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Abstract

Background: The human gastrointestinal tract harbors a diverse microbial community, in which metabolic
phenotypes play important roles for the human host. Recent developments in meta-omics attempt to unravel
metabolic roles of microbes by linking genotypic and phenotypic characteristics. This connection, however, still
remains poorly understood with respect to its evolutionary and ecological context.

Results: We generated automatically refined draft genome-scale metabolic models of 301 representative intestinal
microbes in silico. We applied a combination of unsupervised machine-learning and systems biology techniques to
study individual and global differences in genomic content and inferred metabolic capabilities.

Based on the global metabolic differences, we found that energy metabolism and membrane synthesis play
important roles in delineating different taxonomic groups. Furthermore, we found an exponential relationship

between phylogeny and the reaction composition, meaning that closely related microbes of the same genus can
exhibit pronounced differences with respect to their metabolic capabilities while at the family level only marginal
metabolic differences can be observed. This finding was further substantiated by the metabolic divergence within
different genera. In particular, we could distinguish three sub-type clusters based on membrane and energy
metabolism within the Lactobacilli as well as two clusters within the Bifidobacteria and Bacteroides.

Conclusions: We demonstrate that phenotypic differentiation within closely related species could be explained by
their metabolic repertoire rather than their phylogenetic relationships. These results have important implications in

Evolution, Ecology

our understanding of the ecological and evolutionary complexity of the human gastrointestinal microbiome.
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Background

Recent advances in sequencing technologies have greatly
improved our knowledge about the metabolic complexity
of the human microbiome and provide novel approaches
to identify beneficial microbes [1]. In particular, sequen-
cing the (ideally) entire genomic content (i.e, metage-
nomic sequencing) of the intestinal microbiota has
allowed the establishment of a catalog of main groups of
microorganisms present in the gastrointestinal tract and
potential metabolic pathways [3] by avoiding culturing
and isolation of individual microbial organisms. In this
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respect, endeavors of the human microbiome project [4]
and the MetaHIT consortium [5] aim at establishing com-
prehensive data-sets of metagenomic content, metabolic
functions, and taxonomic compositions within human
individuals as well as the isolation and sequencing of
numerous microbial taxa.

Despite these efforts, however, we are still lacking a
comprehensive mechanistic understanding of the intes-
tinal microbiota. One major hurdle in achieving this goal
is the lack of organismal system boundaries, enabling us
to associate the presence of metabolic pathways in the
microbiome with a specific bacterium. Inferring metabolic
roles by taxonomic classification alone is difficult because
phylogenetically closely related organisms might be very
different in their metabolism [6]. It may be therefore
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challenging to associate functional roles to entire taxo-
nomic groups [7] to conjecture the biological relevance of
intestinal bacteria. For instance, members of the same
genus, or even of the same species, can be both probiotic
and pathogenic [8], indicating a differential strain-specific
adaptation. In this context, nutrient utilization can be a
strong determinant for the adaptation to varying environ-
ments, since it can give a competitive advantage to other
organisms that are metabolically less versatile. Thus, having
additional metabolic functions can aid microbes in occupy-
ing further niches within the human gut. Accordingly, the
functional consequences for the host change.

Current developments in systems biology allow the
modeling of microbial metabolism to gain a mechanistic
insight into the relationship between genotype and
phenotype [9]. Genome-scale metabolic reconstructions
form the basis of such modeling efforts. A reconstruc-
tion is assembled based on the genomic sequences as
well as biochemical and phenotypic data of a target
organism, and accounts for metabolic genes, enzymes,
and their associated reactions [10, 11]. Genome-scale
metabolic reconstructions serve as a blueprint for
condition-specific metabolic models [10, 11], which are
obtained by the application of constraints, such as
known nutrient uptake rates. The reconstruction process
often includes a gap-filling procedure [12, 13], in which
additional reactions are included to better model bio-
logically relevant phenotypes, such as the formation of
all known biomass precursors [14]. Metabolic models
can be studied using a variety of mathematical methods
[15]. One frequently used approach is flux balance ana-
lysis, which is applied to investigate a functional steady-
state flux distribution of the modeled system, while
maximizing (or minimizing) a particular cellular object-
ive (e.g., production of biomass precursors) [10]. This
modeling approach has been used to investigate nutrient
requirements [16], gene essentialities [17], and metabolic
interactions [18] for organisms of interest, thereby provid-
ing new insights into phenotypic and metabolic properties.
The reconstruction process relies on the availability of
detailed phenotypic data for the target organism [11],
which is usually not available for many of the commonly
found microbes in the human gut [1, 3]. To obtain repre-
sentative metabolic reconstructions for these less well-
studied organisms, automatic tools have been developed
in recent years, such as the Model SEED platform [19], to
provide a valuable starting point for metabolic modeling.
In fact, draft reconstructions have been used to generate
hypotheses about the target organisms with subsequent
experimental validation, leading to the refinement of the
metabolic reconstruction [14, 20-22].

In this study, we generated automatically refined draft
genome-scale metabolic models of 301 representative in-
testinal microbes in silico based on whole genome
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sequences of the human microbiome project using an
established approach [19]. We applied a combination of
unsupervised machine-learning and computational mod-
eling techniques to study individual and global differ-
ences of the metabolic models and the original genomes.
Our key results include: i) divergent reactions involved
in energy metabolism and membrane synthesis which
are most relevant to discriminate different phylogenetic
groups, ii) a linear relationship between differences in
metabolic reaction potential and essential nutrients
determined by flux balance analysis which indicates that
the phenotype is directly correlated to the metabolic
repertoire, iii) differences in metabolic reaction potential
and phylogeny which exhibit an exponential relationship,
suggesting an explanation as to why closely related
microbes can be very different in their metabolic traits
while at less-resolved phylogenetic distances only mar-
ginal differences in metabolic diversity can be observed,
iv) local differences in pathway presence which can be
used to further distinguish representatives of Lactobacil-
lus, Bifidobacteria, and Bacteroides. In summary, we
demonstrate the importance of the metabolic repertoire
of microbes to predict their phenotypic behavior in an
ecological and evolutionary context.

