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Abstract

We suggest a D-geometric de�nition of a Koszul-Tate (KT) resolution for a DGDA-
morphism (thought of as the projection onto an on-shell function algebra). Here DGDA
denotes the category of di�erential non-negatively graded algebras over linear di�erential

operators D acting on functions of a smooth base scheme. Such a D-geometric KT resolu-

tion does always exist: no locality, regularity, or reducibility assumptions are needed. In

the case of a smooth a�ne base, a D-geometric KT resolution can be obtained from the

functorial co�brant replacement functor on DGDA that has been explicitly constructed in

[BPP15b]. Also the latter resolution exists without any of the mentioned restrictive hy-

potheses. It turns out that the classical KT resolution constructed in coordinates [Bar10],

for any regular on-shell irreducible gauge theory (as the Tate extension of the Koszul res-

olution of a regular surface), as well as the compatibility complex KT resolution built in

coordinates [Ver02], under regularity and o�-shell reducibility conditions (existence of a

�nite formally exact compatibility complex), are KT resolutions in the D-geometric sense.

The relationships between the classical and the co�brant replacement KT resolutions, as

well as between the classical and the compatibility complex KT resolutions, are studied.

In the appendix, we construct from scratch some of the knowledge needed to study PDE-s

and corresponding resolutions in the D-algebraic and the physical settings, as well as in

the jet bundle formalism. For the model categorical approach, we refer to [BPP15a] and

[BPP15b].
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1 Notation and conventions

When FX is a sheaf over a topological space X and U ⊂ X is an open subset, we write

F(U) for FX(U) = Γ(U,FX).
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For any unital ring R, we denote by Dk
• the k-disc chain complex

Dk
• : · · · −→ 0 −→ 0 −→

(k)

R
id−→

(k−1)

R −→ 0 −→ · · · −→
(0)

0 , (1)

and by Sk• the k-sphere chain complex

Sk• : · · · −→ 0 −→ 0 −→
(k)

R−→ 0 −→ · · · −→
(0)

0 . (2)

Moreover, we set

I = {ik : Sk−1
• → Dk

• , k ≥ 0}

and

J = {ζk : 0→ Dk
• , k ≥ 1} ,

where ik, ζk are the canonical chain maps.

2 Preliminaries

This paper is the third of a series of works on the BV-formalism. In [BPP15a] and [BPP15b]

we proved the following

Theorem 1. The category DGDA of di�erential non-negatively graded commutative unital al-

gebras over the ring D = DX(X) of total sections of the sheaf DX of di�erential operators of a

smooth a�ne variety X, is a �nitely ( and thus a co�brantly ) generated model category ( in the

sense of [GS06] and in the sense of [Hov07] ), with S(I) = {S(ιk) : ιk ∈ I} as its generating set
of co�brations and S(J) = {S(ζk) : ζk ∈ J} as its generating set of trivial co�brations, where

S denotes the graded symmetric tensor algebra functor. The weak equivalences are the DGDA-
morphisms that induce an isomorphism in homology, the �brations are the DGDA-morphisms

that are surjective in all positive degrees p > 0, and the co�brations are exactly the retracts of

the relative Sullivan D-algebras.

Further, we describe in these articles explicit functorial co�bration-�bration factorizations,

as well as explicit functorial �brant and co�brant replacement functors. We then use the latter

to build a model categorical Koszul-Tate resolution for D-algebraic on-shell function algebras.

3 D-geometric KT resolution

Let X be a smooth scheme and let OX (resp., DX) be the sheaf of rings of functions

(resp., di�erential operators) of X. Denote by qcCAlg(OX) (resp., qcCAlg(DX)) the category

of commutative unital OX -algebras (resp., commutative unital DX -algebras) that are quasi-

coherent as OX -modules. In the following, we refer to the objects of this category as OX -
algebras (resp., DX -algebras). The forgetful functor has a left adjoint [BD04]

J∞ : qcCAlg(OX)→ qcCAlg(DX) ,

called the jet functor.
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Proposition 1. Let π : E → X be a vector bundle of �nite rank over X and denote by OE
the structure sheaf of the scheme E. Then OEX := π∗OE ∈ qcCAlg(OX) and thus J∞(OEX) ∈
qcCAlg(DX).

The latter can be interpreted as the D-geometric counterpart of the function sheaf OJ∞E of

the in�nite jet bundle of a smooth vector bundle. See Appendix 7.3 for additional information,

as well as for the proof of Proposition 1.

