
Linear functional equations, differential
operators and spectral synthesis

G. Kiss and M. Laczkovich

February 25, 2014

Abstract

We investigate the functional equation
∑n

i=1 aif(bix + ciy) = 0,
where ai, bi, ci ∈ C, and the unknown function f is defined on the field
K = Q(b1, . . . , bn, c1, . . . , cn). (It is easy to see that every solution
on K can be extended to C as a solution.) Let S1 denote the set
of additive solutions defined on K. We prove that S1 is spanned by
S1 ∩ D, where D is the set of the functions φ ◦ D, where φ is a field
automorphism of C and D is a differential operator on K. We say
that the equation

∑n
i=1 aif(bix + ciy) = 0 is normal, if its solutions

are generalized polynomials. (The equations
∑n

i=1 aif(bix + y) = 0
have this property.) Let S denote the set of solutions of a normal
equation

∑n
i=1 aif(bix + ciy) = 0 defined on K. We show that S

is spanned by S ∩ A, where A is the algebra generated by D. This
implies that if S is translation invariant, then spectral synthesis holds
in S. The main ingredient of the proof is the observation that if V is
a variety on the Abelian group (K∗)k under multiplication, and every
function F ∈ V is k-additive on Kk, then spectral synthesis holds in
V .

We give several applications, and describe the set of solutions of
equations having some special properties (e.g. having algebraic coef-
ficients etc.).
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1 Introduction

Let C denote the field of complex numbers. We are concerned with
the linear functional equation

n∑
i=1

aif(bix+ ciy) = 0 (x, y ∈ C), (1)

where ai, bi, ci are given complex numbers, and f : C → C is the un-
known function. We shall say that the equation (1) is normal of degree
k, if every solution of (1) is a generalized polynomial of degree at most
k. (For the definition of generalized polynomials see the next section.)
Our aim is to describe the set of solutions of normal equations.

In fact, we shall restrict our attention to the solutions defined on
the field K generated by the numbers bi and ci (i = 1, . . . , n). This
is justified in that any function f : K → C satisfying

∑n
i=1 aif(bix+

ciy) = 0 for every x, y ∈ K can be extended to a solution on C. Indeed,
since C is a linear space over the field K, the identity on K can be
extended to a function φ : C → K which is linear over K. It is clear
that if f satisfies (1) for every x, y ∈ K, then f ◦ φ satisfies (1) for
every x, y ∈ C.

There is a simple condition on the numbers ai, bi, ci implying that
the equation is normal. Suppose that the numbers ai are nonzero. It
is well-known that the following condition implies that every solution
of (1) is a generalized polynomial of degree at most n− 2.

There is an 1 ≤ i ≤ n such that bicj 6= bjci for any 1 ≤ j ≤ n, j 6= i.
(2)

(See [7]; see also [1] and [4].) Note that condition (2) is satisfied if the
numbers bi are different, and either ci = 1 for every i, or ci = 1 − bi
for every i. Therefore, the equations

n∑
i=1

aif(bix+ y) = 0 (x, y ∈ C) (3)

and
n∑
i=1

aif(bix+ (1− bi)y) = 0 (x, y ∈ C) (4)

are normal of degree n − 2 assuming that a1, . . . , an are not all zero,
and b1, . . . , bn are distinct.
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We shall say that the equation (1) is translation invariant, if the
space of its solutions is translation invariant. It is easy to see that
the equations (3) and (4) have this property. This is not true for a
general equation of the form (1). As it was noted in [3], the following
condition implies translation invariance:

The points (bi, ci) ∈ C2 lie on a line not going through the origin
(0, 0).

Let S denote the set of solutions defined on K. It is clear that S is
a linear space over C and is closed under pointwise convergence. If S
is also translation invariant, then S is a variety. Our aim is to present
a dense subset of S consisting of functions of simple structure. The
situation is that of spectral synthesis, and as we shall prove, spectral
synthesis does hold in S (see (iii) of Theorem 7.7). However, we want
to present a dense subset in S which is much smaller than the set of
all polynomial-exponential functions, and we also want to get rid of
the assumption of translation invariance. Concerning the set of addi-
tive solutions, spectral synthesis applied to S itself is not informative
anyway, since every additive function is a polynomial by definition.
Therefore, in order to describe the additive solutions we apply spec-
tral synthesis on the multiplicative group K∗ = {x ∈ K : x 6= 0}. In
general, in the case of solutions of degree k we apply spectral synthesis
to a related set of functions defined on (K∗)k (see Section 6).

A brief formulation of our main results is the following. Let (1) be
an arbitrary equation. Then the set of additive solutions defined on K
is spanned by those solutions which can be written in the form φ ◦D,
where φ is an automorphism of C and D is a differential operator on
K (see Theorem 5.1).

The set of solutions which are generalized monomials of order k
is spanned by those solutions which can be represented as finite sums
of functions of the form

∏k
i=1(φi ◦ Di), where φ1, . . . , φk are auto-

morphism of C and D1, . . . , Dk are differential operators on K (see
Theorem 7.4).

If the equation (1) is normal of degree k, then the set S is spanned
by those solutions which can be can be represented as finite sums of
functions of the form

∏m
i=1(φi ◦Di), where m ≤ k, and φi and Di are

as above (see Corollary 7.6).
The proof of these results is based on the fact that spectral synthe-

sis holds in some related varieties (see Theorems 4.3 and 6.5). These
varieties are defined on the groups K∗ and, more generally, on (K∗)k.
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These groups contain free Abelian groups of rank infinity (see the re-
mark after Theorem 3.4), and it is well-known that on such a group
there are varieties in which spectral synthesis does not hold. This
means that in order to prove Theorems 4.3 and 6.5 we have to use
some special properties of the varieties. The crucial observation is
that in these varieties every local polynomial-exponential function is
a polynomial-exponential function (see Theorems 4.2 and 6.3). Then,
using a general theorem stating that local spectral synthesis holds
on every countable Abelian group [5] we infer that spectral synthesis
holds in these varieties.

In Sections 5 and 8 we give several applications of the general the-
orems concerning the solutions of (1). These applications are, in a
way, the continuations and completions of the groundbreaking obser-
vations, results and examples given in the papers [3] and [2].

2 Preliminaries

Let K be a subfield of the field of complex numbers C. A map φ : K →
C is an injective field homomorphism from K into C if and only if φ is
an isomorphism between the fields K and φ(K). We shall frequently
use the following well-known fact: if the transcendence degree of K
over Q is finite and φ : K → C is an injective field homomorphism,
then φ can be extended to C a field automorphism of C. In the sequel
by a homomorphism (automorphism) we shall always mean a field
homomorphism (a field automorphism).

Let (G, ∗) be an Abelian group, and let CG denote the linear space
of all complex valued functions defined on G equipped with the prod-
uct topology. By a variety on G we mean a translation invariant
closed linear subspace of CG. We say that the function f : G → C
is additive, if f is a homomorphism of G into the additive group of
C. A function is a polynomial if it belongs to the algebra generated
by the constant functions and the additive functions. A nonzero func-
tion m ∈ CG is called an exponential if m is multiplicative; that is,
if m(x ∗ y) = m(x) ·m(y) for every x, y ∈ G. An exponential mono-
mial is the product of a polynomial and an exponential, a polynomial-
exponential function is a finite sum of exponential monomials. If a
variety is spanned by exponential monomials, then we say that spec-
tral synthesis holds on this variety. If spectral synthesis holds in every
variety on G, then we say that spectral synthesis holds on G.
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A function f : G → C is a generalized polynomial, if there is a k
such that

∆g1 . . .∆gk+1
f = 0 (5)

for every g1, . . . , gk+1 ∈ G. Here ∆g is the difference operator defined
by ∆gf(x) = f(g ∗ x) − f(x) (x ∈ G) for every f ∈ CG and g ∈ G.
The smallest k for which (5) holds for every g1, . . . , gk+1 ∈ G is the
degree of the generalized polynomial f .

