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Abstract. By using Lyapunov conditions, weak Poincaré inequalities are established for
some probability measures on a manifold (M, g). These results are further applied to
the convolution of two probability measures on Rd. Along with explicit results we study
concrete examples.

1 Introduction

During the last decades, a lot of attention has been devoted to the study of ergodic theory

for Markov processes. Specifically a lot of effort has been made on the stability speed for the

corresponding Markov processes (see e.g. [1, 8, 9, 10, 12]). From this former work, functional

inequalities of Dirichlet forms play important roles in characterizing the convergence speed of

ergodic Markov processes. For instance, Poincaré inequalities imply the exponential ergodic

speed of Markov processes; super Poincaré inequalities imply the strong ergodicity of the cor-

responding processes; weak Poincaré inequalities are used to characterize the non-exponential

convergence rate for semigroup (see [12] for details).

However, to establish a functional inequality, we always need the coefficients of the generator

to satisfy some regularity conditions. To deal with generators with less regular or less explicit

coefficients, an efficient way is to regard the measures as perturbations from better ones, which

satisfy the underlying functional inequalities. The convolution probability measure, in the sense

of an independent sum of random variables, can be regarded as a kind of perturbation; see

e.g. [5, 14] and references therein. Moveover, the study of functional inequalities for convo-

lution probability measures is helpful in describing some behaviors of random variables under

independent perturbations, see e.g. [14, Section 3] for an application to the study of random

matrices.

Recently, F.-Y. Wang and J. Wang [13] gave some sufficient conditions for log-Sobolev/

Poincaré/ super Poincaré inequalities for convolution probability measures. The present article

is thus a continuation of [13] to study weak Poincaré inequalities for the convolution probability

measures.

Before moving on, let us briefly review some background about the weak Poincaré inequality.

The weak Poincaré inequality was first introduced in [11] to characterize the non-exponential
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convergence rate of Markov processes and the concentration of measure phenomenon for sub-

exponential laws (see [2]). Let (M, g) be a d-dimensional complete connected Riemannian man-

ifold and dx be the volume measure. For a probability measure µ(dx) := e−V (x) dx with some

locally bounded function V on M , we say that µ satisfies the weak Poincaré inequality if

‖f‖2 ≤ α(r)µ(|∇f |2) + rOsc2(f), r > 0, f ∈ C2
b (M) (1.1)

holds for some decreasing function α : [0,∞)→ (0,∞), where ‖ · ‖ denotes the L2(µ)-norm and

Osc(f) := supx,y∈M |f(x)− f(y)|. Indeed, the function α can be estimated by using the growth

of |V | (see [11, 12]). However, in general, the resulting estimate of the rate function is less sharp.

Therefore, in Section 2, we will revisit this problem on Riemannian manifolds by using some

Lyapunov conditions.

As an application of the results in Section 2, we consider the weak Poincaré inequality for

convolution probability measures on Rd. Let µ and ν be two probability measures on Rd. The

perturbation of µ by the probability measure ν is given by their convolution

(ν ∗ µ)(A) :=

∫∫
Rd×Rd

1A(x+ y)µ(dx)ν(dy),

where A ∈ B(Rd). In particular, let µ(dx) = e−V (x) dx be a probability measure on Rd such

that V ∈ C1(Rd) and ν be a probability measure on Rd such that

pν(·) :=

∫
e−V (·−z) ν(dz) ∈ C1(Rd). (1.2)

Then

(µ ∗ ν)(dx) = pν(x) dx = e−Vν(x) dx, (1.3)

where Vν(x) := − log pν(x). Let Lν = ∆ − ∇Vν , which is the generator associated with some

independent sum of two Markov diffusion processes with invariant measures µ and ν, respectively.

This article aims to prove that the measure µ ∗ ν satisfies (1.1) for some explicit function α,

which characterizes the explicit L2-ergodic speed of some diffusion generated by Lν . Actually,

the existence of weak Poincaré inequalities for µ ∗ ν holds automatically due to the positivity of

the density e−Vν(x) (see [11]). So the main topic of this article is to find an explicit function α

in the weak Poincaré inequality.

Our method is based on the use of Lyapunov type conditions. These conditions are well

known to furnish some results on the long time behavior of the laws of Markov processes (see

e.g. [1, 4, 8, 9, 10, 13] and references therein). In the recent work [13], the authors partly use

Lyapunov conditions to study ordinary or super Poincaré inequality for convolution probability

measures. As announced, the present paper is thus a complement of [13] for the study of the

weak Poincaré inequality. The main idea of the use of a Lyapunov function is similar to [13] and

in the present work, however we have to face some technical difficulties when choosing suitable

Lyapunov functions and handling the “local term” in the proof of Theorem 2.1 below. It is

worthy to mentioning that a new and reasonable Lyapunov function, constructed for establishing
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weak Poincaré inequalities, can also be applied to improving some results obtained in [13] for

the super Poincaré inequality. In addition we will use a comparison method to simplify the

assumptions in general results, and then give some concrete examples as applications.

The parts of the paper are organized as follows. In the following section, we study the weak

Poincaré inequality by Lyapunov conditions and the comparison theorem for some probability

measures on Riemannian manifolds. In Section 3, we apply results in Section 2 to convolution

probability measures on Rd. Some explicit examples are studied in Section 4.

2 Weak Poincaré inequality on manifolds via Lyapunov condi-
tions

We organize this section by first introducing main results and then giving proofs.