The algebraization of a scalar partial di�erential equation (PDE) acting on sections of a

smooth vector bundle E may be viewed as a function F ∈ O(J∞E) of J∞E. The function

algebra O(Σ∞) of the in�nite prolongation Σ∞ ⊂ J∞E (also called the `stationary surface' or

the `shell') of this equation is the quotient of the algebra O(J∞E) by the ideal I of all functions

that vanish on Σ∞. Hence, we think about an ideal I ⊂ J∞(OEX) as a scalar polynomial PDE

acting on sections of π : E → X and about J∞(OEX)/I as the sheaf of corresponding on-

shell function DX -algebras. The latter ideal is of course a DX -ideal, i.e., an OX -ideal and a

DX -submodule that is quasi-coherent as OX -module. Our goal is to resolve this DX -algebra.

In the following, we write J instead of J∞(OEX). We will explain below that in classical

Koszul-Tate resolutions [HT92, Ver02], the natural type of di�erential operators are the `total

or horizontal di�erential operators', which can be identi�ed with the sheaf J [DX ] := J ⊗DX
of rings of di�erential operators with coe�cients in J . Moreover, as mentioned in [BPP15b],

a Koszul-Tate resolution of R := J /I, or, of the canonical DX -algebra morphism f : J → R,
should be a DG DX -algebra, as well as a J -algebra, or, still better, a DG J [DX ]-algebra.

Hence, in addition to the category DG+qcCAlg(DX) of di�erential non-negatively graded quasi-

coherent commutative unital DX -algebras, which we studied in [BPP15a, BPP15b], we will in

the sequel also consider the category DG+qcCAlg(J [DX ]), with self-explaining notation. We

suggest to the reader, who considers himself as not familiar with this topic, to skim Appendices

7.3.4 and 7.3.5, which contain some details that will be freely used in the sequel.

The computations of [BPP15b] suggest the following D-geometric de�nition:

De�nition 1. Let X be a smooth scheme, let A be a DX-algebra, and let φ : A → B be

a DG DX-algebra morphism. A Koszul-Tate resolution (a KTR for short) of φ is a DG

A[DX ]-algebra morphism ψ : C → B , which is a quasi-isomorphism in the category of DG

A[DX ]-modules, and whose source C is of Sullivan type. Here, C is of Sullivan type means

that C admits an increasing �ltration C0 ⊂ C1 ⊂ . . . by DG DX-subalgebras, such that there is

a DG DX-algebra morphism A → C0 (we set C−1 := A ) and that Ck ( k ≥ 0 ) is isomorphic as

DG DX-algebra to Ck ' Ck−1 ⊗ SVk, where Vk is a locally projective graded DX-submodule of

Ck such that dCkVk ⊂ Ck−1 .

Remark 1. Observe �rst that a quasi-isomorphism in the category of DG A[DX ]-modules

is a morphism that induces a bijection in homology, i.e., is an A-linear quasi-isomorphism

in the category of DG DX-modules. Further, the di�erential on Ck−1 ⊗ SVk is dCk and it is

completely de�ned by the facts that dCk is a degree −1 graded derivation and that Ck−1 is a DG

DX-subalgebra of Ck .



On four Koszul-Tate resolutions 5

The requirement that C be equipped with an increasing �ltration by DG DX -subalgebras
Ck (k ≥ 0) and that there exist a DG DX -algebra morphism j0 : A → C0, is equivalent to the

condition that C be �ltered by a sequence C0 ⊂ C1 ⊂ . . . of DG A[DX ]-subalgebras. Indeed,

since j0 : A → C0, as well as the canonical inclusions ik : Ck−1 → Ck (k ≥ 1), are DG

DX -algebra morphisms, we have DG DX -algebra morphisms jk = ik ◦ . . . ◦ i1 ◦ j0 : A → Ck
that provide a �ltring sequence C0 ⊂ C1 ⊂ . . . of DG A[DX ]-subalgebras. Conversely, such

a sequence gives a DG DX -algebra morphism A 3 a 7→ a / 1C0 ∈ C0 . Hence, a resolution of

Sullivan type is the same as an A-semi-free resolution [BD04]. It follows [BD04] that the next

proposition holds.

Proposition 2. Let X be a smooth scheme. If A is a DX-algebra, any DG DX-algebra
morphism A → B admits a Koszul-Tate resolution. In particular, if π : E → X is a �nite rank

vector bundle and if J := J∞(OE), any DG DX-algebra morphism J → B admits a KTR; for

instance, if I is a DX-ideal, the DX-algebra morphism J → J /I has a KTR.

Remark 2. Let us stress that the D-geometric KTR is de�ned in the algebraic geometric

setting, over any smooth scheme X, and for any DG DX-algebra map with arguments in a

DX-algebra � thought of as morphism from in�nite jet space functions to on-shell functions

of some partial di�erential equation � . However, in fact, no equation is considered, and the

D-geometric KTR does always exist, although, unlike the more classical situations discussed

below, no locality, no regularity, and no reducibility assumptions have been made.

