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ABSTRACT
Many different types of unmanned aerial vehicles (UAVs)
have been developed to address a variety of applications
ranging from searching and mapping to surveillance. How-
ever, for complex wide-area surveillance scenarios, where
fleets of autonomous UAVs must be deployed to work collec-
tively on a common goal, multiple types of UAVs should be
incorporated forming a heterogeneous UAV system. Indeed,
the interconnection of two levels of UAVs—one with high
altitude fixed-wing UAVs and one with low altitude rotary-
wing UAVs—can provide applicability for scenarios which
cannot be addressed by either UAV type. This work con-
siders a bi-level flying ad hoc networks (FANETs), in which
each UAV is equipped with ad hoc communication capa-
bilities, in which the higher level fixed-wing swarm serves
mainly as a communication bridge for the lower level UAV
fleets, which conduct precise information sensing. The inter-
connection of multiple UAV types poses a significant chal-
lenge, since each UAV level moves according to its own mo-
bility pattern, which is constrained by the UAV physical
properties. Another important challenge is to form network
clusters at the lower level, whereby the intra-level links must
provide a certain degree of stability to allow a reliable com-
munication within the UAV system. This article proposes
a novel mobility model for the low-level UAVs that com-
bines a pheromone-based model with a multi-hop clustering
algorithm. The pheromones permit to focus on the least ex-
plored areas with the goal to optimize the coverage while the
multi-hop clustering algorithm aims at keeping a stable and
connected network. The proposed model works online and
is fully distributed. The connection stability is evaluated
against different measurements such as stability coefficient
and volatility. The performance of the proposed model is
compared to other state-of-the-art contributions using sim-
ulations. Experimental results demonstrate the ability of
the proposed mobility model to significantly improve the
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network stability while having a limited impact on the wide-
area coverage.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy, Wireless communication; D.2.8 [Metrics]: [performance
measures]

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
UAV, mobility model, ACO, clustering

1. INTRODUCTION
Many unmanned aerial vehicles (UAVs) varying in tech-

nology, design, and size have been developed. Each UAV
type aims to address requirements for the peculiarities of dif-
ferent applications such as searching, mapping and surveil-
lance. Although possessing multiple unique characteristics,
UAVs can mainly be classified in fixed-wing UAVs and ro-
tary wing UAVs. Operating with low energy consumption,
the overall design of a fixed-wing UAV allows significantly
longer flights durations with increased velocity. Addition-
ally, the payload for fixed-wing UAVs can be higher than
for a rotary wing UAV, allowing to equip sophisticated sen-
sors. Their design allows rotary UAVs to takeoff and land
vertically as well as conducting precise manoeuvring making
them the preferred choice for specific scenarios. In contrast
to fixed-wing UAVs, rotary wing UAVs offer lower speed and
have shorter flight ranges. Additionally, the sensor equip-
ment payload is restricted and reduces tremendously the
flight duration.

UAVs can contain built in sensors which enable them to
form an inter-connected autonomous UAV swarm, or a so-
called flying ad hoc networks (FANETs) [2]. FANETs are
formed when multiple UAVs flying in a spatial proximity –
within a mutual transmission range – spontaneously form
network communication links. A FANET is able to func-
tion without fixed infrastructure and therefore adaptable to
requirement changes such as flight pattern or flight trajec-
tory. A FANET of UAVs extends the possibilities of a single
drone in terms of mission duration, coverage, and quality of
collected data. There is a tremendous potential for FANETs
to be utilised in applications such as surveillance, search and



rescue in disaster recovery, object localization, and environ-
ment mapping [8].

While most FANETs consists of one UAV type, heteroge-
neous FANETs, which combine the advantages of different
UAV types, are less studied. The interconnection of two
levels of UAVs, one with fixed-wing UAVs and one with
rotary-wing UAVs, can provide applicability for scenarios
which cannot be addressed by either UAV type.

