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1 Introduction

The measurement of mobility is an increasingly important area within the analysis of social
index numbers. The fundamental issue to be addressed is the design of measures that reflect
the extent to which members of a society move across social or economic boundaries from
one period to the next. A crucial aspect that distinguishes mobility from most other
criteria that are used to assess the performance of a society (such as income inequality or
poverty) is that mobility is difficult—if not impossible—to define without any reference to
intertemporal considerations. Of course, intertemporal approaches to the measurement of
inequality, poverty and other social phenomena have been explored but they can also be
defined without any difficulties in a single-period setting; in contrast, there is no mobility
without movement. As a consequence, the arguments of a mobility measure are pairs of
indicators of economic or social status—one indicator for each of the time periods under
consideration.

Another characteristic of the concept of mobility is that it is multifaceted. As Fields
(2008) summarizes, six mobility concepts can be found in the economics literature: time
independence, positional movement, share movement, non-directional income movement,
directional income movement, and equalizer of longer-term incomes. Excellent surveys and
guides to the literature are also provided by Maasoumi (1998), Fields and Ok (1999) and
Jäntti and Jenkins (2014).

In this paper we contribute to the measurement of positional movement or, more specif-
ically, to the measurement of the movement across the ranks held by individuals in a soci-
ety. The rank-based approach to mobility has a natural connection with the study of social
status. Rank-based measures are widely applied in empirical research (see, for example,
Dickens, 1999) but, to the best of our knowledge, only few contributions such as D’Agostino
and Dardanoni (2009) and Cowell and Flachaire (2011) investigate them from a theoretical
perspective. We employ the basic setup of these studies but use different methods and
arrive at an alternative class of measures.

D’Agostino and Dardanoni (2009) phrase the problem in terms of (partial) permutation
matrices and use a subgroup-consistency property to obtain an additive structure of their
criteria. Much of their analysis is devoted to dominance criteria in a fixed-population
setting, although they discuss variable-population issues as well without providing formal
characterizations. In contrast, we explicitly deal with variable-population considerations by
imposing replication invariance and characterizing the corresponding class of rank-mobility
measures. An additive structure results in our setting from a standard additivity axiom
that is also employed by Kemeny and Snell (1962) and Can and Storcken (2013) in the
context of measuring the distance between rankings.

Cowell and Flachaire (2011) propose classes of indices involving various status concepts
in a fixed-population setting. Their approach is very flexible and is based on a general
measure of distance between individual statuses. The latter may or may not be directly
(that is, independently of the position of others) observable. As such, rank mobility is not
a central issue in their framework.

In order to perform rank-mobility comparisons across societies with different population
sizes, we employ the standard replication-invariance axiom. In our setting, replication
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invariance demands that if a pair of status rankings is replicated, rank mobility remains
unchanged. Thus, unlike much of the existing literature on the subject, our measures are
applicable in a variable-population framework.

Two dominant measures of non-parametric rank correlation have been established in the
literature—namely, Spearman’s (1904) ρ index and Kendall’s (1938) τ index. D’Agostino
and Dardanoni (2009) characterize rank-mobility preorders that are linked to Spearman’s
ρ index, whereas we focus on measures based on Kendall’s τ index. We note that Kendall’s
τ index and related measures are not included in D’Agostino and Dardanoni’s (2009) class.
As is the case for all mobility indices that we are aware of, including the rank-mobility
measure proposed by D’Agostino and Dardanoni (2009, p. 1796), our measures assume
non-negative values only. Clearly, this observation does not apply to the corresponding
measures of rank correlation; their values are between minus one and plus one.

The Kendall τ index is at the core of the Kemeny distance (also referred to as the swap
distance), which is one of the most prominent distance measures for orderings; see, for
instance, Kemeny (1959) and Kemeny and Snell (1962). By its nature, the rank-mobility
setting seems ideally suited for employing the literature on measuring the distance between
orderings: the further apart two status rankings are, the higher the mobility inherent in
the move from one of these status rankings to the other.

The Kemeny distance is characterized in Kemeny and Snell (1962) but, as pointed out
in a recent contribution by Can and Storcken (2013), one of the axioms employed in the
original characterization is redundant. As a consequence, Can and Storcken (2013) succeed
in obtaining a strengthening of the result due to Kemeny and Snell (1962). The axiom in
question is a reducibility condition—the only property used by Kemeny and Snell (1962)
that (at least implicitly) links distances between orderings involving different numbers of
objects to be ranked.

