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Abstract. We explain how the recently again discussed N-point Witt,
Virasoro, and affine Lie algebras are genus zero examples of the multi-
point versions of Krichever—Novikov type algebras as introduced and
studied by Schlichenmaier. Using this more general point of view, useful
structural insights and an easier access to calculations can be obtained.
As example, explicit expressions for the three-point situation are given.
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1. Introduction

In the context of genus zero conformal field theory (CFT) the Witt algebra
and its universal central extension, the Virasoro algebra, play an important
role by encoding conformal symmetry [1]. Krichever—Novikov algebras are
higher genus and multi-point analogs of them. For higher genus, but still only
for two points where poles are allowed, some of the algebras were generalised
in 1986 by Krichever and Novikov [18], [19], [20]. In 1990 the author [22], [22],
[24], [25] extended the approach further to the general multi-point case. These
extensions were not straight-forward generalizations. The crucial point was
to introduce a replacement of the graded algebra structure present in the
“classical” case. Krichever and Novikov found that an almost-grading, see
Definition 1, will be enough to allow constructions in representation theory,
like triangular decompositions, highest weight modules, Verma modules and

Partial support by the OPEN scheme of the Fonds National de la Recherche (FNR) with
the project QUANTMOD 013/5707106 is acknowledged.



2 Martin Schlichenmaier

many more thing. In [24], [25] it was realized that a splitting of the set of
points A where poles are allowed into two disjoint non-empty subsets A =
TUO is crucial for introducing an almost-grading. For every such splitting the
corresponding almost-grading was given. Essentially different splittings (not
just corresponding to interchanging I and O) will yield essentially different
almost-gradings. For the general theory (including the classical case) see the
recent monograph [31].

The genus zero but more than two point case was also addressed by
Bremner [3], [4], [5]. Recently, there was again a revived interest in the genus
zero situation multi-point situation. See e.g. work by Cox, Jurisisch, Martins,
and collaborators [6], [7], [8], [9], [15]. In particular, this interest comes from
representation theory and its interpretations in the context of quantization
of (conformal) field theory. In some of these articles the vector field algebras
were called N-Virasoro algebras, affine algebras N-point affine algebras, etc.
Here we like to stress the fact, that these algebras are also examples of genus
zero Krichever—Novikov (KN) type algebras in their multi-point version as
introduced by the current author.

In a recent manuscript [32] I showed this in detail. Furthermore, I give
a common treatment of all these kind of algebras. Taking this interpretation
serious, gives a better understanding of the situation and an easier approach
to calculations. Furthermore, it explains certain properties remarked by the
authors of [7], [9], [15].

In this write-up of a talk presented at the Bialowieza meeting in 2015,
I will report on the results obtained in [32] and add some additional com-
ments. For all proofs and calculations I refer to [32]. For general background
information on Krichever-Novikov type algebras see [31], or the review [30].

Here we will recall the geometric setup for KN type algebras, introduce
the algebras including their almost-grading and triangular decomposition.
Then we determine “all” their central extensions.

The outcome will be that all cocycle classes for the vector field algebra
and the differential operator algebras are geometric and that their universal
central extensions can be explicitly given. The same is done for the current
algebra. In this way multi-point affine algebras are obtained. The Heisen-
berg algebra will be obtained from the function algebra by cocycles which
are multiplicative or equivalently L-invariant, see the definitions below. The
presentation allows an easy access to calculations of structure constants and
cocycle values for these algebras. As an illustration we give explicit results
for the three point genus zero situation.
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2. Classical Algebras

In purely algebraic terms the Virasoro algebra V can be defined in terms of
generators {e,(n € Z),t} and (Lie algebra) relations !

[en,em] = (M —n)epim + %(n?’ —n)8, ™ t, [t,en] =0. (1)

The element ¢ is called the central element.

Without term coming with the central element the algebra is called the
Witt algebra VWW. With respect to W, the algebra V is its universal central
extension.

