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Let Lt := Δt + Zt for a C1,1-vector field Z on a differential 
manifold M possibly with a boundary ∂M , where Δt is the 
Laplacian operator induced by a time dependent metric gt
differentiable in t ∈ [0, Tc). In this article, by constructing 
suitable coupling, transportation-cost inequalities on the path 
space of the (reflecting if ∂M �= ∅) diffusion process generated 
by Lt are proved to be equivalent to a new curvature lower 
bound condition and the convexity of the geometric flow 
(i.e., the boundary keeps convex). Some of them are further 
extended to non-convex flows by using conformal changes of 
the flows. As an application, these results are applied to the 
Ricci flow with the umbilic boundary.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this study, we aim to establish transportation-cost inequalities associated with 
the uniform distance, which is on the path space of (reflecting) diffusion processes 
over manifolds carrying a complete geometric flow. More precisely, our base manifold 
is a d-dimensional differential manifold M possibly with boundary ∂M equipped with 
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a family of complete Riemannian metrics (gt)t∈[0,Tc) for some Tc ∈ (0, ∞], which is C1

in t. Let ∇t and Rict be, respectively, the Levi-Civita connection and the Ricci curvature 
tensor associated with the metric gt. For simplicity, we take the notation: for X, Y ∈ TM ,

RZ
t (X,Y ) := Rict(X,Y ) −

〈
∇t

XZt, Y
〉
t
− 1

2∂tgt(X,Y ),

where Zt is a C1,1-vector field and 〈·, ·〉t := gt(·, ·). Define the second fundamental form 
of the boundary with respect to gt by

IIt(X,Y ) = −
〈
∇t

XNt, Y
〉
t
, for all X,Y ∈ T∂M,

where Nt is the inward unit normal vector field of the boundary associated with the 
metric gt and T∂M is the tangent space of ∂M . If IIt ≥ 0 for all t ∈ [0, Tc), i.e., ∂M
keeps convex for all t ∈ [0, Tc), then we call {gt} a convex flow.

Consider the elliptic operator Lt := Δt +Zt on [0, Tc) ×M , where Δt is the Laplacian 
operator with respect to the metric gt and Z is a C1,1-vector field. Let μ ∈ P(M), where 
P(M) is the set including all probability measures on M . A (reflecting) diffusion pro-
cess Xμ, generated by Lt with initial distribution μ, can be constructed as in [4]. Assume 
that Xμ

t is non-explosive before time Tc, by a similar discussion as in [5, Corollary 2.2], 
which is the case if

RZ
t ≥ K(t), for some K ∈ C([0, Tc)) and IIt ≥ 0 (if ∂M �= ∅), t ∈ [0, Tc). (1.1)

When μ = δx, we simply denote Xδx
t = Xx

t . Moreover, by [4], we know that Xx
t solves 

the following equation

dXt =
√

2ut ◦ dBt + Zt(Xt)dt + Nt(Xt)dlt, X0 = x, (1.2)

where Bt := (B1
t , B

2
t , · · · , Bd

t ) is a Rd-valued Brownian motion on a complete filtered 
probability space (Ω, {Ft}t≥0, P) with the natural filtration {Ft}t≥0, ut is the horizontal 
lift process of Xt and lt is an increasing process supported on {t ≥ 0 : Xt ∈ ∂M}. Note 
that if ∂M = ∅, then lt = 0.

Given μ ∈ P(M) and 0 ≤ S < T < Tc, let Π[S,T ]
μ be the distribution of X[S,T ] :=

{Xt : t ∈ [S, T ]} with initial law μ at time S. Then Π[S,T ]
μ is a probability measure on 

W [S,T ] := C([S, T ]; M) with σ-field F [S,T ] induced by cylindrically measurable functions. 
When S = 0, we simply denote ΠT

μ := Π[0,T ]
μ and WT := W [0,T ]. Our aim is to establish 

transportation-cost inequalities for Π[S,T ]
μ under some new curvature conditions, which 

may include the influence from the time changing of the metric.
Transportation-cost inequality was first introduced by Talagrand [15] in 1996 to bound 

from above the L2-Wasserstein distance to the standard Gaussian measure on Rd by the 
relative entropy. This inequality has been extended to distributions on finite- and infinite-
dimensional spaces. In particular, this inequality was established on the path space of 
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diffusion processes with respect to several different distances (i.e., cost functions). See 
[7,19,20] on the path space of diffusions with the uniform distance; see [8] on the Wiener 
space with the Cameron–Martin distance; see [6,16] on the path space of diffusions with 
the L2-distance and [17] on the Riemannian path space with intrinsic distance induced 
by the Malliavin gradient operator. In their previous works, the metric of the base space 
is fixed and the corresponding diffusion process is homogeneous. A natural question is 
how to extend these results to the time-inhomogeneous diffusion case on manifolds with 
time-changing metrics.

Indeed, since Arnaudon et al. [1] first construct the gt-Brownian motion (i.e. the 
diffusion process generated by 1

2Δt) on manifolds with time-depending metrics, there 
has been tremendous interest in developing stochastic analysis on these manifolds. One 
of the results is the transportation-cost inequality with respect to the L2-Wasserstein 
distance, which is induced by the gt-distance (the Riemannian distance with respect to 
the metric gt); see e.g. [2,4,5]. Let ρt(x, y) be the gt-Riemannian distance between x and 
y for x, y ∈ M . For ν, μ ∈ P(M), the L2-Wasserstein distance of μ and ν, induced by 
the gt-distance, is defined by

W2,t(ν, μ) = inf
η∈C (ν,μ)

⎧⎨⎩
∫

M×M

ρt(x, y)2dη(x, y)

⎫⎬⎭
1/2

,

where C (ν, μ) is the set of all couplings for ν and μ. In [4], the author has proved that 
the curvature condition (1.1) is equivalent to that for any x ∈ M , 0 ≤ s ≤ t < Tc and 
nonnegative f with Ps,tf(x) = 1,

W2,t(Ps,t(x, ·), fPs,t(x, ·))2 ≤ e−2
∫ t
s
K(r)dr W2,s(μ, ν). (1.3)

In this article, we extend this result to the path space W [S,T ]. More precisely, we aim to 
estimate some Wasserstein distance between two different probability measures on the 
path space W [S,T ]. The main idea is to modify the argument of [19] where fixed metric 
is considered.