4 Co�brant replacement KT resolution and D-geometric KT

resolution

The `classical' Koszul-Tate resolutions [HT92] and [Ver02] are `local' results, see below. If

in the context of the preceding section, we assume locality, in the sense that the underlying

smooth scheme X is smooth a�ne, or is even a smooth a�ne algebraic variety, we can replace

sheaves by global sections, see [BPP15a].

Let now π : E → X be a smooth morphism of smooth a�ne algebraic varieties. The

jet algebra J := J∞(OEX(X)) is a D-algebra, D = DX(X) . If I ⊂ J is a D-ideal, i.e., a
scalar polynomial PDE acting on the sections of π, the quotient J/I is the D-algebra of `on-

shell' functions. In view of [BPP15b], the canonical DGDA-morphism φ : J → J/I admits a

`co�bration - trivial �bration' decomposition given by the functorial `Cof - TrivFib' factorization

of the co�brantly generated model structure of DGDA, see Theorem 1:

J � J ⊗ SV
∼
� J/I . (3)

Theorem 2. The co�brant replacement (3) of J/I in the undercategory J ↓ DGDA [BPP15b],

or, better, the morphism J ⊗ SV → J/I is a D-geometric Koszul-Tate resolution of the mor-

phism φ : J → J/I in the sense of De�nition 1.

Indeed, the constructions in Section 4 of [BPP15b] directly imply that the minimal relative

Sullivan D-algebra J → J ⊗ SV is clearly of Sullivan type, and the DGDA-morphisms ι : J 3
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j 7→ j⊗1O ∈ J⊗SV and φ : J 3 j 7→ [j] ∈ J/I allow to endow the two target algebras J⊗SV
(with multiplication �) and J/I (with multiplication ∗) with natural DGJ [D]A-structures

j / T = (j ⊗ 1O) � T and j / [j′] = [j] ∗ [j′] .

It thus su�ces to show that the DGDA-morphism q : J⊗SV → J/I is J-linear (see also Remark

1). The latter is obvious from the de�nition [BPP15b] and the properties of q. Indeed,

q(j / T ) = q((j ⊗ 1O) � T ) = q(j ⊗ 1O) ∗ q(T ) = φ(j) ∗ q(T ) = [j] ∗ q(T ) = j / q(T ) .

Remark 3. The context for the co�brant replacement KTR is again algebraic geometric, but a

locality assumption is necessary, in the sense that we must work over a smooth a�ne algebraic

variety X. Moreover, we start from a D-ideal I of the jet D-algebra J associated to a morphism

E → X � thought of as some partial di�erential equation � . Again no regularity and no

reducibility hypotheses are needed. The KTR is the co�brant replacement of J/I in J ↓ DGDA.

5 Classical and D-geometric KT resolutions

Remark 4. In the following, we use without reference results and notation of Subsection 7.1

and Subsection 7.2.

5.1 Regular on-shell irreducible gauge theory

We consider a regular irreducible gauge theory, i.e., a �eld theory, whose dynamical

equations are the Euler-Lagrange equations of some Lagrangian L, which admits non-trivial

Noether identities (i.e., non-trivial gauge symmetries in characteristic form) and satis�es the

regularity and irreducibility assumptions 1-5 of Subsection 7.2.3. It follows that we work

locally, in a trivialization of a smooth rank r vector bundle π : E → X over a coordinate

patch of a smooth manifold of dimension n. The �ber (resp., base) coordinates are denoted

by u = (ua) (resp., x = (xi)), with a ∈ {1, . . . , r} (resp., i ∈ {1, . . . , n} ).

The assumptions 1-5 imply that the considered regular gauge theory is irreducible in the

sense that

Proposition 3. In a regular irreducible gauge theory, there exists an irreducible set of non-

trivial Noether operators.

More precisely, a gauge theory admits, by de�nition, non-trivial Noether identities Na
αD

α
x

δuaL ≡ 0, so that theDα
x δuaL are not independent. More precisely, at least one of the functions

Na
α ∈ F(π) of the in�nite jet space J∞(π) of π, does not vanish on the constraint surface

Σ ⊂ J∞(π), which is de�ned by the total derivatives Dα
x δuaL = 0 of the algebraized Euler-

Lagrange equations δuaL = 0. The hypotheses 1-5 entail that the Dα
x δuaL can be separated

into independent and dependent equations Ea and E∆. Further, the dependent equations

E∆ = F a
∆Ea, where F

a
∆ ∈ F(π), are the total derivatives E∆ = Dβ

xEδ of a �nite number of

dependent equations Eδ = F b
δEb (δ ∈ {1, . . . ,K}), and the Noether identities E∆−F a

∆Ea ≡ 0
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associated to the E∆ are the total derivatives Dβ
x(Eδ − F b