A function F : Gk → C is k-additive, if it is additive in each of
its variables (the other variables being fixed). A function f ∈ CG
is called a generalized monomial of degree k, if there is a symmetric
k-additive function F such that f(x) = F (x, . . . , x) for every x ∈ G.
The symmetric k-additive function F is uniquely determined by f .
This follows from the fact that if F is symmetric, k-additive, and
f(x) = F (x, . . . , x) for every x ∈ G, then

F (x1, . . . , xk) =
1

k!
·∆x1 . . .∆xkf(x) (6)

for every x1, . . . , xk, x ∈ G. Therefore, a function f is a generalized
monomial of degree k if and only if the function F defined by (6) is
k-additive, and f(x) = F (x, . . . , x) for every x ∈ G.

It is well-known that every generalized polynomial of degree k can
be written in the form

∑k
i=0 fi, where fi is a generalized monomial

of degree i for every i = 1, . . . , k, and f0 is a constant. The following
lemma is well-known (see, e.g., [5, Lemma 5]).

Lemma 2.1. Let (G, ∗) be an Abelian group, V be a translation invari-
ant linear subspace of CG, and let

∑M
i=1 pi ·mi ∈ V , where p1, . . . , pM

are nonzero generalized polynomials and m1, . . . ,mi are distinct expo-
nentials on G. Then (∆h1 . . .∆hkpi) ·mi ∈ V for every i and for every
h1, . . . , hk ∈ G. In particular, we have mi ∈ V for every i = 1, . . . ,M .

We say that the function f : G → C is a local polynomial, if, for
every finitely generated subgroup H of G, the restriction f |H is a poly-
nomial on H. One can prove that every polynomial is a generalized
polynomial, and every generalized polynomial is a local polynomial.
On finitely generated Abelian groups these notions coincide (see [5]).

The function f : G → C is called a local polynomial-exponential,
if f =

∑N
i=1 pi · mi , where p1, . . . , pN are local polynomials and

m1, . . . ,mN are exponentials. Let V be a variety on G. We say
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that local spectral synthesis holds in V if the set of local polynomial-
exponentials contained in V is dense in V . We say that local spectral
synthesis holds on a group G if local spectral synthesis holds in every
variety on G. We shall denote by r0(G) the torsion free rank of G;
that is, the cardinality of a maximal independent system of elements
of infinite order. The following result was proved in [5].

Theorem 2.2. There exists a cardinal ω1 ≤ κ ≤ 2ω such that, for
every Abelian group G, local spectral synthesis holds on G if and only
if r0(G) < κ. In particular, local spectral synthesis holds on every
countable Abelian group G.

3 Differential operators

For every field K, a derivation on K is a map d : K → K such
that d(x + y) = d(x) + d(y) and d(xy) = d(x) · y + d(y) · x for every
x, y ∈ K. It is well-known that if d is a derivation on K and L is a
field containing K, then d can be extended to L as a derivation.

Suppose that the complex numbers t1, . . . , tn are algebraically in-
dependent over Q. By a differential operator on Q(t1, . . . , tn) we mean
an operator of the form

D =
∑

ci1,...,in ·
∂i1+···+in

∂ti11 · · · ∂t
in
n

, (7)

where the sum is finite, in each term the coefficient is a complex num-
ber, and the exponents i1, . . . , in are nonnegative integers. The de-
gree of the differential operator D is the maximum of the numbers
i1 + . . .+ in such that ci1,...,in 6= 0.

It is obvious that ∂/∂ti is a derivation on Q(t1, . . . , tn) for every
i = 1, . . . , n. Therefore, every differential operator on Q(t1, . . . , tn)
is the linear combination with complex coefficients of finitely many
maps of the form d1 ◦ . . . ◦ dk, where d1, . . . , dk are derivations on
Q(t1, . . . , tn). This observation motivates the following definition.

Definition 3.1. Let K be a subfield of C. We say that the map D :
K → C is a differential operator on K, if D is the linear combination,
with complex coefficients, of finitely many maps of the form d1◦. . .◦dk,
where d1, . . . , dk are derivations on K.

Note that if K ⊂ L ⊂ C are fields and D is a differential operator
on K, then D can be extended to L as a differential operator. This is
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clear from the fact that every derivation can be extended from K to
L.

We show that if K = Q(t1, . . . , tn), then the two definitions of
differential operators coincide. Actually, more is true.

Proposition 3.2. Let K be a subfield of C, and suppose that the
elements t1, . . . , tn ∈ K are algebraically independent over Q. If D
is a differential operator on K according to Definition 3.1, then the
restriction of D to Q(t1, . . . , tn) is of the form (7).

Proof. Put Q(t1, . . . , tn) = F , and let D denote the set of all functions
defined on F that can be represented in the form (7). It is enough
to show that if d1, . . . , dk are derivations on K, then the restriction of
d1 ◦ . . .◦dk to F belongs to D. We prove this by induction on k. First
we note that if d is a derivation on K and d(ti) = αi (i = 1, . . . , n),
then

d(x) =

n∑
i=1

αi ·
∂x

∂ti
(8)

for every x ∈ F . Indeed, (8) can be easily checked first for every
x ∈ Q[t1, . . . , tn] and then for every x ∈ F . Therefore, the statement
is true for k = 1.

Let k > 1, and suppose the statement is true for k − 1. Let
d1, . . . , dk be derivations on K. Then, by the induction hypothesis, the
map g = d2 ◦ . . . ◦ dk restricted to F belongs to D. Let g =

∑N
j=1 cjgj ,

where each gj is of the form ∂i1+...+in/∂ti11 · · · ∂tinn . Extend d1 to C as
a derivation. Then

d1 ◦ g = d1 ◦

 N∑
j=1

cjgj

 =
N∑
j=1

(d1(cj) · gj + cj · (d1 ◦ gj)).

Now the statement (d1 ◦ g)|F ∈ D follows from (8) when applied to
d = d1. �

In the sequel we shall denote by j the identity function defined on
C.

Theorem 3.3. Let K be a subfield of C, and let D be a differential
operator on K. Then D/j is a polynomial on K∗.

Proof. It is enough to show that if d1, . . . , dn are derivations on K,
then (d1 ◦ . . . ◦ dn)/j is a polynomial on K∗. We prove by induction
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on n. It is easy to check that if d is a derivation, then d/j is additive
on K. Since every additive function is a polynomial, the statement is
true for n = 1.

Suppose that n > 1, and the statement is true for n − 1. Let
d1, . . . , dn be derivations on K. By the induction hypothesis, (d2 ◦
. . . ◦ dn)/j = p is a polynomial on K∗. Extend p to K by putting
p(0) = 0. We have to show that (d1 ◦ (p · j))/j is a polynomial on K∗.
Since d1 is a derivation, we have

d1(p(x) · x) = d1(p(x)) · x+ p(x) · d1(x)

for every x ∈ K. Thus (d1 ◦ (p · j))/j = (d1 ◦ p) + p · (d1/j) on K∗.
Since p is a polynomial and d1/j is additive on K∗, it follows that
p · (d1/j) is a polynomial on K∗. Therefore, it is enough to show that
d1 ◦ p is a polynomial on K∗.

Extend d1 to C as a derivation. Let d1/j = a; then a is additive
on C∗, and d1 = a · j, where we extended a to C by putting a(0) = 0.
(The additivity of a on C∗ means a(xy) = a(x) + a(y) for every x, y ∈
C∗.) Now p is a sum of functions of the form a1 · · · ak, where each of
a1, . . . , ak is either additive on K∗ or constant. Since d1 is additive
on C, it is enough to show that d1 ◦ (a1 · · · ak) is a polynomial on K∗.
We have

d1 ◦ (a1 · · · ak) = (a · j) ◦ (a1 · · · ak) = (a ◦ (a1 · · · ak)) · a1 · · · ak =

= [(a ◦ a1) + . . .+ (a ◦ ak)] · a1 · · · ak
(9)

everywhere on K. Since a ◦ ai is either constant or additive on K∗, it
follows that the right hand side of (9) is a polynomial on K∗. �

Our next aim is to prove the following result.

Theorem 3.4. Suppose that the transcendence degree of the field K
over Q is finite, and let the map D : K → C be additive. Then the
following are equivalent.

(i) D is a differential operator on K.

(ii) D/j is a polynomial on K∗.

(iii) D/j is a generalized polynomial on K∗.

