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Abstract. We study the property of strong barycentric associativity, a stronger
version of barycentric associativity for functions with indefinite arities. We

introduce and discuss the more general property of strong barycentric pre-
associativity, a generalization of strong barycentric associativity which does
not involve any composition of functions. We also provide a generalization

of Kolmogoroff-Nagumo’s characterization of the quasi-arithmetic mean func-
tions to strongly barycentrically preassociative functions.

1. Introduction

Let X and Y be arbitrary nonempty sets. Throughout this paper we regard
tuples x in Xn as n-strings over X. We let X∗ = ⋃n⩾0X

n be the set of all strings
over X, with the convention that X0 = {ε} (i.e., ε denotes the unique 0-string on
X). We denote the elements of X∗ by bold roman letters x, y, z, etc. If we want
to stress that such an element is a letter of X, we use non-bold italic letters x, y,
z, etc. The length of a string x is denoted by ∣x∣. For instance, ∣ε∣ = 0. We endow
the set X∗ with the concatenation operation, for which ε is the neutral element.
For instance, if x ∈ Xm and y ∈ X, then εxy = xy ∈ Xm+1. Moreover, for every
string x and every integer n ⩾ 0, the power xn stands for the string obtained by
concatenating n copies of x. In particular we have x0 = ε.

As usual, a map F ∶Xn → Y is said to be an n-ary function (an n-ary operation
on X if Y =X). Also, a map F ∶X∗ → Y is said to be a variadic function (a variadic
operation on X if Y =X ∪{ε}, a string function on X if Y =X∗; see [4]). For every
variadic function F ∶X∗ → Y and every integer n ⩾ 0, we denote by Fn the n-ary
part F ∣Xn of F . Finally, a variadic function F ∶Xn → Y is said to be ε-standard [8]
if ε ∈ Y and

F (x) = ε ⇔ x = ε.
Recall that a variadic operation F ∶X∗ → X ∪ {ε} is said to be barycentrically

associative (or B-associative for short) [9] if it satisfies the equation

F (xyz) = F (xF (y)∣y∣z), xyz ∈X∗.
B-associativity (also known as decomposability [1, 2]) was essentially introduced in
1909 by Schimmack [12] and then used later by Kolmogoroff [3] and Nagumo [11]
in a characterization of the class of quasi-arithmetic mean functions. For general
background and historical notes on B-associativity, see [9].
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The following stronger version of B-associativity (also known as strong decompos-
ability) was introduced in [5, 7]. For every x ∈ X∗ and every K ⊆ {1, . . . , ∣x∣} (with
K = ∅ if x = ε), we denote by x∣K the string obtained from x by removing all the
letters xi for which i ∈Kc = {1, . . . , ∣x∣}∖K. A variadic operation F ∶X∗ →X∪{ε} is
said to be strongly barycentrically associative (or strongly B-associative for short) if

for every x ∈X∗ and every K ⊆ {1, . . . , ∣x∣}, we have F (x) = F (x′), where x′ ∈X ∣x∣
is defined by x′∣K = F (x∣K)∣x∣K ∣ and x′∣Kc = x∣Kc .

For instance, if the operation F ∶X∗ → X ∪ {ε} is strongly B-associative, then it
satisfies the condition

(1) F (xyz) = F (F (xz)∣x∣yF (xz)∣z∣), xyz ∈X∗.

It is not difficult to see that any strongly B-associative operation F ∶X∗ →X∪{ε}
is B-associative. The converse holds if F is symmetric (i.e., Fn is symmetric for
every n ⩾ 1). However, it does not hold in general. For instance, the ε-standard
operation F ∶R∗ → R ∪ {ε} defined as Fn(x) = 1

n ∑
n
i=1 xi for every integer n ⩾ 1, is

strongly B-associative and hence B-associative. However, the ε-standard operation
F ∶R∗ → R ∪ {ε} defined by

Fn(x) =
n

∑
i=1

2i−1

2n − 1
xi , n ⩾ 1,

is B-associative but not strongly B-associative (see [2, p. 37]). It is also noteworthy
that the strongly B-associative operations need not be symmetric. For instance the
ε-standard operation F ∶X∗ → X ∪ {ε} defined by Fn(x) = x1 for every n ⩾ 1 is
strongly B-associative, and similarly if Fn(x) = xn for every n ⩾ 1.

Recall that a variadic function F ∶X∗ → Y is said to be barycentrically preasso-
ciative (or B-preassociative for short) [9] if, for every xyy′z ∈X∗, we have

∣y∣ = ∣y′∣ and F (y) = F (y′) ⇒ F (xyz) = F (xy′z).

It is easy to see that any B-associative operation F ∶X∗ →X ∪ {ε} is necessarily
B-preassociative [9]. This observation motivates the introduction of the following
property, which generalizes strong B-associativity.