Results and discussion

Selected microbes as a model for the human gut
microbiota

In order to answer ecological and evolutionary questions
relevant for human health and disease, we selected 301
commonly found gut microbes based on their reported
occurrence in the healthy gut microbiome [1, 3] and the
availability of sequenced isolate genomes (Fig. 1). We
used the Model SEED platform [19] to generate auto-
mated draft genome-scale metabolic reconstructions for
each microbe. To enable growth under anaerobic condi-
tions, which are predominant in the human gut [23], we
added specific reactions, if necessary (Additional file 1:
Table S2). A comparison of our draft reconstructions
with a set of published manually refined high-quality
metabolic reconstructions taken from [24] revealed that
most of the metabolic functionalities were captured in
the refined draft reconstructions (Additional file 2: Figure
S1). Reactions absent in the refined draft reconstruction
belonged mostly to the category of transport and ex-
change reactions, whose addition requires experimen-
tal and physiological data, as substrate specificity and
transport mechanism is difficult to automatically an-
notate in microbial genomes [25].

Our set of refined draft reconstructions captured a
wide spectrum of different phyla (Fig. 1) with a taxo-
nomic diversity similar to what is commonly observed
in the human intestine [3]. The high diversity and
proportion of microbes within the phyla Bacteroides,
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Fig. 1 Phylogeny and individual statistics of the microbe selection. The cladogram shows the taxonomic relationships among the 301 microbes.
In the four outer layers, the bars represent the relative individual genome size, number of genes, number of reactions, and in silico growth rate.
The different colors represent the various bacterial classes. The leaf colors and shapes symbolize whether a microbe is a probiotic (green triangle),

a pathogen (red diamond), an opportunistic pathogen (red circles), or a non-pathogenic bacterium (white triangles)

Proteobacteria, and Firmicutes (Fig. 1) is concordant with
observations in the human colon [26]. Moreover, by inte-
grating information about pathogenic and beneficial traits
of each microbe (Fig. 1), we were able to associate these
metabolic traits with the phenotype toward the host. As
expected, a large proportion of probiotic Lactobacillus
and Bifidobacteria could be found in the classes Bacilli
and Actinobacteria, respectively (Fig. 1 and Table 1). Add-
itionally, known pathogenic organisms within the Proteo-
bacteria, Fusobacteria, and Bacilli are also represented.
Thus, our selection of bacteria provides an appropriate
representation of microbial species, phenotypic traits,
and metabolic processes present in the colon, the main
site of microbial fermentation and interaction of mi-
crobes with the host [27].

Our analysis also included microbes with draft genomes
(Additional file 3: Table S1), requiring the assessment of
the overall genome completeness and the potential impact
on gene annotations and consequently on the generated
metabolic reconstructions. The completeness and possible
genomic contamination by other microorganisms of the
individual 301 of the individual genomes was assessed
using a collection of 107 universal, single-copy genes

[28, 29]. In our set of 301 genomes, the average estimated
genome completeness was 95 % (Table 1). We further
investigated the genome size and annotated genes among
the 301 organisms (Table 1). Gammaproteobacteria
had generally large genomes and a high number of
annotated genes, while members of the order Bacteroidia
had in general larger genomes but a lower number of
annotated genes. This difference could be attributed to
differences in annotation efficiencies, as Proteobacteria (in
particular, gut specific Escherichia species) are very well-
studied and thus have more homologous genes. Conse-
quently, the number of reactions in the constructed
metabolic models was higher and the number of reactions
added via gap-filling lower. In contrast, we found a higher
number of gap-filled reactions and a lower number of re-
actions in Actinobacteria (Table 1). This bias, which is well
established for metagenomic analyses [30], is most likely
the result of having less experimental data and validated
gene annotation available for Actinobacteria. The presence
of this apparent annotation bias underlines the limitation in
current annotation techniques affecting particularly phylo-
genetically distant microbes [29-31] and highlights the
need for more detailed experimental biochemical studies to
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Table 1 Genome and metabolic model statistics of the selected microbes

Average per taxonomic group

Taxon Number models Genome (Mbp) Genome complete® Number genes Number reactions Gap-filled reactions®
All taxa 301 33 95 % 702 875 3%
Class
Bacilli 68 25 95 % 656 860 4%
Clostridia 61 35 96 % 735 839 1%
Bacteroidia 51 53 95 % 764 908 1%
Actinobacteria 36 2.3 95 % 514 727 10 %
y-Proteobacteria 25 46 95 % 1127 1311 1%
Genus
Lactobacillus 37 23 96 % 597 798 4%
Bifidobacterium 29 22 95 % 505 734 2%
Bacteroides 43 56 96 % 774 909 1 %

#Based on a selection of 107 essential genes [73]

PBased on the total number of reactions in the model. Gap-filling reactions were mostly added by the Model SEED platform

elucidate gene functions in phyla distant to those contain-
ing model organisms [31].

Global reaction differences recapitulate conserved
taxonomic patterns and phenotypes

To assess the differences within the metabolic recon-
structions, we tested whether they could recapitulate the
taxonomy of the studied microbes. We therefore com-
puted a metabolic distance between the reconstructions
based on the reaction presence [32] and subsequently
used principle coordinate analysis (PCoA) [33]. This
analysis revealed clusters, which correspond to known
taxonomic groups (Fig. 2). More specifically, with more
than 30 % of explained variance, the first principle
coordinate (Fig. 2) was able to discriminate between
Gram-negative and Gram-positive bacteria, which is in
concordance to traditional measures of broad taxonomic
groups, assigned based on the phylogeny of the 16S
rRNA gene, the production of fatty acids, and corre-
sponding membrane lipid composition [34]. In our
PCoA (Fig. 2), members of the class Negativicutes were
closely associated with Gram-negative bacteria rather
than their phylogenetically close Gram-positive relatives,
which is in accordance to their unusual membrane com-
position including two membrane layers [35].

The separation between Gammaproteobacteria and
Actinobacteria highlights that our reconstructions cap-
tured taxa-specific metabolic features, despite the men-
tioned annotation bias. Furthermore, Clostridia species
showed a high metabolic diversity and overlapped with
clusters of other microbial taxa (Fig. 2), which is consist-
ent with the reported metabolic variety of these bacteria
and their corresponding beneficial traits in the human
gut [36]. Erysipelotrichia representatives are closely but
nonetheless distinctly placed relative to the Clostridia in

the 2D principle coordinate plot (Fig. 2). Intriguingly,
members of Erysipelotrichia were formerly considered as
Clostridia based on the phylogeny of marker genes [37]
but then re-assigned to a novel class based on their phyl-
ogeny and membrane composition [38]. Similar to the
Clostridia, Bacilli species were also widely spread in the
2D principle coordinate plot (Fig. 2), reflecting their
metabolic versatility [39]. In contrast, other taxa had
more dense clusters, particularly Actinobacteria, reflect-
ing more specialized roles of these bacteria, such as the
conversion of polysaccharides [40].