(iv) D/j is a local polynomial on K∗.
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We remark that the torsion free rank of the Abelian group K∗ is
infinite for any K. Indeed, the set of rational primes constitutes an
independent family of elements of infinite order in K∗. Therefore, for
any field K ⊂ C, the families of polynomials, generalized polynomials,
and local polynomials defined on K∗ are different.

In the next two lemmas we shall use the following notation. Let
K be a field as in Theorem 3.4, and let T ⊂ K be a maximal set
of algebraically independent elements over Q. By assumption, T is
finite; let T = {t1, . . . , tn}. We shall denote by G the subgroup of K∗

generated by t1, . . . , tn. Then G is a finitely generated subgroup of
K∗.

Lemma 3.5. Let f : K → C be an additive function. Let H be a
subgroup of K∗ such that G ⊂ H ⊂ K∗. Suppose that p = f/j is a
generalized polynomial on H. If f ≡ 0 on G, then f ≡ 0 on H.

Proof. We prove by induction on the degree of the generalized poly-
nomial p on H. If deg p = 0, then p is constant. Since p ≡ 0 on G, we
have p ≡ 0 on H, and f ≡ 0 on H.

Suppose m = deg p > 0, and that the statement is true for degrees
less than m. Let g ∈ G be fixed. Then

p(gx)− p(x) =
f(gx)

gx
− f(x)

x
=
g−1f(gx)− f(x)

x
=
f1(x)

x
, (10)

where f1(x) = g−1f(gx)− f(x) for every x ∈ K. Then f1 is additive
on K, and f1/j is a generalized polynomial on H by (10). Moreover,
we have f1/j = ∆gp, and thus deg ((f1/j)|H) ≤ m − 1. Since f1 ≡ 0
on G, it follows from the induction hypothesis that f1 ≡ 0 on H. Thus
f(gx) = g · f(x) for every g ∈ G and x ∈ H. By the additivity of f
we obtain

f(cx) = c · f(x) (c ∈ Q[T ], x ∈ H). (11)

Let α ∈ H be arbitrary. Then, by α ∈ K, α is algebraic over the field
Q(T ). Let c0, . . . , ck ∈ Q[T ] be such that

ckα
k + . . .+ c1α+ c0 = 0, (12)

ck 6= 0 and k is minimal. Let f(αi) = ai (i ∈ Z). Multiplying (12) by
αn−k for every n ∈ Z we obtain

ckα
n + . . .+ c1α

n−k+1 + c0α
n−k = 0.
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By (11) and by the additivity of f , this implies

ckan + . . .+ c1an−k+1 + c0an−k = 0

for every n. Therefore, the sequence (an) satisfies a linear recurrence
relation. It is well-known that an can be uniquely represented in the
form an =

∑
λ∈Λ qλ(n) · λn, where λ runs through Λ, the set of roots

of the characteristic polynomial χ(x) = ckx
k + . . .+ c0, and for every

root λ ∈ Λ, qλ ∈ C[x] is a polynomial of the degree less than the
multiplicity of λ.

By the minimality of k, the polynomial χ is irreducible over Q(T ).
Therefore, every λ is a simple root of χ, and thus

an =
∑
λ∈Λ

dλ · λn (13)

for every n, where dλ is a constant for every λ ∈ Λ.
Since p is a generalized polynomial on H and {αn} is a finitely

generated subgroup of H, it follows that p is a polynomial on {αn}
(see [4]). Therefore, the map n 7→ p(αn) (n ∈ Z) is a polynomial
on Z. Now, we have an = f(αn) = p(αn) · αn for every n. The
uniqueness of the representation (13) implies that α ∈ Λ and the
function n 7→ p(αn) (n ∈ Z) is constant. Since p(1) = f(1) = 0 by
1 ∈ G, it follows that p(αn) = 0 for every n. In particular, p(α) = 0
and f(α) = 0. Since this is true for every α ∈ H, we obtain f ≡ 0 on
H. �

Lemma 3.6. Let f : K → C be an additive function such that p = f/j
is a local polynomial on K∗. If f ≡ 0 on G, then f ≡ 0 on K.

Proof. The additivity of f implies f(0) = 0. Let α ∈ K∗ be arbitrary,
and letH be the multiplicative group generated by T and α. SinceH is
a finitely generated subgroup ofK∗, it follows that p is a polynomial on
H. By the previous lemma we obtain that f ≡ 0 on H. In particular,
f(α) = 0. Since this is true for every α ∈ K∗, we obtain f ≡ 0 on K∗.
�

Proof of Theorem 3.4. The implication (i)=⇒(ii) was proved in
Theorem 3.3 (for every field). The implications (ii)=⇒(iii)=⇒(iv) are
obvious.

Now we prove (iv)=⇒(i). Let p = D/j, then p is a local polynomial
on K∗. Since G is a finitely generated subgroup of K∗, it follows that
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p is a polynomial on G. By [4, Proposition 1], p has the Ploc property
on G; that is, the map

(k1, . . . , kn) 7→ p
(
tk11 · · · t

kn
n

)
is a polynomial on Zn.

We shall use the notation x[0] = 1 and x[i] = x(x − 1) · · · (x −
i + 1) for every i = 1, 2, . . . and x ∈ Z. It is well-known that every
polynomial belonging to C[x1, . . . , xn] can be written in the form

∑
ci ·

x
[i1]
1 · · ·x

[in]
n , where i = (i1, . . . , in) runs through a finite set of n-tuples

of nonnegative integers, and in each term the coefficient ci is a complex

number. Therefore, the map (k1, . . . , kn) 7→ p
(
tk11 · · · tknn

)
has such a

representation. Then we have

D
(
tk11 · · · t

kn
n

)
= p

(
tk11 · · · t

kn
n

)
· tk11 · · · t

kn
n =

=
∑

ci · k[i1]
1 · · · k[in]

n · tk11 · · · t
kn
n =

=
∑

ci · ti11 · · · t
in
n · k

[i1]
1 · · · k[in]

n · tk1−i11 · · · tkn−inn =

= E
(
tk11 · · · t

kn
n

)
(14)

for every k1, . . . , kn ∈ Z, where E is the differential operator∑
ci · ti11 · · · t

in
n ·

∂i1+···+in

∂ti11 · · · ∂t
in
n

.

By extending the derivations ∂/∂ti to K, we can extend E to K as
a differential operator E. Then E is additive on K, and E/j is a
polynomial on K∗ by Theorem 3.3. Let q(0) = 0, and let q(x) =
p(x)−E(x)/x for every x ∈ K∗. Then q · j = D−E is additive on K,
and q is a local polynomial on K∗. Since q vanishes on G by (14), it
follows from Lemma 3.6 that q ≡ 0 on K. Thus D = E on K which
completes the proof. �

4 Spectral synthesis on K∗ in the va-

riety of additive functions on K

Let K be a subfield of C, and let K∗ denote the Abelian group {x ∈
K : x 6= 0} with respect to multiplication.
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In this section we fix a field K such that its transcendence degree
over Q is finite. The function f : K → C is said to be additive, if
f(x+ y) = f(x) + f(y) holds for every x, y ∈ K. We denote by Va the
set of additive functions f : K → C.

We put V ∗a = {f |K∗ : f ∈ Va}. It is easy to check that V ∗a is a
variety on K∗ (see the proof of [2, Theorem 2.3]).

Our aim is to prove that spectral synthesis holds in every variety
on K∗ contained by Va (see Theorem 4.3). It should be remarked
that, as the torsion free rank of K∗ is infinite (see the remark after
Theorem 3.4), there are varieties on K∗ in which spectral synthesis
does not hold (see [8] and [6]).

Lemma 4.1. If m ∈ V ∗a is an exponential on K∗, then m can be
extended to C as an automorphism of C.

Proof. The condition m ∈ V ∗a means that extending m to K by
m(0) = 0, we obtain an additive function. Now m is an exponential
on K∗, and thus m satisfies m(xy) = m(x)m(y) for every x, y ∈ K∗.
Consequently, the extended m is an injective homomorphism of K.
Since the transcendence degree of K over Q is finite, it follows that m
can be extended to C as an automorphism of C. �

Theorem 4.2. Suppose that the transcendence degree of the field K
over Q is finite. Let f : K → C be additive, and let m be an exponen-
tial on K∗. Let φ be an extension of m to C as an automorphism of
C. Then the following

are equivalent.