Definition 1.1. We say that a variadic function F ∶X∗ → Y is strongly barycen-
trically preassociative (or strongly B-preassociative for short) if for every x ∈ X∗,
every x′ ∈X ∣x∣, and every K ⊆ {1, . . . , ∣x∣}, we have

F (x∣K) = F (x′∣K) and x′∣Kc = x∣Kc ⇒ F (x) = F (x′).

Just as strong B-associativity is a stronger version of B-associativity, strong B-
preassociativity is a stronger version of B-preassociativity. However, these latter
two properties are equivalent under the symmetry assumption. Also, since none of
these properties involve any composition of functions, they allow us to consider a
codomain Y that may differ from the set X ∪{ε}. For instance, the length function
F ∶X∗ → R, defined as F (x) = ∣x∣, is strongly B-preassociative.

In Section 2 of this paper we investigate both strong B-associativity and strong
B-preassociativity. In particular, we provide equivalent formulations of these prop-
erties. For instance, we establish the surprising result that strong B-associativity
is completely characterized by Eq. (1). We also provide factorization results for
strongly B-preassociative functions. Finally, in Section 3 we recall a variant of
Kolmogoroff-Nagumo’s characterization of the class of quasi-arithmetic means based



STRONGLY BARYCENTRICALLY ASSOCIATIVE AND PREASSOCIATIVE FUNCTIONS 3

on the strong B-associativity property and we generalize this characterization to
strongly B-preassociative functions.

The terminology used throughout this paper is the following. The domain and
range of any function f are denoted by dom(f) and ran(f), respectively. The
identity operation on any nonempty set E is denoted by idE . For every integer
n ⩾ 1, the diagonal section δF ∶X → Y of a function F ∶Xn → Y is defined as
δF (x) = F (xn).

Remark 1. As already observed in [9], if a B-associative operation F ∶X∗ →X ∪{ε}
is such that ran(Fn) ⊆ X for every n ⩾ 1, then the value of F (ε) is unimpor-
tant in the sense that if we modify this value, then the resulting operation is still
B-associative. Clearly, this observation also holds for strongly B-associative opera-
tions, B-preassociative functions, and strongly B-preassociative functions.

2. Strong barycentric associativity and preassociativity

In this section we investigate both strong B-associativity and strong B-preassocia-
tivity properties. We start our investigation by showing that, surprisingly, strong
B-associativity can be characterized simply by condition (1), thus providing a very
concise definition of this (equational) property by means of a single equation.

Proposition 2.1. A variadic operation F ∶X∗ → X ∪ {ε} is strongly B-associative
if and only if it satisfies Eq. (1). Moreover, we may assume that ∣y∣ ⩽ 1 in (1).

Proof. The condition is clearly necessary. Let us show that it is also sufficient.
Assuming that F satisfies (1), we have to prove that for every x ∈ X∗ and every

K ⊆ {1, . . . , ∣x∣}, we have F (x) = F (x′), where x′ ∈ X ∣x∣ is defined by x′∣K =
F (x∣K)∣x∣K ∣ and x′∣Kc = x∣Kc . Let us proceed by induction on n = ∣x∣. The result
clearly holds for n = 0. It also holds for n = 1 since we have F (x) = F (F (x)) for any
x ∈X (take x = x and yz = ε in (1)). It also holds for n = 2 since a similar argument
gives F (xy) = F (F (x)y) = F (xF (y)) = F (F (xy)) for any x, y ∈ X. Now, suppose
that the result holds for any n ⩾ 2 and let us show that it holds for n + 1. Let
x ∈Xn+1, let K ⊆ {1, . . . , n+ 1}, and let x′ ∈Xn+1 be defined by x′∣K = F (x∣K)∣x∣K ∣
and x′∣Kc = x∣Kc , where Kc = {1, . . . , n + 1} ∖K. The result is trivial if ∣K ∣ = n + 1
since we have F (x) = F (F (x)∣x∣) (take yz = ε in (1)). So assume that ∣K ∣ ⩽ n and
take k ∈Kc. Then there exist uv,u′v′ ∈ Xn, with ∣u∣ = ∣u′∣ and ∣v∣ = ∣v′∣, such that
x = uxkv and x′ = u′xkv′. We then have

F (x) = F (F (uv)∣u∣xkF (uv)∣v∣) = F (F (u′v′)∣u
′∣xkF (u′v′)∣v

′∣) = F (x′),

where the first and last equalities hold by (1) and the second equality by the in-
duction hypothesis. This completes the proof of the proposition. �

The following proposition provides equivalent formulations of strong B-preassocia-
tivity.

Proposition 2.2. Let F ∶X∗ → Y be a variadic function. The following assertions
are equivalent.

(i) F is strongly B-preassociative.
(ii) For every xx′ ∈X∗ such that ∣x∣ = ∣x′∣ and every K ⊆ {1, . . . , ∣x∣} we have

F (x∣K) = F (x′∣K) and F (x∣Kc) = F (x′∣Kc) ⇒ F (x) = F (x′).