δEb) ≡ 0 of the Noether identities

Eδ − F b
δEb ≡ 0 associated to the Eδ (this hypothesis is called the irreducibility assumption

for the considered gauge theory (IA)). We write the latter Noether identities

RaδαD
α
x δuaL ≡ 0 (δ ∈ {1, . . . ,K}) . (4)

It is easy to see that they are non-trivial, i.e., that, for any δ, there is at least one coe�cient

Raδα that does not vanish on the constraint surface Σ ⊂ J∞(π) (note that the tuple of the

Dα
x δuaL is given by the action of an invertible matrix I on the tuple made of the Ea, E∆ (we

sometimes assume for simplicity that this matrix is identity)).

A compatibility operator (roughly, non-trivial linear total di�erential relations between

the equations) can itself admit a compatibility operator (relations between the relations).

Similarly, Noether identities can be related by so-called �rst-stage Noether identities, which

satisfy second-stage Noether identities... It is naturel to refer to the existence of non-trivial

higher-stage Noether identities as the reducibility of the considered gauge theory. Since we deal

in this text with an irreducible gauge theory, no non-trivial �rst-stage Noether identity should

exist, i.e., any linear total di�erential operator (S1
β . . . S

K
β )Dβ

x such that SδβD
β
x ◦ RaδαDα

x = 0

should be trivial, should vanish. Such an operator vanishes if and only if all its coe�cients

vanish. In the present approach to the Koszul-Tate resolution, `trivial' (resp., `non-trivial')

means that all the coe�cients vanish (resp., at least one coe�cient does not vanish) on Σ.

Hence, we actually deal with on-shell irreducibility. This means that

SδβD
β
x ◦RaδαDα

x ≈ 0 must imply that Sδβ ≈ 0 (∀ δ ∈ {1, . . . ,K}) . (5)

It can be shown [Bar10] that this on-shell irreducibility condition really holds � in view of the

above irreducibility assumption (IA).

In view of (4) and (5), the linear total / horizontal di�erential operators Raδ = RaδαD
α
x are

the announced irreducible set of non-trivial Noether operators.

5.2 Classical KTR as Tate extension of the Koszul resolution of a regular

surface

The Koszul-Tate resolution of the algebra C∞(Σ) of functions of the constraint surface

is a generalization of the Koszul resolution of a regular surface, see Subsection 7.2.1. The

di�erence between the case of a regular surface Σ ⊂ Rn and the case of a constraint surface

Σ ⊂ J∞(π) in a regular irreducible gauge theory, is the existence of the irreducible set of

non-trivial Noether operators Raδ , or, still, of the Noether identities R
a
δαD

α
x δuaL ≡ 0 and their

extensions

Dβ
x R

a
δαD

α
x δuaL ≡ 0 . (6)

It turns out that, to kill the homology in higher degrees, we must introduce additional gener-

ators that take into account these extensions. More precisely, we do not only associate degree

1 generators φα∗a to the equations Dα
x δuaL = 0 of Σ, but we assign further degree 2 generators
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Cβ∗δ to the relations (6). The Koszul-Tate resolution of C∞(Σ) is then the chain complex,

whose chains are the elements of the free Grassmann algebra

KT = F(π)⊗ S[φα∗a , C
β∗
δ ] , (7)

and whose di�erential is de�ned, in analogy with the Koszul di�erential of a regular surface,

by

δKT = Dα
x δuaL ∂φα∗a +Dβ

x R
a
δαD

α
xφ
∗
a ∂Cβ∗δ

, (8)

where we substituted φ∗a to δuaL and where the total derivatives have to be interpreted in the

extended sense that puts the `anti�elds' φ∗ and C∗ on an equal footing with the `�elds' φ.

This means that Dxi must be de�ned as

Dxi = ∂xi + φaiα∂φaα + φiα∗a ∂φα∗a + Ciβ∗δ ∂
Cβ∗δ

.

Note that the replacement in δKT of the δuaL by the φ∗a is necessary to get a degree −1

operator and that this replacement lends naturalness to the extended interpretation of the

total derivatives. The bosonic anti�eld C∗ is referred to as the Tate part of the Koszul-Tate

complex (KT, δKT).

The homology of (KT, δKT) is actually concentrated in degree 0, where it coincides with

C∞(Σ). Indeed, the 0-cycles are the functions F(π) and the 0-boundaries are the

δKT

(∑
F aαφ

α∗
a

)
=
∑

F aαD
α
x δuaL ≈ 0 .