(i) f = p ·m on K∗, where p is a local polynomial on K∗.

(ii) f = p ·m on K∗, where p is a generalized polynomial on K∗.

(iii) f = p ·m on K∗, where p is a polynomial on K∗.

(iv) There exists a unique differential operator D on K such that
f = φ ◦D on K.

Proof. The implications (iii)=⇒(ii)=⇒ (i) are obvious.
(i)=⇒(iv): Let D = φ−1 ◦ f . Then D is additive on K, and

D = φ−1 ◦ (p ·m) = (φ−1 ◦ p) · j

on K. Thus D/j = φ−1 ◦ p on K∗. Since p is a local polynomial on
K∗ and φ−1 is an automorphism of C, it follows that φ−1 ◦ p = D/j is
a local polynomial on K∗. Therefore, D is a differential operator on

12



K by Theorem 3.4. Since f = φ◦D on K, this proves the existence of
D. The uniqueness is clear: if φ ◦D1 = φ ◦D2 on K, then D1 = D2,
since φ is injective.
(iv)=⇒(iii): Suppose f = φ◦D onK, whereD is a differential operator
on K. Then D/j is a polynomial on K∗, and so is

p = φ ◦ (D/j) = (φ ◦D)/φ.

Thus f = φ ◦D = p · φ. Since m = φ on K, the proof is complete. �

Theorem 4.3. Suppose that the transcendence degree of the field K
over Q is finite. Then spectral synthesis holds in every variety on K∗

consisting of additive functions (with respect to addition).

Proof. Since K is countable, so is the Abelian group K∗. Let V
be a variety on K∗ consisting of additive functions. By Theorem 2.2,
local spectral synthesis holds on K∗, and thus V is spanned by lo-
cal polynomial-exponential functions. Since, by Theorem 4.2, every
local polynomial-exponential function contained by V is a polynomial-
exponential function, it follows that V is spanned by polynomial-
exponential functions. �

5 Applications to linear functional equa-

tions

As an application of Theorems 4.2 and 4.3 we describe the additive
solutions of the linear functional equation

n∑
i=1

aif(bix+ ciy) = 0, (15)

where ai, bi, ci are given complex numbers and f : C → C is the
unknown function. Let K = Q(b1, . . . , bn, c1, . . . , cn). Let S1 denote
the set of additive solutions of (15) defined on K. Clearly, f : K → C
belongs to S1 if and only if

n∑
i=1

aif(bix) = 0,
n∑
i=1

aif(cix) = 0 (16)

holds for every x ∈ K. It is also clear that S1 is a linear space over C.
It is easy to check that

S∗1 = {f |K∗ : f ∈ S1}

13



is a variety on K∗.
The next theorem is our main result concerning the additive solu-

tions of linear functional equations.

Theorem 5.1. (i) For every function f ∈ S∗1 , f is an exponential
monomial on K∗ if and only if f = φ ◦ D on K∗, where φ is
an automorphism of C and is a solution of (15), and D is a
differential operator on K.

(ii) The variety S∗1 is spanned by the functions (φ ◦ D)|K∗ ∈ S∗1 ,
where φ and D are as above.

(iii) The linear space S1 is spanned by the functions φ ◦D, where φ
and D are as above.

Proof. (i) Suppose that f : K → C is an additive solution of (15),
and f is an exponential monomial function on K∗. Let f = p · m,
where p is a polynomial, and m is an exponential on K∗. Since V ∗a
is a variety and p ·m ∈ V ∗a , it follows that m ∈ V ∗a (see Lemma 2.1).
This means that defining m(0) = 0, the function m is a solution of
(15) on K. By Lemma 4.1, m can be extended as an automorphism
of C. Let φ denote such an extension. As m is a solution of (16) as
well, we have

n∑
i=1

aim(bi) = 0,
n∑
i=1

aim(ci) = 0. (17)

Then, by (17), φ is a solution of (15) on C. The rest of the statement
(i) follows from Theorem 4.2.

Statement (ii) is an immediate consequence of Theorem 4.3. The
statement (iii) is clear from (ii). �

The description of the additive solutions becomes especially simple
if the coefficients ai are algebraic.

Theorem 5.2. Suppose that a1, . . . , an are algebraic numbers. If φ is
an automorphism of C and φ is a solution of (15), then φ ◦ D ∈ S1

for every differential operator D on K. Therefore, S∗1 is spanned by
the functions (φ ◦D)|K∗ ∈ S∗1 , where φ is an automorphism of C and
is a solution of (15), and D is an arbitrary differential operator on
K.

Proof. Since we are only interested in the additive solutions of (15),
it is enough to deal with the additive solutions of the system (16).

14



It is enough to show that φ ◦ D is a solution of (16) on K for any
differential operator D = d1 ◦ · · · ◦dk, where d1, . . . , dk are derivations.
We will prove this by induction on k.

If k = 0; that is, if D is the identity, then φ ◦D = φ is a solution
by assumption.

Let k > 0, and suppose the statement is true for k − 1. We have
to prove that if d1, . . . , dk are derivations on K, then φ ◦ (d1 ◦ · · · ◦ dk)
is a solution on K. We have

φ ◦ (d1 ◦ · · · ◦ dk) = d ◦ f,

where d = φ ◦ d1 ◦φ−1 and f = φ ◦ (d2 ◦ · · · ◦ dk). Then f : K → φ(K)
is a solution of (16) by the induction hypothesis.

Let K1 = K(φ−1(a1), . . . , φ−1(an)), and let d1 be extended to K1

as a derivation. We denote the extended derivation by d1. Note that
d1(a) = 0 for every algebraic element of K1.

Let d = φ ◦ d1 ◦ φ−1. It is easy to check that d is a derivation
on φ(K1). If a ∈ φ(K1) is algebraic, then so is φ−1(a), and thus
d1(φ−1(a)) = 0. Therefore, d(a) = 0 for every algebraic element of
φ(K1). In particular, d(ai) = 0 for every i = 1, . . . , n. Since f is a
solution of (16) we have, for every x ∈ K,

0 = d(0) = d

(
n∑
i=1

ai · f(bix)

)
=

n∑
i=1

d(ai · f(bix))) =

=
n∑
i=1

d(ai) · f(bix) +
n∑
i=1

ai · d(f(bix)) =
n∑
i=1

ai · (d ◦ f)(bix).

The same argument shows that
∑n

i=1 ai · (d ◦ f)(cix) = 0 for every
x ∈ K. Thus φ ◦ d is a solution of (16) on K which completes the
proof. �

By Theorems 5.1 and 5.2 we have the following corollary.

Corollary 5.3. If the coefficients a1, . . . , an are algebraic, then the
variety of additive solutions of (15) defined on K is spanned by the
functions φ ◦ D, where φ is an isomorphism solution and D is an
arbitrary differential operator. �

Theorem 5.4. Suppose that a1, . . . , an are algebraic and that (15) has
a nonzero additive solution on K. Then S1 is of finite dimension over
C if and only if each of the numbers b1, . . . , bn, c1, . . . , cn is algebraic.
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Proof. If bi and ci are algebraic numbers, then the field

K = Q(b1, . . . , bn, c1, . . . , cn)

is a finite dimensional linear space over Q. Consequently, the linear
space of additive functions defined on K is also of finite dimension.
This implies that the space of additive solutions of (15) is, a fortiori,
of finite dimension.

Next suppose that at least one of the numbers b1, . . . , bn, c1, . . . , cn
is transcendental. We show that if (15) has a nonzero additive solution
on K, then the set S1 of all nonzero additive solution defined on K
has infinite dimension over Q.