This work considers higher-altitude fixed-wing UAVs with
longer flights for wide-area coverage and which serves as a
communication backbone network for lower-altitude rotary
UAV swarms which allow precise manoeuvring for e.g. track-
ing, precise mapping, or high-precision surveillance. For ex-
ample, if the higher-altitude UAVs detect an area of inter-
est, these command a rotary-wing swarm to that area for
surveillance. The rotary-wing swarm needs to self-organise
in a cluster formation in order to maximize the coverage over
the area, while remaining connected with the swarm leader.

Due to its role in maintaining the connectivity of the en-
tire UAV system, the high-level mobility is less relevant in
this paper. The focus is therefore put on the mobility man-
agement of the low-level UAV system in this paper. The
efficiency of the UAV surveillance system decidedly relies
on the deployment and foremost on the flight trajectories.
Some flight planning approaches consider offline methods,
i.e., they are planning trajectories in advance following a
map. In scenarios with an incomplete knowledge about the
environment, however, online centralized methods have been
developed. These methods require a central decision-making
and require more message exchanges. These methods have
their limitation when spatial communication constraints ap-
ply, i.e., when UAVs are not in mutual communication range.
Additionally, in a real-world scenario, it is important to act
and react to unforeseen events for which offline or/and de-
centralised approaches are unsuitable. Therefore, in this
paper the focus is on an online and decentralised approach,
i.e., autonomous decision-making of the individual UAVs.

In this paper a complex wide-area surveillance scenario
is considered, where a larger number of UAVs must be de-
ployed to work collectively on a common goal. Specifically,
wide-area surveillance or aerial monitoring of areas where
occurrences need to be analysed close-by for a final conclu-
sion in usually inaccessible areas. The described scenario
poses several challenges: The interconnection of multiple
UAV types in different level poses a significant challenge,
since each UAV level moves according to its own mobility
pattern, which is constrained by the UAV physical proper-
ties. In general, the inter-level connections provide some
sort of stability in the short-term and in the long-term to
allow a reliable communication within the UAV system to
take place. Additionally, the rotary-wing UAV swarm fol-
low a leader, which is called clusterhead. The leader makes
autonomous decisions about its movement and the rest of
the UAV swarm needs to follow.

If the UAVs mobility causes significant change in the net-
work topology, the clusterhead will suffer in its quality to
provide an efficient interconnection point. If these changes
are detected a new clusterhead needs to be elected, which
causes additional messages to be exchanged and can result
in interruption of the communication of the UAV system.
Therefore, clusterhead re-election or cluster reorganization
should be avoided, in particular in cases where only few net-
work attributes changed, e.g. one new neighbour.

The proposed approach is based on combining the ACO-
based mobility model used in [12] with the KHOPCA clus-
tering algorithm [7, 6] on the low-level UAV swarm to opti-
mize surveillance capabilities such as coverage area and sta-
bility of the network-wide connectivity. The connection sta-
bility is evaluated against different stability measurements
such as stability coefficient and volatility. The overall per-
formance is compared to two other mobility models from the
literature.

This paper is organized as follows. The next section intro-
duces related work. Section 3 then presents and formalises
the problem. The proposed cluster-based mobility model
is described in detail in section 4. The different metrics
to evaluate its performance for the surveillance scenario are
introduced in section 5. The experimental setup used and
the obtained results are then discussed Section 6 and and
7 respectively. Finally section 8 concludes the paper and
provides some perspectives.

2. RELATED WORK
Different ways of controlling the mobility of UAVs swarms

have been studied in the literature. The first proposed ap-
proaches compute the flight plan in a centralised fashion, like
in [3], where evolutionary algorithms are used to optimise
the UAVs trajectories. Most of existing techniques consider
such centralised computations, either offline or online. Of-
fline planning does not permit to adapt in case of unexpected
technical issues or harsh weather conditions. Therefore on-
line mission planning is highly desirable for surveillance mis-
sions as considered in this work. However, updating the
whole fleet flight plan via a unique access point, e.g. satel-
lite connection, also has drawbacks in terms of scalability,
robustness or communication costs.