2.1 Main results

Let (M, g) be a d-dimensional complete connected Riemannian manifold. Let ∇ and ∆ be the

Levi-Civita connection and the Laplacian associated with g, respectively. Consider the elliptic

operator L = ∆ − ∇V for V ∈ C1(M) such that µ(dx) := e−V (x) dx is a probability measure,

where dx is the Riemannian volume measure.

Given o ∈ M . For any x ∈ M , let ρo(x) be the Riemannian distance on M between x and

o and Cuto be the set of cut-locus points of o which is closed and has volume zero. Define ϕ(s)

to be the continuous version of

inf
ρo(x)=s, x/∈Cuto

(〈∇V (x),∇ρo(x)〉 −∆ρo(x))

for s ≥ 0. We now introduce the main results about weak Poincaré inequalities for µ via

Lyapunov conditions.

Theorem 2.1. Let µ(dx) = e−V (x) dx be a probability measure on M for some V ∈ C1(M).

(a) Assume that for some constant R0 and any σ ∈ (0, 1), one has

θ(r) :=
(1− σ)ϕ(r) exp

[
σ
∫ r
R0
ϕ(u) du

]∫ r
R0

exp
[
σ
∫ s
R0
ϕ(u) du

]
ds+ 1

> 0, r ≥ R0.

Let

φ(x) = θ(ρo(x) ∨R0), x ∈M. (2.1)

Then µ satisfies the weak Poincaré inequality with α(r) := cF−1φ (r) for some positive

constant c, where Fφ(r) := µ(φ ≤ 1
r ) and F−1φ (r) = inf{s : Fφ(s) ≤ r}.

(b) Let V ∈ C2(M) such that for some positive constants R0 and δ ∈ (0, 1), there exists some

positive function φ on M such that

φ(x) = (1− δ)(δ|∇V |2(x)−∆V (x)) > 0, ρo(x) ≥ R0.
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Then µ satisfies the weak Poincaré inequality with α(r) := cF−1φ (r) for some positive

constant c.

Remark 2.2. (i) In Theorem 2.1 (a), it is easy to see that a different σ ∈ (0, 1) does not

affect the sign of θ. But suitable choosing of σ seems to get the best α in the weak Poincaré

inequality; see the proof of Example 4.3 for more explanations.

(ii) In the proof of this theorem, we use two ways to construct Lyapunov functions, the first is

new and the second is due to [13]. Our new Lyapunov function can improve the result in

[13, Theroem 4.1(a)] for the super Poincaré inequality of convolution probability measures

on Rd, see Remark 3.2 for details.

We now assume that (M, g) satisfies the following curvature condition:

Assumption (A) : Ric≥ −(d−1)k for some constant k, where Ric is the Ricci curvature tensor

with respect to g.

Let

hk(r) =


sin(
√
−kr)/

√
−k, if k < 0;

r, if k = 0;

sinh(
√
kr)/
√
k, if k > 0.

Under assumption (A), we can use the following comparison theorem to handle ∆ρo (see [5,

Section 1]):

∆ρo ≤
(d− 1)h′k(ρo)

hk(ρo)

outside the cut-locus. Then, the following corollary can be proved by a similar discussion as in

Theorem 2.1.

Corollary 2.3. Let µ(dx) = e−V (ρo(x)) dx be a probability measure on M for some function

V ∈ C1(R+). Suppose that assumption (A) holds, then we have the following two assertions.

(a) Assume that for some positive constant R0 and any σ ∈ (0, 1), one has

θ(r) :=
(1− σ)hk(r)

1−dV ′(r) eσV (r)∫ r
R0
hk(s)1−d eσV (s) ds+ 1

> 0, r ≥ R0.

Then µ satisfies the weak Poincaré inequality with α(r) := cF−1φ (r) for some positive

constant c, where φ(x) := θ(ρo(x)) for ρo(x) ≥ R0.

(b) Assume that for some positive constants R0 and δ ∈ (0, 1), one has V ∈ C2([R0,∞)) and

θ(r) = (1− δ)
[(
δ −

(d− 1)h′k(r)

hk(r)

)
V ′(r)− V ′′(r)

]
> 0, r ≥ R0. (2.2)

Then µ satisfies a weak Poincaré inequality with α(r) := cF−1φ (r) for some positive constant

c, where φ(x) := θ(ρo(x)) for ρo(x) ≥ R0.
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2.2 Proofs

Let L be a second order elliptic operator. To prove these results above, let us first introduce the

following general Lyapunov condition with respect to L (see [7, Subsection 3.3]).

Hypothesis (L) There exist some positive constants b, r0, some positive function φ on M and

function W ∈ D(L) with W ≥ 1 such that

LW

W
≤ −φ+ b1Br0 , (2.3)

where D(L) is the weak domain of L and Br0 := {x ∈ M : ρo(x) ≤ r0} is the ball with

center o and radius r0.

Our first step is to prove that if hypothesis (L) holds for L = ∆−∇V , then there exists some

function α such that the weak Poincaré inequality holds for µ.

Lemma 2.4. Let µ(dx) = e−V (x) dx be a probability measure on M . Assume the Lyapunov

condition (L) holds for L = ∆−∇V . Then the following weak Poincaré inequality

µ(f2) ≤ c0F−1φ (r)µ(|∇f |2) + rOsc(f)2

holds for some positive constant c0 and Fφ(r) := µ(φ ≤ 1
r ).