There are other algebras which are relatives of the Virasoro algebra.
We only recall the definition of the affine algebras [16], [21]. Let g be a
finite-dimensional simple Lie algebra, and g the Cartan—Killing form. For
7 := g ® C[z, 27!] we take the Lie algebra structure

[r®:"y®:"] =1y """, xz,yc€g ,n,mécZ (2)

Now we set § = C ® § as vector space, denote by T® 2 = (0,2 ® 2™) and
t:=(1,0), and take as Lie structure on g

[ ® 2,y ® 2] = [1,y] ® 2 — B(w,y) -nby -, 8 =0. (3)

Indeed, this is a Lie algebra g. It is called the affine Lie algebra associated to
g. Without central term, the algebra is called current or loop algebra.

We remark that all these Lie algebras are infinite dimensional graded
Lie algebra. The grading is given by defining

deg(en) =0, deg(z®z")=mn, deg(t)=0. (4)

3. Geometric Set-up

Even if the results which we present here are dealing with genus zero, for a
deeper understanding of the structure it will be helpful to consider Riemann
surfaces of arbitrary genus. Hence, let ¥, be a compact Riemann surface of
genus g = g(Xy) and A be a finite set of points of ¥, (also called marked
points). Let furthermore A be decomposed into A =TUO, I ={Py,..., Pk}
(in-points) and O = {Qi,...,Qn} (out-points), both non-empty and
disjoint. All points should be pairwise distinct.

15m is the Kronecker delta, which is 1 if n = m, otherwise 0.
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For the case of genus zero with A = {Py, P,,..., Py}, by a fractional
linear transformation (i.e. a complex automorphism of the Riemann sphere).
the point Py can be brought to oo. We obtain

P=a; a€C,i=1,... ,N—1, Py = o0, (5)
with the local coordinates z —a;, i =1,...,N — 1, w = 1/z, at the marked
points. The classical situation is given by

So=8%  I={0}, O={oc}. (6)

4. Geometric realizations of the Krichever—Novikov type
algebras

Let K be the canonical line bundle, i.e. the line bundle over ¥ whose local
sections are the local holomorphic differentials. We consider the tensor power

K* :=K® for A€ Z. (7)

Its sections are the forms of weight A,. For example, for A = —1 we obtain the
local holomorphic vector fields and A = 0 yields the functions. After fixing
a square root L of K (also called theta characteristics, or spin structure)
we can even consider half-integer A powers. For higher genus g we have a
finite number of choices. But for ¢ = 0 there is only one square-root, the
tautological bundle U. In this presentation we ignore the half-forms (e.g. the
supercase).

Next we set

FX = FMA) := {fis a global meromorphic section of K™ |
such that f is holomorphic over 3\ A}. (8)

These are infinite dimensional vector spaces, their elements are called mero-
morphic forms of weight A\. We sum over all A\ € Z (respectively € 1/27Z)

}'::@]—')‘. (9)

AEZ
An associative structure
G FAXFY o P (10)
is defined in terms of local representing meromorphic functions
(sdz* tdz") = sdz™ - tdz" = s-t dz . (11)

This makes F to an associative and commutative graded algebra. Note that
A := FY is a subalgebra and that the F* are modules over A.
Next we define a Lie algebra structure

FAx FV — FAvHL (s,t) = [s,1], (12)
in local representatives of the sections as
dt ds

(sd2* tdz") = [sdz, td2"] == ((—)x)sdz + thz) d L (13)
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The space F with [,,.] is a Lie algebra and with respect to - and [.,.] it is
a Poisson algebra. Obviously, £ := F~! is a Lie subalgebra (the algebra of
vector fields), and the F*’s are Lie modules over L.