This work is thus interested in online and distributed ap-
proaches, where no central authority is in charge of the
path planning. UAVs are autonomous entities equipped
with wireless communication capabilities and have to self-
organise to complete their mission. Each UAV is able to
exchange information in a peer-to-peer fashion and to de-
termine its flight plan solely based on its aggregated local
knowledge. UAVs communication was already studied in
various works, from the hardware level with digital beam-
forming antennas [13] to communication scheduling optimi-
sation [9].

Some online and distributed approaches have been pro-
posed, such as the dynamic agent-based simulation using
swarm control for cooperative hunting from McCune et al.
[14]. Other approaches rely on stigmergy, and more precisely
Ant Colony Optimisation (ACO), in which UAVs are ants
leaving pheromone trails. Sauter et al. demonstrated in [18]
the effectiveness of digital pheromones for three types of sce-
narios: surveillance and patrol, target acquisition and track-
ing. Similarly, Kuiper et al. in [12] proposed a pheromone-
based decentralised mobility model for coverage missions.
Repulsive pheromones are used to indicate the already cov-
ered regions. Schleich etal. in [20] tackled the same problem
with additional connectivity constraints. They considered 4
objectives: finding the fastest coverage, the largest cover-
age, the most uniform coverage and the connectivity main-
tenance. However these works only focused on single-level
and homogeneous swarms.

UAVs are typically dedicated systems which are only able
to achieve restricted area missions due to their embedded



equipment. Using swarms of heterogeneous UAVs, i.e. equipped
with different sensors, is therefore one hot topic in the field,
where cooperation between UAVs has to be optimised to
complete the mission [15].

Another open issue in FANETs is the network scalabil-
ity problem. One possible solution is the usage of multi-
level UAVs, i.e. swarms flying at different altitudes. How-
ever very few works have tackled this problem and only at
the communication protocol level, referred to as hierarchical
routing. Zang etal. in [21] aimed at maintaining stable clus-
ters by using dictionary Trie prediction algorithm, while in
[10] the clusters are precomputed and adapted in operation.

Maintaining stable structures is one important feature for
an efficient communication in multi-level swarms. It was
studied in the single-level swarm context by Schleich et al.
in [19] proposed the CEDBBT broadcasting algorithm for
FANETs that relies on a community detection algorithm.

Other works in the mobile ad hoc networks (MANETs)
domain have considered the same issue. For instance a data
gathering protocol relying on clustering was proposed for ve-
hicular ad hoc networks (VANETs) in [4]. Another approach
combined clustering and prediction for data dissemination,
routing and visual tracking in VANETs [11]. Finally the
stability of one-hop clusters in VANETs was evaluated in
[1]. However these were not transposed to the FANET field.

To conclude, to the best of our knowledge, no existing
work considered the mobility management of heterogeneous
multi-level UAVs swarms.

3. SYSTEM MODEL
This section defines the system model of the bi-level UAV

swarm under consideration and the formal notations used to
describe it.

The flying ad hoc network proposed in this work consists
of two levels; one with low-altitude rotary-wing UAV swarms
and one with a high-altitude fixed-wing UAV swarm. Each
UAV in the proposed system is equipped with ad hoc com-
munication capabilities, in which the high-level UAVs pro-
vide a communication bridge for the low-level UAV fleets.

The UAV swarm communication network on each level
is given by an undirected Euclidean graph G = (V,E) for
which V ∈ R3 is a set of UAV nodes. The set E of links
of the graph G are defined as follows: For any pair u, v ∈
V of nodes holds that dist (u,v) ≤ r =⇒ {u, v} ∈ E and
dist (u,v)>r =⇒ {u, v} /∈ E, where r is the communication
range for each v ∈ V . For the sake of simplicity, it is assumed
that r is equal for all UAV within the same level. This paper
focuses on the low-level UAV swarm, and more precisely
the structural and networking aspects within this swarm.
Therefore, it is furthermore assumed for the communication
range rh of the high-level UAV swarm that rh is sufficiently
large so that full connectivity within the high-altitude level
and connectivity from the high-altitude to the low-altitude
swarm is guaranteed.