Although our contribution is concerned with measuring rank mobility rather than the
distance between orderings per se, we make use of the results established by Kemeny and
Snell (1962) and Can and Storcken (2013). We formulate and discuss axioms that are
motivated in terms of the measurement of rank mobility and phrase the most relevant
existing characterization in the context of rank-mobility measurement. Using this result
as an important intermediate step, we then proceed to our own result—a characterization
of a generalized class of rank-mobility indices based on the notion of mobility captured by
the Kemeny measure. Variable-population considerations are explicitly taken into account
because we employ the well-established replication-invariance principle. To the best of
our knowledge, replication invariance has not appeared in the literature on measuring the
distance between orderings. This is likely the case because it is a natural property in the
context of measurement issues involving the ranking of individuals but is not of immediate
appeal in the more abstract setting of measuring the distance between orderings. Thus, the
use of this property further distinguishes our approach from the distance-measurement issue
and reinforces the conceptual differences between rank mobility and distance measurement.

The next section introduces the basic definitions and the notation used in the paper.
A class of rank-mobility measures that generalizes the Kemeny measure is presented and
discussed. This is followed by the axioms that we employ in our characterization result,
accompanied by a discussion of their suitability in the context of the measurement of rank
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mobility as movements in (social) status. Section 3 is devoted to the statement and proof
of our main result, and Section 4 concludes.

2 Rank mobility

The notion of using social status as the variable that is relevant for assessing mobility was
first analyzed in a theoretical context by D’Agostino and Dardanoni (2009). They employ
partial permutation matrices to express movements in the relative ranks of the members of
a society and formulate axioms in that setting that allow them to identify a class of rankings
of such matrices. While we retain the underlying idea of using changes in relative ranks, we
depart from the D’Agostino-Dardanoni framework by using a measure of distance between
rankings to assess social mobility. That is, the informational basis—the relative ranks of
everyone in society—is the same as in D’Agostino and Dardanoni (2009), but we employ
different methods to arrive at what we think of as a reasonable class of mobility measures.
The intuition underlying this approach is straightforward: if the distance between the
status rankings in two consecutive periods is high, this indicates a high degree of mobility.
Throughout, we assume that the status rankings are orderings—that is, reflexive, complete
and transitive binary relations—and we refer to the two periods under consideration as
period zero and period one.

The individuals are denoted by the set N \ {0}, while a society N is a nonempty finite
subset of N \ {0} with a cardinality of at least two. We denote the set of all possible
societies by N and whenever it is clear the cardinality of N ∈ N is denoted by n. Given a
society N ∈ N , the relative ranks in period zero can be expressed by means of an ordering
R0 on N . Likewise, the relative ranks in period one are given by an ordering R1 defined on
the same set N . Because we want to allow for mobility comparisons across societies with
possibly different population sizes, we define a mobility measure as a function that assigns
a non-negative value—interpreted as the mobility associated with the move from R0 to
R1—to any pair of orderings (R0, R1) that may be defined for any possible population size
in N . That is, a rank-mobility measure is a function

M : ∪N∈N RN ×RN → R+

where RN denotes the set of all orderings on N .
In this setting, it is natural to borrow from the literature on determining the distance

between orderings and one of the most commonly employed measures is what is usually
referred to as the Kemeny distance; see Kemeny (1959) and Kemeny and Snell (1962). In
the context of this paper, the Kemeny mobility measure MK is defined by letting, for all
N ∈ N and for all (R0, R1) ∈ RN ×RN ,

MK(R0, R1) = |R0 \R1|+ |R1 \R0|.