4 JEAN-LUC MARICHAL AND BRUNO TEHEUX

(iii) For every xx′yzz′ ∈X∗ we have

∣x∣ = ∣x′∣, ∣z∣ = ∣z′∣, and F (xz) = F (x′z′) ⇒ F (xyz) = F (x′yz′).
Moreover, we may assume that ∣y∣ = 1 in assertion (iii).

Proof. (i) ⇔ (ii) ⇒ (iii). Trivial or straightforward.
(iii) ⇒ (i). Follows from repeated applications of the stated condition. To

illustrate, suppose that we have F (x1x3) = F (x′1x′3) for some x1x3x
′
1x
′
3 ∈X4. Then

for any x2, x4 ∈ X, we have F (x1x2x3) = F (x′1x2x′3), and then F (x1x2x3x4) =
F (x′1x2x′3x4). �

Recall that a variadic operation F ∶X∗ →X ∪ {ε} is said to be arity-wise range-

idempotent [9] if F (F (x)∣x∣) = F (x) for every x ∈X∗. Clearly, any B-associative or
strongly B-associative variadic operation is arity-wise range-idempotent. Actually,
it can be shown [9] that if an operation F ∶X∗ →X ∪ {ε} is B-associative then it is
both B-preassociative and arity-wise range-idempotent. The converse result holds
whenever ran(Fn) ⊆X for every n ⩾ 1 (note that this latter condition was wrongly
omitted in [9]). The following proposition shows that this result still holds if we
replace B-associativity and B-preassociativity by their strong versions.

Proposition 2.3. If a variadic operation F ∶X∗ →X∪{ε} is strongly B-associative,
then it is both strongly B-preassociative and arity-wise range-idempotent. The con-
verse result holds whenever ran(Fn) ⊆X for every n ⩾ 1.

Proof. The first result holds trivially by Proposition 2.1. We now prove the converse
result by using Proposition 2.1 again. Let xyz ∈ X∗. If xz = ε, then (1) holds

trivially. If xz ≠ ε, then we have F (xz) = F (F (xz)∣x∣F (xz)∣z∣) by arity-wise range-
idempotence and then (1) holds by Proposition 2.2(iii). �

Various alternative formulations of B-associativity have been given in [9]. For
instance, we can prove that an operation F ∶X∗ → X ∪ {ε} is B-associative if and

only if we have F (xy) = F (F (x)∣x∣F (y)∣y∣) for every xy ∈ X∗. The following
proposition provides similar formulations for strong B-associativity.

Proposition 2.4. Let F ∶X∗ → X ∪ {ε} be a variadic operation. The following
assertions are equivalent.

(i) F is strongly B-associative.
(ii) For every x ∈ X∗ and every K ⊆ {1, . . . , ∣x∣}, we have F (x) = F (x′), where

x′ ∈X ∣x∣ is defined by x′∣K = F (x∣K)∣x∣K ∣ and x′∣Kc = F (x∣Kc)∣x∣Kc ∣.

(iii) For every xyz ∈X∗, we have F (xyz) = F (F (xz)∣x∣F (y)∣y∣F (xz)∣z∣).
Moreover, we may assume that ∣y∣ ⩽ 1 in assertion (iii).

Proof. (i) ⇒ (ii) ⇒ (iii). Trivial.
(iii) ⇒ (i). First observe that F is arity-wise range-idempotent (take yz = ε).

Let xyz ∈X∗, with ∣y∣ ⩽ 1. If F (xz) = ε, then we have

F (F (xz)∣x∣yF (xz)∣z∣) = F (y) = F (F (y)∣y∣) = F (F (xz)∣x∣F (y)∣y∣F (xz)∣z∣)
= F (xyz).

Otherwise, if F (xz) ∈X, then setting x′ = F (xz)∣x∣ and z′ = F (xz)∣z∣, we have

F (F (xz)∣x∣yF (xz)∣z∣) = F (x′yz′) = F (F (x′z′)∣x
′∣F (y)∣y∣F (x′z′)∣z

′∣)
= F (F (xz)∣x∣F (y)∣y∣F (xz)∣z∣) = F (xyz).
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In both cases, we have shown that F is strongly B-associative by Proposition 2.1.
�

Proposition 2.1 states that an operation F ∶X∗ →X∪{ε} is strongly B-associative
if and only if it satisfies the following two conditions:

(a) F (y) = F (F (y)∣y∣) for every y ∈X∗ (arity-wise range-idempotence),

(b) F (xyz) = F (F (xz)∣x∣yF (xz)∣z∣) for every xyz ∈X∗.
Interestingly, this equivalence also shows how a strongly B-associative ε-standard
operation F ∶X∗ → X ∪ {ε} can be constructed by choosing first F1, then F2, and
so forth. In fact, F1 can be chosen arbitrarily provided that it satisfies F1 ○F1 = F1.
Then, if Fk is already chosen for some k ⩾ 1, then Fk+1 can be chosen arbitrarily
from among the solutions of the following equations

δFk+1 ○ Fk+1 = Fk+1 ,

Fk+1(xyz) = Fk+1(Fk(xz)∣x∣yFk(xz)∣z∣), xyz ∈Xk+1.