By [3, Theorem 2.3] (or, by (iii) of Theorem 5.1), there is an au-
tomorphism φ of C which is a solution of (15) on K. Let T be a
maximal subset of K consisting of algebraically independent elements
over Q. Since the degree of transcendence of K is at least 1, T 6= ∅.
Let t ∈ T be selected. For every n there is a differential operator Dn

on K which is an extension of ∂n

∂tn from Q(T ). Clearly, the operators
Dn are linearly independent over Q(T ). Then so are the maps φ ◦Dn.
Since, by Theorem 5.2, the maps φ ◦Dn are additive solutions of (15)
on K, the proof is complete. �

If bi and ci are algebraic numbers, then every differential operator
on K is a constant multiple of the identity. Therefore, in this case a
finite basis of the linear space S1 consists of the injective homomor-
phisms satisfying

n∑
i=1

aiφj(bi) = 0 and
n∑
i=1

aiφj(ci) = 0 (18)

for every j ∈ {1, . . . , k}. See also [2, Theorem 2.3].

The following example shows that if the numbers bi and ci are not
all algebraic, then the injective homomorphism solutions do not nec-
essarily span S1; that is, we may need nontrivial differential operators
in order to generate S1. Consider the functional equation

f(t2x+ y)− 2tf(tx+ y) + t2f(x+ y)− (t− 1)2f(y) = 0, (19)

where t is a fixed transcendental number. Then K = Q(t). If φ is an
injective homomorphism solution on K then

φ(t2)− 2tφ(t) + t2φ(1) = 0.
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Then we have φ(t) = t, and thus φ is the identity on K. Now, φ
does not generate S1. Indeed, an easy computation shows that the
differential operator ∂

∂t is a solution of (19) on K. Since ∂
∂t is not a

constant multiple of the identity, S1 is not spanned by (the unique)
injective homomorphism solution.

We remark that ∂
∂tk

is not a solution of (19) if k ≥ 2, and thus S1

is of finite dimension over Q. In the next theorem we show that this
behaviour is typical, supposing that bi, ci generate a purely transcen-
dental field of transcendence degree 1.

Definition 5.5. An equation of the form (15) is called trivial if every
additive function f : C→ C is a solution.

Theorem 5.6. Suppose that b1, . . . , bn, c1, . . . , cn ∈ Q(t), where t is
transcendental over Q. Then the equation (15) is either trivial or S1

is of finite dimension over C.

Proof. The additive solutions of (15) are the same as the solutions
of the system (16). If both of the equations of (16) are trivial, then so
is (15). Also, if the space of additive solutions of any of the equations
of (16) is of finite dimension, then the same is true for the space of
additive solutions of (15). Therefore, it is enough to show that if the
equation

∑n
i=1 aif(bix) = 0 is nontrivial, then the linear space of its

additive solutions defined on Q(t) is of finite dimension.
For every γ 6= 0, the equations

∑n
i=1 aif(bix) = 0 and

n∑
i=1

aif(biγx) = 0 (20)

are equivalent in the sense that if one of the equations is trivial then
so is the other, and if the space of additive solutions of one of them is
of finite dimension, then the same is true for the other.

By assumption, b1, . . . , bn are rational functions of t with rational
coefficients. Let γ denote the common denominator of b1, . . . , bn. Then
biγ ∈ Q[t]. Let biγ =

∑m
j=0 αi,jt

j , where αi,j ∈ Q for every i, j. Since
we are interested in the additive solutions only, we may replace each
term f(biγx) by

∑
αi,jf(tjx) (here we used the fact that f(αx) =

α · f(x) for every rational α). Collecting the terms ai · αi,jf(tjx) in
the sum

∑n
i=1 aif(biγx) for every j, we find that there is an equation

m∑
j=0

Ajf(tjx) = 0 (21)
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such that the additive solutions of (20) and those of (21) coincide. If
Aj = 0 for every j = 1, . . . ,m, then the equations are trivial. There-
fore, we may assume that Aj 6= 0 for some j. We prove that in this
case the set of additive solutions of (21) defined on Q(t) is of finite
dimension.

Let Φ denote the set of functions φ ◦ D, where φ is an injective
homomorphism of Q(t) and is a solution of (21), D is a differential
operator of Q(t), and φ ◦ D is a solution of (21). By Theorem 5.1,
applied to the equation

∑m
j=0Ajf(tjx + 0 · y) = 0, we find that the

linear space of additive solutions of (21) is spanned by Φ and thus it
is enough to show that Φ generates a finite dimensional linear space
over C.

If φ is an injective homomorphism of Q(t) and a solution of (21),
then we have

m∑
j=0

Ajφ(tjx) = 0

for every x ∈ Q(t). Putting x = 1 and using φ(tj) = (φ(t))j we find
that φ(t) is a root of the polynomial P (X) =

∑m
j=0Aj ·Xj . Since P

only has a finite number of roots and φ is determined by the value of
φ(t), we obtain that the number of possible φ’s is finite.

Consequently, it is enough to show that if φ is fixed, then those
differential operators D for which φ ◦ D ∈ S1 constitute a finite di-
mensional space over C.

Fix φ, and let D =
∑s

k=0 ck
∂k

∂tk
be a differential operator such that

cs 6= 0 and φ◦D ∈ S1. We prove that s ≤ m. Since φ◦D is a solution,
we have

m∑
j=0

Aj

s∑
k=0

dk · φ
(
∂k

∂tk
(tjx)

)
= 0

for every x ∈ Q(t), where dk = φ(ck). Since

∂k

∂tk
(tjx) =

k∑
i=0

(
k

i

)
· ∂

k−i

∂tk−i
(tj) · ∂

i

∂ti
x,

we obtain
s∑
i=0

Bi · φ
(
∂i

∂ti
x

)
= 0, (22)
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where

Bi =
m∑
j=0

s∑
k=i

Aj ·
(
k

i

)
· dk · φ

(
∂k−i

∂tk−i
tj
)

=

=
m∑
j=0

s−i∑
ν=0

(
ν + i

i

)
· dν+i ·Aj · φ

(
∂ν

∂tν
tj
)

=

=
s−i∑
ν=0

(
ν + i

i

)
· dν+i · Γν ;

(23)

here we used the notation

Γν =
m∑
j=0

Aj · φ
(
∂ν

∂tν
tj
)
. (24)

Applying (22) with x = 1 we obtain B0 = 0. Then putting x = t into
(22) we obtain B1 = 0. We continue, by substituting t2, t3, . . . into
(22), and find that Bi = 0 for every i = 0, . . . , s.

Now the equation Bs = 0 gives Γ0 = 0 by cs 6= 0. Then, from
Bs−1 = 0 we obtain Γ1 = 0. Continuing this way we find that Γν = 0
for every ν = 0, . . . , s.

It is easy to check that

φ

(
∂ν

∂tν
tj
)

=

(
∂ν

∂Xν
Xj

)
X=φ(t)

for every ν, j = 0, 1, . . .. Therefore, by (24), Γν = 0 gives

0 = Γν =

m∑
j=0

Aj · φ
(
∂ν

∂tν
tj
)

=

=

m∑
j=0

Aj ·
(
∂ν

∂Xν
Xj

)
X=φ(t)

=

=
∂ν

∂Xν

 m∑
j=0

AjX
j


X=φ(t)

=

= P (ν)(φ(t)).

Since this is true for every ν = 0, . . . , s, we obtain that φ(t) is a root
of P of multiplicity at least s. However, P is a nonzero polynomial of
degree at most m, which gives s ≤ m.
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We have proved that if D is a differential operator on Q(t) such
that φ ◦ D is a solution of (15) on Q(t), then the degree of D is at
most m. This implies that the set of these functions φ ◦D generate a
linear space of finite dimension, which completes the proof. �

Suppose that a1, . . . , an are algebraic and bi, ci generate a purely
transcendental field of transcendence degree 1. Then it follows from
Theorems 5.4 and 5.6 that if (15) has a not identically zero additive
solution on K, then the equation is trivial.

The following result generalizes this observation.

Theorem 5.7. Suppose that a1, . . . , an are algebraic and the field K =
Q(b1, . . . , bn, c1, . . . , cn) is purely transcendental. If (15) has a not
identically zero additive solution on K, then the equation is trivial.

Proof. Let K = Q(t1, . . . , tk), where t1, . . . , tk are algebraically inde-
pendent over Q. Applying the argument of the proof of Theorem 5.6,
it is enough to prove the following statement. Consider the equation

m∑
i1...ik=0

Ai1...ik · f
(
ti11 . . . t

ik
k · x

)
= 0, (25)

where the coefficients Ai1...ik are algebraic. If (25) has an additive
solution on K which is not identically zero, then the equation is trivial.