This definition may appear to be somewhat opaque but it is based on a very intuitive
notion of movement from a social-status ranking of yesterday to a social-status ranking
today. The Kemeny measure calculates the minimal number of changes one has to apply
to an ordering R0 to arrive at another ordering R1.
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For societies with two agents, e.g., N = {1, 2}, this can be illustrated as follows.
There are three possible orderings on the set {1, 2}—namely, R0 = {(1, 1), (1, 2), (2, 2)},
R1 = {(1, 1), (1, 2), (2, 1), (2, 2)} and R2 = {(1, 1), (2, 1), (2, 2)}. Clearly, according to R0,
individual 1 is ranked higher than individual 2, in R1 the two individuals are ranked at an
equal level, and in R2 individual 2 is ranked higher than individual 1. Every pair that is
in R0 also is in R1 and, thus, the set difference R0 \ R1 is empty. Consequently, we have
|R0 \R1| = 0. On the other hand, the only element of R1 that is not in R0 is the pair (2, 1)
and we obtain R1\R0 = {(2, 1)}, hence |R1\R0| = 1. The Kemeny measure applied to these
two orderings yields MK(R0, R1) = 0+1 = 1, which is precisely the number of changes nec-
essary in moving from R0 to R1. Analogously, MK(R1, R2) = 1 because R1 \R2 = {(1, 2)}
and R2\R1 = ∅, thus |R1\R2|+ |R2\R1| = 1+0 = 1. Finally, we obtain R0\R2 = {(1, 2)}
and R2 \ R0 = {(2, 1)} hence MK(R0, R2) = |R0 \ R2| + |R2 \ R0| = 1 + 1 = 2. Again,
this is the minimal number of changes necessary to move from R0 to R2, confirming the
intuitive interpretation of the Kemeny measure. See Figure 1 for an illustration of the two-
individual case, where the numbers indicated along the lines joining the orderings are the
corresponding values of the Kemeny mobility measure. We use the convention of writing,
for example, 12 for the ordering such that 1 is ranked higher than 2 and (12) when 1 and
2 are ranked equally high.

• • •
12 (12) 21

1 1

Figure 1: The Kemeny measure for n = 2

For societies with three agents, e.g., N = {1, 2, 3}, there are 13 possible orderings defined
on {1, 2, 3}. Again, we follow our convention of writing, for instance, 2(13) for the ordering
that has individual 2 at the highest status level, followed by 1 and 3 at a lower level, where
1 and 3 are ranked equally high. The Kemeny measure for n = 3 is illustrated in Figure 2.
The minimal distances are indicated along the lines joining the different orderings.

To obtain the requisite rank-mobility values according to the Kemeny measure, we
consider the minimal number of changes needed to reach one ordering from another. For
instance, MK(123, (13)2) = 3 because three elementary changes are required to move from
123 to (13)2. In this case, there is a unique shortest path (via 1(23) and 132)—any other
path from one of these orderings to the other involves more than three elementary changes.
In contrast, if we consider the two orderings 123 and 321, any shortest path between these
orderings involves six elementary changes and, thus, MK(123, 321) = 6. Now there is no
unique minimal path: it is possible, for example, to move from 123 to 321 via 1(23), 132,
(13)2, 312 and 3(12), or to use the orderings (12)3, (123) and (23)1 as intermediate steps.
In each case, there are six elementary changes involved, and these two paths are not the
only shortest paths, as can be verified easily.

Note that, for example, the distance between (123) and 2(13) is equal to two without
any other ordering lying in between the two. This is because two elementary changes are
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required to move from one of these orderings to the other and, while there do exist relations
that are only one elementary change away from (123), these are not orderings. Thus, the
necessity of assigning a distance of two between two neighboring relations is due to the
assumption that we restrict attention to orderings.
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1(23)

132

(13)2

312

3(12)

321

(23)1

231

2(13)

213

(12)3

(123)

Figure 2: The Kemeny measure for n = 3

For societies with more than three members, a diagrammatic representation of all pos-
sible orderings defined on the set N appears to be rather cumbersome. For any N ∈ N ,
the number of possible orderings on N is given by the corresponding ordered Bell number
B(n); see, for instance, http://en.wikipedia.org/wiki/Ordered Bell number. The or-
dered Bell numbers can be expressed recursively by means of the function B : N∪{0} → N
defined by letting B(0) = 1 and, for all n ∈ N \ {0},

B(n) =
n∑

k=1

(
n
k

)
B(n− k) =

n∑
k=1

n!

k!(n− k)!
B(n− k).
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Using this recursion formula, it can be verified that B(1) = 1, B(2) = 3, B(3) = 13,
B(4) = 75, B(5) = 541, B(6) = 4683, etc.