Overall, we propose that metabolic reconstructions
could be used, in addition to canonical approaches, to as-
sist in the taxonomic definition of novel microbes and the
re-assignment of already described microbes into better
defined taxonomic groups. In particular, our approach has
the advantage of considering functional characteristics, in
contrast to methods solely relying on the presence and
phylogeny of marker genes. As also pointed out by previ-
ous studies [41], functional repertoires can have a positive
influence on the annotation quality of taxonomic groups.
Ultimately, this could shed light onto the metabolic versa-
tility of microbes in general or in specific habitats, such as
the human gut.

Energy and membrane metabolism as markers for
metabolic divergence

Following the broader characterization, we aimed to
obtain a better understanding of the reactions driving
the observed separation in the first two coordinates. The
separation of taxonomic groups is due to reactions involved
in membrane synthesis and central metabolism (Fig. 2). In
particular, different types of lysophosolipase reactions
exhibit the highest explanatory power (Additional file 4:
Table S3). These reactions convert various phospholipid
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Fig. 2 Global differences within metabolic models and their most divergent reactions. Biplot of the principle coordinate analysis based on the
metabolic distance determined by the presence/absence of specific reactions in the metabolic models. Taxonomic groups are represented by
different colors. The 200 reactions most associated with the point separation are indicated as arrows pointing from the coordinate origin to the
contributing direction. The arrow shading represents reactions overlapping in their direction of contribution. The complete set of 2272 reactions
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precursors (differing in their number of C-atoms) and have
the same direction in the first principle coordinate, because
all reactions can be carried out by single enzymes and are
thus linearly dependent. Similarly, the amylomaltases
catalyze multiple reactions differing in their substrates
(Additional file 4: Table S3). For the enoyl-ACP reductase,
we found a variety of reactions with different directions to-
ward the first principle coordinate (Fig. 2). This variation in
angle represents a potential variation in distinct yet conver-
gent fatty acid synthesis processes involved in energy me-
tabolism and known to be present in the human gut
microbiome [2], thus contributing to the discrimination of
the different types of bacteria. This observation is consist-
ent with the fact that fatty acid profiles have been used to
characterize microbial communities before the advent of
nucleic acid-based methods [42]. The synthesis of endo-
toxins was positively associated with the distribution of
Gram-negative pathogenic species within the Proteobac-
teria and Fusobacteria, which is in accordance with previ-
ously reported correlations between various diseases and
the abundance of Proteobacteria-producing endotoxins
[43]. The transport and utilization of diverse carbohydrates
involved in energy metabolism, such as mannitol, mannose,
and fructose, were positively associated with the location of
the Bacilli cluster in the 2D principle coordinate plot
(Fig. 2). This association highlights the variety of substrate

consumption as represented by these reconstructions of
microbial metabolism. In accordance with the literature,
Bacilli are known to utilize a broad range of carbohy-
drates [44].

The differentiation of taxonomic groups based on
reactions involved in energy and membrane metabolism
may have important implications in understanding the
evolution and heterogeneity of intestinal microbes. For
instance, Gram-negative bacteria have been reported to
change their membrane composition [45] in order to
cope with environmental influences, such as antibiotics
and human immune agents, many of which target bacter-
ial membrane compounds [46]. Additionally, ecological
changes within the microbial community [47] can provoke
a differentiation in metabolic capabilities involved in
energy metabolism leading to altered interactions of the
community with the human host, supporting the observed
high explanatory power of metabolic reactions toward
cluster separation.

The relationship between genotype, phenotype, and
metabolic repertoire is non-linear

To further investigate the observed metabolic diversity
(Fig. 2) and its evolutionary basis, we computed the
phylogenetic relationship between the 301 bacteria based
on 400 protein-coding metabolic genes [48] using two
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methanogenic archaea as outgroups (Additional file 5:
Figure S2). On the basis of this rooted phylogenetic tree,
we computed pairwise phylogenetic distances from the
heights within the tree using the cophenetic distance
[49]. While the clustering of this phylogenetic distance
(Fig. 3) recapitulated the original phylogeny (Additional
file 5: Figure S2), we additionally computed a genetic
distance based on the 16S rRNA gene similarity of the
microbes (Additional file 6: Figure S3), to ensure that
our observations were reproducible with other methods
or markers. The pairwise distance based on the phylo-
genetic tree and the inferred presence of distinct reac-
tions were overall congruent with each other (Fig. 3).
Interestingly, we identified an exponential relationship be-
tween phylogeny and metabolic repertoire (Fig. 4), which
is in accordance to a previous study based on genomic
measures [50]. To exclude potential artifacts resulting

Metabolic
distance

Phylogenetic
distance

12 6 2 00 03
Actinobacteria Clostridia © Gammaproteobacteria
Alphaproteobacteria - Deltaproteobacteria  ® Negativicutes

Bacilli o Epsilonproteobacteria ® Synergistia
Bacteroidia ® Erysipelotrichia ® \errucomicrobiae
Betaproteobacteria e Fusobacteria

Fig. 3 Tanglegram between the hierarchical clustering of the
phylogenetic and metabolic distance. Tanglegram between the
dendrograms of the reaction distance according to the presence of
specific reactions and the phylogenetic distance according to the
cophenetic distance of the maximum likelihood tree (rooted with
two methanogenic archea) calculated from the sequence similarity
of 400 selected essential genes. The dendrograms were calculated
using hierarchical clustering with complete linkage. Lines connecting
the same microbe are colored according to the taxonomic class
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from homology-based annotation methods (Model SEED)
used for the generation of the metabolic reconstructions,
we also determined the distance based on the presence of
detected clusters of orthologous groups (COGs) [51] and
Pfam protein domains [52]. These two measures also
exhibited the same exponential relationship between
metabolic repertoire and phylogeny (Fig. 4). Importantly,
this relationship indicates that closely related species can
have an extremely divergent set of metabolic reactions,
while at taxonomic ranks above the family level, only
limited amounts of additional emergent features were
observed. Since COG annotations and Pfam domains are
prone to misclassification, we also included annotation
measures with a higher quality, such as MetaCyc func-
tionalities [53] as well as EC numbers (Additional file 7:
Figure S4) and observed a comparable exponential trend.
Similar observations have been obtained in published ex-
perimental studies based on the phenotypic properties of
different strains from the same genus or species [6, 8],
underlining the biological relevance of our observations. In
the context of a microbial community or biofilm, our ob-
served relationship explains why closely related taxonomic
groups (e.g., species of the same genus) are able to co-exist,
while the overall consortium is limited in its metabolic po-
tential [54]. In addition to this result, we identified a linear
relationship between the metabolic repertoire and the simi-
larity of essential nutrients, which we calculated using flux
balance analysis as a proxy for the metabolic phenotype
(Fig. 4b). These findings complement previous knowledge
about the relationship between genotype and phenotype by
Plata et al. [55]. Here, a similar exponential relation was
observed between microbial phylogeny and varying growth
conditions in selected genome-scale metabolic models,
which were not directly associated with a specific habitat
[55]. Additionally, this relationship has also been found
with respect to the phenotypic similarity based on gene es-
sentiality and synthetic lethal genes [55]. Taking into ac-
count that these latter measures have been based on flux
balance analysis and are thus analogous to our results, we
conclude that the observed patterns are generally applic-
able to bacteria. Furthermore, we argue that the metabolic
network constituting of a set of reactions is appropriate to
represent and explain a phenotype (Fig. 4b). Assuming the
metabolic repertoire as one of the major factors for the
evolution of intestinal microbes, transfer of metabolic traits
within different taxa may account for fast metabolic diver-
sification of species and strains leading to niche partition-
ing. In fact, horizontal gene transfer has been shown to be
enriched within organisms inhabiting the same environ-
ment, particularly, the human gut [56]. In addition to the
results of Plata et al. [55], we propose the metabolic
repertoire as one of the major factors influencing the
phenotypic differentiation of human gut microbial
communities. Still, the clear separation of taxonomic
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groups noted above (Fig. 2) suggests that exchange of
functionalities is limited to ensure a certain metabolic
divergence within the whole microbiota to maintain
functional diversity and limit competition between
closely related organisms.