It is easy to check that every additive solution of (25) defined on
K can be extended to C as an additive solution on C. Therefore, if
(25) has an additive solution on K which is not identically zero, then
there is such a solution on C. By [3, Theorem 2.3] (or, by (iii) of
Theorem 5.1), it follows that there is an automorphism φ of C which
is a solution. This means that

m∑
i1...ik=0

Ai1...ik · (φ(t1))i1 . . . (φ(tk))
ik = 0.

Since φ(t1), . . . , φ(tk) are algebraically independent over Q and the
numbers Ai1...ik are algebraic, it follows that each Ai1...ik equals zero.
Then the equation (25) is obviously trivial. �

6 Spectral synthesis of higher order

In this section our aim is to prove the higher order analogue of Theo-
rem 4.2. We shall need the following notation.
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If φ1, . . . , φk are automorphisms of C, then A(φ1,...,φk) denotes the
set of those functions which are finite sums of functions of the form

(x1, . . . , xk) 7→
k∏
i=1

(φi ◦Di)(xi) (x1, . . . , xn ∈ K), (26)

where D1, . . . , Dk are differential operators on K. By A∅ we mean the
class of constant functions.

The set of k-additive functions defined on the additive group Kk

is denoted by Vk.
Recall that K∗ denotes the Abelian group {x ∈ K : x 6= 0} with

respect to multiplication. The Abelian group K∗ × . . .×K∗︸ ︷︷ ︸
k

will be

denoted by (K∗)k, where the operation is multiplication in every co-
ordinate of the vectors of (K∗)k. We put V ∗k = {F |(K∗)k : F ∈ Vk}.

Lemma 6.1. V ∗k is a variety on (K∗)k.

Proof. It is clear that V ∗k is a linear space over C. Translation
invariance follows from the fact that if F : Kk → C is k-additive, then
so is

(x1, . . . , xk) 7→ F (c1x1, . . . , ckxk) ((x1, . . . , xk) ∈ Kk)

for every (c1, . . . , ck) ∈ (K∗)k. The proof of the statement that V ∗k is
closed is left to the reader (cf. [2]). �

Lemma 6.2. Suppose that m ∈ Vk and m|(K∗)k is an exponential;

i.e. m is nonzero on (K∗)k, and m(xy) = m(x)m(y) for every x, y ∈
(K∗)k. Then there are injective field homomorphisms m1, . . . ,mk from
K into C such that

m(x) = m(x1, . . . , xk) = m1(x1) · · · ·mk(xk) (x1, . . . , xk ∈ K).

Proof. By the multiplicativity of m,

m(x1, . . . , xk) = m(x1, 1, . . . , 1) ·m(1, x2, 1, . . . , 1) · . . . ·m(1, . . . , 1, xk).

Since xi 7→ m(1, . . . , 1, xi, 1, . . . , 1) is additive on K and exponential
on K∗, it is an injective homomorphism, which we denote by mi. �
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Theorem 6.3. Suppose that the transcendence degree of the field K
over Q is finite. Let F : Kk → C be a k-additive function. Let
m1, . . . ,mk be injective homomorphisms of K, let

m(x) = m(x1, . . . , xk) = m1(x1) · · · ·mk(xk)

for every x1, . . . , xk ∈ K, and let φi be an extension of mi to C as
an automorphism of C for every i = 1, . . . , k. Then the following are
equivalent.

(i) F = p ·m on (K∗)k, where p is a local polynomial on (K∗)k.

(ii) F = p · m on (K∗)k, where p is a generalized polynomial on
(K∗)k.

(iii) F = p ·m on (K∗)k, where p is a polynomial on (K∗)k.

(iv) F ∈ A(φ1,...,φk).

Proof. The implications (iii)=⇒(ii)=⇒ (i) are obvious.
(i)=⇒(iv): We prove by induction on k. The case k = 1 is covered by
Theorem 4.2. Let k > 1, and suppose the statement is true for k − 1.
In the proof of the induction step we shall assume that k = 2. It is
easy to check that the same argument works in the general case.

Suppose F is biadditive on K2, and F = p ·m on K2, where p is
a local polynomial on (K∗)2, and

m(x, y) = m1(x) ·m2(y)

for every x, y ∈ K, where m1 and m2 are given injective homomor-
phisms of K. Let φ be an extension of m1 and ψ be an extension of
m2 to C as automorphisms.

Let T be a maximal subset of K consisting of algebraically in-
dependent elements over Q. Then T is finite; let T = {t1, . . . , tN}.
Let G denote the subgroup of K∗ generated by T . Then G2 is a
finitely generated subgroup of (K∗)2, and thus p is a polynomial on
G2. Therefore, p is a finite sum of terms of the form a1 · · · as, where
each factor ai is either additive on (K∗)2 or is a constant. Note that
the additivity of the function a : (K∗)2 → C means

a(xy) = a(x) + a(y) (x, y ∈ (K∗)2).

Let x = tj11 · · · t
jN
N , y = tk11 · · · t

kN
N be arbitrary elements of G, where

j1, . . . , jN , k1, . . . , kN ∈ Z. Let a : (K∗)2 → C be additive. If a(ti, 1) =
αi and a(1, ti) = βi, then

a(x, y) = α1j1 + . . .+ αNjN + β1k1 + . . .+ βNkN

22



and
m(x, y) = φ(t1)j1 · · ·φ(tN )jN · ψ(t1)k1 · · ·ψ(tN )kN

for every j1, . . . , jN , k1, . . . , kN ∈ Z. Therefore, the value of the func-
tion a1 · · · as ·m at the point (x, y) is a linear combination, with com-
plex coefficients, of terms of the form

jc11 · · · j
cN
N ·k

d1
1 · · · k

dN
N · φ(t1)j1 · · ·φ(tN )jN · ψ(t1)k1 · · ·ψ(tN )kN =

= φ
(
jc11 · · · j

cN
N · t

j1
1 · · · t

jN
N

)
· ψ
(
kd11 · · · k

dN
N · t

k1
1 · · · t

kN
N

)
,

(27)

where ci, di are nonnegative integers. Then the value of p ·m at the
point (x, y) is also a linear combination of terms of the same form.

It is easy to see that for every choice of the nonnegative integers
ci, di there are differential operators D and E on Q(T ) such that

D
(
tj11 · · · t

jN
N

)
= jc11 · · · j

cN
N · t

j1
1 · · · t

jN
N ,

and
E
(
tk11 · · · t

kN
N

)
= kd11 · · · k

dN
N · t

k1
1 · · · t

kN
N

for every j1, . . . , jN , k1, . . . , kN ∈ Z (see the proof of Theorem 3.4).
Now it follows from (27) that the map p ·m, restricted to G2, is the
finite sum of the form

(φ ◦D)(x) · (ψ ◦ E)(y) (x, y ∈ G),

where D and E are differential operators. Let

(p ·m)(x, y) =

S∑
ν=1

(φ ◦Dν)(x) · (ψ ◦ Eν)(y) (28)

for every x, y ∈ G. The maps Dν , Eν can be extended to K as dif-
ferential operators. Then the extended maps (denoted by the same
letter) are additive on K and Dν/j, Eν/j are polynomials on K∗. The
extended differential operators make the right hand side of (28) well-
defined on (K∗)2. We prove that (28) holds everywhere on (K∗)2.

Let x ∈ G be fixed. Then the left hand side of (28) equals q(y) ·
m2(y), where q(y) = p(x, y) · m1(x) for every y ∈ K. It is easy to
check that the function y 7→ p(x, y) is a local polynomial on K, and
thus so is q.
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Let (φ ◦Dν)(x) = γν and ψ−1(γν) = δν . Then the right hand side
of (28) equals ψ ◦ E, where E =

∑S
ν=1 δνEν is a differential operator

on K. By (28),
q(y) ·m2(y) = (ψ ◦ E)(y)

on G. By the equivalence of the statements (i) and (iv) of Theorem
4.2, there is a unique differential operator E on K such that

q(y) ·m2(y) = (ψ ◦ E)(y)

for every y ∈ K. Then ψ ◦ E = ψ ◦ E on G, since both sides equal
q ·m2 on G. Since ψ is injective, this implies E = E on G.