For 0 ≤ S < T < Tc, consider the following uniform norm on the path space W [S,T ]:

ρ[S,T ](γ, η) := sup
t∈[S,T ]

ρt(γt, ηt), γ, η ∈ W [S,T ].

Let W ρ[S,T ]
2 be the L2-Wasserstein distance (or L2-transportation cost) associated with 

ρ[S,T ]. In general, for any p ∈ [1, ∞) and two probability measures Π1, Π2 on W [S,T ],

W
ρ[S,T ]
p (Π1,Π2) := inf

π∈C (Π1,Π2)

⎧⎪⎨⎪⎩
∫

W [S,T ]×W [S,T ]

ρ[S,T ](γ, η)pπ(dγ,dη)

⎫⎪⎬⎪⎭
1/p

is the Lp-Wasserstein distance (or Lp-transportation cost) of Π1 and Π2, induced by the 
uniform norm, where C (Π1, Π2) is the set of all couplings for Π1 and Π2.
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In this article, we present two types of transportation-cost inequalities with respect to 
this distance, which are proved to be equivalent to the curvature condition (1.1); see The-
orem 2.1 below. In particular, we prove that (1.1) is equivalent to the following Talagrand 
inequality: for 0 ≤ S < T < Tc and nonnegative F on W [S,T ] with Π[S,T ]

μ (F ) = 1,

W
ρ[S,T ]
2 (FΠ[S,T ]

μ ,Π[S,T ]
μ

[S,T ]
F

)2 ≤ 4
(

sup
t∈[S,T ]

t∫
S

e−2
∫ t
u
K(r)dr du

)
· Π[S,T ]

μ (F logF ), (1.4)

where

μ
[S,T ]
F (dx) := Π[S,T ]

x (F )μ(dx) ∈ P(M). (1.5)

Moreover, (1.4) implies other types of Talagrand inequalities; see Corollary 2.2.
As in [19], we then extend these results to non-convex flow by using a conformal 

changing of metrics; see Theorems 3.4 and 3.5 below. We would like to indicate that 
when it reduces to the fixed metric case, i.e., gt ≡ g, Theorem 3.4 simplifies the results 
in [19], see Remark 3.2 for details. This result is applied to the following Ricci flow with 
umbilic boundary: for λ ∈ R, {

∂
∂tgt = 2Rict, in M ;
IIt = λ, on ∂M.

(1.6)

See [14] for the short time existence of the solution to this equation and [3] for more 
geometric explanation of this solution.

The rest parts of the paper are organized as follows. In Section 2, we prove the 
equivalence of some Wasserstein distance inequalities and the condition (1.1), and in 
Section 3, we extend part results to the case with non-convex setting.

2. Transportation-cost inequalities

The main result of this section is presented as follows.

Theorem 2.1. For any p ∈ [1, ∞) and K ∈ C([0, Tc)), the following statements are 
equivalent to each other.

(i) (1.1) holds.
(ii) For any 0 ≤ S ≤ T < Tc, μ ∈ P(M) and nonnegative F with Π[S,T ]

μ (F ) = 1,

W ρ∞
2 (FΠ[S,T ]

μ ,Π[S,T ]
μ

[S,T ]
F

)2 ≤ 4

⎛⎝ sup
t∈[S,T ]

t∫
S

e−2
∫ t
u
K(r)dr du

⎞⎠Π[S,T ]
μ (F logF ),

where μ[S,T ]
F ∈ P(M) is defined as in (1.5).
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(ii′) For any x ∈ M , 0 ≤ S ≤ T < Tc and nonnegative F with Π[S,T ]
x (F ) = 1,

W ρ∞
2 (FΠ[S,T ]

x ,Π[S,T ]
x )2 ≤ 4

⎛⎝ sup
t∈[S,T ]

t∫
S

e−2
∫ t
u
K(r)dr du

⎞⎠Π[S,T ]
x (F logF ).

(iii) For any 0 ≤ S ≤ T < Tc and μ, ν ∈ P(M),

W ρ∞
p (Π[S,T ]

μ ,Π[S,T ]
ν ) ≤

(
sup

t∈[S,T ]
e−

∫ t
S
K(r)dr

)
Wp,S(μ, ν).

(iv) For any x ∈ M , 0 ≤ S ≤ T < Tc and nonnegative f with PS,T f(x) = 1,

W2,T (PS,T (x, ·), fPS,T (x, ·))2 ≤ 4

⎛⎝ T∫
S

e−2
∫ T
u

K(r)dr du

⎞⎠PS,T (f log f)(x).

Proof. Firstly, we explain that (ii) and (ii′) are equivalent to each other. By taking 
μ = δx, we have μT

F = ΠT
x (F )δx = δx, which implies that (ii′) follows from (ii) directly. 

To show “(ii′) ⇒ (ii)”, we first observe that by (ii′), for each x ∈ M , there exists

πx ∈ C

(
F

ΠT
x (F )ΠT

x ,ΠT
x

)
such that

∫
W [S,T ]×W [S,T ]

ρ∞(γ, η)2πx(dγ,dη) ≤ 4

⎛⎝ sup
t∈[S,T ]

t∫
S

e−2
∫ t
u
K(r)dr du

⎞⎠Π[S,T ]
x (F logF ).

If x �→ πx(G) is measurable for bounded continuous function G on W [S,T ] × W [S,T ], 
then (ii) is derived by integrating both hand sides with respect to μT

F (dx). The proof 
of measurability for x �→ πx is standard, see (b) in the proof of [7, Theorem 4.1]. Thus, 
(ii) and (ii′) are equivalent to each other.

Secondly, we need to show that “(i) ⇒ (ii′)”. We only consider the case where ∂M is 
non-empty. For the case without boundary, the following argument works well by taking 
lt = 0 and Nt = 0. We assume without loss of generality that S = 0. Simply denote 
Xx

[0,T ] = X[0,T ]. Let F be a positive bounded measurable function on WT such that 
inf F > 0 and ΠT

x (F ) = 1. Let dQ = F (X[0,T ])dP. Then Q is a probability measure 
on Ω due to the fact that EF (X[0,T ]) = ΠT

x (F ) = 1. Moreover, we need the following 
square-integrable Ft-martingales

mt := E(F (X[0,T ])|Ft), Lt :=
t∫ dms

ms
, t ∈ [0, T ].
0
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It is easy to see that mt := eLt− 1
2 〈L〉t , t ∈ [0, T ]. By the martingale representation, 

we conclude that there exists a unique Ft-predict process βt on Rd such that Lt =∫ t

0 〈βs, dBs〉 and

F (X[0,T ]) = mT = e
∫ T
0 〈βs,dBs〉− 1

2
∫ T
0 ‖βs‖2ds,

where ‖ · ‖ is the norm on Rd. Then by the Girsanov theorem, B̃t := Bt −
∫ t

0 βsds, 
t ∈ [0, T ] is a d-dimensional Brownian motion under Q.

