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_C(d-3) \longrightarrow \mathcal{O}_Z \longrightarrow 0$$

where Z is a 0-dimensional subscheme of length $I = \binom{n}{2}$ lying on a curve C of degree d such that Z is not contained in a curve of degree d - 3.

 $\mathcal{F} \in \mathbb{B}_0$ given by some $A = \begin{pmatrix} Q \\ \Phi \end{pmatrix}$ with $\Phi \in \mathbb{V}_0$ C = support of \mathcal{F} , curve of degree d defined by $Z(\det A)$ Z = zero set defined by the coprime maximal minors of Φ , $Z \subseteq C$ Consider

$$\nu : \mathbb{B}_0 \longrightarrow N_0 : \mathcal{F} \longmapsto Z [A] \longmapsto [\Phi]$$

 ν : $\mathbb{B}_0 \to N_0$ is a projective bundle with fiber \mathbb{P}_{3d-1} .
Consider

$$\nu : \mathbb{B}_0 \longrightarrow N_0 \quad : \quad \begin{array}{c} \mathcal{F} \longmapsto Z \\ [A] \longmapsto [\Phi] \end{array}$$

 ν : $\mathbb{B}_0 \to N_0$ is a projective bundle with fiber \mathbb{P}_{3d-1} .

1

Proposition

A fiber of $\nu : \mathbb{B}_0 \to N_0$ corresponds to the space of curves of degree d passing through the corresponding subscheme of $I = \binom{n}{2}$ points. The identification is given by the map

$$u^{-1}([\Phi]) \longrightarrow \mathcal{C}_d(\mathbb{P}_2) \ : \ [A] \longmapsto \langle \det A \rangle$$

Final reduction step

Take stalks at $p \in C$ of the sequence

$$\begin{array}{l} 0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{\mathcal{C}}(d-3) \longrightarrow \mathcal{O}_{\mathcal{Z}} \longrightarrow 0 \\ \Rightarrow \ 0 \longrightarrow \mathcal{F}_{p} \longrightarrow \mathcal{O}_{\mathcal{C},p} \longrightarrow \mathcal{O}_{\mathcal{Z},p} \longrightarrow 0 \end{array}$$

3 cases:

1) $p \in C$ smooth $\Rightarrow \mathcal{F}_p$ is torsion-free, hence free necessarily rank $1 \Rightarrow \mathcal{F}_p \cong \mathcal{O}_{C,p}$

Final reduction step

Take stalks at $p \in C$ of the sequence

$$\begin{array}{l} 0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{C}(d-3) \longrightarrow \mathcal{O}_{Z} \longrightarrow 0 \\ \Rightarrow \ 0 \longrightarrow \mathcal{F}_{p} \longrightarrow \mathcal{O}_{C,p} \longrightarrow \mathcal{O}_{Z,p} \longrightarrow 0 \end{array}$$

3 cases:

1) $p \in C$ smooth $\Rightarrow \mathcal{F}_p$ is torsion-free, hence free necessarily rank $1 \Rightarrow \mathcal{F}_p \cong \mathcal{O}_{C,p}$

2) $p \in C \setminus Z \implies \mathcal{F}_{p} \cong \mathcal{O}_{C,p}$ since $\mathcal{O}_{Z,p} = \{0\}$

Final reduction step

Take stalks at $p \in C$ of the sequence

$$\begin{array}{l} 0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{C}(d-3) \longrightarrow \mathcal{O}_{Z} \longrightarrow 0 \\ \Rightarrow \ 0 \longrightarrow \mathcal{F}_{p} \longrightarrow \mathcal{O}_{C,p} \longrightarrow \mathcal{O}_{Z,p} \longrightarrow 0 \end{array}$$

3 cases:

1) $p \in C$ smooth $\Rightarrow \mathcal{F}_p$ is torsion-free, hence free necessarily rank $1 \Rightarrow \mathcal{F}_p \cong \mathcal{O}_{C,p}$

2)
$$p \in C \setminus Z \implies \mathcal{F}_p \cong \mathcal{O}_{C,p}$$
 since $\mathcal{O}_{Z,p} = \{0\}$

3) $p \in \operatorname{Sing}(C) \cap Z$

Singularities can only appear at singular points of C which belong to Z.

 \rightarrow distinguish according to the multiplicity of p in Z

Lemma

Let $R = \mathcal{O}_{C,p}$ be the local Noetherian ring of a curve $C \subset \mathbb{P}_2$ at a point $p \in C$ with unique maximal ideal \mathfrak{M} . Consider the exact sequence of *R*-modules

$$0 \longrightarrow \mathfrak{M} \longrightarrow R \longrightarrow \Bbbk_{\rho} \longrightarrow 0$$
.

Then \mathfrak{M} is free (of rank 1) if and only if R is regular, i.e. if and only if p is a smooth point of C.