Proof. The proof is given by combining [3, Theorem 4.6] with [3, Theorem 2.18]. For the sake

of completeness, we include it here. For any r > 0 and f ∈ C1
b (M) with µ(f) = 0, we have

µ(f2) = inf
c∈R

µ(f − c)2 ≤
∫
{φ>1/r}

(f − f(x0))
2 dµ+

∫
{φ≤1/r}

(f − f(x0))
2 dµ

≤
∫
{φ>1/r}

(f − f(x0))
2 dµ+ µ(φ ≤ 1/r)Osc(f)2

≤ r
∫
φ(f − f(x0))

2 dµ+ µ(φ ≤ 1/r)Osc(f)2

≤ −r
∫
LW

W
(f − f(x0))

2 dµ+ rb

∫
Br0

(f − f(x0))
2 dµ

+ µ(φ ≤ 1/r)Osc(f)2, (2.4)

where x0 ∈M will be specified later. Now we need to estimate the first two terms on the right

hand side of the latter inequality: a global term and a local term. For the global term, by [4,

Lemma 2.12], we have

−
∫
LW

W
(f − f(x0))

2 dµ ≤
∫
|∇f |2 dµ. (2.5)

For the local one, choose x0 ∈M such that f(x0) = 1
µ(Br0 )

( ∫
Br0

f dµ
)

and define g = f − f(x0).

Then we obtain∫
Br0

(f − f(x0))
2 dµ =

∫
Br0

g2 dµ ≤ λ−1r0

∫
|∇g|2 dµ+

1

µ(Br0)

(∫
Br0

g dµ

)2
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= λ−1r0 µ(|∇g|2) = λ−1r0 µ(|∇f |2), (2.6)

where by [12, (4.3.5)],

λ−1r0 ≤
4r20
π2

exp

{
sup

x,y∈Br0
(V (x)− V (y))

}
<∞.

Now, taking (2.5) and (2.6) into (2.4), we arrive at

µ(f2) ≤ r(bλ−1r0 + 1)

∫
|∇f |2 dµ+ µ

(
φ ≤ 1

r

)
Osc(f)2. (2.7)

Let

Fφ(r) = µ

(
φ ≤ 1

r

)
.

Then

lim
r→+∞

Fφ(r) = 0

due to the fact that φ is positive and µ is a probability measure on M . From this, we derive

that Fφ : (0,+∞)→ (0, 1) is a decreasing function. Then

α(r) := (bλ−1r0 + 1)F−1φ (r)

is a function from (0,+∞) to (0,+∞) and the weak Poincaré inequality holds for such α. �

Proof of Theorem 2.1. In case (a), let 0 < σ < 1, and define the Lyapunov function by

Wσ(r) =

∫ r

R0

exp

[
σ

∫ s

R0

ϕ(u) du

]
ds+ 1, for all r ≥ R0.

By an approximation argument, we may consider ρo ∈ C2(M) for the sake of conciseness. Then

for all ρo(x) ≥ R0, we have

LWσ(ρo(x))

Wσ(ρo(x))
=

1

Wσ(ρo(x))

[
W ′σ(ρo(x))∆ρo(x) +W ′′σ (ρo(x))|∇ρo(x)|2 −W ′σ(ρo(x)) 〈∇V,∇ρo(x)〉

]
=

1

Wσ(ρo(x))

{
W ′σ(ρo(x))[∆ρo(x)− 〈∇V,∇ρo(x)〉] +W ′′σ (ρo(x))

}
=

1

Wσ(ρo(x))
exp

[
σ

∫ ρo(x)

R0

ϕ(u) du

]
[∆ρo(x)− 〈∇V,∇ρo(x)〉+ σϕ(ρo(x))]

≤ − 1− σ
Wσ(ρo(x))

exp

[
σ

∫ ρo(x)

R0

ϕ(u) du

]
ϕ(ρo(x)).

Thus, there exists a constant b > 0 such that

LWσ(ρo(x))

Wσ(ρo(x))
≤− θ(ρo(x))1{ρo(x)≥R0} + b1{ρo(x)<R0},

which combining with Lemma 2.4 implies Theorem 2.1(a).
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In case (b), we consider a function W in C2(M) such that W (x) = e(1−δ)V (x) for all ρo(x) ≥
R0. It is easy to see that W (x) ≥ 1 for all x ∈M and

LW (x)

W (x)
≤ −(1− δ)(δ|∇V |2 −∆V )(x)1{ρo(x)≥R0} + b1{ρo(x)<R0}

= −φ(x)1{ρo(x)≥R0} + b1{ρo(x)<R0}.

We then complete the proof of (b) by using Lemma 2.4.

Proof of Corollary 2.3. We still consider ρo ∈ C2(M) for the sake of brevity. In case (a), for

σ ∈ (0, 1), define the Lyapunov function by

Wσ(r) =

∫ r

R0

hk(s)
1−d eσV (s) ds+ 1, for all r ≥ R0.

Then using a similar calculation as in the proof of Theorem 3.1(a), we have

LWσ(ρo(x))

Wσ(ρo(x))
≤− (1− σ)hk(ρo(x))1−d eσV (ρo(x)) V ′(ρo(x))

Wσ(ρo(x))

for all ρo(x) ≥ R0. Therefore, there exists a positive constant b such that

LWσ(ρo(x))

Wσ(ρo(x))
≤− θ(ρo(x))1{ρo(x)≥R0} + b1{ρo(x)<R0},

which, together with Lemma 2.4, implies (a).