Let Yt solve the following SDE

dYt =
√

2P t
Xt,Yt

ut ◦ dB̃t + Zt(Yt)dt + Nt(Yt)dl̃t, Y0 = x, (2.1)

where P t
Xt,Yt

is the gt-parallel displacement along the minimal geodesic from Xt to Yt, 
l̃t is the local time of Yt on ∂M and ut is the horizontal process of Xt given in (1.2). 
As explained, under Q, B̃t is a d-dimensional Brownian motion and then ΠT

x is the 
distribution of Y[0,T ].

On the other hand, since B̃t = Bt −
∫ t

0 βsds, (1.2) implies

dXt =
√

2ut ◦ dB̃t + Zt(Xt)dt +
√

2utβtdt + Nt(Xt)dlt, X0 = x. (2.2)

Moreover, for any bounded measurable function G on WT ,

EQG(X[0,T ]) := E(FG)(X[0,T ]) = ΠT
x (FG).

Thus, we conclude that the distribution of X[0,T ] under Q coincides with FΠT
x . Therefore,

W ρ∞
2 (FΠT

x ,ΠT
x )2 ≤ EQρ[0,T ](X[0,T ], Y[0,T ])2 = EQ max

t∈[0,T ]
ρt(Xt, Yt)2. (2.3)

Then it suffices for us to estimate EQ maxt∈[0,T ] ρt(Xt, Yt)2. To this end, we first observe 
that by the convexity of (∂M, gt), we have〈

Nt(x),∇tρt(·, y)(x)
〉
t
=
〈
Nt(x),∇tρt(y, ·)(x)

〉
t
≤ 0, x ∈ ∂M.

Combining this with the Itô formula (see [11]) and using the index lemma, we obtain 
from the condition RZ

t ≥ K(t) that

dρt(Xt, Yt)

≤

⎧⎪⎨⎪⎩
ρt(Xt,Yt)∫

0

[
−Rict(γ̇(s), γ̇(s)) +

〈
∇t

γ̇(s)Zt, γ̇(s)
〉
t

]
ds + (∂tρt)(Xt, Yt)

⎫⎪⎬⎪⎭dt

+
√

2
〈
utβt,∇tρt(·, Yt)(Xt)

〉
dt
t
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=

⎧⎪⎨⎪⎩
ρt(Xt,Yt)∫

0

[
−Rict(γ̇(s), γ̇(s)) +

〈
∇t

γ̇(s)Zt, γ̇(s)
〉
t
+ 1

2
∂tgt(γ̇(s), γ̇(s))

]
ds

⎫⎪⎬⎪⎭dt

+
√

2
〈
utβt,∇tρt(·, Yt)(Xt)

〉
t
dt

≤ −K(t)ρt(Xt, Yt)dt +
√

2
〈
utβt,∇tρt(·, Yt)(Xt)

〉
t
dt

≤ (−K(t)ρt(Xt, Yt) +
√

2‖βt‖)dt, (2.4)

where γ is the minimal geodesic connecting Xt and Yt associated with the metric gt
and the second equality holds true due to the following equality (see [12, Lemma 5 and 
Remark 6])

(∂tρt)(Xt, Yt) =
ρt(Xt,Yt)∫

0

1
2∂tgt(γ̇(s), γ̇(s))ds.

Since X0 = Y0 = x, (2.4) implies that for any t ∈ [0, T ],

ρt(Xt, Yt)2 ≤ e−2
∫ t
0 K(r)dr

⎛⎝√
2

t∫
0

e
∫ s
0 K(r)dr ‖βs‖ds

⎞⎠2

≤ 2 e−2
∫ t
0 K(r)dr

t∫
0

e2
∫ s
0 K(r)dr ds ·

t∫
0

‖βs‖2ds.

Taking the maximum on both hand sides over t ∈ [0, T ], and then taking the expectation 
under Q, we have

EQ max
t∈[0,T ]

ρt(Xt, Yt)2 ≤ 2 max
t∈[0,T ]

t∫
0

e−2
∫ t
s
K(r)dr ds ·

T∫
0

EQ‖βs‖2ds. (2.5)

To estimate 
∫ T

0 EQ‖βs‖2ds, we first observe that

EQ‖βs‖2 = E(mT ‖βs‖2) = E(‖βs‖2E(mT |Fs)) = E(ms‖βs‖2), s ∈ [0, T ].

Then, by the Itô formula, we have

d(mt logmt) = (1 + logmt)dmt +
d 〈m〉t
2mt

= (1 + logmt)dmt +
m2

td 〈L〉t
2mt

= (1 + logmt)dmt + mt

2 ‖βt‖2dt,
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which implies

T∫
0

EQ‖βs‖2ds = 2EF (X[0,T ]) logF (X[0,T ]). (2.6)

Therefore, (ii′) follows from (2.5) and (2.6).
Thirdly, we turn to prove “(i) ⇔ (iv)”. If (1.1) holds, then by “(i) ⇒ (ii′)” and taking 

μ = δx and F (X[0,T ]) = f(XT ) into the inequality in (ii′), we obtain (iv) directly.
To prove “(iv) ⇒ (i)”, let f ∈ C2

c (M) such that PS,T f(x) = 0, where C2
c (M) :=

{f ∈ C2(M) : f is constant outside some compact set}. Then, for small ε > 0 such that 
fε := 1 + εf ≥ 0, we obtain from [13] that

(PS,T f
2)2(x) ≤

[
1
ε

√
PS,T |∇T f |2TW2,T (fεPS,T (x, ·), PS,T (x, ·))

+
‖HessTf ‖∞

2ε W2,T (fεPS,T (x, ·), PS,T (x, ·))2
]2

, (2.7)

where ‖Hesssf‖∞ := supM ‖Hesssf‖HS , Hesssf (X, Y ) := 〈∇s
X∇sf, Y 〉s, X, Y ∈ TM and 

‖ · ‖HS is the Hilbert–Schmidt norm. To estimate the term W2,T (fεPS,T (x, ·), PS,T (x, ·)), 
using the condition (iv), we have