• $N_c \subseteq N_0$: open subset that corresponds to Kronecker modules which define a configuration; set $\mathbb{B}_c = \mathbb{B}|_{N_c}$

Corollary

Let $\mathcal{F} \in \mathbb{B}_c$ be a sheaf over $[\Phi] \in N_c$ with $C = \text{supp } \mathcal{F}$. Then \mathcal{F} is singular if and only if Z contains a singular point of C, i.e. if and only if $\text{Sing}(C) \cap Z \neq \emptyset$.

Proof in the case of simple points

• Intuitive proof: let p = (0,0) and C = Z(f).

$$f(X, Y) = a_0 + a_1 X + a_2 Y + a_3 X^2 + a_4 X Y + a_5 Y^2 + \dots$$

 $p \in C \Rightarrow f(0,0) = 0 \Rightarrow f$ has no constant term: $a_0 = 0$ (given) ideal is not free if and only if p is a singular point of C $\Rightarrow f$ has no terms in X and Y: absence of 2 monomials

$$a_1 = a_2 = 0$$

Proof in the case of simple points

• Intuitive proof: let p = (0, 0) and C = Z(f).

$$f(X, Y) = a_0 + a_1 X + a_2 Y + a_3 X^2 + a_4 X Y + a_5 Y^2 + \dots$$

 $p \in C \Rightarrow f(0,0) = 0 \Rightarrow f$ has no constant term: $a_0 = 0$ (given) ideal is not free if and only if p is a singular point of C $\Rightarrow f$ has no terms in X and Y: absence of 2 monomials

$$a_1 = a_2 = 0$$

• Denote $M_0' = M' \cap M_0$ and study the fibers of ν : $M_0' o N_c$.

Proposition

The fibers of M'_0 over N_c are unions of $I = \binom{n}{2}$ different projective subspaces of \mathbb{P}_{3d-1} of codimension 2. In particular they are singular at the intersection points.

Let $f \in \mathbb{K}[X, Y]$ be non-constant and C = Z(f). Assume that p = (0,0) is a singular point of C and let $I = \langle x, y^2 \rangle$ be the ideal defining a double point in the local ring $R = \mathcal{O}_{C,p}$, where x, yare the classes of X, Y.

Proposition (L)

The following conditions are equivalent:
1) I is a free R-module.
2) I is generated by x.
3) f contains the monomial Y².
4) The tangent cone of C at p consists of 2 lines (with multiplicities) not containing the line X = 0.

Proof in the case of a double point

• Intuitive proof: double point p given by $\langle X, Y^2 \rangle$

$$f(X, Y) = a_0 + a_1 X + a_2 Y + a_3 X^2 + a_4 X Y + a_5 Y^2 + \dots$$

 $p \in C \Rightarrow \langle f \rangle \subseteq \langle X, Y^2 \rangle$

⇒ *f* has no constant term and does not contain *Y*: $a_0 = a_2 = 0$ (given) ideal is not free if and only if *p* is singular and *f* does not contain Y^2 ⇒ *f* has no terms in *X* and Y^2 : absence of 2 monomials

$$a_1=a_5=0$$

Proof in the case of a double point

• Intuitive proof: double point p given by $\langle X, Y^2 \rangle$

$$f(X, Y) = a_0 + a_1 X + a_2 Y + a_3 X^2 + a_4 X Y + a_5 Y^2 + \dots$$

 $p \in C \Rightarrow \langle f \rangle \subseteq \langle X, Y^2 \rangle$

 \Rightarrow f has no constant term and does not contain Y: $a_0 = a_2 = 0$ (given) ideal is not free if and only if p is singular and f does not contain Y^2 \Rightarrow f has no terms in X and Y²: absence of 2 monomials

$$a_1 = a_5 = 0$$

• $N_1 \subseteq N_0 \setminus N_c$: open subset that corresponds to I - 2 different simple points and one double point; set $\mathbb{B}_1 = \mathbb{B}|_{N_1}$

Proposition

Let $[\Phi] \in N_1$. The sheaves over $[\Phi]$ that are singular at a double point, resp. singular at a simple point both form a closed linear projective subspace of codimension 2 in the fiber \mathbb{P}_{3d-1} of \mathbb{B}_0 .

Corollary

The fibers of M'_0 over N_1 are unions of l-1 different linear subspaces of \mathbb{P}_{3d-1} of codimension 2. In particular they are singular at the intersection points.

• sufficient since the complement of $N_c \cup N_1$ in N_0 is of codimension 2

M' is singular since a generic fiber of M'_0 is singular. What are its smooth points?

Proposition

The smooth locus of M' over N_c consists of sheaves corresponding to $Z \subseteq C$ such that only one of the points in Z is a singular point of C.

- 1) Is M' irreducible / connected?
- 2) Study other moduli spaces $M_{am+b}(\mathbb{P}_2)$.

3) Does the Fitting support of a pure sheaf on a reduced scheme have equidimensional components?

Thanks for your attention!