Since E and E are differential operators on K, they are additive
on K, and E/j and E/j are polynomials on K∗ by definition. Since
E = E on G, it follows from Lemma 3.6 that E = E on K, and thus
(28) holds for every y ∈ K.

Now let y ∈ K be fixed. Repeating the argument above we can see
that (28) holds for every x ∈ K. Therefore, we have p ·m ∈ A(φ,ψ).
This proves the implication (i)=⇒(iv).

(iv)=⇒(iii): It is enough to show that the map (x1, . . . , xk) 7→∏k
i=1(φi ◦ Di)(xi) is of the form p ·m on Kk. By the equivalence of

the statements (iii) and (iv) of Theorem 4.2, there are polynomials pi
on K∗ such that φi ◦Di = pi ·mi on K. Then

k∏
i=1

(φi ◦Di)(xi) =
k∏
i=1

pi(xi) ·mi(xi) =

(
k∏
i=1

pi(xi)

)
·m(x1, . . . , xk)

on K. It is clear that (x1, . . . , xk) 7→
∏k
i=1 pi(xi) is a polynomial on

Kk, which completes the proof. �

Remark 6.4. The proof of the implication (i)=⇒(iv) gives the fol-
lowing: in the representation of p ·m as a sum of functions of the form
(26), the sum of the degrees of the differential operators equals the
degree of p in every term.

Theorem 6.5. Suppose that the transcendence degree of the field K
over Q is finite. Then spectral synthesis holds in every variety on
(K∗)k consisting of k-additive functions (with respect to addition).

Proof. Since K is countable, so is the Abelian group (K∗)k. Let V
be a variety on (K∗)k consisting of k-additive functions. By Theorem
2.2, local spectral synthesis holds on K∗, and thus V is spanned by
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local polynomial-exponential functions. Since, by Theorem 6.3, every
local polynomial-exponential function contained by V is a polynomial-
exponential function, it follows that V is spanned by polynomial-
exponential functions. �

7 The space of solutions of linear func-

tional equations

We continue the description of the solutions of

n∑
i=1

aif(bix+ ciy) = 0, (29)

where ai, bi, ci are given complex numbers and f : C → C is the
unknown function. Let K = Q(b1, . . . , bn, c1, . . . , cn).

Our aim is to generalize Theorem 5.1 to the case of k > 1. Let
Sk denote the set of those solutions of (29) defined on K which are
generalized monomials of degree k. In [3, Theorem 3.5] it was proved
that if Sk contains a nonzero function, then there are field automor-
phisms φ1, . . . , φk of C such that φ1 · · ·φk ∈ Sk. The proof depends
on the fact that spectral analysis holds in a certain variety. Our proof
of Theorem 7.3 is based on the observation that, by Theorem 6.5,
spectral synthesis holds in the same variety.

Let Mk denote the set of the functions F : Kk → C such that F is
k-additive, and the function x 7→ F (s1x, s2x, . . . , skx) is a solution of
(29) on K for every s1, s2, . . . sk ∈ K∗. We put

M∗k = {F |(K∗)k : F ∈Mk}.

Lemma 7.1. M∗k is a variety on (K∗)k.

Proof. It is easy to see that Mk is a closed linear space over C,
and then so is M∗k . Translation invariance means that if F ∈ M∗k ,
then the map (x1, . . . , xk) 7→ F (c1x1, . . . , ckxk) (x1, . . . , xk ∈ K∗) also
belongs to M∗k for every c1, . . . , cK ∈ K∗, which is easily seen from the
definition of M∗k . �

The diagonal of the function F : Kk → C is defined as f(x) =
F (x, . . . , x) (x ∈ K), and is denoted by diagF .
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Lemma 7.2.
Sk = {diagF : F ∈Mk}.

Proof. It is clear that diagF ∈ Sk for every F ∈ Mk. We prove the
converse. Let f : K → C be an element of Sk. Then f is a solution (29)
on K, and f = diagF for a symmetric k-additive function F : Kk →
C. We prove F ∈ Mk. We have to show that for every (s1, . . . , sk) ∈
(K∗)k the diagonal of the function

G(x1, . . . , xk) = F (s1x1, . . . , skxk)

belongs to Sk. Let diagG = g. Then, by (6) we have

g(x) = F (s1x, . . . , skx) =
1

k!
·∆s1x∆s2x . . .∆skxf(0) =

M∑
j=1

±f(ejx)

with suitable e1, . . . , eM ∈ K. Since x 7→ f(ex) belongs to Sk for every
e ∈ K, it follows that g ∈ Sk, and thus F ∈Mk. �

Theorem 7.3. (i) For every function F ∈ Mk, F is an exponential
monomial on (K∗)k if and only if F ∈ A(φ1,...,φk), where φ1, . . . , φk

are automorphisms of C and
∏k
i=1 φi(x) is a solution of (29).

(ii) The variety M∗k is spanned by the classes M∗k∩A(φ1,...,φk), where
φ1, . . . , φk are as above.

Proof. (i) Suppose that F ∈ Mk is an exponential monomial on
(K∗)k, and let F = p · m, where p is a polynomial, and m is an
exponential on (K∗)k. Since M∗k is a variety, p · m ∈ M∗k implies
m ∈M∗k by Lemma 2.1. Note that Mk ⊂ Vk and M∗k ⊂ V ∗k . Therefore,
by Lemma 6.2, there are injective field homomorphisms m1, . . . ,mk

from K into C such that

m(x1, . . . , xk) = m1(x1) · · · ·mk(xk) (x1, . . . , xk ∈ K∗).

Let φi be an extension of mi to C as an automorphism of C. Then
m(x, . . . , x) =

∏k
i=1 φi(x) is a solution of (29) on K. The rest of the

statement (i) follows from Theorems 6.3.
Statement (ii) is a consequence of Theorem 6.5. �

The statement of the next theorem follows immediately from Lemma
7.2 and (ii) of Theorem 7.3.
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Theorem 7.4. The set Sk is spanned by the classes Sk ∩ A(φ1,...,φk),

where φ1, . . . , φk are automorphisms of C, and
∏k
i=1 φi is a solution

of (29). �

Let S≤k denote the set of those solutions of (29) defined on K
which are generalized polynomials of degree at most k. Then S≤k is
a closed linear space over C.

Theorem 7.5. The set S≤k is spanned by the classes Sm∩A(φ1,...,φm),
where 0 ≤ m ≤ k, φ1, . . . , φm are automorphisms of C, and

∏m
i=1 φi

is a solution of (29).

Proof. Let f ∈ S≤k be arbitrary. Then f =
∑k

m=0 fm, where fm is
a generalized monomial of degree m for every m = 1, . . . , k, and f0

is constant. By [3, Lemma 2.1], each of the functions f0, . . . , fk is a
solution of (29). Therefore, we have fm ∈ Sm for every m = 1, . . . , k.

It is enough to show that each fm is in the closure of the linear
space spanned by the classes A(φ1,...,φm) ∩ Sm, where φ1, . . . , φm are
automorphisms of C, and

∏m
i=1 φi(x) ∈ Sm. If m ≥ 1 then this is true

by Theorem 7.4.
If m = 0, then there are two cases to consider. If

∑n
i=1 ai 6= 0,

then the only constant solution of (29) is the zero function, so f0 = 0.
On the other hand, if

∑n
i=1 ai = 0, then all constant functions are

solutions of (29). Then the statement is true, since A∅ is the class of
constant functions. �

Corollary 7.6. Suppose that the equation (29) is normal of degree
k. Then the linear space of its solutions defined on K is spanned
by the classes Sm ∩ A(φ1,...,φm), where 0 ≤ m ≤ k, φ1, . . . , φm are
automorphisms of C, and

∏m
i=1 φi is a solution of (29).

In particular, this is true for the equations (3) and (4) with k =
n− 2. �

Theorem 7.7. Let S denote the set of solutions of (29) defined on
K.

(i) If the equation is normal, then the set of polynomials on the
additive group of K is dense in S.

(ii) If the equation is normal and
∑n

i=1 ai = 0, then spectral synthesis
holds in S.