W2,T (PS,T (x, ·), fεPS,T (x, ·))2 ≤ 4

⎛⎝ T∫
S

e−2
∫ T
u

K(r)dr du

⎞⎠PS,T (fε log fε)(x). (2.8)

Using the Taylor expansion of log fε at x, we further obtain

PS,T (fε log fε)(x) = PS,T

{
(1 + εf)

(
εf − 1

2(εf)2 + o(ε2)
)}

(x)

= ε2

2 PS,T f
2(x) + o(ε2).

Combining this with (2.7) and (2.8), and letting ε → 0, we conclude that for 0 ≤ S ≤
T < Tc,

(PS,T f
2)2(x) ≤ 4

⎛⎝ T∫
S

e−2
∫ T
u

K(r)dr du

⎞⎠PS,T |∇T f |2T (x) · lim
ε→0

PS,T fε log fε(x)
ε2

≤ 2

⎛⎝ T∫
S

e−2
∫ T
u

K(r)dr du

⎞⎠PS,T |∇T f |2T (x) · PS,T f
2(x).

This is equivalent to [4, Theorem 5.3] (ix) for σ = 0, p = 2 and continuous function K. 
Therefore, by [4, Theorem 5.3] “(ix) ⇔ (i)”, (iv) implies (i).
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Fourthly, we turn to show that “(ii′) ⇒ (i)”. By taking μ = δx and F (X[S,T ]) = f(XT ), 
we obtain (iv) from (ii′) directly. Then by “(iv) ⇔ (i)”, we conclude that (ii′) implies (i).

Finally, it leaves us to show that “(i) ⇔ (iii)”. By taking μ = δx and F (X[S,T ]) =
f(XT ), we have that μT

F = ΠT
x (F )δx = δx and then (iii) implies

Wp,S(δxPS,T , δyPS,T ) ≤ e−
∫ T
S

K(r)dr ρS(x, y), 0 ≤ S < T < Tc,

where PS,T (x, ·) is the distribution of XT with conditional XS = x. This further im-
plies (i) by [4, Theorem 4.2].

As the proof of “(i) ⇒ (iii)” is similar to that of Theorem 3.4, we skip it here. �
The following result is a direct consequence of Theorem 2.1.

Corollary 2.2. For any p ∈ [1, ∞) and K ∈ C([0, Tc)), the following statements are 
equivalent to each other.

(i) (1.1) holds.
(ii) For any 0 ≤ S ≤ T < Tc, μ ∈ P(M) and F ≥ 0 with Π[S,T ]

μ (F ) = 1,

W
ρ[S,T ]
2 (FΠ[S,T ]

μ ,Π[S,T ]
μ ) ≤ 2

⎧⎨⎩
⎛⎝ sup

t∈[S,T ]

t∫
S

e−2
∫ t
u
K(r)dr du

⎞⎠Π[S,T ]
μ (F logF )

⎫⎬⎭
1/2

+
(

max
t∈[S,T ]

e−
∫ t
S
K(r)dr

)
W2,S(μ[S,T ]

F , μ).

(iii) For any μ ∈ P(M) and nonnegative function G ∈ C([0, Tc)) such that

W2,S(fμ, μ)2 ≤ G(S)μ(f log f), f ≥ 0, μ(f) = 1, (2.9)

it holds

W
ρ[S,T ]
2 (FΠ[S,T ]

μ ,Π[S,T ]
μ )

≤

⎡⎢⎣2

√√√√√ sup
t∈[S,T ]

t∫
S

e−2
∫ t
u
K(r)dr du +

√
G(S)

(
max

t∈[S,T ]
e−

∫ t
S
K(r)dr

)⎤⎥⎦
2

× Π[S,T ]
μ (F logF )

for F ≥ 0 and Π[S,T ]
μ (F ) = 1.

Proof. It is clear that (iii) follows from the inequality in (ii) and the condition (2.9). On 
the other hand, as
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W
ρ[S,T ]
2 (FΠ[S,T ]

μ ,Π[S,T ]
μ ) ≤ W

ρ[S,T ]
2

(
FΠ[S,T ]

μ ,Π[S,T ]
μ

[S,T ]
F

)
+ W

ρ[S,T ]
2

(
Π[S,T ]

μ
[S,T ]
F

,Π[S,T ]
μ

)
,

then (ii) is derived from (i) by combining Theorem 2.1(ii), (iii). By taking μ = δx, it is 
easy to see that (i) follows from each of (ii) and (iii). We then complete the proof. �
Remark 2.3. When the metric is constant, i.e., gt ≡ g, the curvature condition (1.1)
becomes

Ric −∇Z ≥ K and II ≥ 0 (∂M �= ∅)

for some constant K. Then, under this curvature condition, the inequalities in Theo-
rem 2.1 and Corollary 2.2 are reduced to that in [19, Theorem 1.1].

3. Extension to non-convex flow and Ricci flow

As in [19], we first consider Lt = ψ2
t (Δt+Zt) with diffusion coefficient ψt on manifolds 

with convex flows; then extend to the case with non-convex flow. Finally, we apply these 
results into the Ricci flow with umbilic boundary.

3.1. The case with a diffusion coefficient

Let ψt(·) = ψ(t, ·) > 0 be a smooth function on (M, gt) and constant outside a compact 
set K ⊂ M . Let ΠT

μ,ψ be the distribution of the (reflecting if ∂M �= ∅) diffusion process 
generated by Lt = ψ2

t (Δt+Zt) on time interval [0, T ] ⊂ [0, Tc) with initial distribution μ. 
Write ΠT

x,ψ = ΠT
δx,ψ

, x ∈ M for simplicity. Moreover, for any positive function F with 
ΠT

μ,ψ(F ) = 1, let

μT
F,ψ(dx) = ΠT

x,ψ(F )μ(dx).

Write ‖∇tf‖∞ := supx∈M |∇tf(x)|t for simplicity.

Theorem 3.1. Assume that IIt ≥ 0, RicZt ≥ K1(t) and ∂tgt ≤ K2(t) for all t ∈ [0, Tc)
and some continuous functions K1, K2 on [0, Tc). Let

Kψ(t) = d‖∇tψt‖2
∞ + K−

1 (t)‖ψt‖2
∞ + 2‖Zt‖∞‖ψt‖∞‖∇tψt‖∞ + 1

2K
+
2 (t).