In general, finding all the possible functions Fk+1 is not an easy task. However,
we have the following two propositions, which hold for any strongly B-preassociative
function and hence for any strongly B-associative operation. The proof of Propo-
sition 2.5 is straightforward and thus omitted. Proposition 2.6 was established
in [9].

Proposition 2.5. Let F ∶X∗ → Y be a B-preassociative (resp. strongly B-preassocia-
tive) function.

(a) If Fk is symmetric for some k ⩾ 2, then so is Fk+1.
(b) If Fk is constant for some k ⩾ 1, then so is Fk+1.
(c) For any sequence (ck)k⩾1 in Y and every n ⩾ 1, the function G∶X∗ → Y

defined by Gk = Fk, if k ⩽ n, and Gk = ck, if k > n, is B-preassociative
(resp. strongly B-preassociative).

Proposition 2.6 ( [9]). Let F ∶X∗ → Y be a B-preassociative function and let k ⩾ 2
be an integer. If the function y ∈Xk ↦ Fk+2(xyz) is symmetric for every xz ∈X2,
then so is the function y ∈Xk+1 ↦ Fk+3(xyz) for every xz ∈X2.

Proposition 2.6 motivates the question of finding necessary and sufficient condi-
tions on a (strongly) B-preassociative function F ∶X∗ → Y for the following condi-
tion to hold:

(2) F (abcd) = F (acbd) , a, b, c, d ∈X.
Not all strongly B-preassociative functions satisfy condition (2). To give a very
simple example, just consider the identity function F = idX∗ .

However, one can show that condition (2) holds for all strongly B-associative
operations.

Lemma 2.7. Any strongly B-associative operation F ∶X∗ → X ∪ {ε} satisfies con-
dition (2).

Proof. Let a, b, c, d ∈X and set x = F (ab) and y = F (cd). Repeated applications of
strong B-associativity give

F (abcd) = F (xxyy) = F (F (xy)4) = F (xyxy) = F (acbd),
which shows that condition (2) holds. �
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From Proposition 2.6 and Lemma 2.7 we immediately derive the following corol-
lary, which states that, for every strongly B-associative operation F ∶X∗ →X ∪ {ε}
and every integer n ⩾ 4, the n-ary part Fn is invariant under any permutation of
its arguments except the first and the last ones.

Corollary 2.8. If F ∶X∗ →X∪{ε} is strongly B-associative, then, for every integer
k ⩾ 1 and every xz ∈X2, the function y ∈Xk ↦ Fk+2(xyz) is symmetric.

In [9], the authors show how new B-preassociative functions can be constructed
from given B-preassociative functions by compositions with unary maps. These
results still hold for strongly B-preassociative functions. The proofs are straight-
forward.

Proposition 2.9 (Right composition). If F ∶X∗ → Y is strongly B-preassociative
then, for every function g∶X ′ → X, any function H ∶X ′∗ → Y such that Hn =
Fn ○ (g, . . . , g) for every n ⩾ 1 is strongly B-preassociative.

Proposition 2.10 (Left composition). Let F ∶X∗ → Y be a strongly B-preassociative
function and let (gn)n⩾1 be a sequence of functions from Y to Y ′. If gn∣ran(Fn) is
one-to-one for every n ⩾ 1, then any function H ∶X∗ → Y ′ such that Hn = gn ○ Fn

for every n ⩾ 1 is strongly B-preassociative.

We now give a factorization result for strongly B-preassociative functions. We
first restrict ourselves to strongly B-preassociative functions F ∶X∗ → Y which are
arity-wise quasi-range-idempotent [9], i.e., such that ran(δFn) = ran(Fn) for every
n ⩾ 1. The following theorem gives a characterization of the B-preassociative and
arity-wise quasi-range-idempotent functions F ∶X∗ → Y as compositions of the form
Fn = fn ○Hn, where H ∶X∗ → X ∪ {ε} is a B-associative ε-standard operation and
fn∶ ran(Hn)→ Y is one-to-one.

Recall that a function g is a quasi-inverse [13, Sect. 2.1] of a function f if

f ○ g∣ran(f) = id∣ran(f) and ran(g∣ran(f)) = ran(g).

Recall also that the statement “every function has a quasi-inverse” is equivalent
to the Axiom of Choice (AC). Throughout this paper we denote the set of all
quasi-inverses of f by Q(f).

Theorem 2.11 ( [9]). Assume AC and let F ∶X∗ → Y be a function. The following
assertions are equivalent.

(i) F is B-preassociative and arity-wise quasi-range-idempotent.
(ii) There exists a B-associative ε-standard operation H ∶X∗ → X ∪ {ε} and a

sequence (fn)n⩾1 of one-to-one functions fn∶ ran(Hn) → Y such that Fn =
fn ○Hn for every n ⩾ 1.