The subspace F* @ F~1 = A® L =: D! is also a Lie subalgebra of F.
It is the Lie algebra of differential operators of degree < 1

Finally, we define the (generalized) current algebra as follows. We fix an
arbitrary finite-dimensional complex Lie algebra g. The generalized current
algebra is defined as g = g ®c¢ A with the Lie product

[t® fiy®gl=[z,y|® f-g, r,ycg, fgeA (14)

All the above algebras consists of meromorphic objects defined over com-
pact Riemann surfaces. We call them Krichever—Novikov (KN) type algebras.
The classical algebras of Section 2 are obtained for the classical geometric
situation (6)

5. Almost-graded structure

In the classical situation the introduced algebras are graded algebras. In the
higher genus case and even in the genus zero case with more than two points
where poles are allowed there is no non-trivial grading anymore. As realized
by Krichever and Novikov [18] there is a weaker concept, an almost-grading,
which to a large extend is a valuable replacement of a honest grading. As
shown in [24] such an almost-grading is induced by a splitting of the set A
into two non-empty and disjoint sets I and O.

Definition 1. Let £ be a Lie or an associative algebra such that
E == @nezcn (15)

is a vector space direct sum, then L is called an almost-graded (Lie-) algebra
if
(i) dim £,, < o0,
(ii) There exists constants L, Ly € Z such that
n+m+Lo
Ly LnC @ L, VYnmel
h=n+m—1L4

The elements in £,, are called homogeneous elements of degree n, and L, is
called homogeneous subspace of degree n.

In a similar manner almost-graded modules over almost-graded algebras
are defined. In [24], see also [31], an almost-grading for F* is introduced by
exhibiting certain elements f,?)p € F», p=1,..., K which constitute a basis
of a subspace F; of homogeneous elements of degree n.

For the current presentation the details are not of importance. We only
note that the basis element f1’>7,\,p of degree n fulfills

ordp,(f2 )=(Mn+1-N) -6, Pel i=1,.. K, (16)

n,p
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and that there are certain prescriptions at the points in O such that the
element f,i‘m is essentially unique. In the next section we will give the elements
for genus zero explicitly.

But here a warning is in order: The decomposition (and hence the
almost-grading) depends on the splitting of A into T U O.

6. Genus zero — standard splitting
Now we return to the genus zero case. We take the standard splitting:
I:{Pl,PQ,...,PNfl}, O:{OO}, (17)

and have K = N — 1. It is enough to construct a basis {A4,, ,} of A, as then
]-'7;\ = A, _\dz*, with ffip = An,Aypdz/\. We set forn € Z

K
An,P(Z) = (Z - ap)n : H(Z - ai)nJrl ’ a(p)n+1’ p=1...,K. (18)

7
Here a(p) is a normalization factor such that in the local coordinate (z —a,)
Anp(z) = (2= ap)"(1+ O0(z — ap)) - (19)

The order at oo is automatically fixed as —(Kn+ K —1). For the vector fields
we take

_ d
Cnp = ny;zAnHyp@, p=1,....K. (20)
The above algebras are almost-graded algebras. In fact,
FP=@7F, with dnF), =K, (21)
meZ

and there exist Ry, Ry (independent of n and m) such that

n+m+Ry n+m+Ra
A An C D Av, LalulS D Ln (22)
h=n+m h=n+m

For genus zero and the standard splitting we have

0 N2 0, N=2,
R =< N Ry=<¢1, N =3, (23)
1, N>2,
2, N>3.

An important consequence of the almost-grading (not only in genus zero) is
the existence of a triangular decomposition U = U|_j & Ug) & U[4) with

m=0
Ui =P Un, U= @B Un, U= P Un.  (24)
m>0 m=—R; m<—R;
Here U[,) and U|_j are subalgebras, whereas Ug) is only a subspace. Such a
triangular decomposition is of relevance for the construction of highest weight
representation.
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Another basis. Our algebra 4 can also be given as the algebra
A=Cl(z—a1),(z —a1) (z—ax)™ ..., (z —an_1)" 1], (25)
with the obvious relations. If we set A% := (z — a;)™, then
AD neZ i=1,...,N—-1 (26)
is a generating set of A. A basis is given e.g. by
AD nez, AY neN, i=2,... N-1. (27)

RN
But this basis does not define an almost-graded structure.