Then for some positive function F with ΠT
μ,ψ(F ) = 1, and μ ∈ P(M),

W
ρ[0,T ]
2 (FΠT

μ,ψ,ΠT
μT
F,ψ,ψ)2

≤ 4(1 + C(T, ψ))eC(T,ψ)

⎛⎝ T∫
0

‖ψs‖2
∞ e2

∫ T
s

Kψ(r)dr ds

⎞⎠ΠT
μ,ψ(F logF )
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holds for

C(T, ψ) := 4T sup
s∈[0,T ]

‖∇sψs‖2
∞

⎛⎜⎝
√√√√1 +

(
2T sup

s∈[0,T ]
‖∇sψs‖2

∞

)−1

+ 1

⎞⎟⎠ .

Proof. We shall only consider the case that ∂M is non-empty. As explained in the proof 
of Theorem 2.1 above, it suffices for us to prove this for μ = δx, x ∈ M . In this case, the 
desired inequality reduces to

W
ρ[0,T ]
2 (FΠT

x,ψ,ΠT
x,ψ)2

≤ 4(1 + C(T, ψ))eC(T,ψ)

⎛⎝ T∫
0

‖ψs‖2
∞ e2

∫ T
s

Kψ(r)dr ds

⎞⎠ΠT
x,ψ(F logF ),

F ≥ 0, ΠT
x,ψ(F ) = 1.

Since the diffusion coefficient is non-constant, it is convenient to adopt the Itô differ-
ential dI for the Girsanov transformation. So the reflecting Lt-diffusion process can be 
constructed by solving the Itô SDE

dIXt =
√

2ψt(Xt)utdBt + ψ2
t (Xt)Zt(Xt)dt + Nt(Xt)dlt, X0 = x,

where Bt is the d-dimensional Brownian motion with natural filtration Ft. Let βt, Q
and B̃t be the same as in the proof of Theorem 2.1. Then

dIXt =
√

2ψt(Xt)utdB̃t + {ψ2
t (Xt)Zt(Xt) +

√
2ψt(Xt)utβt}dt + Nt(Xt)dlt,

X0 = x. (3.1)

Let Yt solve

dIYt =
√

2ψt(Yt)P t
Xt,Yt

utdB̃t + ψ2
t (Yt)Zt(Yt)dt + Nt(Yt)dl̃t, Y0 = x, (3.2)

where l̃t is the local time of Yt on ∂M . As explained in the proof of Theorem 2.1, under Q, 
the distribution of Y[0,T ] and X[0,T ] are ΠT

x,ψ and FΠT
x,ψ, respectively. Thus,

W
ρ[0,T ]
2 (FΠT

x,ψ,ΠT
x,ψ)2 ≤ EQ max

t∈[0,T ]
ρt(Xt, Yt)2. (3.3)

We now turn to estimate EQ maxt∈[0,T ] ρt(Xt, Yt)2. Note that due to the convexity of the 
boundary, 〈

Nt(x),∇tρt(·, y)(x)
〉
t
=
〈
Nt(x),∇tρt(y, ·)(x)

〉
t
≤ 0, x ∈ ∂M.

Combining this with (3.1), (3.2) and the Itô formula, we obtain
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dρt(Xt, Yt) ≤
√

2(ψt(Xt) − ψt(Yt))
〈
∇tρt(·, Yt)(Xt), utdB̃t

〉
t
+
{ d∑

i=1
(U t

i )2ρt(Xt, Yt)

+
〈
ψ2
tZt(Yt),∇tρt(Xt, ·)(Yt)

〉
t
+
〈
ψ2
tZt(Xt),∇tρt(·, Yt)(Xt)

〉
t

}
dt

+ (∂tρt)(Xt, Yt)dt +
〈
∇tρt(·, Yt)(Xt),

√
2ψt(Xt)utβt

〉
t
dt,

where bt is a one-dimensional Brownian motion, {U t
i }di=1 are vector fields on M × M

such that ∇tU t
i = 0 and

U t
i (Xt, Yt) = ψt(Xt)V t

i + ψt(Yt)P t
Xt,Yt

V t
i , 1 ≤ i ≤ d

for {V t
i }di=1 a gt-orthonormal basis of TXt

M with V t
n = ∇tρt(·, Yt)(Xt). Let ρt =

ρt(Xt, Yt). Define

J t
i (s) =

(
s

ρt
ψt(Yt) + ρt − s

ρt
ψt(Xt)

)
P t
γ(0),γ(s)V

t
i , 1 ≤ i ≤ d,

where J t
i (0) = ψt(Xt)V t

i and J t
i (ρt) = ψt(Yt)P t

Xt,Yt
V t
i . Note that P t

γ(0),γ(s)V
t
i are parallel 

vector fields along γ.

d∑
i=1

(U t
i )2ρt(Xt, Yt)

≤
d∑

i=1

ρt∫
0

{
|∇t

γ̇J
t
i |2t −

〈
Rt(γ̇, J t

i )J t
i , γ̇

〉
t

}
(γ(s))ds

≤ d‖∇tψt‖2
∞ρt −

1
ρ2
t

ρt∫
0

{sψt(Yt) + (ρt − s)ψt(Xt)}2Rict(γ̇(s), γ̇(s))ds. (3.4)

On the other hand,

ψ2
t (Xt)

〈
Zt(Xt),∇tρt(·, Yt)(Xt)

〉
t
+ ψ2

t (Yt)
〈
Zt(Yt),∇tρt(Xt, ·)(Yt)

〉
t

= 1
ρ2
t

ρt∫
0

d
ds{[sψt(Yt) + (ρt − s)ψt(Xt)]2 〈Zt(γ(s)), γ̇(s)〉t}ds

≤ 1
ρ2
t

ρt∫
0

[sψt(Yt) + (ρt − s)ψt(Xt)]2
〈
(∇t

γ̇Zt) ◦ γ, γ̇
〉
t
(s)ds

+ 2‖Zt‖∞‖∇tψt‖∞‖ψt‖∞ρt. (3.5)
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Moreover,

(∂tρt)(Xt, Yt) = 1
2

ρt∫
0

∂tgt(γ̇(s), γ̇(s))ds ≤ 1
2
K2(t)ρt.