We now return to the main issue addressed in this paper—a class of rank-mobility
indices that are based on the Kemeny measure. The class can be expressed in terms of a
one-parameter family of indices defined as follows. For all c ∈ R++, for all N ∈ N and for
all (R0, R1) ∈ RN ×RN ,

M c
K(R0, R1) =

c

n2
MK(R0, R1) =

c

n2

(
|R0 \R1|+ |R1 \R0|

)
.

The multiplicative constant c/n2 reflects the influence of our replication-invariance property,
to be defined shortly. Note that the relative mobility of any two pairs of social-status
rankings does not depend on the specific (positive) value of the parameter c—clearly,

M c
K(R0, R1) =

c

n2
MK(R0, R1) ≥ c

n2MK(R
0
, R

1
) = M c

K(R
0
, R

1
) ⇔

M c′

K(R0, R1) =
c′

n2
MK(R0, R1) ≥ c′

n2MK(R
0
, R

1
) = M c′

K(R
0
, R

1
)

for all c, c′ ∈ R++, for all N, N ∈ N , for all (R0, R1) ∈ RN × RN and for all (R
0
, R

1
) ∈

RN ×RN where n and n correspond to the cardinalities of N and N respectively.
We now introduce the axioms that are used in our characterization of the generalized

Kemeny mobility measures. The first of these appears to be very non-controversial. It
demands that the rank-mobility measure M assumes a value of zero if there is no movement
at all—that is, if all relative status ranks are the same in period zero and in period one.
Furthermore, rank mobility is assumed to be positive whenever there is a change in relative
ranks.

Zero at identity only. For all N ∈ N and for all (R0, R1) ∈ RN × RN ,

M(R0, R1) = 0 ⇔ R0 = R1.

The next axiom guarantees that mobility depends on the aggregate movement across
social-status ranks only, in the sense that the measure should not discriminate between
a move from a ranking R0 to a ranking R1 and the reverse move from R1 to R0. Note
that this is a plausible property because we are measuring overall mobility (in the sense of
movements in relative ranks) as opposed to phenomena such as upwards mobility; see, for
instance, Schluter and Van de gaer (2011).

Symmetry. For all N ∈ N and for all (R0, R1) ∈ RN ×RN ,

M(R1, R0) = M(R0, R1).

In addition to having an appealing geometric interpretation, the well-known triangle
inequality is a natural requirement in the context of rank-mobility measurement. The
triangle inequality ensures that a direct move from a social-status ranking R0 to a ranking
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R2 cannot be associated with a higher degree of mobility in comparison to a move from R0

to R2 that involves a “detour” via a ranking R1.

Triangle inequality. For all N ∈ N and for all R0, R1, R2 ∈ RN ,

M(R0, R2) ≤ M(R0, R1) + M(R1, R2).

Yet another extremely plausible property of a rank-mobility measure is that the indi-
viduals in a society be treated anonymously, paying no attention to their identities. Thus,
we require that permuting the labels that we assign to the members of a society does not
affect the value of our measure. In order to express this as a formal axiom, we require some
further notation. For any N ∈ N , let π : N → N be a bijective function. For R ∈ RN , we
define the relation Rπ by letting, for all a, b ∈ N ,

(π(a), π(b)) ∈ Rπ ⇔ (a, b) ∈ R.

Thus, the mapping π permutes the labels of the agents by assigning the label π(a) to the
individual that was previously labeled individual a ∈ N . Anonymity demands that the
mobility measure is invariant with respect to such permutations.

Anonymity. For all N ∈ N , for all (R0, R1) ∈ RN × RN and for all permutations
π : N → N ,

M(R0
π, R1

π) = M(R0, R1).

The only axiom that may be considered to be controversial to some extent is an additiv-
ity property. We are well aware of this observation but it seems to us that it is not too hard
to argue that it nevertheless is of some strong appeal; after all, various forms of additiv-
ity are ubiquitous in the theory of social index numbers and the separability assumptions
that typically underly these assumptions have a solid foundation. In our context, this is
where the notion of an ordering being located “between” two orderings comes into play.
An ordering R1 ∈ RN is between R0 ∈ RN and R2 ∈ RN if

R0 ∩R2 ⊆ R1 ⊆ R0 ∪R2.