If condition (ii) holds, then for every n ⩾ 1 we have Fn = δFn ○Hn, fn = δFn ∣ran(Hn),

f−1n ∈ Q(δFn), and we may choose Hn = gn ○ Fn for any gn ∈ Q(δFn).

Using Propositions 2.2 and 2.3, we can show that Theorem 2.11 can be easily
adapted to the strong version of B-preassociativity.

Corollary 2.12. Theorem 2.11 still holds if we replace B-preassociativity with
strong B-preassociativity in assertion (i) and B-associativity with strong B-associativity
in assertion (ii).
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Proof. (i) ⇒ (ii). Since F satisfies condition (i) of Theorem 2.11, it also satisfies
condition (ii). Since H is B-associative, it is arity-wise range-idempotent. To see
that H is strongly B-associative, by Proposition 2.3 it suffices to show that it is
strongly B-preassociative. Let xx′yzz′ ∈ X∗ such that ∣x∣ = ∣x′∣, ∣z∣ = ∣z′∣, ∣xz∣ ⩾ 1,
and H(xz) =H(x′z′). Then, we have f∣xz∣○H(xz) = f∣xz∣○H(x′z′), that is, F (xz) =
F (x′z′). By strong B-preassociativity of F , we then have F (xyz) = F (x′yz′) and
hence

H(xyz) = g∣xyz∣ ○ F (xyz) = g∣xyz∣ ○ F (x′yz′) = H(x′yz′),
which shows that H is strongly B-preassociative by Proposition 2.2 (the case when
xz = ε is trivial).

(ii) ⇒ (i). F is arity-wise quasi-range-idempotent by Theorem 2.11. It is also
strongly B-preassociative by Proposition 2.10. �

We now provide a factorization result for the whole class of strongly B-preassociative
functions. It is based on the following characterization of B-preassociative functions.

Recall that a string function F ∶X∗ →X∗ is said to be associative [4] if it satisfies
the equation F (xyz) = F (xF (y)z) for every xyz ∈ X∗. It is said to be length-
preserving [10] if ∣F (x)∣ = ∣x∣ for every x ∈X∗.

Theorem 2.13 ( [10]). Assume AC and let F ∶X∗ → Y be a function. The following
assertions are equivalent.

(i) F is B-preassociative.
(ii) There exist an associative and length-preserving function H ∶X∗ →X∗ and

a sequence (fn)n⩾1 of one-to-one functions fn∶ ran(Hn)→ Y such that Fn =
fn ○Hn for every n ⩾ 1.

If condition (ii) holds, then for every n ⩾ 1 we have fn = F ∣ran(Hn) = Fn∣ran(Hn),

f−1n ∈ Q(Fn), and we may choose Hn = gn ○ Fn for any gn ∈ Q(Fn).

Proceeding as in the proof of Corollary 2.12, from Theorem 2.13 we easily derive
the following characterization of the class of strongly B-preassociative functions.

Corollary 2.14. Theorem 2.13 still holds if we replace B-preassociativity with
strong B-preassociativity in assertion (i) and add the condition that H is strongly
B-preassociative in assertion (ii).

Clearly, Corollary 2.14 motivates the problem of characterizing the class of
those string functions which are associative, length-preserving, and strongly B-
preassociative.

We end this section by an investigation of those strong B-associative functions
which are invariant by replication. Recall that a variadic function F ∶X∗ → Y is
invariant by replication [8] if for every x ∈ X∗ and every k ⩾ 1 we have F (xk) =
F (x).

Definition 2.15. We say that a variadic function F ∶X∗ → Y has a multiplicatively
growing range if ran(Fn) ⊆ ran(Fkn) for any k,n ⩾ 1.

The following proposition is a simultaneous generalization of several results re-
ported in [6] and [2, pp. 38-41].

Proposition 2.16. Let F ∶X∗ →X∪{ε} be a strongly B-associative operation. The
following assertions are equivalent.

(i) F has a multiplicatively growing range.
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(ii) F is invariant by replication.

(iii) For any k,n ⩾ 1 and any x(1)⋯x(n) ∈X∗, we have

F ((x(1))k⋯(x(n))k) = F (x(1)⋯x(n)).
Moreover, if any of these conditions hold, then

(a) For any n ⩾ 1 and any x(1)⋯x(n) ∈ X∗ such that ∣x(1)∣ = ⋯ = ∣x(n)∣ ⩾ 1, we
have

F (F (x(1))⋯F (x(n))) = F (x(1)⋯x(n)).
(b) For any n ⩾ 1 and any x = x1⋯xn ∈Xn, we have

F (x1⋯xn) = F (x′n⋯x′1),
where x′k = F (x−k) and x−k is obtained from x by removing the letter xk.

(c) F is strongly bisymmetric, i.e., for every p-by-n matrix whose entries are
in X, we have

F (F (r1)⋯F (rp)) = F (F (c1)⋯F (cn)),
where r1, . . . , rp denote the rows and c1, . . . ,cn denote the columns of the
matrix.