7. Central extensions

Next we want to introduce central extensions of our algebras. The following
is also valid in arbitrary genus.

Let C; be positively oriented (deformed) circles on the Riemann surface
Y4 around the points P;in I,i=1,..., K, and C]’»‘ positively oriented circles
around the points Q; in O, j = 1,...,M. A cycle Cs on X, is called a
separating cycle if it is smooth, positively oriented of multiplicity one and if
it separates the in-points from the out-points.

In the following we will integrate over closed curves C' meromorphic
differentials on ¥, without poles in X, \ A. In this context integration over
C and (' give the same value if [C] = [C'] in H1(X, \ A, Z). Moreover,

K M
[Cs] =Y _[Ci] == _[C]] (28)
i=1 j=1
Given such a separating cycle Cs (respectively cycle class) we define the
linear form
Fl =, wr—>i/ w. (29)
27 Jeog
This integration corresponds to calculating residues

1
w res
27 g P

A central extension of a Lie algebra U is defined on the vector space
direct sum U = C U (% := (0,2), ¢t := (1,0))

B9 = [ty + ®(x,y) -1, [LU] =0, xyeU, (31)

M:

resqg, (w). (30)
=1

with a bilinear form ® on U. Recall that U will be a Lie algebra, if and only
if ® is antisymmetric and fulfills the Lie algebra 2-cocycle condition for all
T,y,z €U

0=do®(z,y,2) = ®([z,y],2) + D([y, 2], ) + ([2, 2], y). (32)
A 2-cocycles ® is a coboundary if there exists a ¢ : Y — C such that
O(z,y) = did(z,y) = ¢([z, y)). (33)
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It is well-known that the second Lie algebra cohomology H?(U, C) of U with
values in the trivial module C classifies equivalence classes of central exten-
sions.

A Lie algebra U is called perfect if [U,U] = U. Perfect Lie algebras
admit universal central extensions.

8. Local and bounded cocycles

In the previous section we considered all central extensions. Now we are
heading towards central extensions which are “compatible” with the almost-
grading.

Definition 2. (a) Let v be a 2-cocycle for the almost-graded Lie algebra U,
then ~y is called a local cocycle if 3T, T5 such that

Y Upn Up) #0 = To <n+m <Tj. (34)
(b) A 2-cocycle + is called bounded (from above) if 377 such that
YUp Up) 0 = n+m < T. (35)

(c) A cocycle class [y] is called a local (bounded) cohomology class if and only
if it admits a representing cocycle which is local (respectively bounded).

Note that e.g. in a local cocycle class not all representing cocycles are
local. Obviously, the set of local (or bounded) cocycles is a subspace of all
cocycles. Moreover, the set H? (U, C) (respectively HZ(U, C)) of local (re-
spectively bounded) cohomology classes is a subspace of the full cohomology
space.

In [27] and [28] I classified all bounded and local cocycles for the KN
type algebras.

A cocycle v : U x U — C is called a geometric cocycle if there is a
bilinear map 7 : U x U — F*', such that v is the composition of 7 with an
integration, i.e.

Pp— 1 ~
V=re= g |7 (36)
with C' a curve on X, \ A.
Given 7 only the class of C' in Hy (X, \ 4,C) plays a role. Recall that

2 A=N=0,1
dimH; (5, \ 4,C) ={ -7 i o (37)
29+ (N—-1), #A=N>2.
In particular, for genus zero and N > 1 we have
dimH;(3p \ A4,C) = (N —1). (38)
In this case a basis is e.g. given by circles C; around the points P;, where we
leave out one of them. For example [C;], i =1,..., N — 1 will do. But there

might be a more convenient choice, e.g. for the standard splitting we take
[Cs] = —[Cx] and [C;], i =1,...,N — 2.
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9. Main results

The results presented in this section are valid for genus zero and the multi-
point situation. In this situation the algebras are sometimes called N-Virasoro
algebra or N-point ~-algebras.