In view of the regularity assumption 2 in Subsection 7.2.3, the equations Ea play the same role

as the equations fa play in Subsection 7.2.1, so that the ideal I(Σ) of those functions of F(π)

that vanish on Σ is made of the combinations
∑
F aEa. Therefore, not only any 0-boundary

belongs to I(Σ), but, conversely, any function of I(Σ) reads∑
F aEa =

∑
F a(I−1)aaαD

α
x δuaL = δKT

(∑
F a (I−1)aaα φ

α∗
a

)
and is therefore a 0-boundary. It follows that H0(KT) = F(π)/I(Σ) = C∞(Σ). To show that

the homology vanishes in higher degrees, one needs the anti�eld C∗, as well as the irreducibility

assumption (IA).

In fact, the above irreducible set of non-trivial Noether operators Raδ is generating,

in the sense that any Noether operator (N1
α . . . N

r
α)Dα

x , i.e., any total di�erential operator (e.g.,

from F(π, π) to F(π)) such that Na
αD

α
x δuaL ≡ 0, uniquely reads

Na
αD

α
x = Sδγ D

γ
x ◦Raδβ Dβ

x +M
[a,b
α,β]D

β
xδubLDα

x , (9)

where the coe�cients belong to F(π) and satisfy Sδγ 6≈ 0 and M
[a,b
α,β] = −M [b,a

β,α]. Hence, in

a regular irreducible gauge theory, any Noether operator (N1 . . . N r) coincides on-shell with

a composite (Sδ ◦ R1
δ . . . S

δ ◦ Rrδ) of the irreducible set of Noether operators with some total

di�erential operators. This result is actually a quite straightforward corollary of the fact that

H1(KT) = 0.
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5.3 Change of perspective

In the classical Koszul-Tate complex KT = F ⊗ SV, where F = F(π) and

V =
⊕
α,a

R · φα∗a ⊕
⊕
β,δ

R · Cβ∗δ ,

the tensor products are over R and (KT, δKT) is viewed as a chain complex in the category of

F-modules.

However, the algebra F can be endowed with a D-module structure. Since we work in

�xed coordinates, any D ∈ D uniquely reads D =
∑
|α|≤kDα(x)∂αx , for some integer k ∈ N

and functions Dα ∈ O := C∞(X). As observed in Subsection 7.3.2, the action of D on F ∈ F
is de�ned by

D · F = C(D)F =
∑
|α|≤k

Dα(x)Dα
xF , (10)

where C denotes the horizontal lift. It is easily seen that this de�nition actually provides a

D-module structure, since, for any composable linear di�erential operators ∆1 ∈ Diff(η1, η2)

and ∆2 ∈ Diff(η2, η3) between vector bundles ηi over X, the horizontal lifts

C(∆1) ∈ CDiff(π∗∞(η1), π∗∞(η2)) and C(∆2) ∈ CDiff(π∗∞(η2), π∗∞(η3))

satisfy

C(∆2 ◦∆1) = C(∆2) ◦ C(∆1) .

This result holds for any vector bundle π : E → X, in particular for the trivial one we �xed

at the beginning of Subsection 5.1 � see [KV98].

It is clear that this D-module structure and the O-algebra structure of F are compatible

in the sense that vector �elds act as derivations. Hence, F is a D-algebra. Moreover, the ideal

I(Σ) is an O-ideal and a D-submodule, hence a D-ideal. As for the submodule structure, note

that if F ∈ I(Σ) and D ∈ D, one has

(D · F )|Σ = (C(D)F )|Σ = (C(D))|ΣF |Σ = 0 ,

see Subsection 7.1. Finally, the quotient C∞(Σ) = F/I(Σ) is a D-algebra for the action

D · [F ] = [D · F ] and the multiplication [F ][G] = [FG]. It follows that the passage

φ : F 3 F 7→ [F ] ∈ C∞(Σ)

to the quotient is a D-algebra map. However, not only di�erential operators act on C∞(Σ),

also jet functions do act: it su�ces to set F / [G] := [F ][G] = [FG]. This F-algebra and the

former D-algebra structures on C∞(Σ) are compatible, so that C∞(Σ) is an F [D]-algebra.

Since F is a D-algebra, hence an O-algebra, it is natural to replace V by the free non-

negatively graded O-module

V =
⊕
α,a

O · φα∗a ⊕
⊕
β,δ

O · Cβ∗δ
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over the generators φα∗a and Cβ∗δ of degree 1 and 2, respectively. Just as the variables uaα or