Each UAV node v ∈ V has a neighbouring list Neigh(v) ⊂
V , which is the set of UAVs directly connected to UAV v,
such that ∀u ∈ Neigh(v), d(v, u) ≤ r. The neighbouring list
Neigh(v) is created initially and is updated with frequency
f . Besides being able to communicate with its direct neigh-
bours (nodes in the neighbouring list Neigh(v)) designated
nodes—clusterheads—are able to establish communications
to designated nodes in the other level. The clusterhead UAV
delivers data to the high-level fixed-wing UAV swarm.

Furthermore, it is assumed that the UAVs in each level
move according to their own mobility patterns. Mobility
must ensure an efficient coverage of the geographical zone
but poses a significant challenge to the interconnection of
different UAV types by creating instability in the network
connectivity. For instance, communication links may fail or
disappear from the local network, due to obstacle avoidance
or energy-constraints.

This work proposes to tackle these two conflicting objec-
tives by designing a distributed mobility model that com-
bines a pheromone-based model for covering the area and
clustering to enable reliable communication within the pro-
posed UAV system.

4. CLUSTER-BASED MOBILITY MODEL
The proposed mobility model combines the pheromone-

based approach from [12] with the KHOPCA clustering al-
gorithm from Brust et al. [7]. Both components are pre-
sented in detail in this section, followed by the contribution
of this work, the cluster-based mobility model.

4.1 Pheromone-based model
The pheromone-based model from Kuiper et al. exploits

the concept of stigmergy, i.e. an indirect communication of
UAVs implemented by repulsive pheromones spread in the
environment. The geographical area is discretised in differ-
ent cells that are characterised by a pheromone level. Each
UAV then chooses its direction among three possibilities,
front, left or right, with a probability inversely proportional
to the amount of pheromones in these locations. These re-
pulsive pheromones permit the UAVs to better explore the
least visited places. In case no pheromones exist in any di-
rection, a random direction is picked.

4.2 KHOPCA clustering algorithm
The k-hop clustering algorithm KHOPCA is a dynamic

multi-hop clustering technique for mobile wireless and sensor
networks [7]. KHOPCA creates trees of a maximum depth
k, i.e., the maximum graph distance between the cluster-
head (centre of a cluster) and the cluster border is k hops.
The algorithm itself is based on the repetitive application
of four simple rules in a distributed and localised fashion,
that define the transition of each node’s state. In the con-
text of the multi-level UAV swarm, each clusterhead in the
low-level UAV swarms represents an efficient communica-
tion end-point to the high-level UAV swarm. Therefore, a
clusterhead is an appropriate choice to be selected as a com-
munication bridge between the different swarm levels.

Although a multi-hop cluster is formed—i.e., there are
UAVs which are connected to the clusterhead UAV only
via intermediate UAVs—each cluster must have exactly one
clusterhead. Additionally, each cluster UAV needs to own
basic information about how to forward data to the clus-
terhead. Both requirements are delivered by the transi-
tion rules for the KHOPCA clustering algorithm regarding
a UAV n, which are formalised below:

s(n) =


min (s (N (n))) if s (m) < s(n), ∀m ∈ N (n)

0 if s (m = k, ∀m ∈ N (n))

s (n) + 1 if s (n) 6= 0 ∧ s (n) < s (m) , ∀m ∈ N (n)

s (n) + 1 if s (n) = 0 ∧ ∃m ∈ N (n) with s (m) = 0

Applied to a UAV swarm, every UAV n is initially as-
signed the same state value s, which is a value between 0
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Figure 1: Flowchart of the KHOPCA-based mobility
model

and k. Each time the UAV neighbouring discovery service
is executed on a UAV n, UAVs in its communication range
are detected. The neighbouring list N for n is updated,
which in turn will be used to recalculate the state value s
for each UAV. UAVs with state value 0 are the designated
clusterhead UAVs.

The first rule creates an ordering between neighbouring
nodes such that the maximum state value difference between
two neighbouring nodes is 1. The second rule defines a clus-
terhead (value 0), when all of n neighbours have state value
k. The third rule solves situations where the UAV n is con-
sidered as an intermediate node to the clusterhead, while,
in fact, n does not point to any clusterhead. The last rule
reorganises situations with directly connected clusterheads
in one cluster.