In case (b), by assumption (2.2), we have that for all ρo(x) ≥ R0,

δ|∇V (ρo(x))|2 −∆V (ρo(x)) = δ|V ′(ρo(x))|2 − V ′(ρo(x))
(d− 1)h′k(ρo(x))

hk(ρo(x))
− V ′′(ρo(x)) > 0.

Combining this with Theorem 2.1(b), we complete the proof of (b).

3 Application to convolution probability measures on Rd

In this section, we first apply the results in Section 2 to the convolution probability measures

on Rd and then give the proofs.

3.1 Main results

For each x ∈ Rd, let

νx(dz) =
1

pν(x)
e−V (x−z) ν(dz).

For any non-increasing function θ : [0,∞)→ (0,∞), let

Hθ(r) = (µ+ ν)

(
|x| ≥ 1

2
θ−1 (1/r)

)
, r > 0. (3.1)

By Theorem 2.1, we have the following first main result.
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Theorem 3.1. Let V ∈ C1(Rd) such that µ(dx) = e−V (x) dx is a probability measure on Rd,

and let ν be another probability measure on Rd such that pν ∈ C1(Rd).

(a) Assume that for some positive constant R0, one has

ψ(s) :=
1

s
inf
|x|=s

∫
Rd
〈∇V (x− z), x〉 νx(dz) > 0, s ≥ R0. (3.2)

Then for any σ ∈ (0, 1), µ ∗ ν satisfies the weak Poincaré inequality with α(r) = cH−1θ (r)

for some positive constant c, where

θ(s) = inf

{
(1− σ)ψ(r)r1−d exp[σ

∫ r
R0
ψ(u) du]∫ r

R0
t1−d exp[σ

∫ t
R0
ψ(u) du] dt+ 1

: r ∈ [R0, s ∨R0]

}
. (3.3)

(b) Let V ∈ C2(Rd) such that for some constant R0 and δ ∈ (0, 1), one has

θ(s) = (1− δ) inf
|x|∈[R0,s∨R0]

∫
Rd

(
δ|∇V (x− z)|2 −∆V (x− z)

)
νx(dz) > 0. (3.4)

Then µ ∗ ν satisfies the weak Poincaré inequality with α(r) = cH−1θ (r) for some positive

constant c.

Remark 3.2. (i) In [13], the authors prove that if the function φ in the Lyapunov condition

satisfies

lim inf
|x|→∞

φ(x) =∞, (3.5)

then there exists a super Poincaré inequality with respect to µ∗ν. Let θ̃(r) = inf |x|≥r∨R0
φ(x).

Then (3.5) holds if and only if limr→∞ θ̃(r) = ∞. Note that in this case, to keep as

much information about φ as possible, it is better for us to choose θ̃(|x|) instead of

θ(|x|) := inf |y|∈[R0,R0∨|x|] φ(y) used in Theorem 3.1 to control φ(x). However, in this

article, we take more consideration of the following case for weak Poincaré inequalities:

lim inf
|x|→∞

φ(x) = 0.

So in the case (3.5), we should refer the reader to [13] for super Poincaré inequalities.

(ii) In the proof of Theorem 3.1 (a), it provides a new and reasonable Lyapunov function such

that [13, Theorem 4.1 (a)] can be improved as follows. Recall that µ satisfies the super

Poincaré inequality with β : (0,∞)→ (0,∞) if

µ(f2) ≤ rµ(|∇f |2) + β(r)µ(|f |)2, r > 0, f ∈ C1
b (Rd).

Theorem A. Let V ∈ C1(Rd) such that µ(dx) = e−V (x) dx is a probability measure on

Rd, and let ν be another probability measure on Rd such that pν ∈ C1(Rd). Let

ξ(r, s) =
(

1 + s−
d
2

) sup|x|≤r e−(
d
2
+1)V (x)

inf |x|≤r e−(
d
2
+2)V (x)

.
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If lim infr→∞ ψ(r) = +∞, where ψ is defined as in (3.2), then µ ∗ ν satisfies the super

Poincaré inequality with

β(r) = c(1 + ξ (γ (2/r) , r/2)) ,

where c is some positive constant and

γ(s) := inf

{
t > 0 : inf

r≥t∨R0

(1− σ)ψ(r)r1−d exp[σ
∫ r
R0
ψ(u) du]∫ r

R0
s1−d exp[σ

∫ s
R0
ψ(u) du] ds+ 1

≥ s

}

for any σ ∈ (0, 1) and some positive constant R0 such that ψ(r) > 0 for all r ≥ R0.

In the following subsection, we will give a brief explanation for the proof of this theorem

and use the example in [13, Theorem 4.4] to show the benefit of this result.

From (3.2) and (3.4), it is easy to see that if the function pν has previous estimates, then

Theorem 3.1 can be simplified as follows.

Theorem 3.3. Let µ(dx) = e−V (x) dx be a probability measure on Rd and ν be another probability

measure on Rd such that pν ∈ C1(Rd). Set

e−Ṽν(s) = inf
|x|=s

∫
Rd

e−V (x−z) ν(dz) and e−V̂ν(s) = sup
|x|=s

∫
Rd

e−V (x−z) ν(dz).