The relationship between phylogeny, metabolic
repertoire, and phenotype is taxon-dependent

To account for taxon-dependent differences between
microorganisms (Table 1), we focused our analysis on
model subsets of the five classes and the three genera
with the highest number of representatives (Table 2).
Additionally, this focus allows us to elucidate whether
our results were dependent on our selection of microbes
or could be expanded to other microbes not considered
in this study. We found that the exponential relationship
between phylogeny and metabolic repertoire as well as
the linear relationship between nutrient essentiality and

metabolic repertoire was apparent for most taxonomic
groups (Table 2). However, we noticed differences within
the taxa. In particular, there was a considerable exponen-
tial fit for all five major bacterial classes except for Clos-
tridia, which could be explained by Clostridia’s broad
metabolic versatility and the corresponding difficulties in
the taxonomic assignment within this class [57]. Our
result is in accordance with the observed cluster variability
of Clostridia when comparing the clustering of the meta-
bolic and phylogenetic distance (principal coordinate ana-
lysis, Fig. 3). When investigating individual genera, we
detected a high correlation between essential nutrients
and the metabolic repertoire of Bifidobacteria, whereas
the correlation between their phylogeny and metabolic
repertoire was less pronounced (Table 2, Fig. 3). For mem-
bers of the genus Bacteroides, the metabolic repertoire
correlated strongly with their phylogeny (Fig. 3), but only
weakly with the essential nutrients (Table 2). Based on
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Table 2 Summary statistics of the relationship between reaction content, phylogeny, and essential nutrients
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Reaction/phylogeny

(exponential model®)

Reaction/essential nutrients

(linear model)

Taxon considered Spearman correlation R? RMSE Pearson correlation R? RMSE
All taxa 0.59° 062° 0.11 048 023 003
Class
Bacilli 068° 069° 0.08 0.58° 034 0.02
Clostridia 061° 039 0.12 067° 045 002
Bacteroidia 0.90° 0.80° 0.06 062° 038 0.02
Actinobacteria 0.80° 0.76° 0.16 0.86° 0.74° 0.02
y-Proteobacteria 0.78° 0.56° 0.11 0.72° 0.52° 0.01
Genus
Lactobacillus 0.75° 0.70° 0.08 0.56° 031 003
Bifidobacterium 042 029 007 0.83° 0.69° 001
Bacteroides 081° 0.79° 005 033 0.11 002

“The exponential model was represented by a linear regression of semi-logarithmic transformed data

®Values above 0.5

these results, we propose that the divergence within this
genus can be explained by divergence in metabolic path-
ways relating to membrane synthesis (Fig. 5) rather than
energy metabolism and thus nutrient essentiality. For the
Lactobacillus genus, we found a strong correlation be-
tween metabolic potential with both, phylogeny and
essential nutrients. Within this genus, energy metabolism
explained particular phenotypic divergences of species
(Fig. 5), which is consistent with the observed high correl-
ation between reactions involved in nutrient uptake and
the clustering of representatives of the Bacilli in the prin-
cipal coordinate plot (Fig. 2). Taken together, our results
show a generality of the observed relationships between
phylogeny, metabolic repertoire, and nutrient essentiality
within and between taxonomic groups (Fig. 4).

Reaction differences reflect metabolic versatility among
closely related microbes

To further investigate the metabolic divergence within
closely related microbes of the same taxonomic group, we
used t-distributed stochastic neighbor embedding (t-SNE)
[58] for the two-dimensional visualization of the reaction
similarities (Fig. 5, see Additional file 8: Figure S5 for point
labels). t-SNE is a non-linear, non-parametric dimension-
ality reduction and has been used previously to reveal
data-inherent cluster structures [59-61]. This method
enabled us to identify fine-scale reaction differences, in
addition to the principal coordinate analysis (Fig. 2).
Several distinct clusters were apparent and corresponded
to the different bacterial classes (Fig. 5). We further fo-
cused our analysis on the three most abundant genera in
our model selection (Table 1). For Lactobacillus, we noted
a widespread metabolic repertoire and thus a relatively
large variability of members within this group (Fig. 5). We