As result of the function s, clusters will be created, which
contain exactly one clusterhead each and which have a max-
imal graph distance k from the clusterhead to the most dis-
tant cluster member.

4.3 Our approach
The KHOPCA-based mobility model is executed locally

on each node. It uses either the pheromone-based direc-
tion or a KHOPCA-based direction using the probability
KHOPCAp.

In a first step the KHOPCA algorithm is executed. If
p > KHOPCAp, or if the node is a clusterhead, i.e. its state
value (or weight) is equal to 0, then the pheromone-based
destination is used as in the original model. Otherwise, the
destination is equal to the position of the one hop neighbour
with the lowest KHOPCA weight. In case of tie, one des-
tination among the possible ones is chosen randomly. The
corresponding flowchart is presented in Figure 1.

5. METRICS
This section introduces the different metrics used to as-

sess the performance of the proposed mobility models both
in terms of coverage and UAV network connectivity. The
quality of the surveillance area coverage is assessed by three

metrics, the number of scanned cells, the exhaustivity and
the faireness of the coverage. Three additional metrics are
used to evaluate the network properties, i.e. the ability to
maintain structures: connectivity, stability and volatility.

5.1 Exhaustivity of the coverage
The exhaustivity of the coverage indicates the percentage

of the surveillance area that has never been scanned during
a run [20]. It is formalized as follows:

ex =
|{ci,j ∈ C, Scan(ci,j , tmax = −1}|

NbCells
(1)

with C the set of all cells in the simulation area, ci,j the
cell in location i, j in the simulation grid. The function
Scan : C, T → T be the function that returns the last time
at which a cell has been scanned by a UAV in the time
interval [0, t ∈ T ]. Scan returns -1 if a cell has never been
scanned yet. The parameter tmax is the simulation time end.

5.2 Fairness of the coverage
The fairness allows to measure if the cells are equally and

regularly scanned by using the dispersion of the number of
scans for all the cells of the simulation area [20]. It is com-
puted as the standard deviation of the number of scans for
all the cells:

fairness =

√√√√∑
c∈C

(nbScan− nbScanc)2

|C| (2)

with nbScan : C → N the function returning the number
of times a given cell has been scanned.

5.3 Percentage of scanned cells
This metric indicates the percentage of the surveillance

area that has been recently scanned by at least one UAV,
i.e. that contains pheromones, at each iteration step:

scanned =
|{ci,j ∈ C, 0 ≤ t− Scan(ci,j , t) < evap}|

NbCells
(3)

with evap the required time for complete pheromone evap-
oration.

5.4 Connectivity
A connected component of a graph is any maximal set of

vertices which are pairwise connected by a path. The num-
ber of connected components provides information about
how strongly disconnected a graph is. The optimal (and
minimal) value for this metric is thus 1. Let nbCCt be the
number of connected components at a time t ∈ T .

5.5 Stability
The UAVs mobility causes constant changes on the entire

network topology. To discover how much the local neigh-
bourhood of a node n changed, the stability coefficient met-
ric is used [5]. The stability coefficient takes into account
the neighbours of a node n at one point in time t1 and com-
pares it with the neighbours at a later point in time t2. The
number of lost neighbours |(Neight1 (n) \Neight2 (n))| and
new neighbours |(Neight2 (n) \Neight1 (n))| is calculated
and divided by the sum of the number of neighbours at t1
and t2. Thus, the stability coefficient of a node is defined
as:



Figure 2: Simulation snapshot

stability =
lostNeighbors + newNeighbors

|Neight1 (n) |+ |Neight2 (n)| (4)

For example, if a clusterhead is surrounded by a group
of UAVs and they are moving together into the same direc-
tion, they might pass few additional UAV which temporarily
connect to the clusterhead. Since they disappear from the
neighbouring list after the swarm has passed, the stability
coefficient will indicate only a low change in its value for the
clusterhead.

5.6 Volatility
The volatility of an element, i.e. an edge in this work, is

defined as the ratio of its number of appearances over its
accumulated age [16]:

volatility(e) =
appearances(e)

accumulatedAge(e)
(5)

The number of appearances of an edge is a counter in-
cremented by one each time a link changes its state from
non-existent to existent. Its optimum is a constant value
of one, which means that all edges of the graph have only
appeared once over the simulation period.