φaα are algebraizations of the derivatives ∂αxφ
a of the components of a section φ of a vector

bundle E → X (�elds), the generators φα∗a and Cβ∗δ symbolize the total derivatives Dα
xφ
∗
a

and Dβ
xC∗δ of the components of sections φ∗ and C∗ of some vector bundles π∗∞F1 → J∞E

and π∗∞F2 → J∞E (anti�elds). Hence, the φα∗a and Cβ∗δ can be thought of as horizontal jet

space coordinates of π∗∞F1 and π∗∞F2 . These coordinates may of course be denoted by other

symbols, e.g., by ∂αx · φ∗a and ∂βx · C∗δ , provided we de�ne the D-action as the action Dα
xφ
∗
a

and Dβ
xC∗δ by the corresponding horizontal lift. This is not only in accordance with (10), but

leads to appropriate interpretations when the φ∗a-s and the C∗δ -s are the components of true

sections, as well as when interpreting the total derivatives in the above-mentioned extended

sense that puts anti�elds on the same level as �elds:

∂αx · φ∗a := Dα
xφ
∗
a = φα∗a and ∂βx · C∗δ = Dβ

xC
∗
δ = Cβ∗δ . (11)

Eventually, the best choice for the underlying module V or V is the free non-negatively

graded D-module

V =
⊕
a

D · φ∗a ⊕
⊕
δ

D · C∗δ

over the components of the anti�elds φ∗ and C∗. The F-module of Koszul-Tate chains then

reads

KT = F ⊗R SRV = F ⊗O SOV , (12)

where the RHS is also a graded D-algebra.

Any element c of this graded D-algebra reads non-uniquely as a �nite sum

c =
∑

F (Da · φ∗a) . . . (∆δ · C∗δ ) ,

where F ∈ F and Da,∆δ ∈ D, and where we omitted the tensor products. The Koszul-Tate

di�erential δKT, which is well-de�ned on KT, acts as a graded derivation and is thus completely

known, if it is known on the Da · φ∗a and the ∆δ ·C∗δ . For any D = Dα∂
α
x , we have, in view of

the de�nitions given above,

δKT(D·φ∗a) = Dα δKT(∂αx ·φ∗a) = Dα δKT(φα∗a ) = DαD
α
x δuaL = D·(δuaL) = D·δKT(φ∗a) . (13)

Similarly, we get

δKT(D · C∗δ ) = Dα δKT(∂αx · C∗δ ) = Dα δKT(Cα∗δ ) = DαD
α
x (Raδβ D

β
xφ
∗
a) = DαD

α
x (Raδβ φ

β∗
a ) .

The extended total derivative Dα
x of Raδβ φ

β∗
a is a sum of terms of the type

Dα1
x Raδβ D

α2
x φβ∗a = (∂α1

x ·Raδβ) (∂α2
x · φβ∗a ) ,

so that, in view of the de�nition of the D-action on the tensor product of F and SOV , we �nd
that

Dα
x (Raδβ φ

β∗
a ) = ∂αx · (Raδβ φβ∗a ) .

Eventually,

δKT(D · C∗δ ) = D · δKT(C∗δ ) . (14)
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5.4 Classical KTR viewed as D-geometric KTR

In the following, we apply, without further reference, [BPP15b, Lemma 1] that allows to

construct non-split relative Sullivan D-algebras (RSDA-s), as well as DGDA-morphisms from

such a Sullivan algebra to another di�erential graded D-algebra. For convenience, we recall

this lemma in Subsection 7.3.1.

Let V1 :=
⊕

aD · φ∗a . To endow the graded D-algebra

C1 := F ⊗O SOV1 (15)

with a di�erential graded D-algebra structure d, we set,

dφ∗a := δuaL ∈ F , (16)

extend d to V1 by D-linearity, and equip C1 with the di�erential d given by

d(F (D · φ∗a) (∆ · φ∗b)) := (F d(D · φ∗a))(∆ · φ∗b)− (F d(∆ · φ∗b))(D · φ∗a) ,

where we omitted the tensor products and considered, to increase clarity, an element of degree

2. Then the natural DGDA-morphism ı : (F , 0) 3 F 7→ F ⊗ 1O ∈ (C1, d) is a RSDA. Since δKT

is also a graded derivation that is D-linear in the sense of Equation (13) and coincides with d

on the generators φ∗a, the RSDA is actually a DGDA-morphism

ı : (F , 0) 3 F 7→ F ⊗ 1O ∈ (C1, δKT) . (17)

Consider now the D-algebra C∞(Σ) = F/I(Σ) and the DA-morphism φ : F → C∞(Σ).

To de�ne a DGDA-morphism

q1 : C1 → C∞(Σ) , (18)

it su�ces to set

q1(φ∗a) = 0 ∈ (C∞(Σ))1 ∩ 0−1(φ(dφ∗a)) , (19)

to extend q1 by D-linearity to V1, and to de�ne q1 in degree 0 by q1(F ) = [F ] and in degree

≥ 1 by q1 = 0. As for Condition (48), note that φ(dφ∗a) = [δuaL] = 0, in view of the de�nition

of Σ.