identified three distinct subclusters (Lal, La2, and La3)
within this genus. While La2 showed major overlaps with
the other two clusters, Lal and La3 were distinct from each
other. We investigated the differences in the reaction sets
between the representatives of the different subclusters
(Additional file 9: Table S4). Based on the present reaction
sets, Lal corresponds to obligate homofermentative La2 to
facultative homofermentative and La3 to obligate heterofer-
mentative pathways involved in the energy metabolism of
lactic acid bacteria (Fig. 5b). The pathway presence in the
genomes explains why La2 overlaps with the other clusters,
since the facultative homofermentative group (La2) shares
reactions with the obligate homofermentative (Lal) and
heterofermentative group (La3) [44]. In agreement with the
literature, these subclusters correspond to known divergent
pathways involved in energy metabolism in Lactobacilli
[39]. This distinction of biologically relevant phenotypic
groups using predicted difference in metabolic reactions
encouraged us to propose novel bacterial sub-types. There-
fore, we confirmed for our choice of the number of sub-
clusters by performing hierarchical clustering (Fig. 3) to
ensure that the subclusters were substantially different. For
the Bifidobacteria, we propose two distinct subclusters (Bil
and Bi2), which differed in the reactions involved in energy
metabolism and membrane biosynthesis (Fig. 5c). For the
energy metabolism, numerous reactions involved in the
uptake and utilization of diverse carbohydrates were
observed for members of the subcluster Bil (Additional
file 11: Table S5), corresponding to known strain-specific
differences within closely related Bifidobacteria [62]. Fur-
thermore, we found reactions involved in the uptake and
conversion of glucosamine to peptidoglycan, which could
be associated with membrane composition in these two
groups. To our knowledge, such pathway differentiation
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Fig. 5 Local differences within metabolic models and their sub-type-specific pathways. The metabolic distance was determined according to the
presence of specific reactions in the model (a). t-SNE was performed to obtain a low dimensional representation of the local differences within taxonomic
groups which are represented by the different colors. Sub-types are defined based on hierarchical clustering of the reaction similarities. Members of one
sub-type are connected with lines which originate from the cluster centroid. The ellipses represent confidence intervals of the clusters with a certainty of
95 %. Distinguished pathways within sub-types include the genera Lactobacillus (b), Bifidobacterium (c), and Bacteroides (d). The pathways occurring in
only one of the sub-types are framed by boxes carrying the corresponding cluster name. Reactions within pathways are represented by black arrows. GAP
glycerol-3-phosphate, PEPG peptidoglycan, PGP phosphatidylglycerophosphate, PG phosphatidylglycerol, APG 1-Acyl-sn-glycero-3-phosphoglycerol, TTDCA
tetradecanoate, HDCA heptadecanoate, OCDCA octadecanoate

has not yet been proposed for Bifidobacteria. For the Bac-
teroidia, we could distinguish two subclusters (Bal and
Ba2). The differences between these clusters can be attrib-
uted to the membrane biosynthesis (Fig. 5d; Additional file
12: Table S6). Members of Ba2 possess various pathway
types leading to the production of varying phosphatidyl-
glycerol compounds, whereas members of Bal can further
process phosphatidylglycerol to myristic acid. This finding
is of particular biological importance, when considering
the virulence and signaling purposes of membrane lipids
in Bacteroides species found in previous studies [63, 64],

which links the phenotype to the synthesis of membrane
compounds. Furthermore, since energy metabolism and
substrate availability via the diet are major ecological driv-
ing forces within the human gut microbiota [2], the meta-
bolic diversification of other closely related microbes, such
as Lactobacillus spp. and Bifidobacterium spp., can be a
necessary requirement to maintain a stable coexistence
with each other and the host. Considering that optimal
conditions for metabolic cooperation are dependent on
the similarity between the metabolic repertoires of several
species [32], this pathway analysis approach could be used
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to estimate cooperative as well as competitive strategies.
In particular, microorganisms tend to have a higher coop-
erativity if they are not too similar nor too different [65],
indicating that members of the same taxon, but different
subclusters (Fig. 5b) might be able to co-exist, whereas
functionally similar microbes may be more likely to com-
pete with each other [54].

Conclusions

The requirement for a certain functional diversity to en-
sure a well-functioning cooperative intestinal microbiota
is crucial to break down various complex dietary com-
pounds and divide metabolic tasks among different com-
munity members [66]. Our results complement these
ideas by investigating the metabolic divergence within a
model microbiota, which can be primarily distinguished
by reactions involved in energy and membrane metabol-
ism. These capabilities play important roles in shaping
the interface between host and symbionts, and thereby
may lead to a deeper understanding in addition to meta-
genomic analyses in which all microbial functions are
assessed [1]. Furthermore, the metabolic repertoire of
microbes is proportional to their phenotypic properties,
highlighting the importance of diversity in explaining
the metabolic processes taking place within the human
gut. In contrast to these properties, the metabolic reper-
toire exhibited an exponential relationship with phyl-
ogeny, underlining the challenges in inferring metabolic
functions from phylogeny alone, in particular when
using single gene-centric approaches such as via 16S
rRNA gene amplicon sequencing. Moreover, this cir-
cumstance can be regarded as an important evolutionary
and ecological feature of the microbiome; functional
components constituting whole pathways can be very
different within closely related species, whereas the me-
tabolism in the overall metabolic repertoire is limited. In
other words, by dividing the metabolic tasks between
certain taxonomic groups, the microbiota can make effi-
cient use out of a small set of functions thereby facilitating
niche partitioning. This result has important implications
when considering the overall species richness of the
human gut microbiome in the context of different patients
and diseases [67]. Further analyses could prove these
concepts by modeling interactions within bacteria and the
use of the here reconstructed and refined genome-scale
metabolic models.

Methods

Metabolic model selection, construction, and refinement
We selected a set of 301 microbes (Additional file 3:
Table S1) representing species present in the normal gut
microbiota of healthy individuals, according to previous
studies [1, 3]. We retrieved the genome sequences as well as
additional information about the sequencing status, oxygen
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requirement, taxonomic placement, and phenotype from
the integrated microbial genome database [68]. The com-
pleteness and possible genomic contamination by other
microorganisms of the individual 301 genomes was
assessed using a collection of 107 universal, single-copy
genes [28]. The genomic sequences were uploaded for
gene annotation to the RAST server [69] using default
parameters. Draft metabolic reconstructions were then
built with these genome annotations using the Model
SEED pipeline [19]. To ensure, that the metabolic models
are able to grow under anaerobic conditions, which are
prevalent in their natural ecosystem, we modified, if ne-
cessary, one to five reactions to enable anaerobic growth.
The reactions modified for each model are listed in Add-
itional file 1: Table S2. For descriptive purposes, reactions
in the metabolic models were translated into our in-
house metabolite and reaction database. The original
SEED reaction nomenclature was maintained for the
growth simulation. All refined draft metabolic models
are publically available in their Matlab format at
http://thielelab.uni.lu/in_silico_models.