The accumulated age is defined as the sum of the time
intervals the edge has existed during the simulation:

accumulatedAge(e) =
n∑

i=0

tpresencei (6)

Its optimum is equal to the total time of the simulation
which means that this element has been active during the
whole simulation period.

The optimum value of the volatility of an element tends
to zero, which indicates that it has been active for a long
period while appearing only few times. The volatility of a
network is thus the sum of the volatility of all edges.

6. EXPERIMENTAL SETUP
This section first presents the parameters used for the sim-

ulations and then provides a short description of the third
mobility model used for comparison, i.e. the random move-
ment.

6.1 Simulation environment
The simulation environment is a custom-made simulator

based on a the Graphstream dynamic graph library [17].

Parameter name Parameter value
Simulation area
L 2000
l 1000
Lcell 20

UAV Autopilot
Speed [0 .. 10]
Acceleration [−1 .. 1]
Heading Change [0 .. 0.2]
Decision Frequency 30
Wireless range 400

Experiments
Mobility models Rand., Pheromone, KHOPCA
KHOPCA probabilities 0.05, 0.1, 0.2
# of UAVs [10, 20, 30, 40, 50]
# of runs per experiment 30

Table 1: Main simulation parameters

Both the networking and UAV physical models are there-
fore simplified, i.e. respectively considering idealistic com-
munication conditions (no collision, interferences, unlimited
bandwidth) and no realistic physical quadcopter model. How-
ever these already permit to provide a fast and sufficiently
accurate evaluation of the different mobility models. The
different parameters are presented in Table 1 and described
following in detail. A snapshot of one simulation of the
KHOPCA-based model with 20 UAVs is presented in Fig-
ure 2, in which the orange nodes are the clusterheads and
the green nodes the cluster members with their respective
state value s. Shaded cells represent the pheromone traces
and lines represent the ad hoc communication links.

6.1.1 The Area
The simulated surveillance area is a rectangle with a long

side L=2000 and a shorter side l=1000, discretised into
square-shaped cells of side Lcell=20. The total grid is thus
composed of 100 x 50 = 5000 cells. The smaller the cells the
more precise the simulation but also the more computation-
ally demanding.

6.1.2 Autopilot
The autopilot mimics a simple quad-copter UAV behaviour.

It only requires the definition of a destination to operate, i.e.
the heading of the aircraft is automatically set as well as its
speed in the range [0,10]. The current destination is modi-
fied every 30 time-steps in order to reduce the computational
cost as in [20]. In case the UAV is far from its destination,
the autopilot instantly modifies the heading to align with it
and then proceeds in a straight line. The main parameters
related to the flight behaviour of the UAVs are shown in
Table 1.

6.1.3 Simulation parameters
Each mobility model has been evaluated with five different

UAV densities, i.e. 10, 20, 30, 40 and 50, with a wireless
transmission range fixed at 400. Since all mobility models
are stochastic, each experiment was repeated 30 times to
obtain statistically significant results. All metrics results
thus correspond to the average value obtained during the
simulation, averaged over 30 runs.
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6.2 Compared mobility models
The performance of the KHOPCA-based mobility model

is compared to two other models: the pheromone-based mo-
bility model described in section 4.1 and the random mobil-
ity model briefly described below.

6.2.1 Random mobility model
The random mobility model chooses, at each decision step,

a direction at random between three possibilities: front, left
or right with probabilities 60%, 20% and 20% respectively
as in [12]. The autopilot then computes a corresponding
destination point that can be reached by the UAV.

7. EXPERIMENTAL RESULTS
This section presents the evaluation and comparison of

the different mobility models using the metrics presented in
section 5.