An anew application of Lemma 1 in [BPP15b], where the role played above by (F , 0) (resp.,

V1) is now assumed by (C1, δKT) (resp., V2 :=
⊕

δ D · C∗δ ), endows the graded D-algebra

C2 := C1 ⊗O SOV2 (20)

with a di�erential graded D-algebra structure d that, similar to d above, is fully de�ned by

dC∗δ = Raδα(∂αx · φ∗a) ∈ (C1)1 ∩ δ−1
KT{0} . (21)

Indeed, we have

δKT(Raδα(∂αx · φ∗a)) = RaδαD
α
x δuaL ≡ 0 .
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To compare the di�erential d with the di�erential δKT, note that d is extended to V2 by

D-linearity and that its value on c = F (D · φ∗a) (∆ · C∗δ ) (∇ · C∗ε ), for instance, is

d c = δKT(F (D · φ∗a)) (∆ · C∗δ ) (∇ · C∗ε )

−(F (D · φ∗a) d(∆ · C∗δ )) (∇ · C∗ε )

− (F (D · φ∗a) d(∇ · C∗ε )) (∆ · C∗δ ) .

As δKT is a graded derivation that is D-linear in the sense of Equation (14) and coincides with

d on the generators C∗δ , we get d = δKT on C2. Hence, the DGDA-morphism

 : (C1, δKT) 3 c 7→ c⊗ 1O ∈ (C2, δKT) (22)

is a relative Sullivan D-algebra.

Start now from the DGDA-morphism q1, and de�ne a DGDA-morphism

q2 : C2 → C∞(Σ) (23)

by setting

q2(C∗δ ) = 0 ∈ (C∞(Σ))2 ∩ 0−1(q1(δKTC
∗
δ )) ,

extending q2 by D-linearity to V2 and by de�ning q2 in degree 0 by q2(F ) = [F ] and in degree

≥ 1 by q2 = 0.

Since V = V1 ⊕ V2 as graded D-module, the graded D-algebras SOV = SO(V1 ⊕ V2) and

SOV1 ⊗O SOV2 are isomorphic. Hence, the same holds for the graded D-algebras

KT = F ⊗O SOV and C2 = F ⊗O SOV1 ⊗O SOV2 .

It follows that  ◦ ı : (F , 0) → (KT, δKT) is a DGDA-morphism and thus allows to endow

(KT, δKT) with a DGF [D]A-structure � see Example 1.

Theorem 3. The classical Koszul-Tate resolution (KT, δKT) is a D-geometric Koszul-Tate

resolution of the D-algebra map φ : F → C∞(Σ), in the sense of De�nition 1 ( in the smooth

setting ).

Proof. Most of the proof is given in the preparation that precedes the theorem. For instance,

it is clear from what has been said that KT ' C2 admits an increasing �ltration C1 ⊂ C2 ⊂
C2 ⊂ . . . by DG D-subalgebras, such that there is a DG D-algebra morphism F → C1 (we

set C0 := F ) and that Ck ( k ≥ 1 ) is isomorphic as DG D-algebra to Ck ' Ck−1 ⊗O SOVk,
where Vk is a free graded D-submodule of Ck such that δKTVk ⊂ Ck−1 : KT is of Sullivan

type. We already mentioned that KT ' C2 and C∞(Σ) are DGF [D]-algebras. It now su�ces

to show that the DGDA-morphism q := q2 : KT → C∞(Σ) is F-linear and induces an F- and
D-linear bijection q] of degree 0 between the graded module H•(KT) and the module C∞(Σ)

concentrated in degree 0. First, q is F-linear, as, if F,G ∈ F , we obtain

F / q(G) = F / [G] = [FG] = q(FG) .
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Hence, the induced map q] has the required properties, except, maybe, bijectivity. In degree

≥ 1, the homology H•(KT) vanishes, just as C∞(Σ). In degree 0, the homology is given by

C∞(Σ) = F/I(Σ), where F (resp., I(Σ)) are the 0-cycles (resp., 0-boundaries), and q][F ] =

q(F ) = [F ] is the identity.

5.5 Classical KTR versus co�brant replacement KTR

Recall that the classical KT resolution (KT, δKT) is the DGF [D]A

KT = F ⊗O SOV ,

where V is the free graded D-module with homogeneous basis⋃
{φ∗a, C∗δ }

(the degrees of the generators are 1, 2), endowed with the degree −1, F- and D-linear graded
derivation de�ned by

δKT(φ∗a) = δuaL and δKT(C∗δ ) = Raδα (∂αx · φ∗a) .