This seemingly abstract formulation has, as does the Kemeny measure, an intuitively ap-
pealing interpretation: an ordering R1 is between two orderings R0 and R2 if the former
lies on a shortest path from R0 to R2. For instance, returning to Figure 2, we see that
(123) is between 123 and 321 but (123) is not between 123 and (13)2.

Additivity means that attention is paid to the notion of a shortest path between two
social-status rankings. If an ordering R1 lies on a shortest path between two orderings R0

and R2 (that is, R1 is between R0 and R2), then the inequality in the triangle inequality
should be satisfied with an equality. This ensures that due consideration is given to the
defining property of a shortest path: if the additional step via R1 when moving from R0 to
R2 does not involve any “detour” in the sense of increasing the distance traveled from R0

to R2, this should not affect the value of the mobility measure.
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Additivity. For all N ∈ N and for all R0, R1, R2 ∈ RN , if R1 is between R0 and R2, then

M(R0, R2) = M(R0, R1) + M(R1, R2).

The conjunction of zero at identity only, symmetry and additivity implies the triangle
inequality. This is an immediate consequence of Theorem 3 of Can and Storcken (2015).

Lemma 1. If a rank-mobility measure M satisfies zero at identity only, symmetry and
additivity, then M satisfies the triangle inequality.

All of the axioms introduced so far only impose restrictions on fixed-population-size
mobility comparisons. Our final property provides a link between comparisons across soci-
eties with different population sizes. Clearly, the possibility of making such comparisons is
essential in order for the resulting measures to be applicable in comparisons across different
societies, which cannot reasonably be assumed to have the same population size. A popu-
lar requirement that can be found in virtually all problems involving social index numbers
that are capable of performing variable-dimension comparisons is replication invariance.
We first need some additional notation. Given any ranking R ∈ RN , we use the position
t-tuple IR =

(
IR
1 , IR

2 , . . . , IR
t

)
to denote the partitioning of the agents in N into t ∈ N

indifference classes according to each individual’s position in the ranking R. For instance
for R = 12(34)5, we obtain IR = ({1}, {2}, {3, 4}, {5}) with the obvious interpretation
IR
1 = {1}, IR

2 = {2}, IR
3 = {3, 4} and IR

4 = {5}.
Consider two disjoint sets of agents N, N1 ∈ N with the same cardinality and any

ranking R ∈ RN with the position t-tuple IR. Consider any bijection σ1 : N → N1. We
denote a 2-fold replica of R by σ1R ∈ RN∪N1 whenever for all j ∈ {1, . . . , t}, we have
Iσ1R
j = IR

j ∪ σ1(I
R
j ) where σ1(I

R
j ) = {σ1(a) | a ∈ IR

j }. For any k ∈ N \ {0, 1}, define
a k-fold replication of the agents in the set N ∈ N via agents in pairwise disjoint sets
N1, . . . , Nk−1 ∈ N , which are also disjoint with N , with the same cardinality as N through
bijections σi : N → Ni for all i ∈ {1, . . . , k−1}. Then a sequence of replications of R ∈ RN

with κ = (σ1, σ2, . . . , σk−1) is called a k-fold replica of R and denoted generically by kR ∈
RN∪N1∪...∪Nk−1 whenever for all j ∈ {1, . . . , t}, we have IkR

j = IR
j ∪ σ1(I

R
j ) ∪ . . . σk−1(I

R
j ).

So given any initial set of agents N and any ranking R ∈ RN , a k-fold replica requires k−1
pairwise disjoint sets of agents (each also disjoint with N) and k − 1 bijections from N to
each set of agents.

Now consider any pair of rankings R0, R1 ∈ RN and let k ∈ N \ {0, 1}. Given any
pairwise disjoint sets of agents N1, . . . , Nk−1 ∈ N (each of which is also disjoint with N)
and any sequence of bijections κ = (σ1, . . . , σk−1) each from N to Ni, one can construct
a k-fold replica of this pair denoted by (kR0, kR1) in the aforementioned way. A k-fold
replica simply expands the indifference classes of each ranking by adding k − 1 agents to
each of them correspondingly. Replication invariance requires that the mobility associated
with this replicated pair is the same as the mobility assigned to the original pair. Hence the
mobility measure is insensitive to replications of the pairs of rankings under consideration.