Proof. (iii) ⇒ (ii). Taking n = 1, we see that F is invariant by replication.
(ii) ⇒ (i). Let k,n ⩾ 1 and x ∈ Xn. Then F (x) = F (xk) ∈ ran(Fkn). Therefore,

F has a multiplicatively growing range.
(i) ⇒ (iii). Let us first show that

(3) F (F (x)k∣x∣) = F (x), x ∈X∗, k ⩾ 1.
Let m ⩾ 0, k ⩾ 1, and take x ∈ Xm and z ∈ Xkm such that F (x) = F (z). Since
F is arity-wise range-idempotent by Proposition 2.3, it follows that F (F (x)km) =
F (F (z)km) = F (z) = F (x), which proves (3).

Then, for any n ⩾ 1 and any x(1)⋯x(n) ∈X∗ we have

F ((x(1))k⋯(x(n))k) = F (F (x(1)⋯x(n))k∣x
(1)⋯x(n)∣) (strong B-associativity)

= F (x(1)⋯x(n)) (by condition (3)).

Let us now show that conditions (a), (b), and (c) hold.

(a) Setting k = ∣x(1)∣ = ⋯ = ∣x(n)∣ ⩾ 1 we have

F (x(1)⋯x(n)) = F (F (x(1))k⋯F (x(n))k) (B-associativity)

= F (F (x(1))⋯F (x(n))) (by (iii)).

(b) We have

F (x1⋯xn) = F (xn−11 ⋯xn−1n ) (by (iii))

= F ((x′n⋯x′1)n−1) (strong B-associativity)

= F (x′n⋯x′1) (by (ii)).

(c) We have

F (F (r1)⋯F (rp)) = F (r1⋯rp) (by (a))

= F ((F (c1)⋯F (cn))p) (strong B-associativity)

= F (F (c1)⋯F (cn)) (by (ii)).

The proof is now complete. �
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Remark 2. Let F ∶X∗ → X ∪ {ε} be a strongly B-associative operation having a
multiplicative growing range and such that ran(Fn) ⊆ X for every n ⩾ 1. Proposi-
tion 2.16(a) enables us to translate certain functional conditions involving F and
letters in X into similar functional conditions involving F and strings of the same
length. To illustrate, starting from the condition

(4) F (xyz) = F (F (xz)yF (xz)), xyz ∈X3,

which holds by Eq. (1), we derive the condition

F (xyz) = F (F (xz)F (y)F (xz)), xyz ∈X∗, ∣x∣ = ∣y∣ = ∣z∣ ⩾ 1.

Indeed, it suffices to set x = F (x), y = F (y), and z = F (z) in (4) and apply
Proposition 2.16(a) to the resulting condition.

3. Strongly B-preassociative mean functions

In this final section we recall a variant of Kolmogoroff-Nagumo’s characterization
of the class of quasi-arithmetic means based on the strong B-associativity property.
We also generalize this characterization to strongly B-preassociative functions.

Let I be a nontrivial real interval (i.e., nonempty and not a singleton), possibly
unbounded. Recall that a function F ∶ I∗ → R is said to be a quasi-arithmetic pre-
mean function [9] if there exist continuous and strictly increasing functions f ∶ I→ R
and fn∶R→ R (n ⩾ 1) such that

Fn(x) = fn(
1

n

n

∑
i=1
f(xi)), n ⩾ 1.

This function is said to be a quasi-arithmetic mean function (see, e.g., [2, Sect. 4.2])
if fn = f−1 for every n ⩾ 1. In this case we have ran(Fn) ⊆ I for every n ⩾ 1.

Thus defined, the class of quasi-arithmetic pre-mean functions includes all the
quasi-arithmetic mean functions. Actually the quasi-arithmetic mean functions are
exactly those quasi-arithmetic pre-mean functions which are idempotent, that is,
such that δFn = idI for every n ⩾ 1. However, there are also many non-idempotent
quasi-arithmetic pre-mean functions. Taking for instance fn(x) = nx and f(x) = x
over the reals I = R, we obtain the sum function. Taking fn(x) = exp(nx) and
f(x) = ln(x) over I = ]0,∞[, we obtain the product function.

The following proposition [9] shows that the generators fn and f of any quasi-
arithmetic pre-mean function are defined up to an affine transformation.

Proposition 3.1 ( [9]). Let I be a nontrivial real interval, possibly unbounded.
Let f, g∶ I → R and fn, gn∶R → R (n ⩾ 1) be continuous and strictly monotonic
functions. Then the functions fn( 1n ∑

n
i=1 f(xi)) and gn( 1n ∑

n
i=1 g(xi)) coincide on

In if and only if there exist r, s ∈ R, r ≠ 0, such that g−1n ○ fn = g ○ f−1 = r id + s for
every n ⩾ 1.

We now recall the characterization of the class of quasi-arithmetic mean functions
as given by Kolmogoroff [3] and Nagumo [11]. The following theorem gives the
characterization following Kolmogoroff (we set F (ε) to an arbitrary value in I, see
Remark 1). Nagumo’s characterization is the same except that the strict increasing
monotonicity of each function Fn is replaced with the strict internality of F2 (i.e.,
x < y implies x < F2(x, y) < y).