The results presented here (and some more) are obtained in [32]. There
also the proofs can be found. Here I only give the results and the basic
strategy employed.

1. We show that all cocycle classes are bounded cocycle classes with respect
to the almost-grading induced by the standard splitting,

2. Next, the classification result of bounded cocycle classes [27], [28] of the
author is used which gives a complete classification and explicit expressions
by integrals over curves

3. In particular, in genus zero our cocycles classes are geometric cocycles
classes with respect to certain explicitly given one-forms

4. In genus zero the geometric cocycles can be obtained via integration over
circles around the points in I, or alternatively around oo and hence can be
calculate via residues

5. In case that the Lie algebra is perfect the universal central extension can
directly be given.

9.1. Function algebra — Heisenberg algebra

The function algebra is abelian, hence there are too many Lie algebra cocy-
cles. For the above classification we have to restrict ourselves to the following
naturally be given cocycle classes

e A cocycle v is called L-invariant if and only if

Ve f,9)+(fe.9)=0, fgeA el (39)
e A cocycle 7 is called multiplicative if
v(fg,h) +(gh, f) +~(hf,g) =0,  f.g,h€A (40)

Theorem 3. [32] If one of the above properties is fulfilled then it is a geometric
cocycle. It is linear combination of

v{‘(f,g)z;m/afdgzresaxfdg), i=1. . N-1 (41

The cocycle is bounded from above with respect to the almost-grading given
by the standard splitting.

As one can show that the cocycles of the type (41) are both L-invariant and
multiplicative, we obtain that every L-invariant cocycle is multiplicative and
vice versa.

The unique cocycle (up to scaling) of this type which is local with respect
to the standard splitting is obtained as the sum of the %A, i=1,...,N—1,
or alternatively as v2 [27].

In the two point situation we obtain

Y(An, Am) = - (—n)- 6" (42)

m
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The Heisenberg algebra is a central extension of the function algebra ob-
tained via such a cocycle. This could be either the local one or the “full”
one (depending on the convention one is using). For the full one the center
is (N — 1)-dimensional. Of course, the function algebra does not have a uni-
versal central extension, but the full Heisenberg algebra might be some kind
of substitute.

9.2. Vector field algebra

Theorem 4. [32] FEvery cocycle class is geometric and given by

vnted) = o [Gler” =" Rlef — iz, (13)
C

" 2mi

where R is a projective connection.

We do no repeat the definition of a projective connection here, as for
our coordinates we can take R = 0. The strategy explained above yields that
H2(L,C) is (N —1)-dimensional and is generated by integrating (43) over the
C;. Furthermore, these cocycles generate the universal central extension.

By different techniques Skryabin [33] has shown the existence of a uni-
versal central extension for arbitrary genus.

9.3. Differential operator algebra

Also here the main result is that all cocycle classes are geometric. The L-
invariant cocycles for A and arbitrary cocycles for £ define two cocycle types
for D'. But there is a another type, called mixing cocycles

1

W(CmT)(e,g) = — [ (eg” + Teg')dz, e€ L, ge A, (44)
’ 27T1 e}

Here T is an affine connection. As it can be taken to be zero on the affine

part we do not repeat its definition here.

Theorem 5. [32] All cocycle classes are geometric and are linear combinations
of the introduced three types. The Lie algebra D' is perfect and the universal
central extension has a 3- (N — 1) dimensional center.