Replication invariance. For all N ∈ N , for all (R0, R1) ∈ RN × RN and for all k ∈
N \ {0, 1},

M(kR0, kR1) = M(R0, R1).
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We first illustrate the idea of replication invariance by an example. Then we show that
the axiom implies anonymity.

Example 1. Consider the following sets of agents N = {1, 2, 3}, N1 = {4, 5, 6} and N2 =
{7, 8, 9}. Let the orderings R0, R1 ∈ RN be such that R0 = 123 and R1 = 312 and consider
two bijections σ1 : N → N1 (where 1, 2, 3 are bijected to 4, 5, 6 respectively) and σ2 : N → N2

(where 1, 2, 3 are bijected to 7, 8, 9 respectively). Then the pair of rankings (R
0
, R

1
) ∈

RN∪N1∪N2 ×RN∪N1∪N2 where R
0

= (147)(258)(369) and R
1

= (369)(147)(258) is a 3-fold

replica of the pair (R0, R1). Therefore replication invariance requires that M(R
0
, R

1
) =

M(R0, R1).

Lemma 2. If a rank-mobility measure M satisfies replication invariance, then M satisfies
anonymity.

Proof. Let M satisfy replication invariance and consider any N ∈ N , any (R0, R1) ∈
RN×RN and any permutation π : N → N . We need to show that M(R0

π, R1
π) = M(R0, R1).

Consider any set of agents N ∈ N with the same cardinality as N such that N ∩N = ∅.
Take any bijection σ1 : N → N and let R

0
and R

1 ∈ RN denote the rankings which

are formed by relabeling R0, R1 ∈ RN according to σ1, that is, IR
0

= σ1(I
R0

) and IR
1

=
σ1(I

R1
). Let ρ1 : N → N be the composite function σ1 ◦ π−1 where π−1 is the inverse of

the function π. Furthermore note that ρ1 is also a bijection from N to N .
Note that (σ1R

0, σ1R
1) is a 2-fold replica of (R0, R1), and (ρ1R

0
π, ρ1R

1
π) is a 2-fold replica

of (R0
π, R1

π). Hence, replication invariance implies

M(σ1R
0, σ1R

1) = M(R0, R1) (1)

and
M(ρ1R

0
π, ρ1R

1
π) = M(R0

π, R1
π). (2)

Note also that both (σ1R
0, σ1R

1) and M(ρ1R
0
π, ρ1R

1
π) can be rewritten as (σ−1

1 R
0
, σ−1

1 R
1
)

and (ρ−1
1 R

0
, ρ−1

1 R
1
) respectively. Hence they both are 2-fold replicas of (R

0
, R

1
) and, by

replication invariance, it follows that

M(σ−1
1 R

0
, σ−1

1 R
1
) = M(ρ−1

1 R
0
, ρ−1

1 R
1
).

Using (1) and (2), we conclude that M(R0
π, R1

π) = M(R0, R1).

3 The generalized Kemeny rank-mobility measures

In order to state and prove the characterization result alluded to above, we make use of
a recent characterization of a class of generalized Kemeny distance functions in a fixed-
population-size setting. This characterization is due to Can and Storcken (2013) and it
represents an improvement on the traditional axiomatization of Kemeny and Snell (1962).
Of course, we could alternatively invoke the original Kemeny-Snell characterization but,
because their result involves a redundant axiom, it clearly is preferable to employ the

9



tighter characterization theorem established by Can and Storcken (2013). Among other
results, Can and Storcken (2013) proved the following theorem that, for convenience, we
state in the context of rank-mobility measurement. Because of Lemma 1, which follows
from Theorem 3 in Can and Storcken (2015), we can drop the triangle inequality from
their version. Note that this leaves the independence of their axioms intact because they
formulated the properties of a metric (including non-negativity which is built into our
definition of a rank-mobility measure) as a single axiom.

Theorem 1. A rank-mobility measure M satisfies zero at identity only, symmetry, anonymity
and additivity if and only if there exists a set {cn ∈ R++ | N ∈ N} such that, for all N ∈ N
and for all (R0, R1) ∈ RN ×RN ,

M(R0, R1) = cnMK(R0, R1) = cn

(
|R0 \R1|+ |R1 \R0|

)
.