Combining this with (3.4) and (3.5), we have

dρt(Xt, Yt) ≤
√

2(ψt(Xt) − ψt(Yt))
〈
∇tρt(·, Yt)(Xt), utdB̃t

〉
t

−K1(t)

⎧⎨⎩ 1
ρ2
t

ρt∫
0

[sψt(Yt) + (ρt − s)ψt(Xt)]2ds

⎫⎬⎭dt

+
{
d‖∇tψt‖2

∞ρt + 2‖Zt‖∞‖∇tψt‖∞‖ψt‖∞ρt + 1
2K2(t)ρt

}
dt

+
√

2‖ψt‖∞‖βt‖dt
≤

√
2(ψt(Xt) − ψt(Yt))

〈
∇tρt(·, Yt)(Xt), utdB̃t

〉
t

+ Kψ(t)ρt(Xt, Yt)dt +
√

2‖ψt‖∞‖βt‖dt, (3.6)

where

Kψ(t) := d‖∇tψt‖2
∞ + K−

1 (t)‖ψt‖2
∞ + 2‖Zt‖∞‖∇tψt‖∞‖ψt‖∞ + 1

2K
+
2 (t) > 0.

Then

Mt :=
√

2
t∫

0

e−
∫ s
0 Kψ(r)dr(ψs(Xs) − ψs(Ys))

〈
∇sρs(·, Ys)(Xs), usdB̃s

〉
s

is a Q-martingale such that

ρt(Xt, Yt) ≤ e
∫ t
0 Kψ(r)dr

⎛⎝Mt +
√

2
t∫

0

e−
∫ s
0 Kψ(r)dr ‖ψs‖∞‖βs‖ds

⎞⎠ , t ∈ [0, T ].

Thus, by the Doob inequality, we obtain

ht := e−2
∫ t
0 Kψ(s)ds EQ max

s∈[0,t]
ρs(Xs, Ys)2

≤ (1 + R)EQ max
s∈[0,t]

M2
s + 2(1 + R−1)EQ

⎛⎝ t∫
0

e−
∫ s
0 Kψ(r)dr ‖ψs‖∞‖βs‖ds

⎞⎠2

≤ 4(1 + R)EQM
2
t + 2(1 + R−1)

t∫
e−2

∫ s
0 Kψ(r)dr ‖ψs‖2

∞ds
t∫
EQ‖βs‖2ds
0 0
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≤ 8(1 + R) sup
s∈[0,T ]

‖∇sψs‖2
∞

t∫
0

hsds

+ 2(1 + R−1)
T∫

0

‖ψs‖2
∞ e−2

∫ s
0 Kψ(r)dr ds ·

T∫
0

EQ‖βs‖2ds, t ∈ [0, T ]. (3.7)

Since h0 = 0, by the Gronwall inequality, this implies

hT = e−2
∫ T
0 Kψ(s)ds EQ max

s∈[0,T ]
ρs(Xs, Ys)2

≤ 2(1 + R−1)
T∫

0

‖ψs‖2
∞ e−2

∫ s
0 Kψ(r)dr ds

× exp
[
8(1 + R)T sup

s∈[0,T ]
‖∇sψs‖∞

]
·

T∫
0

EQ‖βs‖2ds. (3.8)

Moreover, as explained in (2.6), it holds

T∫
0

EQ‖βs‖2ds = 2EF (X[0,T ]) logF (X[0,T ]),

which, together with (3.8), implies

EQ max
s∈[0,T ]

ρs(Xs, Ys)2

≤ 4(1 + R−1)

· exp
[
8(1 + R)T sup

s∈[0,T ]
‖∇sψs‖2

∞

] T∫
0

‖ψs‖2
∞ e2

∫ T
s

Kψ(r)dr ds · ΠT
x,ψ(F logF ).

Combining this with (3.3), and taking

R = 1
2

⎡⎢⎣
√√√√1 +

(
2T sup

s∈[0,T ]
‖∇sψs‖2

∞

)−1

− 1

⎤⎥⎦
into the term on right hand of the above inequality, we complete the proof. �
Remark 3.2.

(1) We would like to indicate that in [19], the author used the FKG inequality to deal 
with the term EQ maxs∈[0,t] ρ

2(Xs, Ys). Here, we apply the Gronwall inequality di-
rectly, which leads to the wanted estimates in a simple way.
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(2) Using RZ
t ≥ K1(t) in place of RicZt ≥ K1(t) for some continuous function K1 on 

[0, Tc), the assertion of Theorem 3.1 still holds with the following K̃ψ:

K̃ψ(t) = d‖∇tψt‖2
∞ +K−

1 (t)‖ψt‖2
∞ +2‖Zt‖∞‖ψt‖∞‖∇tψt‖∞ + 1

2(1+‖ψt‖2
∞)K+

2 (t).

The coupling method also implies the following result.

Theorem 3.3. In the situation of Theorem 3.1, it holds

W
ρ[0,T ]
2 (ΠT

ν,ψ,ΠT
μ,ψ) ≤ 2 e

∫ T
0 (Kψ(t)+‖∇tψt‖2

∞)dt W2,0(ν, μ).

Proof. As explained in the proof of [19, Theorem 1.1] “(6) ⇒ (5)”, we only consider 
ν = δx, and ν = δy. Let Xt and Yt solve the following SDEs respectively.

dIXt =
√

2ψt(Xt)utdBt + ψ2
t (Xt)Zt(Xt)dt + Nt(Xt)dlt, X0 = x;

dIYt =
√

2ψt(Yt)P t
Xt,Yt

utdBt + ψ2
t (Yt)Zt(Yt)dt + Nt(Yt)dl̃t, Y0 = y.

Then, as explained in Theorem 3.1, by the Itô formula,

dρt(Xt, Yt) ≤
√

2(ψt(Xt) − ψt(Yt))
〈
∇tρt(·, Yt)(Xt), utdBt

〉
t
+ Kψ(t)ρt(Xt, Yt)dt.