7.1 Percentage of scanned cells
This first analysis on the percentage of scanned cells out-

lines the poor performance of the random model for all net-
work densities. This indicates that already visited cells are
revisited by other UAVs. The probability of the KHOPCA-
based model has some influence, a high probability induc-
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ing a lower percentage of scanned cells. This demonstrates
the conflict between maximizing the stability of the network
structure and maximizing the area coverage. However, the
probability provides some control, since the probability of
0.05 performs best for KHOPCA and the worst is reached
with a probability of 0.2. The pheromone-based model is the
overall best, but the difference with KHOPCA 0.5 ranges
only between 0.3% and 4.8% from the 10 to 50 UAVs.

7.2 Exhaustivity of the coverage
The percentage of never scanned cells is presented in Fig-

ure 4. It obviously appears that the random mobility model
performs much worse that all other models. Indeed, with
random movement the percentage of never scanned cells
ranges between 23.5% and 13.9%, while other models are
close to 0% for any other model, i.e. close to a complete
scan of the surveillance area. The KHOPCA-based models
have slightly worse results than the pheromone-based model,
but this difference is almost negligible.

7.3 Fairness of the coverage
The fairness of the coverage is presented in Figure 5. Sim-

ilarly, the random mobility model performs very poorly for
all UAVs densities. The other mobility models perform sim-
ilarly with 10 UAVS, but for higher densities the KHOPCA-
based models provide a fairer exploration of the area. This
indicates that the addition of the clustering algorithm to the
pheromone-based model allows to more uniformly scan the
area while maintaining a higher connectivity.

7.4 Connectivity
The number of connected components is illustrated in Fig-

ure 6. With 10 UAVs the KHOPCA-based mobility model
with the highest probability provides the best result, i.e. it
permits to maintain a high network connectivity in a sparse
network. Between 20 and 40 UAVs, the random mobility
model has the best result. The pheromone-based model that
performs the worst with the sparse network obtains the best
result in the densest case, i.e. 50 UAVs. It can also be no-
ticed that for sparse to medium densities, the probability of
the KHOPCA-based model allows to control the connectiv-
ity, a high probability ensuring a low number of connected
components.
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7.5 Stability
Figure 7 illustrates the stability results. Similarly, the the

probability of the KHOPCA-based model permits to control
the stability. A high probability ensures a better stability
(i.e. a lower value). The addition of the clustering to the
pheromone-based model allows to improve the stability in
all cases. However, quite surprisingly, the random model
performs pretty well, providing the second best results after
the KHOPCA-based model with the highest probability.

7.6 Volatility
Regarding the volatility presented in Figure 8, it is also

improved by the KHOPCA-based model compared to the
pheromone-based model. This means that the connections
between UAVs are preserved for longer times and also ap-
pear/disappear less often, which is a desirable property in
a multi-level UAV swarm system. Finally, the KHOPCA-
based model probability again allows to control this value,
a high probability providing a low volatility.

7.7 Summary
This experimental validation has demonstrated the ability

of the KHOPCA-based mobility model to efficiently handle
the trade-off between maintaining a stable network struc-
ture and covering a large area. Indeed, the different metrics
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outline that the high increase in the network stability neg-
atively impacts the area coverage only to a limited extent,
especially for low probabilities, and even positively for the
fairness of coverage. Finally, the probability provides control
on the mobility model focus, a high probability favouring the
network connectivity.

8. CONCLUSIONS
This article proposed a novel mobility model for multi-

level UAV swarms for area surveillance. In this prelimi-
nary work, the focus is put on the low-level UAV swarm,
with a model that combines a state-of-the-art pheromone-
based mobility model with the KHOPCA clustering algo-
rithm. Each UAV chooses its destination with some proba-
bility between its one-hop neighbour with the highest cluster
member value and the area with the least pheromone. With
the objective of using the low-level swarm clusterheads as
bridges to the high-level swarm, this mobility model aims at
efficiently dealing with two conflicting objectives: keeping
a stable UAV network structure while efficiently covering a
wide geographical area. Its performance is evaluated using
a set of quality metrics and compared to two other models
from the literature. Experimental results demonstrated the
ability of the KHOPCA-based model to greatly improve the
network stability with a limited impact on the surveillance
area coverage. Future work will extend the model to the
higher-level swarm by considering its mobility management
to ensure stable inter-level communications.
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