9.4. Current algebra

Recall that the current algebra g is defined with respect to a finite dimensional
Lie algebra g . For the classification results we assume that g is simple. Let £
be the Cartan—Killing form, then we show [32] that all cocycles are geometric
and cohomologous to (with C' an arbitrary curve)

Belw fyeg) = B) A() = ) 5 [ fag. )

As g is perfect, it admits a universal central extension which has a (N — 1)-
dimensional center which can be explicitly given. If we consider only central
extensions which admit an extension of the almost-grading (e.g. with respect
to the standard splitting) we obtain that this central extension class is unique
[28].
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The author has also corresponding results for the general reductive case.
Furthermore, the superalgebra could be treated in the same manner [29].

10. Three-point algebras

The case of only three points where poles are allowed is to a certain extend
special as we have additional symmetries. These symmetries can be used to
simplify the calculations of structure constants even further. Additionally,
the three-point case plays a role in quite a number of applications. See e.g.
the tetrahedron algebra appearing in statistical mechanics, in particular the
work of Terwilliger and collaborators [13], [2], [14]. See also Kazhdan and
Lusztig [17]. For applications to deformations of Lie algebras see also [26],
[10], [11], [12].

By a fractional linear transformation, respectively by a PGL(2) action,
the three points can be brought to the points 0,1 and co. After having fixed
A ={0,1,00}, by applying an automorphism from the remaining symmetry
group, we obtain the situation

A=1U0, I:={0,1}, and O := {oc0}. (46)
This we will consider here. We will “symmetrize” and “anti-symmetrize” our
basis elements (18)
Ap(z):=2"(z=1)", Bp(z):=2"(z=-1)"(2z-1). (47)
The structure equations read as
An ' Am = An+m7
An : B?n = Bn-‘rmy (48)
B, B, = An+m + 4An+m+1~
The space of cocycles is two-dimensional. First we take the residues around
oo and get for the cocycle values

YA (A, Ap) = 2067,
5 (Ans Bn) = 0, (49)
Y2 (B, Bim) = 200, +4(2n + 1) 5,771 .
Then around 0 and get
'764(AnvAm) =-nd,",
Y (Ap, Bpm) =n o + 206,77t

= . 2k — 3)!! .
—1 k—12k ( 6—n—k

Y (Bp, Bym) = —nd;" —2(2n +1) 6, L.

We see that the cocycle v is local but 754 is not. This is in accordance to
the uniqueness result of [27].
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Next we come to the vector field algebra. The basis is given by
d
e
This yields the structure equations
[ens €m] = (M — 1) frtn,
[en, fm] = (m —n) enin + (4(m — n) + 2) €npmt1, (52)
[frs fm] = (M = n) frngn +4(m —n) frimt1.

Its universal central extension is two-dimensional, and as above obtained by
calculating residues of (43) at oo and 0:

’)/(')C(&f) = 1/2res0(e. f”’ _ f'em)dz

d
fni=Bpy1—, nEZ. (51)

en = Ant1 dz

P (e ) = 1/2resace- £ = 1), o
We get at oo:
YE (enyem) = 2(n —n) 6" + 4n(n +1)(2n + 1)5, "1
V5o (€ns fm) = 0, (54)
YE (fuy fn) = 2(n® —n) 5,7 + 8n(n + 1)(2n 4 1)5,,"
+8(n+1)(2n+ 1)(2n + 3)5,," 2,
and at 0:
V& (enyem) = —(n® —n) 6™ — 2n(n +1)(2n + 1)5,, "}
V& (ny frn) = (0> —n) 6, + 6n%(n +1)5," " + 6n(n + 1)25,." 2
+ n(n+1)(n+k—1)(-1)k2" 3. WW”“ (55)

k>3
’Yoﬂ(fna fm) = _( - n) 5?’:Ln - 4"(” + 1)(2TL + 1)5771?171
—4(n+1)(2n+1)(2n + 3)5,," 2.

In accordance with the results in [27] 74 is local, but 7§ is not.

The principal picture should be clear now. For the corresponding results
for the differential operator algebra and the Lie superalgebra I refer to [32].
Also there (in Appendix B.), the universal central extension for the sl(2,C)
current algebra is given.
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