Therefore,

ρt(Xt, Yt) ≤ e
∫ t
0 Kψ(s)ds(M̂t + ρ0(x, y)), t ≥ 0 (3.9)

for M̂t :=
√

2
∫ t

0 e−
∫ s
0 Kψ(u)du(ψs(Xs) − ψs(Ys)) 〈∇sρs(·, Ys)(Xs), usdBs〉s. By this, we 

arrive at

W
ρ[0,T ]
2 (ΠT

x,ψ,ΠT
y,ψ)2

≤ E max
t∈[0,T ]

ρt(Xt, Yt)2

≤ e2
∫ T
0 Kψ(t)dt E max

t∈[0,T ]
(M̂t + ρ0(x, y))2

≤ 4 e2
∫ T
0 Kψ(t)dt E(M̂T + ρ0(x, y))2 = 4 e2

∫ T
0 Kψ(t)dt E(M̂2

T + ρ2
0(x, y))

≤ 4 e2
∫ T
0 Kψ(t)dt

⎛⎝ρ0(x, y)2 + 2
T∫

0

e−2
∫ t
0 Kψ(s)ds ‖∇tψt‖2

∞Eρt(Xt, Yt)2dt

⎞⎠
≤ 4 e2

∫ T
0 Kψ(t)dt

⎛⎝ρ0(x, y)2 + 2
T∫

0

e−2
∫ t
0 Kψ(s)ds ‖∇tψt‖2

∞E max
s∈[0,t]

ρs(Xs, Ys)2dt

⎞⎠
≤ 4 e2

∫ T
0 (Kψ(t)+‖∇tψt‖2

∞)dt ·ρ0(x, y)2,
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where the third inequality is due to the Doob inequality and the last inequality is due to 
the Gronwall inequality. This implies the desired inequality for μ = δx and ν = δy. �
3.2. Non-convex flow

By using a proper conformal change of the geometric flow, we are able to establish the 
following transportation-cost inequality on manifolds carrying a non-convex geometric 
flow. Let

D = {φ ∈ C2
b ([0, Tc) ×M) : inf φt = 1, IIt ≥ −Nt logφt}.

Assume that D �= ∅ and for some K1, K2 ∈ C([0, Tc)),

RicZt ≥ K1(t) and ∂tgt ≤ K2(t) (3.10)

hold. Let φt ∈ D . Then, by [18, Lemma 2.1], ∂M becomes convex under g̃t = φ−2
t gt. Note 

that we do not need the condition “∇tφt ‖ Nt”, which is included in [18, Lemma 2.1], 
since we find that it is not used in this proof. Let Δ̃t and ∇̃t be, respectively, the 
Laplacian and gradient operator induced by the new metric g̃t. As φt ≥ 1, ρt(x, y) is 
larger than ρ̃t(x, y), which is denoted as the Riemannian g̃t-distance between x and y.

Theorem 3.4. Let ∂M �= ∅ and IIt ≥ −σ(t) for some positive function σ ∈ C([0, Tc)). 
Assume (3.10) holds. Let φ ∈ D such that

Kφ(t) := d‖∇tφt‖2
∞ + K−

φ,1(t) + 2‖φtZt + (d− 2)∇tφt‖∞‖∇tφt‖∞ + 1
2K

+
φ,2(t) < ∞,

where

Kφ,1(t) := inf
M

{
φ2
tK1(t) + 1

2Ltφ
2
t − |∇tφ2

t |t|Zt|t − (d− 2)|∇tφt|2t
}
,

Kφ,2(t) := sup
M

{−2∂t logφt} + K2(t).

Then for any μ ∈ P(M) and nonnegative function F with ΠT
μ (F ) = 1,

W
ρ[0,T ]
2 (FΠT

μ ,ΠT
μT
F
)

≤ 4(1 + C(T, φ)) eC(T,φ)

(
sup

t∈[0,T ]
‖φt‖2

∞

) T∫
0

e2
∫ T
s

Kφ(r)dr ds · ΠT
μ (F logF )

holds for

C(T, φ) = 4T sup
s∈[0,T ]

‖∇sφs‖2
∞

⎛⎜⎝
√√√√1 +

(
2T sup

s∈[0,T ]
‖∇sφs‖2

∞

)−1

+ 1

⎞⎟⎠ .
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Proof. From the proof of [4, Theorem 1.2], we know that Lt = φ−2
t (Δ̃t + Z̃t), where 

Z̃t = φ2
tZt + d−2

2 ∇tφ2
t , and

R̃ic
Z̃

t ≥ Kφ,1(t), ∂tg̃t ≤ Kφ,2(t).

Let Kψ be the same as in Theorem 3.4 for the manifold equipped with {g̃t}t∈[0,Tc). Then 
for Lt = ψ2

t (Δ̃t + Z̃t), where ψt = φ−1
t , it is clear from φt ≥ 1 that Kψ(t) ≤ Kφ(t) and 

C(T, ψ) ≤ C(T, φ), where Kψ and C(T, ψ) are defined as in Theorem 3.1 with ψt = φ−1
t . 

Hence, it follows from Theorem 3.1 that for any F ≥ 0 with ΠT
μ (F ) = 1,

W
ρ̃[0,T ]
2 (FΠT

μ ,ΠT
μT
F
)2 ≤ 4(1 + c(T, φ)) ec(T,φ)

T∫
0

e2
∫ T
s

Kφ(r)dr ds · ΠT
μ (F logF ),

where ρ̃∞ is the uniform distance on WT induced by the metric g̃t. The proof is completed 
by using the fact that ρ[0,T ] ≤ supt∈[0,T ] ‖φt‖∞ρ̃[0,T ]. �

As explained in the proof above, Kψ(t) ≤ Kφ(t) and ρ̃t ≤ ρt ≤ ‖φt‖∞ρ̃t, which imply 
the following result by using Theorem 3.3 with ψ = φ−1.

Theorem 3.5. In the situation of Theorem 3.4, it holds

W
ρ[0,T ]
2 (ΠT

μ ,ΠT
ν ) ≤ 2

(
sup

t∈[0,T ]
‖φt‖∞

)
e
∫ T
0 (Kφ(t)+‖∇tφt‖2

∞)dt W2,0(μ, ν),

for μ, ν ∈ P(M) and T ∈ [0, Tc).

3.3. Applications to Ricci flow with umbilic boundary

As an application of Theorems 3.4 and 3.5, we now turn to consider the Ricci flow 
with umbilic boundary (see (1.6)).

Suppose {gt}t∈[0,Tc) is a complete solution to the equation (1.6). When IIt = λ ≥ 0
in (1.6), by Theorem 2.1 “(i) implies (ii), (iii)”, we obtain that for 0 ≤ S ≤ T < Tc, 
μ ∈ P(M) and nonnegative F with ΠT

μ (F ) = 1,

W
ρ[S,T ]
2

(
FΠ[S,T ]

μ ,Π[S,T ]
μ

[S,T ]
F

)2

≤ 2
[
1 − e−2(T−S)

]
Π[S,T ]

μ (F logF ). (3.11)

Moreover, for μ, ν ∈ P(M), it holds

W
ρ[S,T ]
p (Π[S,T ]

μ ,Π[S,T ]
ν ) ≤ Wp,S(μ, ν).