Growth simulation

To compute different growth conditions, the metabolic
reconstructions were subjected to flux balance analyses
[10] with the COBRA Matlab toolbox [9] using IBM
ILOG cplex as the linear programming solver (IBM,
Inc.). Briefly, genome-scale metabolic models were rep-
resented as a stoichiometric matrix S, which encodes in-
formation about the mass balance of the complete set of
enzymatic and transport reactions as well as a biomass
reaction. The biomass reaction was retrieved from the
metabolic reconstructions and represents the production
of cellular building blocks (e.g., cofactors, amino acids,
and lipids). Based on the stoichiometry, we could distin-
guish in our set of models 17 distinct biomass reactions,
and based on the qualitative presence of compounds, we
could distinguish 6 types of distinct biomass reactions
(Additional file 3: Table S1). Hence, the automatically
included biomass reactions from the Model SEED pipe-
line are different and therefore reflect different precursor
needs of the considered microbes. Given this reaction as
an objective for the biological system, the metabolic
fluxes of all reactions in steady-state maximizing growth
can be determined by defining an optimization problem
as follows:

maximize v,
subjectto S.v =0
Vi, min<Vi<Vi max, Vi€n reactions

With v, as the flux through the biomass objective func-
tion, v as the vector of all reaction fluxes, v;,,,;,, as the min-
imal flux capacity of reaction i, and v;,,,,, as the maximal
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flux capacity of reaction i. The solution (metabolic fluxes
of all reactions) of this optimization problem can be
obtained using linear programming. The flux through the
biomass reactions can be interpreted as the growth rate of
the microbe model. By setting the constraints v;,,;, and
Vimax Of exchange (transport) reactions, varying growth
conditions can be simulated. Throughout this study, the
maximal uptake was constrained to 10 mmol/gDW/h to
estimate natural occurring conditions. The maximal
achievable growth rate was calculated under these condi-
tions by assuming that all exchange reactions are poten-
tially active (equivalent to rich medium condition).
Additionally, the absence of a particular metabolite in the
medium was simulated by setting its minimal and max-
imal exchange reaction constraints (v;,,;, and v;,,..) to
0 mmol/gDW/h. By the iterative removal of each metabol-
ite individually from the rich medium for each microbe
model, different growth conditions were simulated. Essen-
tial nutrients were defined by growth rates smaller than
0.05 h™" after removal from the medium. This cutoff was
based on the estimated growth rate of microbes within the
mammalian gut [70]; however, all calculated smaller
growth rates were below 0.0001 h™ and thus negligible.

Data mining of metabolic and genomic information

To assess the differences between the individual mi-
crobes, we used the reaction content and essential nutri-
ents as well as COG functions and Pfam domains. The
reaction content was based on the metabolic models ob-
tained from Model SEED [71], whereas the COG func-
tions and Pfam domains were obtained from the
integrated microbial genomes database [68]. For each
microbe, the presence and absence of reactions, essential
nutrients, and functions were assessed in relation to the
union of all metabolic reconstruction and genome anno-
tations, respectively. The resulting binary vector b was
then analyzed between species i and j with the Jaccard
Index as:

blﬂbj
biUl’J/

to calculate the metabolic proximity according to [32].
Based on the obtained distance matrix of the reaction
content, we used principle coordinate analysis [33] and
t-SNE [58] for reducing the dimensionality from 301 to
2. The two-dimensional embeddings were visualized by
scatter plots. Using principle coordinate analysis, we
analyzed reaction differences between the metabolic
models on a global scale by correlating each reaction to
the principle coordinates and subsequently selecting the
200 reactions with the highest correlation (Additional
file 4: Table S3). The t-SNE-based visualization was used to
identify local differences, with a detailed analysis of cluster
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structures within the genera Lactobacillus, Bifidobacteria,
and Bacteroides. The reaction set differences between the
determined sub-types of these genera were then used to
identify type specific pathways.

Phylogenetic analysis

In addition to the determined metabolic difference, we
used the phylogenetic relationships between the microbes
as a measure of divergence. The phylogeny was computed
with PhyloPhlAn, which uses a set of around 400 protein-
coding genes for the phylogenetic placement [48]. In
addition to the 301 bacterial genomes, the genomes of the
archaea Methanobrevibacter smithii ATCC35061 and
Methanosphaera stadtmanae DSM 3091 were used as an
out-group to root the phylogenetic tree (Additional file 5:
Figure S2). The resulting phylogenetic tree was visualized
using EvolView [72]. The phylogenetic difference between
the different bacteria was computed using the cophenetic
distance based on the rooted tree [49].

Correlation between phylogeny, metabolic repertoire,
and essential nutrients

We determined the relationship between the metabolic
repertoire of the models and the phylogenetic distance
as well as its relation to the predicted essential nutrients
by representing the phylogenetic distance as a function
of the metabolic distance. We fitted different regression
functions and found an exponential model defined by:

y = 10(a+h%)

to be the most suitable for explaining the relationship
between metabolic distance x and phylogenetic distance
y. For the relationship between essential nutrient differ-
ence z and metabolic difference x, we found a linear
model defined by:

z=a+ Bx

to be the best fit. We complemented the exponential
model with the Spearman correlation and the linear
model with the Pearson correlation as a measure of
association between the variables. The goodness of fit
measures for the different models and subsets of the
data can be found in Table 2. The fitted parameters a
and f for all plots in Fig. 4 can be found in Additional
file 10: Table S7.

Additional files

Additional file 1: Table S2. Table of the gap-filled reactions used to
ensure anaerobic growth. (XLSX 14 kb)

Additional file 2: Figure S1. Comparison between a set of our draft
reconstructions and a set of published manually curated reconstructions.
(TIFF 13914 kb)
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Additional file 4: Table S3. List of all reactions sorted according to
their contribution to the point separation in Fig. 2. (XLSX 126 kb)

Additional file 5: Figure S2. Phylogenetic maximum likelihood tree
(rooted with two methanogenic archaea) calculated from the sequence
similarity of 400 selected essential genes. (TIFF 13054 kb)

Additional file 6: Figure S3. The exponential relationship between the
phylogeny and reaction content using the 165 rRNA sequence similarity
as a measure for genetic distance. (TIFF 3150 kb)

Additional file 7: Figure S4. The correlation between MetaCyc and EC
functionalities with the phylogenetic distance. (TIFF 13708 kb)

Additional file 8: Figure S5. The same t-SNE-based, two-dimensional
coordinates as in Fig. 5 with additional point labels for the different
organisms. (TIFF 1771 kb)

Additional file 9: Table S4. List of genera members belonging to the
different clusters presented in Fig. 5. (XLSX 10 kb)

Additional file 10: Table S7 The fitted parameters of the exponential
models in Fig. 4. (XLSX 9 kb)

Additional file 11: Table S5. Table with reaction differences within the
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Additional file 12: Table S6. Table with reaction differences within the
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Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

EB, IT, and PW designed the study. EB and [T reconstructed the metabolic
models and performed the analysis. CCL performed the phylogenetic
analysis. SM collected phenotypic information and translated the reaction
abbreviations. All authors edited and approved the final manuscript.