Notice that the parameter cn depends only on the size of the society N in question, and is
the same for any equally large society. Theorem 1, the proof of which can be obtained by
applying the requisite results in Can and Storcken (2013, 2015), improves upon the corre-
sponding result reported in Kemeny (1959) and Kemeny and Snell (1962). These earlier
authors employ, in addition to the axioms in the above theorem, a reducibility property
that applies across different population sizes. Loosely speaking, reducibility requires that
the distance between two orderings is unchanged if individuals are removed that are ranked
identically at the top or at the bottom of the two orderings; see Can and Storcken (2013) for
details. Can and Storcken (2013) show that reducibility is redundant in the Kemeny and
Snell (1962) characterization of the Kemeny measure and, as a consequence, come up with
a characterization that is formally and conceptually stronger than the original axiomatiza-
tion. In addition to establishing that the axioms employed in the original characterization
are not independent, they are able to drop the only axiom that (at least implicitly) im-
poses restrictions on variable-population-size comparisons. Although we define the notion
of a distance function and the axioms in a variable-population-size setting, it is clear that
fixed-size versions of the above result can be formulated in a straightforward manner be-
cause each of the properties used only applies to orderings involving the same population
size. In contrast, Kemeny and Snell’s (1962) reducibility axiom cannot even be defined in
a fixed-size framework and, thus, they did not succeed in providing a characterization on
the domain for which Can and Storcken’s (2013) results are valid.

We can now present our main result which is a characterization of the class of generalized
Kemeny mobility measures. We do so by strengthening anonymity to replication invariance.

Theorem 2. A rank-mobility measure M satisfies zero at identity only, symmetry, additiv-
ity and replication invariance if and only if there exists c ∈ R++ such that, for all N ∈ N
and for all (R0, R1) ∈ RN ×RN ,

M(R0, R1) = M c
K(R0, R1) =

c

n2
MK(R0, R1) =

c

n2

(
|R0 \R1|+ |R1 \R0|

)
.
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Proof. The ‘if’ part of the theorem statement is straightforward to verify. To prove the
‘only-if’ part, suppose that the axioms of the theorem statement are satisfied. By Lemmas
1 and 2, we can invoke Theorem 1 to conclude that there exists a set {cn ∈ R++ | N ∈ N}
such that, for all N ∈ N and for all (R0, R1) ∈ RN ×RN ,

M(R0, R1) = cnMK(R0, R1) = cn

(
|R0 \R1|+ |R1 \R0|

)
. (3)

Take any (R0, R1) ∈ RN ×RN such that R0 6= R1. Consider any k-fold replica of this pair,

and denote it by (kR0, kR1) ∈ RN ×RN where N = N ∪N1 ∪ . . . Nk−1 as in the definition
of a k-fold replica. Then there exists a sequence of bijections κ = (σ1, . . . , σk−1) such that,
for all a, b ∈ N and for all i, j ∈ {1, . . . , k − 1}, we have

(σi(a), σj(b)) ∈ kR0 ⇔ (a, b) ∈ R0

and
(σi(a), σj(b)) ∈ kR1 ⇔ (a, b) ∈ R1.

Then for any (a, b) ∈ R0 \R1, we have

(a, b), (a, σ1(b)), . . . , (a, σk−1(b)) ∈ kR0 \ kR1,

(σ1(a), b), (σ1(a), σ1(b)), . . . , (σ1(a), σk−1(b)) ∈ kR0 \ kR1,

...
...

(σk−1(a), b), (σk−1(a), σ1(b)), . . . , (σk−1(a), σk−1(b)) ∈ kR0 \ kR1.

Thus, for each pair in R0 \ R1, there are k2 pairs in kR0 \ kR1 and, analogously, for each
pair in R1 \R0, there are k2 pairs in kR1 \ kR0. Hence,

|kR0 \ kR1|+ |kR1 \ kR0| = k2(|R0 \R1|+ |R1 \R0|) = k2MK(R0, R1).

Note that cn is defined on the basis of cardinalities of the societies. As |N | = nk we can
simply use the cnk notation for the k-fold replica. Using (3), we obtain

M(kR0, kR1) = cnk(|kR0 \ kR1|+ |kR1 \ kR0|)
= cnkk

2MK(R0, R1)

and
M(R0, R1) = cnMK(R0, R1).