10 JEAN-LUC MARICHAL AND BRUNO TEHEUX

Theorem 3.2 (Kolmogoroff-Nagumo). Let I be a nontrivial real interval, possibly
unbounded. A variadic function F ∶ I∗ → I is B-associative and, for every n ⩾ 1, the
n-ary part Fn is symmetric, continuous, idempotent, and strictly increasing in each
argument if and only if F is a quasi-arithmetic mean function.

As recently observed by the authors [9], idempotence can be removed from the
assumptions of Theorem 3.2. Indeed, if a B-associative function F ∶ I∗ → I is such
that δFn is one-to-one for some n ⩾ 1, then necessarily δFn = idI. This observation
immediately follows from the identity δFn = δFn ○ δFn , which holds whenever F is
B-associative.

In the following theorem, we show that Kolmogoroff-Nagumo’s characteriza-
tion still holds if we replace both B-associativity and symmetry with strong B-
associativity. This result was already established in [6]. However, here we provide
an alternative proof based on Kolmogoroff’s ideas. Here again, idempotence is
redundant.

We first consider a lemma which generalizes the result reported in [2, Lemma 4.9].

Lemma 3.3. Let F ∶X∗ → X ∪ {ε} be a strongly B-associative operation having a
multiplicatively growing range. Then, for any a,b ∈X∗∖{ε}, there exists a function
ψ∶ [0,1] ∩Q→X ∪ {ε}, namely

ψ(p/q) = F (bpaq−p), p/q ∈ [0,1] ∩Q,
with ψ(0) = F (a) and ψ(1) = F (b), such that for every n ⩾ 1 and every z ∈
[0,1]n ∩Qn such that z1 ≠ 0 and zn ≠ 1, we have

F (ψ(z1)⋯ψ(zn)) = ψ( 1
n

n

∑
i=1
zi).

Proof. We first observe that ψ is a well-defined function. Indeed, if p/q = p′/q′ are
two representations of the same rational, then we have

F (bpaq−p) = F (bp′pap
′(q−p)) (by Proposition 2.16(iii))

= F (bpp′ap(q
′−p′))

= F (bp′aq
′−p′) (by Proposition 2.16(iii)).

Now, for any z1 = p1/q, . . . , zn = pn/q, with pi ⩽ q, p1 ≠ 0 and pn ≠ q, we have

F (ψ(z1)⋯ψ(zn)) = F (F (bp1aq−p1)⋯F (bpnaq−pn))
= F (bp1aq−p1⋯bpnaq−pn) (by Proposition 2.16(a))

= F (b∑pianq−∑pi) (by Corollary 2.8)

= ψ( 1

nq

n

∑
i=1
pi) = ψ( 1

n

n

∑
i=1
zi).

This completes the proof of the lemma. �
Theorem 3.4. Theorem 3.2 still holds if we replace B-associativity and symmetry
with strong B-associativity. Also, idempotence can be removed.

Proof. (Necessity) Let F ∶ I∗ → I be a strongly B-associative function such that, for
every n ⩾ 1, the function Fn is continuous, idempotent, and strictly increasing in
each argument.

We first assume that I is a closed interval [a, b], with b > a. Since Fn is idem-
potent for every n ⩾ 1, F has a multiplicative growing range. By Lemma 3.3 the
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function ψ∶ [0,1]∩Q→ [a, b] defined by ψ(p/q) = F (bpaq−p) is well defined and such
that for every n ⩾ 1 and every z ∈ [0,1]n ∩Qn such that z1 ≠ 0 and zn ≠ 1, we have

(5) F (ψ(z1)⋯ψ(zn)) = ψ( 1
n

n

∑
i=1
zi).

Moreover, it is easy to see that the function ψ is strictly increasing.
Let us now show that the restriction of ψ to ]0,1[ ∩ Q can be extended to a

continuous function ψ∶ ]0,1[→ [a, b].
Let x ∈ ]0,1[. Since ψ is nondecreasing we can define

u = lim
z→x−

ψ(z) and v = lim
z→x+

ψ(z).

Let us show that u = v. For contradiction, assume that u < v and consider two
sequences (zm)m⩾1 and (z′m)m⩾1 in [0,1] ∩ Q such that zm → x−, z′m → x+, and
(zm + z′m)/2 < x. Using (5) and the continuity of F , we then have

u = lim
m→∞

ψ(zm + z
′
m

2
) = lim

m→∞
F (ψ(zm), ψ(z′m)) = F (u, v) < F (u,u) = u,

a contradiction.
Let ψ∶ ]0,1[ → ]α,β[ be the continuous extension of ψ, where ]α,β[ = ran(ψ).