Acknowledgements

The authors are thankful to Mrs AlImut Heinken for helping with the refinement
of the draft metabolic models to account for anaerobic metabolisms and
Dr. Dmitry Ravcheev for providing information about aerobic and anaerobic
metabolisms. This study was supported by the ATTRACT program grants
(FNR/A12/01 and FNR/A09/03), the Aides a la Formation-Recherche (FNR/6783162,
FNR /4964712) grant from the Luxembourg National Research Fund (FNR),
and a European Union Joint Programming in Neurodegenerative Diseases
grant (INTER/JPND/12/01).

Received: 18 May 2015 Accepted: 30 September 2015
Published online: 30 November 2015

References

1. QinJ LiY,GaiZ LS Zhu J, Zhang F, et al. A metagenome-wide
association study of gut microbiota in type 2 diabetes. Nature.
2012;490(7418):55-60.

2. Flint HJ, Duncan SH, Scott KP, Louis P (2015). Links between diet, gut
microbiota composition and gut metabolism. Proceedings of the Nutrition
Society, 74, pp 13-22.d0i:10.1017/50029665114001463.

3. QinJ, Li R Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human
gut microbial gene catalogue established by metagenomic sequencing.
Nature. 2010:464(7285):59-65.

4. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI. The
human microbiome project: exploring the microbial part of ourselves in a
changing world. Nature. 2007;449(7164):804.

5. Ehrlich SD. MetaHIT: The European Union Project on metagenomics of the
human intestinal tract. Metagenomics of the Human Body. New York:
Springer; 2011. p. 307-16.

6. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, et al.
Genome-scale metabolic reconstructions of multiple Escherichia coli strains
highlight strain-specific adaptations to nutritional environments. Proc Natl
Acad Sci. 2013;110(50):20338-43.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.
30.

31

32.

33.

Page 12 of 13

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR,
et al. Enterotypes of the human gut microbiome. Nature.
2011,473(7346):174-80.

Vebg HC, Solheim M, Snipen L, Nes IF, Brede DA. Comparative genomic
analysis of pathogenic and probiotic Enterococcus faecalis isolates, and
their transcriptional responses to growth in human urine. PLoS One.
2010;5(8), €12489.

Schellenberger J, Que R, Fleming RM, Thiele |, Orth JD, Feist AM, et al.
Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox v2. 0. Nat Protoc. 2011,6(9):1290-307.

Orth JD, Thiele |, Palsson B@. What is flux balance analysis? Nat Biotechnol.
2010;28(3):245-8.

Thiele I, Palsson BZ. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat Protoc. 2010;5(1):93-121.

Kumar VS, Dasika MS, Maranas CD. Optimization based automated curation
of metabolic reconstructions. BMC bioinformatics. 2007,8(1):212.

Thiele |, Vlassis N, Fleming RM. fastGapFill: efficient gap filling in metabolic
networks. Bioinformatics. 2014;30(17):2529-31.

Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, et al.
Systems approach to refining genome annotation. Proc Natl Acad Sci.
2006;103(46):17480-4.

Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat Rev
Microbiol. 2012;10(4):291-305.

Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD. A
genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189.
PLoS Comput Biol. 2009;5(2), 1000285.

Edwards J, Palsson B. The Escherichia coli MG1655 in silico metabolic
genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci.
2000;97(10):5528-33.

Heinken A, Sahoo S, Fleming RM, Thiele I. Systems-level characterization of a
host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes.
2013;4(1):28-40.

Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-
throughput generation, optimization and analysis of genome-scale
metabolic models. Nat Biotechnol. 2010,28(9):977-82.

Ottar R, Giuseppe P, Manuela M, Bernhard OP, Ines T. Inferring the metabolism
of human orphan metabolites from their metabolic network context affirms
human gluconokinase activity. Biochem J. 2013;449(2):427-35.

Orth JD, Palsson B. Gap-filling analysis of the iJO1366 Escherichia coli
metabolic network reconstruction for discovery of metabolic functions. BMC
Syst Biol. 2012;6(1):30.

Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, et al.
Metabolic network analysis integrated with transcript verification for
sequenced genomes. Nat Methods. 2009,6(8):589.

Evaldson G, Heimdahl A, Kager L, Nord C. The normal human anaerobic
microflora. Scand J Infect Dis Suppl. 1981;35:9-15.

Heinken A, Thiele I. Systematic prediction of health-relevant human-
microbial co-metabolism through a computational framework. Gut
Microbes. 2015:6(2):120-30.

Lee TJ, Paulsen |, Karp P. Annotation-based inference of transporter
function. Bioinformatics. 2008;24(13):i259-i67.

Stearns JC, Lynch MD, Senadheera DB, Tenenbaum HC, Goldberg M8,
Cvitkovitch DG, et al. Bacterial biogeography of the human digestive tract.
Sci Rep. 2011;1.

Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health:
fermentation and short chain fatty acids. J Clin Gastroenterol. 200640(3):235-43.
Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA, Valas R, et al.
Genomic insights to SAR86, an abundant and uncultivated marine bacterial
lineage. ISME J. 2011,6(6):1186-99.

Prentice MB. Bacterial comparative genomics. Genome Biol. 2004;5(8):338.
Carr R, Borenstein E. Comparative analysis of functional metagenomic
annotation and the mappability of short reads. PLoS One. 2014,9(8),
e105776.

El Yacoubi B, de Crécy-Lagard V. Integrative Data-Mining Tools to Link Gene
and Function. Gene Function Analysis. Springer; 2014. p. 43-66. http//
dx.doi.org/10.1007/978-1-62703-721-1_4

Mazumdar V. Salomon Amar, and Daniel Segre. Metabolic proximity in the
order of colonization of a microbial community. PLoS One. 2013;8(10), €77617.
Gower JC, Legendre P. Metric and Euclidean properties of dissimilarity
coefficients. J Classif. 1986;3(1):5-48.


dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
dx.doi.org/10.1186/s40168-015-0121-6
http://dx.doi.org/10.1017/S0029665114001463
http://dx.doi.org/10.1007/978-1-62703-721-1_4
http://dx.doi.org/10.1007/978-1-62703-721-1_4

Bauer et al. Microbiome (2015) 3:55

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes.
Bergey's manual of systematic bacteriology: Springer, New York, Berlin,
Heidelberg; 2004.

Marchandin H, Teyssier C, Campos J, Jean-Pierre H, Roger F, Gay B, et al.
Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human
clinical samples, emended description of the family Veillonellaceae and
description of Negativicutes classis nov., Selenomonadales ord. nov. and
Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst
Evol Microbiol. 2010,60(6):1271-9.

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of
butyrate-producing bacteria from the human large intestine. FEMS
Microbiol Lett. 2009;294(1):1-8.