Therefore, replication invariance requires that, for all n, k ∈ N \ {0, 1},

cnkk
2MK(R0, R1) = cnMK(R0, R1). (4)

Because R0 6= R1, MK(R0, R1) > 0 and, thus, (4) demands that

cnkk
2 = cn for all n, k ∈ N \ {0, 1}. (5)

11



Setting n = 2 in (5), we obtain

c2k =
c2

k2
for all k ∈ N \ {0, 1} (6)

and, letting m = 2k and defining c = 4c2 ∈ R++, (6) can be rewritten as

cm =
c2

(m/2)2
=

4c2

m2
=

c

m2
for all even m ∈ N \ {0, 1}. (7)

Now let n be odd. Let k = 2 in (5), which implies that nk = 2n. Substituting into (6),
it follows that

4c2n = cn (8)

and, because 2n is even, (7) implies

c2n =
c

4n2
. (9)

Combining (8) and (9), it follows that

cn =
c

n2
for all odd n ∈ N \ {0, 1}

and, together with (7),

cn =
c

n2
for all n ∈ N \ {0, 1}.

Substituting back into (3) yields the desired result.

The axioms employed in Theorem 2 are independent, as established by means of the
following examples.

Define, for all N ∈ N and for all (R0, R1) ∈ RN ×RN ,

M(R0, R1) = 0.

Clearly, this rank-mobility measure satisfies symmetry, additivity and replication invariance
but it fails to satisfy zero at identity only.

Let, for all N ∈ N , In
U = N ×N—that is, In

U is the universal indifference relation. Now
define, for all N ∈ N and for all (R0, R1) ∈ RN ×RN ,

M(R0, R1) =

{
1
n2 MK(R0, R1) + 1 if R0 6= In

U and In
U is between R0 and R1,

1
n2 MK(R0, R1) otherwise.

This rank-mobility measure satisfies zero at identity only, additivity and replication invari-
ance but it violates symmetry.

Let, for all N ∈ N and for all (R0, R1) ∈ RN ×RN ,

M(R0, R1) =

{
0 if R0 = R1

1
n2 if R0 6= R1

This rank-mobility measure satisfies zero at identity only, symmetry and replication invari-
ance but it violates additivity.

Finally, the Kemeny measure MK satisfies zero at identity only, symmetry and additivity
but it does not satisfy replication invariance.
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4 Concluding remarks

The contribution of this paper consists primarily of an alternative approach to the mea-
surement of rank mobility as initiated by D’Agostino and Dardanoni (2009). While the
notion of rank mobility seems to rest on a solid conceptual foundation, it is clear that there
are shortcomings as well (as is the case for all areas of economic measurement in which
no consensus has been reached yet as far as the existence of a single superior index—or
class of indices—is concerned). We propose a class of replication-invariant mobility in-
dices that generalize one of the two most fundamental measures of non-parametric rank
correlation—namely, Kendall’s (1938) τ index. The rank-mobility preorders D’Agostino
and Dardanoni (2009) characterize are linked to the other common measure of correla-
tion, which is Spearman’s (1904) ρ index. Thus, our analysis is by no means intended to
diminish the importance of alternative suggestions that have appeared in the literature.
When added to D’Agostino’s and Dardanoni’s (2009) fundamental contribution, the work
reported here may be viewed as providing an additional argument in favor of the further
exploration of rank-based mobility measurement.

It is possible to narrow down our class of mobility measures by imposing a normal-
ization property that forces the value of the parameter c to be equal to one, just as the
Kemeny measure can be obtained by adding a normalization requirement so that each of
the parameters cn in Can and Storcken’s (2013) result must assume a value of one; see
Can and Storcken (2013) for details. We refrain from providing a formal statement of this
observation because it is relatively straightforward and does not add all that much if an
ordinal interpretation is given to the mobility measures. In contrast, the normalization
property is of more value in the Can-Storcken result because, without such a property,
variable-population-size comparisons are not restricted in any way.

Without going into any technical details, we note that the rank-based setting can be
applied to the measurement of income mobility in a straightforward manner. All that is
required is the addition of an axiom that ensures that only social-status ranks matter and,
furthermore, slight modifications of zero at identity only and the additivity axiom so as to
take into account this ranks-only property.
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