(a) If Ṽν ∈ C1([0,∞)) such that for some positive constant R0 and any σ ∈ (0, 1), one has

θ(s) := inf
r∈[R0,s∨R0]

(1− σ)Ṽ ′ν(r)eσṼν(r)r1−d∫ r
R0
s1−deσṼν(s) ds+ 1

> 0, (3.6)

then µ ∗ ν satisfies the weak Poincaré inequality with

α(r) = c inf

{
sup0≤t<2s eṼν(t)−V̂ν(t)

θ(2s)
: (µ+ ν) (|x| ≥ s) ≤ r, s > 0

}
(3.7)

for some positive constant c.

(b) If Ṽν ∈ C2([0,∞)) such that for some positive constant R0 and δ ∈ (0, 1),

θ(s) := (1− δ) inf
r∈[R0,s∨R0]

[
δ|Ṽ ′ν(r)|2 − Ṽ ′ν(r)

d− 1

r
− Ṽ ′′ν (r)

]
> 0, (3.8)

then µ ∗ ν satisfies the weak Poincaré inequality with α(r) defined as in (3.7) for some

positive constant c.

Next, we shall apply above results to the convolution with compactly supported probability

measures. Note that, if ν is a probability measure with compact support, then the function pν is

obviously differentiable on Rd. Thus, by Theorem 3.1, we obtain the following corollary directly.

Corollary 3.4. Let V ∈ C1(Rd) such that µ(dx) = e−V (x) dx is a probability measure on Rd

and let ν be another probability measure on Rd with R := sup{|z| : z ∈ suppν} <∞.
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(a) Assume that for some positive constant R0 > R, one has

ψ(s) :=
1

s
inf

s−R≤|u|≤R+s
(〈u,∇V (u)〉 −R|∇V (u)|) > 0, s ≥ R0. (3.9)

For any σ ∈ (0, 1), let

θ(s) = inf

{
(1− σ)ψ(r)r1−d exp[σ

∫ r
R0
ψ(u) du]∫ r

R0
(s1−d exp[σ

∫ s
R0
ψ(u) du]) ds+ 1

: r ∈ [R0, s ∨R0]

}
. (3.10)

Then µ ∗ ν satisfies the weak Poincaré inequality with α(r) = cH−1θ (r) for some positive

constant c.

(b) Let V ∈ C2(Rd) such that for some positive constants R0 > R and δ ∈ (0, 1), one has

θ(s) := (1− δ) inf
R0−R≤|u|≤R+s∨R0

(δ|∇V (u)|2 −∆V (u)) > 0. (3.11)

Then µ ∗ ν satisfies the weak Poincaré inequality with α(r) = cH−1θ (r) for some positive

constant c.

Remark 3.5. We remark that in Corollary 3.4, due to the compactness of ν and the mono-

tonicity of θ, there exists a positive constant r0 such that

Hθ(r) = µ

(
|x| ≥ 1

2
θ−1
(
1/r
))

, r ∈ (r0,∞).

By Theorem 3.3, we obtain the following corollary directly.

Corollary 3.6. Let V ∈ C1(Rd) such that µ(dx) = e−V (x) dx is a probability measure on Rd

and let ν be another probability measure on Rd with R := sup{|z| : z ∈ suppν} < ∞. For some

constant R0 > R and any s ≥ R0, let

Ṽ (s) = sup
s−R≤|x|≤R+s

V (x) and V̂ (s) = inf
s−R≤|x|≤R+s

V (x).

Then the assertions in Theorem 3.3(a)(b) still hold by replacing Ṽν and V̂ν with Ṽ and V̂ ,

respectively.

3.2 Proofs

Using Lemma 2.4, we complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let Lν = ∆ − ∇Vν . First, if the Lyapunov condition (L) holds for

Lν with some function φ = θ(| · |), where θ : (0,∞)→ [0,∞) is a non-increasing function, then

we have

µ ∗ ν
(
θ(|x|) ≤ 1

r

)
≤ µ ∗ ν(|x| ≥ θ−1(1/r)) =

∫∫
{|x|≥θ−1(1/r)}

e−V (x−z) ν(dz) dx
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≤
∫∫
{|x−z|≥ 1

2
θ−1(1/r)}

e−V (x−z) ν(dz) dx+

∫∫
{|z|≥ 1

2
θ−1(1/r)}

e−V (x−z) ν(dz) dx

=

∫∫
{|x−z|≥ 1

2
θ−1(1/r)}

e−V (x−z) dx ν(dz) +

∫
{|z|≥ 1

2
θ−1(1/r)}

∫
e−V (x−z) dx ν(dz)

= µ
(
2|x| ≥ θ−1(1/r)

)
+ ν

(
2|z| ≥ θ−1(1/r)

)
= Hθ(r).

Hence, by Lemma 2.4, µ ∗ ν satisfies a weak Poincaré inequality with α(r) = cH−1θ (r) for some

positive constant c. We now turn to construct some suitable Lyapunov functions.

In case (a), define

Wσ(r) =

∫ r

R0

(
s1−d exp

[
σ

∫ s

R0

ψ(u) du
])

ds+ 1, for all r ≥ R0,

where 0 < σ < 1. Then by a similar discussion as in the proof of Corollary 2.3 for k = 0 and

Lν , we have that there exists a constant b > 0 such that

LνWσ(|x|)
Wσ(|x|)

≤−
(1− σ)ψ(|x|)|x|1−d exp

[
σ
∫ |x|
R0
ψ(u) du

]∫ |x|
R0
s1−d exp

[
σ
∫ s
R0
ψ(u) du

]
ds+ 1

1{|x|≥R0} + b1{|x|<R0} (3.12)

≤− θ(|x|)1{|x|≥R0} + b1{|x|<R0}.