(iii) If the equation is normal and translation invariant, then spectral
synthesis holds in S.
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Proof. If φ is an automorphism of C, and D is a differential operator
on K, then the function φ ◦D is additive on K. Therefore, each class
A(φ1,...,φk) consists of polynomials. Thus (i) follows from Corollary 7.6.

Let 1 denote the identically 1 function defined on K. If
∑n

i=1 ai =
0, then 1 is a solution. Since 1 is an exponential function, every
polynomial in S is, in fact, a polynomial-exponential function. Thus
(ii) follows from (i).

Suppose that the equation is normal and translation invariant. If
S = {0}, then spectral synthesis holds in S. If S contains a nonzero
generalized polynomial p, then it follows from the translation invari-
ance of S that ∆h1 . . .∆hkp ∈ S for every k and h1, . . . , hk ∈ C.
If k = deg p, then ∆h1 . . .∆hkp is a nonzero constant for suitable
h1, . . . , hk. Thus 1 ∈ S, and thus (iii) follows from (ii). �

8 An example and concluding remarks

The following example serves as an illustration: it shows how to use
our previous results in order to determine the set of solutions of a
given equation. We consider the equation

−2f(y) + f(tx+ y) + f((1− t)x+ y)+

+ f((t2 − t)x+ y)− f((t2 − t+ 1)x+ y) = 0,
(30)

where t is a fixed transcendental number. The equation is of the form
(3) where n = 5, (a1, . . . , a5) = (−2, 1, 1, 1,−1) and (b1, . . . , b5) =
(0, t, 1 − t, t2 − t, t2 − t + 1). Thus every solution is a generalized
polynomial of degree at most three.

In order to simplify notation, we shall write x′ instead of ∂
∂tx, x′′

instead of ∂2

∂t2
x etc. It is easy to check that we have

5∑
i=1

ai · bni = 0 (n = 0, 1, 2),

5∑
i=1

ai · b3i 6= 0. (31)

We shall also need

5∑
i=1

ai · b(n)
i · b

(m)
i =


2 if n = m = 1,

−2 if n = 2, m = 0,

0 if n ≥ m ≥ 0, n+m 6= 2.

(32)

It is easy to see that the equation is trivial; that is, every additive
function is a solution. (Since a1, . . . , a5 are integers and K = Q(t) is
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purely transcendental, it follows from Theorem 5.7 that if (30) were
not trivial, it wouldn’t have any nonzero solution on K.) Since the
maps x 7→ x(n) are additive functions, we have

5∑
i=1

ai · b(n)
i = 0 (n = 1, 2, . . .). (33)

Let φ, ψ be automorphisms of C, and suppose that g = φ · ψ is a
solution of (30). If we substitute f = g, y = 0 and x = 1 into
(30), the left hand side of the equality obtained equals φ(t)2 +ψ(t)2−
2φ(t)ψ(t) = (φ(t) − ψ(t))2. Since g is a solution, we get φ(t) = ψ(t).
This implies that φ = ψ on K.

We prove that there is no nonzero solution which is a generalized
monomial of degree 3. Indeed, suppose there is such a solution. Then
it follows from Theorem 7.4 that there are automorphisms φ, ψ, χ of
C such that φ · ψ · χ is a solution. Then, by [3, Theorem 3.8], the
functions φ · ψ, φ · χ, ψ · χ are also solutions. As we saw above, this
implies that φ = ψ = χ on K, and thus φ3 is a solution. Then we
have

0 =
5∑
i=1

ai · φ(bi)
3 = φ

(
5∑
i=1

ai · b3i

)
,

which contradicts (31). This proves that there is no nonzero solution
which is a generalized monomial of degree 3.

Therefore, in order to determine all solutions of (30), it is enough
to describe the set S2 of those solutions which are defined on K and
are generalized monomials of degree two.

If φ, ψ are automorphisms of C, then A(φ,ψ) denotes the set of

functions of the form
∑N

j=1(φ ◦ Dj) · (ψ ◦ Ej), where Dj and Ej are
differential operators on K. By Theorem 7.4, the set S2 is spanned
by S2 ∩ A(φ,ψ), where φ, ψ are automorphisms of C such that φ · ψ
is a solution of (30). Since this implies φ = ψ, we may confine our
attention to the sets A(φ,φ). It is clear that

A(φ,φ) = φ
(
A(j,j)

)
for every automorphism φ, where j denotes the identity map. Also, f
is a solution of (7) if and only if φ ◦ f is, so we only need to describe
S2 ∩ A(j,j).

Since every differential operator on K = Q(t) is the linear combi-
nation of the maps x 7→ x(n) (x ∈ K, n = 0, 1, . . .), the elements of
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A(j,j) are linear combinations of the maps

fn,m(x) = x(n) · x(m) (x ∈ K, 0 ≤ m ≤ n).

In order to determine which linear combinations of the maps fn,m are
solutions, we have to compute the sums

Sn,m(x, y) =
5∑
i=1

ai · fn,m(bix+ y),

and determine those linear combinations of the functions Sn,m which
are identically zero on K = Q(t). A computation, based on (32) and
(33), shows that we have S0,0 = S1,0 = S1,1 + S2,0 = 0 on K, and if a
linear combinations of the functions Sn,m is zero on K, then it is also
a linear combination of S0,0, S1,0 and S1,1 +S2,0. We omit the details.
This means that S2∩A(j,j) is the linear span of the functions x2, x ·x′
and (x′)2 + x · x′′. Summing up:

The space of solutions of (30) defined on K is the closed linear
hull of all additive functions and the functions

φ2, φ ·
(
φ ◦ ∂

∂t

)
and

(
φ ◦ ∂

∂t

)2

+ φ ·
(
φ ◦ ∂

2

∂t2

)
,

where φ is an arbitrary injective homomorphism of K.

The example above shows that some of the results of Section 5
cannot be generalized for solutions of degree greater than 1. Theorem
5.2 says that if a1, . . . , an are algebraic numbers and the injective
homomorphism φ is a solution, then φ ◦D is also a solution for every
differential operator D. In the example above, φ · φ is a solution for
every φ, but (φ ◦ ∂

∂t)
2 is not a solution, so the analogy is false for

monomials of degree 2. This implies that the analogy of Corollary 7.6
is also false for monomials of degree 2.

Theorem 5.6 says that if bi, ci ∈ Q(t), where t is transcendental
over Q, then the equation is either trivial or S1 is of finite dimension
over C. The analogous statement would be that if bi, ci ∈ Q(t), then
either every monomial of degree two is a solution, or S2 is of finite
dimensional. The example above shows that this is not true in general.
We can see that the analogue of Theorem 5.7 is also false in S2.

We remark, however, that if the space of additive solutions of an
equation (3) is of finite dimensional, then so is the space of those
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solutions which are generalized monomials of degree two. (This follows
from the fact that if A(x, y) is symmetric and biadditive, and x 7→
A(x, x) is a solution, then the functions y 7→ A(x, y) (x ∈ K) are
additive solutions. If these latter functions span a linear space of
finite dimension over C generated by the additive functions a1, . . . , ak,
then A(x, y) is the linear combination of the functions ai(x) · aj(y)
(i, j = 1, . . . , k).)

Although the description of the set of solutions of a given equation
can be difficult, the example above shows that, at least in principle,
the description is possible in the case of many equations.

We conclude with some remarks concerning the ‘generic’ or ‘ran-
dom’ equation. By that we mean an equation (1) in which the numbers
ai, bi, ci are algebraically independent over Q. Such an equation is nor-
mal, but not translation invariant. An injective homomorphism φ is
a solution if and only if

n∑
i=1

aiφ(bi) =

n∑
i=1

aiφ(ci) = 0 (34)

holds. This implies that the equations is not trivial (not every additive
function is a solution), but S1 is of infinite dimensional. One can prove
that S1 is spanned by the injective homomorphisms satisfying (34).
Note that differential operators do not appear in the description of
S1. The description of higher order solutions is left to the reader.
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[6] M. Laczkovich and L. Székelyhidi, Spectral synthesis on discrete
Abelien groups, Math. Proc. Camb. Phil. Soc. 143 (2007), 103-
120.
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