Yutin N, Galperin MY. A genomic update on clostridial phylogeny:
Gram-negative spore formers and other misplaced clostridia. Environ
Microbiol. 2013;15(10):2631-41.

Ludwig W, Schleifer K, Whitman Il W, Class Ill. Erysipelotrichia class nov.
Bergey's Manual of Systematic Bacteriology. 2009;3:1298.

Adler P, Bolten CJ, Dohnt K, Hansen CE, Wittmann C. Core fluxome and
metafluxome of lactic acid bacteria under simulated cocoa pulp
fermentation conditions. Appl Environ Microbiol. 2013;79(18):5670-81.
Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut
microbiota and bifidobacteria: from composition to functionality. Antonie
Van Leeuwenhoek. 2008:94(1):35-50.

Zhu C, Delmont TO, Vogel TM, Bromberg Y. Functional basis of
microorganism classification. PLoS Comput Biol. 2015;11(8), 1004472
Guckert JB, Ringelberg DB, White DC, Hanson RS, Bratina BJ. Membrane fatty
acids as phenotypic markers in the polyphasic taxonomy of methylotrophs
within the Proteobacteria. J Gen Microbiol. 1991:137(11):2631-41.

Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin
Invest. 2011;121(6):2126-32.

Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van
Leeuwenhoek. 1983;49(3):209-24.

Gupta RS. Origin of diderm (Gram-negative) bacteria: antibiotic selection
pressure rather than endosymbiosis likely led to the evolution of bacterial
cells with two membranes. Antonie Van Leeuwenhoek. 2011;100(2):171-82.
Bush K. Antimicrobial agents targeting bacterial cell walls and cell
membranes. Rev Sci Tech. 2012;31(1):43-56.

D'Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more:
selective advantages Can explain the prevalent loss of biosynthetic genes in
bacteria. Evolution. 2014.

Segata N, Bornigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new
method for improved phylogenetic and taxonomic placement of microbes.
Nat Commun. 2013;4.

Sokal RR, Rohlf FJ. The comparison of dendrograms by objective methods.
Taxon. 1962;11(2):33-40.

Zaneveld JR, Lozupone C, Gordon JI, Knight R. Ribosomal RNA diversity
predicts genome diversity in gut bacteria and their relatives. Nucleic Acids
Res. 2010;38(12):3869-79.

Natale DA, Shankavaram UT, Galperin MY, Wolf YI, Aravind L, Koonin EV.
Towards understanding the first genome sequence of a crenarchaeon by
genome annotation using clusters of orthologous groups of proteins
(COGs). Genome Biol. 2000;1(5):RESEARCH0009.

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al.
Pfam: the protein families database. Nucleic Acids Res. 2013;42:gkt1223.
Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, et al. The MetaCyc
database of metabolic pathways and enzymes and the BioCyc collection of
pathway/genome databases. Nucleic Acids Res. 2010;38 suppl 1:.D0473-D9.
Wilmes P, Bowen BP, Thomas BC, Mueller RS, Denef VJ, VerBerkmoes NC,
et al. Metabolome-proteome differentiation coupled to microbial
divergence. MBio. 2010;1(5):e00246-10.

Plata G, Henry CS. Vitkup D. Long-term phenotypic evolution of bacteria:
Nature; 2014.

Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology
drives a global network of gene exchange connecting the human
microbiome. Nature. 2011;480(7376):241-4.

Collins M, Lawson P, Willems A, Cordoba J, Fernandez-Garayzabal J, Garcia P,
et al. The phylogeny of the genus clostridium: proposal of five new genera
and eleven new species combinations. Int J Syst Bacteriol. 1994;44(4):812-26.
Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res.
2008;9(2579-2605):85.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

72.

73.

Page 13 of 13

Amir E-aD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al.
ViSNE enables visualization of high dimensional single-cell data and reveals
phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545-52.
Platzer A. Visualization of SNPs with t-SNE. PLoS One. 2013;8(2), e56883.
Laczny CC, Pinel N, Vlassis N, Wilmes P. Alignment-free visualization of
metagenomic data by nonlinear dimension reduction. Sci Rep. 2014:4.

Lee J-H, O'Sullivan DJ. Genomic insights into bifidobacteria. Microbiol Mol
Biol Rev. 2010;74(3):378-416.

An D, Na C, Bielawski J, Hannun YA, Kasper DL. Membrane sphingolipids as
essential molecular signals for Bacteroides survival in the intestine. Proc Natl
Acad Sci. 2011;108(Supplement 1):4666-71.

Nair B, Mayberry W, Dziak R, Chen P, Levine M, Hausmann E. Biological
effects of a purified lipopolysaccharide from Bacteroides gingivalis. J
Periodontal Res. 1983;18(1):40-9.

Chiu H-C, Levy R, Borenstein E. Emergent biosynthetic capacity in simple
microbial communities. PLoS Comput Biol. 2014;10(7), e1003695.

Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota:
implications for health and disease. J Nutr. 2007;137(3):7515-5S.

Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al.
Richness of human gut microbiome correlates with metabolic markers.
Nature. 2013;500(7464):541-6.

Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al.
IMG: the integrated microbial genomes database and comparative analysis
system. Nucleic Acids Res. 2012,40(D1):D115-D22.

Aziz RK; Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST
Server: rapid annotations using subsystems technology. BMC Genomics.
2008,9(1):75.

Gibbons R, Kapsimalis B. Estimates of the overall rate of growth of the
intestinal microflora of hamsters, guinea pigs, and mice. J Bacteriol.
1967;93(1):510.

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M,

et al. The subsystems approach to genome annotation and its use in the
project to annotate 1000 genomes. Nucleic Acids Res. 2005;33(17):5691-702.
Zhang H, Gao S, Lercher MJ, Hu S, Chen W-H. EvolView, an online tool for
visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res.
2012;40(W1):W569-W72.

Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH.
Genome sequences of rare, uncultured bacteria obtained by differential
coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31(6):533-8.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central

J




	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Selected microbes as a model for the human gut microbiota
	Global reaction differences recapitulate conserved taxonomic patterns and phenotypes
	Energy and membrane metabolism as markers for metabolic divergence
	The relationship between genotype, phenotype, and metabolic repertoire is non-linear
	The relationship between phylogeny, metabolic repertoire, and phenotype is taxon-dependent
	Reaction differences reflect metabolic versatility among closely related microbes

	Conclusions
	Methods
	Metabolic model selection, construction, and refinement
	Growth simulation
	Data mining of metabolic and genomic information
	Phylogenetic analysis
	Correlation between phylogeny, metabolic repertoire, and essential nutrients

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References