From this and (3.11), it is easy to see that these results look like those on Ricci flat 
manifolds.
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For the case λ < 0, i.e., the boundary is non-convex, we need more information about 
the boundary. Let ρ∂t (x) be the distance between x and ∂M with respect to the metric gt. 
Our following discussion needs the following curvature condition:

(H) There exist positive constants r0, k and k1 such that |Rict| ≤ k and on the set 
∂t
r0M := {x ∈ M : ρ∂t (x) ≤ r0}, ρ∂t is smooth and Sectt ≤ k1.

Within this condition, Theorems 3.4 and 3.5 imply the following result.

Theorem 3.6. Let d ≥ 2. Suppose {gt}t∈[0,Tc) is a complete solution to (1.6) with λ < 0. 
For T ∈ (0, Tc), let ΠT

μ be the distribution of Xμ
[0,T ], where Xμ

t is a Brownian motion 
generated by Δt with initial law μ. Assume (H) holds for t ∈ [0, T ] and r0 ≤ π

2
√
k1

. Let

K := −
(

1
r0

+ 3
2r0k

)
λd +

(
4d− 11

2

)
λ2d2 + 2k;

C(T, λ, d) := 2
√

4T 2λ4d4 + 2Tλ2d2 + 4Tλ2d2.

Then for any nonnegative function F on WT with ΠT
μ (F ) = 1 and μ ∈ P(M), it holds

W
ρ[0,T ]
2 (FΠT

μ ,ΠT
μT
F
)

≤ (C(T, λ, d) + 1) eC(T,λ,d) (2 − λdr0)2
e2KT − 1

2K ΠT
μ (F logF ).

Moreover, for any μ, ν ∈ P(M), we have

W
ρ[0,T ]
2 (ΠT

μ ,ΠT
ν ) ≤ (2 − λdr0) e(K+λ2d2)T W2,0(μ, ν).

If the condition (H) holds, then Rict ≤ k for some k ∈ R, which implies that K1(t) =
−k and K2(t) = 2k in (3.10). Thus, if there exists φ ∈ D such that

K̃φ(t) := inf{φtΔtφt}− + ‖∂t log φt‖∞ + k(1 + ‖φt‖2
∞) + (4d− 6)‖∇tφt‖2

∞ < ∞,

then Theorems 3.4 and 3.5 hold by replacing Kφ(t) with K̃φ(t). Now, it leaves us to 
estimate K̃φ(t) to complete the proof of Theorem 3.6.

Proof of Theorem 3.6. Under assumption (H), to estimate K̃φ(t), we construct a proper 
φ ∈ C1,2([0, T ] ×M) such that φ ∈ D first. Let

h(s) = cos(
√

k1 s), s ≥ 0. (3.12)

Then 0 ≤ h(s) ≤ 1 for s ∈ [0, π
2
√
k1

]. Moreover, let

δ = δ(r0, λ, k1) = −λ(1 − h(r0))d−1∫ r0 d−1 . (3.13)

0 (h(s) − h(r0)) ds
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Consider φt := ϕ ◦ ρ∂t , t ∈ [0, T ], where

ϕ(r) = 1 + δ

r∫
0

(h(s) − h(r0))1−dds
r0∫

s∧r0

(h(u) − h(r0))d−1du.

By an approximation argument we may regard φ as C∞([0, T ] ×M)-smooth. Obviously, 
φ ≥ 1 and Ns log φs = −λ = −IIs for all s ∈ [0, T ]. Since IIt = λ ≤ 0 and Sectt ≤ k1 on 
∂t
r0(M), according to the Laplacian comparison theorem for ρ∂s (see [9,10]), we have

Δtφt ≥
(
dϕ′h′

h
+ ϕ′′

)
(ρ∂t ) ≥ −δ, t ∈ [0, T ], ρ∂t ≤ r0.

As h is decreasing on [0, r0], we conclude that

|∂t logφt| =
∣∣∣∣∂tφt

φt

∣∣∣∣ =

∣∣∣∣∣∣
δ
[
h(ρ∂t ∧ r0) − h(r0)

]1−d ∫ r0
ρ∂
t ∧r0

(h(u) − h(r0))d−1du
φt

∂tρ
∂
t

∣∣∣∣∣∣
≤ δr0

φt
|∂tρ∂t |, ρ∂t ≤ r0. (3.14)

Moreover, taking the following formula into the above inequality, we have

∂tρ
∂
t = 1

2

ρ∂
t∫

0

∂tgt(γ̇(s), γ̇(s))ds = 1
2

ρ∂
t∫

0

Rict(γ̇(s), γ̇(s))ds, ρ∂t ≤ r0,

where γ is the minimal curvature from x to ∂M . Combining this with (3.14), we obtain

|∂t log φt| ≤ δr2
0k, ρ∂t ≤ r0.

Similarly, we have |∇tφt|2t ≤ δ2r2
0. In addition,

r0∫
0

(h(s) − h(r0))1−dds
r0∫
s

(h(u) − h(r0))d−1du ≤
r0∫
0

(r0 − s)ds = r2
0
2 , (3.15)

which implies

‖φt‖∞ = 1 + δ

r0∫
0

(h(s) − h(r0))1−dds
r0∫
s

(h(u) − h(r0))d−1du ≤ 1 + δr2
0

2 .

Thus, we conclude that

K̃φ(t) ≤ δ + δkr2
0 +

(
2 + δr2

0
2

)
k +

(
4d− 11

2

)
δ2r2

0. (3.16)
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Now, it leaves us to estimate δ. Since −h′ is increasing and h is decreasing, by the FKG 
inequality, we have

r0∫
0

(h(s) − h(r0))d−1ds ≥
−r0

∫ r0
0 (h(s) − h(r0))d−1h′(s)ds

−
∫ r0
0 h′(s)ds

= r0
d

(1 − h(r0))d−1.

From this and (3.15), we deduce that δ ≤ −λd/r0, which, together with (3.16), implies

K̃φ(t) ≤ −
(

1
r0

+ 3
2r0k

)
λd +

(
4d− 11

2

)
λ2d2 + 2k;

C(T, φ) ≤ 2
√

4T 2λ4d4 + 2Tλ2d2 + 4Tλ2d2.

Combining this with Theorems 3.4 and 3.5, we complete the proof. �
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