Let us show that α = a. Due to the uniqueness of the limit, we have limz→0+ ψ(z) =
limt→0+ ψ(t) = α. Then, using (5) and the continuity of F , we have

F (b,α) = lim
z→0+

F (ψ(1), ψ(z)) = lim
z→0+

ψ(1 + z
2
) = ψ(1

2
) = F (ψ(1), ψ(0))

= F (b, a).
Since F2 is one-to-one in its second argument, we must have α = a. We prove
similarly that β = b. Thus, ψ can be further extended to a continuous and strictly
increasing function from [0,1] onto [a, b]. Denoting by f ∶ [a, b]→ [0,1] the inverse
of this continuous extension, from (5) and continuity we derive the identity

Fn(x) = f−1( 1
n

n

∑
i=1
f(xi)), x ∈ [a, b]n, n ⩾ 1,

which proves the result when I = [a, b].
Let us now prove the result for a general nontrivial interval I. Here we use ar-

guments sketched in [2, Theorem 4.10]. Let Mf ∶ I∗ → I denote the quasi-arithmetic
mean function generated by f ∶ I → R. Let a = inf I and b = sup I. Let also (am)m⩾1
(resp. (bm)m⩾1) be a strictly decreasing (resp. strictly increasing) sequence in I con-
verging to a (resp. b). From the previous result it follows that there exist continuous
and strictly increasing functions fm∶ [am, bm]→ R and fm+1∶ [am+1, bm+1]→ R such
that F =Mfm on [am, bm]∗ and F =Mfm+1 on [am+1, bm+1]∗. By Proposition 3.1,
we haveMfm+1 =Mrfm+1+s for all r, s ∈ R, with r ≠ 0. It follows that fm+1 can be cho-
sen so that fm+1(am) = fm(am) and fm+1(bm) = fm(bm). Since Mfm+1 = F =Mfm

on [am, bm]∗ from Proposition 3.1 it follows that there exist c, d ∈ R, with c ≠ 0
such that fm = cfm+1 + d. Due to the definition of fm+1, we must have c = 1 and
d = 0, that is, fm+1 = fm on [am, bm].

Define f ∶ I→ R by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

limm→∞ fm(x), if x ∈ ]a, b[,
infm⩾1 fm(am), if x = a ∈ I,
supm⩾1 fm(bm), if x = b ∈ I.
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It is clear that f is continuous and strictly increasing. Moreover, we have F =Mf

on ⋃m[am, bm]∗ and even on I∗ by continuity.
(Sufficiency) Straightforward. �

In [9] the authors established a generalization of Kolmogoroff-Nagumo’s char-
acterization to quasi-arithmetic pre-mean functions. In the next two theorems we
state this result and show that its assumptions can be weakened by replacing both
B-preassociativity and symmetry with strong B-preassociativity.

Theorem 3.5 ( [9]). Let I be a nontrivial real interval, possibly unbounded. A
function F ∶ I∗ → R is B-preassociative and, for every n ⩾ 1, the function Fn is
symmetric, continuous, and strictly increasing in each argument if and only if F is
a quasi-arithmetic pre-mean function.

Theorem 3.6. Theorem 3.5 still holds if we replace B-preassociativity and sym-
metry with strong B-preassociativity.

Proof. We note that the proof is very similar to that of Theorem 3.5 (see [9]).
(Necessity) Since Fn is increasing and continuous for every n ⩾ 1, it follows

that F is arity-wise quasi-range-idempotent. Let H ∶ I∗ → I ∪ {ε} be the ε-standard
operation defined by Hn = δ−1Fn

○ Fn for every n ⩾ 1. It is clear that every Hn is
continuous, idempotent, and strictly increasing. By Corollary 2.12 (here AC is not
needed since δ−1Fn

is an inverse), H is strongly B-associative (and remains so if we
modify the value of H(ε) into any element of I; see Remark 1). By Theorem 3.4 it
follows that H is a quasi-arithmetic mean function. This completes the proof.

(Sufficiency) Straightforward. �

4. Concluding remarks and open problems

We have investigated the strong B-associativity property for variadic operations
and introduced a relaxation of this property, namely strong B-preassociativity.
In particular, we have presented a characterization of the class of strongly B-
preassociative functions in terms of associative string functions.

We end this paper with the following questions:

(a) Find necessary and sufficient conditions on a (strongly) B-preassociative
function F ∶X∗ → Y for condition (2) to hold.

(b) Find necessary and sufficient conditions on a B-associative operation F ∶X∗ →
X ∪ {ε} satisfying F (xyz) = F (F (xz)yF (xz)) for every xyz ∈ X3 to be
strongly B-associative. What if F satisfies the symmetry condition stated
in Corollary 2.8?

(c) Similarly, find necessary and sufficient conditions on a B-preassociative
function F ∶X∗ → Y satisfying the condition

F (xz) = F (x′z′) ⇒ F (xyz) = F (x′yz′), xx′yzz′ ∈X5

to be strongly B-preassociative.
(d) Find a characterization of the class of those string functions which are asso-

ciative, length-preserving, and strongly B-preassociative (cf. Corollary 2.14).
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