In case (b), we consider a smooth function such that W (x) = e(1−δ)Vν(x) for |x| ≥ R0 and

W (x) ≥ 1 for all x ∈ Rd. Using the same argument as in the proof of Theorem 2.1, we have

LνW (x)

W (x)
≤ −(1− δ)(δ|∇Vν |2 −∆Vν)1{|x|≥R0} + b1{|x|<R0}. (3.13)

Moreover, for any |x| ≥ R0,

δ|∇Vν(x)|2 −∆Vν(x) =

∫
Rd

(|∇V (x− z)|2 −∆V (x− z))νx(dz)− (1− δ)|∇Vν(x)|2

≥
∫

Rd
(δ|∇V (x− z)|2 −∆V (x− z))νx(dz)

≥ 1

1− δ
θ(|x|). (3.14)

Combining this with (3.13), we complete the proof of (b). �

Proof of Theorem A. Let

θ(r) =
(1− σ)ψ(r)r1−d exp[σ

∫ r
R0
ψ(u) du]∫ r

R0
s1−d exp[σ

∫ s
R0
ψ(u) du] ds+ 1

.

By (3.12), we know that Lν satisfies

LνWσ(|x|)
Wσ(|x|)

≤ −θ(|x|)1{|x|≥R0} + b1{|x|<R0}.

It is easy to see that if lim infr→∞ ψ(r) = +∞, then lim infr→∞ θ(r) = +∞. Thus by [13,

Lemma 4.2], we complete the proof directly.
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Now we use Theorem A to prove the following result.

Example 3.7. Let V (x) = c + |x|p for some p > 1 and c ∈ R such that µ(dx) := e−V (x) dx is

a probability measure on Rd. Let ν be any compactly supported probability measure. Then there

exists a constant c > 0 such that µ ∗ ν satisfies the super Poincaré inequality with

β(r) = exp(cr
− p

2(p−1) ), r > 0.

Proof. Suppose that ν is supported on {x : |x| ≤ R} for some positive constant R. Then

ψ(s) ≥ 1

s
inf

|x|=s,|z|≤R
〈∇V (x− z), x〉 ≥ p|s−R|p−1s

s+R
. (3.15)

Thus there exists a positive constant R0, for r > R0,

θ(r) =
(1− σ)ψ(r)r1−d exp

[
σ
∫ r
R0
ψ(u) du

]∫ r
R0
s1−d exp

[
σ
∫ s
R0
ψ(u) du

]
ds+ 1

≥ c1r2(p−1)

for some positive constant c1. Thus γ(u) ≤ c2(1+u
1

2(p−1) ), u > 0 holds for some positive constant

c2. Moreover, as explained in the proof of [13, Example 4.4], one has

ξ(r, s) ≤ c3(1 + s−d/2) ec4r
p
, s, r > 0

for some positive constants c3, c4. So the desired assertion follows by using Theorem A.

However, by [13, Theorem 4.1 (a)], it is easy to calculate that µ∗ν satisfies the super Poincaré

inequality with

β(r) = exp(cr
− p
p−1 ), r > 0,

which is less sharp than that presented in this example.

Let us continue with the proofs of main results in Subsection 3.1.

Proof of Theorem 3.3. Let L̃ = ∆ − ∇Ṽν and µ̃(dx) = e−Ṽν(|x|) dx. First, if the Lyapunov

condition (L) holds for L̃ with some function φ(·) = θ(| · |), where θ is a positive and non-

decreasing function on R+, then for any f ∈ C1
b (Rd) with µ(f) = 0 and x0 ∈ Rd such that

f(x0) = 1
µ̃(Br0 )

(
∫
Br0

f dµ̃),

µ ∗ ν(f2) ≤ inf
c∈R

µ ∗ ν(f − c)2

≤
∫
φ>1/s

(f − f(x0))
2 dµ ∗ ν +

∫
φ≤1/s

(f − f(x0))
2 dµ ∗ ν

≤ s
∫
φ>1/s

φ(f − f(x0))
2 dµ ∗ ν + µ ∗ ν (φ ≤ 1/s) Osc(f)2

≤ s sup
φ>1/s

eṼν(|x|)−V̂ν(|x|)
∫
φ(f − f(x0))

2 dµ̃+ µ ∗ ν (φ ≤ 1/s) Osc(f)2

≤ s sup
0≤t<θ−1(1/s)

eṼν(t)−V̂ν(t)
∫
φ(f − f(x0))

2 dµ ∗ ν
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+ (µ+ ν)

(
|x| ≥ 1

2
θ−1 (1/s)

)
Osc(f)2, 1/s > inf θ.

Let r = 1
2θ
−1 (1/s). Then, using a similar argument as in the inequality (2.5) we obtain

µ ∗ ν(f2) ≤
sup0≤t<2r eṼν(t)−V̂ν(t)

θ(2r)

∫
|∇f |2 dµ ∗ ν + (µ+ ν) (|x| ≥ r) Osc(f)2, r > 0.

It follows that µ ∗ ν satisfies a weak Poincaré inequality with

α(s) = c inf

{
sup0≤t<2r eṼν(t)−V̂ν(t)

θ(2r)
: (µ+ ν) (|x| ≥ r) ≤ s, r > 0

}
for some positive constant c. Now it suffices for us to construct some suitable Lyapunov functions.

In case (a), define the Lyapunov function by

Wσ(|x|) =

∫ |x|
R0

s1−d eσṼν(s) ds+ 1, for all |x| ≥ R0.

Then by a similar calculation as in the proof of Corollary 2.3 (a), we have that for all |x| ≥ R0,

there exists a positive constant b such that

L̃Wσ(|x|)
Wσ(|x|)

≤− θ(|x|)1{|x|≥R0} + b1{|x|<R0}.

In case (b), we consider a smooth function such that W (x) = c e(1−δ)Ṽν(|x|) for |x| ≥ R0.

Then,

L̃W (x)

W (x)
≤ −(1− δ)

[
δ|Ṽ ′ν(|x|)|2 − Ṽ ′ν(|x|)d− 1

|x|
− Ṽ ′′ν (|x|)

]
1{|x|≥R0} + b1{|x|<R0}

= −θ(|x|)1{|x|≥R0} + b1{|x|<R0}. �

Proof of Corollary 3.4. In case (a). It is easy to see that∫
Rd
〈x,∇V (x− z)〉 νx(dz)

=

∫
Rd

(
〈x− z,∇V (x− z)〉+ 〈z,∇V (x− z)〉

)
νx(dz)

≥
∫

Rd

(
〈x− z,∇V (x− z)〉 −R|∇V (x− z)|

)
νx(dz)

=

∫
{|z|≤R}

(
〈x− z,∇V (x− z)〉 −R|∇V (x− z)|

)
νx(dz).

Then according to the definitions of ψ, we have that for any s ≥ R0(> R),

inf
|x|=s

∫
Rd
〈x,∇V (x− z)〉 νx(dz)

≥ inf
|x|=s

∫
{|z|≤R}

(〈x− z,∇V (x− z)〉 −R|∇V (x− z)|) νx(dz)

≥ inf
s−R≤|u|≤s+R

(〈u,∇V (u)〉 −R|∇V (u)|)

= sψ(s).
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Then, we complete the proof of (a) due to Theorem 3.1(a).

In case (b). For any s ≥ R0 (> R), we have that for s ≥ R0,

inf
R0≤|x|≤s

∫
Rd

(
δ|∇V |2(x− z)−∆V (x− z)

)
νx(dz)

= inf
R0≤|x|≤s

∫
{|z|≤R}

(
δ|∇V |2(x− z)−∆V (x− z)

)
νx(dz)

≥ inf
(R0−R)≤|u|≤R+s

(
δ|∇V |2(u)−∆V (u)

)
> 0,

which leads to complete the proof by Theorem 3.1(b). �

Proof of Corollary 3.6. The results follow from Theorem 3.3 and the following fact: there

exists constant R0 > R such that for s ≥ R0,

sup
|x|=s

∫
Rd

e−V (x−z) ν(dz) ≤ sup
|x|=s

sup
|z|≤R

e−V (x−z) ≤ sup
s−R≤|u|≤s+R

e−V (u) = e−Ṽ (s);

inf
|x|=s

∫
Rd

e−V (x−z) ν(dz) ≥ inf
|x|=s

inf
|z|≤R

e−V (x−z) ≥ inf
s−R≤|u|≤s+R

e−V (u) = e−V̂ (s) . �

4 Examples

In this section, we present the following examples to illustrate the results obtained in Section

3. As an application of Theorem 3.3, we present below an example where the support of ν is

unbounded and disconnected.

Example 4.1. Let d = 1. For 0 < δ < 1 and p > 0, let V (x) = c+ (1 + x2)
δ
2 and

ν(dz) =
1

γ

∑
i∈Z

δi(dz)

1 + |z|1+p
,

where

c = log

∫
R

e−(1+x
2)
δ
2 dx and γ =

∑
i∈Z

1

1 + |i|1+p
.

Then there exists a positive constant C such that the weak Poincaré inequality for µ ∗ ν holds

with α(s) = Cs−2/p for all s > 0.

Proof. We use Theorem 3.3(a) to give the proof. First we need to estimate pν . It is easy to see

that

pν(x) =
e−c

γ

∑
i∈Z

e−[1+(x−i)2]
δ
2

1 + |i|1+p
=

e−c

γ

∑
k∈Z

e−[1+((x)−k)2]
δ
2

1 + |[x]− k|1+p
,

where x = [x] + (x) and [x] is the integral part of x. Moreover, as

1

2
k2 ≤ 1 + ((x)− k)2 ≤ 2 + k2,

we have

∑
k∈Z

e−(2+k
2)
δ
2

1 + |[x]− k|1+p
≤
∑
k∈Z

e−[1+((x)−k)2]
δ
2

1 + |[x]− k|1+p
≤
∑
k∈Z

e−(
1
2
)
δ
2 kδ

1 + |[x]− k|1+p
. (4.1)
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To deal with the terms on the both sides of the inequality above, we need the following estimates:

|[x]|p+1

1 + |[x]− k|p+1
≤

2p
(
|[x]− k|p+1 + |k|p+1

)
1 + |[x]− k|p+1

≤ 2p
(

1 + |k|p+1
)
.

Using these inequalities and the dominated convergence theorem, we have

lim
|x|→+∞

∑
k∈Z

|[x]|p+1 e−(
1
2
)
δ
2 kδ

1 + |[x]− k|p+1
=
∑
k∈Z

e−(
1
2
)
δ
2 kδ ;

and

lim
|x|→+∞

∑
k∈Z

|[x]|p+1 e−(2+k
2)
δ
2

1 + |[x]− k|p+1
=
∑
k∈Z

e−(2+k
2)
δ
2 .

Combining these with (4.1) yields

pν(x) � 1

|x|1+p
.

Here and in what follows, for any functions f and g, we write “f � g” if there exist positive

constants c1 and c2 such that c2f ≤ g ≤ c1f . It then follows that

V̂ν(s) = Ṽν(s) = log(1 + s)1+p + o(log(1 + s)).

By this and the definition of θ in (3.6), there exists some positive constant R0 such that

θ(s) := inf
r∈[R0,s∨R0]

(1− σ)Ṽ ′ν(r)eσṼν(r)r1−d∫ r
R0
t1−deσṼν(t) dt+ 1

� 1

s2
. (4.2)

Moreover, it is easy to calculate that for large r,

(µ+ ν)(|x| ≥ r) � r−p.

By this and (4.2), we conclude that there exists some positive constant C such that

Hθ(r) ≤ Crp/2,

which completes the proof by Theorem 3.3 (a). �

Example 4.2. Let V (x) = c+ |x|p for some 0 < p < 1, and µ(dx) = e−V (x) dx. Then for any

probability measure ν with R := sup{|z| : z ∈ supp ν} <∞, there exists some positive constant

C such that the weak poincaré inequality for µ ∗ ν holds with

α(s) = C
[
1 + log

(
1 +

1

s

)] 2(1−p)
p

, s > 0.

Proof. a) Method 1. It is easy to see that

inf
|x|=s

(〈∇V (x), x〉 −R|∇V (x)|) = psp−1(s−R).
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Then there exists R0 > R such that for |x| ≥ R0,

inf
|x|−R≤s≤|x|+R

psp−1(s−R) � |x|p.

Thus, we can choose ψ(|x|) := c|x|p−1 and then have that for |x| ≥ R0,

c(1− σ)|x|p−1|x|1−d ecσ|x|
p∫ |x|

R0
u1−d ecσup du+ 1

≥ C |x|
p−d ecσ|x|

p

|x|2−d−p ecσ|x|p
= C|x|2(p−1).

It follows from the definition of θ in (3.10) that

θ(|x|) � |x|2(p−1), for all |x| ≥ R0.

From this, we obtain that for any r > 0,

Hθ(r) = µ
(

2|x| ≥ θ−1(1/r) ∨R0

)
≤ C

∫ ∞
cr

1
2(1−p)

e−u
p
ud−1 du ≤ C e−cr

p
2(1−p)

r
d−p

2(1−p) .

Now using Corollary 3.4 (a), we conclude that there exists some positive constant C such that

α(s) = C
[
1 + log

(
1 +

1

s

)] 2(1−p)
p

.

b) Method 2. It is easy to calculate that for δ > 0 and |x| > 0,

δ|∇V (x)|2 −∆V (x) = δp2|x|2(p−1) − p(d+ p− 2)|x|p−2.

Thus, there exists some constant R0 > 0 such that for all |x| ≥ R0,

inf
|u|≤|x|+R

|u|2(p−1) ≥ (|x|+R)2(p−1).

So the function θ in Corollary 3.4 (b) satisfies

θ(r) � r2(p−1), r ≥ R0.

The rest of the proof is similar by using Corollary 3.4 (b), so we omit it. �

Next, the following examples are to illustrate Corollary 3.6.

Example 4.3. For p > 0, let V (x) = c+ (d+ p) log(1 + |x|). Then for any probability measure

ν with R := sup{|z| : z ∈ supp ν} < ∞, there exists some positive constant C such that µ ∗ ν
satisfies the weak poincaré inequality with

α(s) = Cs
− 2
p , s > 0.

Proof. We use Corollary 3.6 to give the proof. It is easy to see that for s > R,

Ṽ (s) = sup
s−R≤|x|≤R+s

V (x) = c+ (d+ p) log(1 +R+ s),

V̂ (s) = inf
s−R≤|x|≤R+s

V (x) = c+ (d+ p) log(1 + s−R).
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Thus, there exists a positive constant C such that

eṼ (s)−V̂ (s) =
(1 +R+ s)d+p

(1 + s−R)d+p
≤ C, s > R.

Moreover, for σ ∈ (d−2d+p ∨ 0, 1), let θ be in (3.10). Then there exists a positive constant R0 > R

such that

θ(r) =
c(1− σ)(d+ p)(1 +R+ r)σ(d+p)−1r1−d∫ r

R0
(1 +R+ s)σ(d+p)s1−d ds+ 1

≤ c(1 + r)−2, r ≥ R0 (> R).

Therefore, by Corollary 3.6, we obtain the results directly. This result also can be proved in a

similar way by using θ constructed in (3.11) and Corollary 3.6. �

Similarly, we have

Example 4.4. Let p > 1 and V (x) = c+d log(1+|x|)+p log log(e +|x|). Then for any probability

measure ν with R := sup{|z| : z ∈ supp ν} <∞, there exist some positive constants c1, c2 such

that the weak poincaré inequality holds for µ ∗ ν with

α(r) = c1 exp[c2r
−1/(p−1)], r > 0.

Remark 4.5. When ν = δ0, i.e. R = 0, Examples 4.3–4.4 have been treated in [12]. Compared

with the results in [12], the results presented above are more precise. We would like to indicate

that by [12, Corollary 4.2.2 (1)], the α in Example 4.3 implies the exact main order of µ∗ν(|x| >
N) as N → ∞. Hence, using Lyapunov conditions seems to be able to get better convergence

or decay rates for diffusion processes.
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