The results of [BPP15b], applied (formally) to the DGDA-map φ : (F , 0) → (C∞(Σ), 0), show

that the co�brant replacement KT resolution (KT , δKT ) is the DGF [D]A

KT = F ⊗O SOV ,

where V is the free graded D-module with homogeneous basis⋃
{If , I1σn,0, I

2
σn,0, . . . , I

k
σn,0, . . .} ,

for all f ∈ C∞(Σ) and `numerous' σn (n ≥ 0) that are described in [BPP15b, Theorem 5] and

in the proof that precedes this result (the degrees of the generators are 0, n+ 1, n+ 1, . . . , n+

1, . . .). Here δKT is the degree −1, F- and D-linear graded derivation de�ned by

δKT (If ) = 0 and δKT (Ikσn,0) = σn .

When using the just mentioned description in [BPP15b, Theorem 5], one sees rather easily

that the map i, de�ned by

i(φ∗a) = I1(δuaL, 0) ∈ V1 and i(C∗δ ) = I2(
Raδα

(
∂αx · I1(δuaL, 0)

)
, 0
) ∈ V2 ,

is a DGF [D]A-morphism

i : (KT, δKT)→ (KT , δKT ) .

It was clear a priori that the very general functorial co�brant replacement KT resolution

(KT , δKT ) would be `much bigger' than the classical KT resolution (KT, δKT) that is subject

to regularity and irreducibility conditions and far from being functorial.
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6 Compatibility complex and D-geometric KT resolutions

6.1 Triviality, regularity and o�-shell reducibility assumptions

In this and the following subsections, we describe some ideas of [Ver02] adopting a slightly

di�erent standpoint and using, as above, results and notation of Subsection 7.1.

The preceding section reminded us of the smooth geometric frame of the classical KT-

resolution, as well as of the choice of �xed coordinates. Further, we started from �eld theo-

retic Euler-Lagrange equations, with Noether identities relating them, and we made precise

regularity and on-shell irreducibility assumptions.

In the present case, the setting will be as well smooth geometry and, just as in the classical

approach, we will work locally, although some aspects are developed in a coordinate-free man-

ner. Our springboard will be any not necessarily linear PDE, for which we formulate regularity

and o�-shell reducibility conditions.

More precisely, let π : E → X and ρ1 : F1 → X be smooth vector bundles of ranks r

and r1, respectively, over a smooth manifold of dimension n. Take a not necessarily linear

formally integrable PDE Σ0 ⊂ Jk(π) of order k, which is implemented by a not necessarily

linear di�erential operator D ∈ DOk(π, ρ1): Σ0 = kerψD, where ψD ∈ FB(Jk(π), F1) is the

representative �ber bundle morphism of D. Recall (from Subsection 7.1) that

DOk(π, ρ1) ' FB(Jk(π), F1) ' Fk(π, ρ1) := Γ(π∗k(ρ1)) ⊂ Γ(π∗∞(ρ1)) =: Γ(R1) =: R1

(in the sequel, we often denote a vector bundle over X by a Greek minuscule, its pullback

over J∞(π) by the corresponding Latin capital, and the module of sections of the latter by

the same calligraphic letter). As usual, we denote by Σ ⊂ J∞(π) the in�nite prolongation of

Σ0 ⊂ Jk(π): Σ = kerψ∞D , where ψ∞D ∈ FB(J∞(π), J∞(ρ1)) is the in�nite prolongation of ψD.

We now recall the locality and regularity hypotheses used in [Ver02]. In fact, the author

assumes that Σ is contained in a small open subset U ⊂ J∞(π), in which there exist coordinates

(xi, uaα). Also in the bundle ρ1 �ber coordinates � indexed by λ ∈ {1, . . . , r1} � are �xed. In

addition to these triviality conditions, he formulates a regularity requirement for Σ. Just

as for the classical KT-resolution, it is assumed that some equations of Σ can be chosen as

�rst or last coordinates of a new system (of course, the equations of Σ read in the considered

trivializationsDα
xψ

λ
D = 0, for all α ∈ Nn and λ ∈ {1, . . . , r1}.) More precisely, the neighborhood

U of Σ is assumed to be a trivial bundle over Σ, in the sense that there is an isomorphism

Φ : U → Σ× V , where V is a star-shaped neighborhood of 0 in R∞, such that the coordinates

v = (v1, v2, . . .) in V are precisely certain equations of Σ (not necessarily all of them): for any

a, there is an αa ∈ Nn and a λa ∈ {1, . . . , r1}, such that va = Dαa
x ψλaD . This means that the

�ber coordinates v(κ) of a point κ ∈ Σ, which are obtained by projecting Φ(κ) on the second

factor V , vanish. In addition, as in any trivialization, the projection of Φ(κ), κ ∈ Σ, on the

�rst factor Σ, is simply κ.

Although in the following we systematically consider the open subset U ⊂ J∞(π) instead
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of the whole jet space, we do not always insist on this restriction (and even write for simplicity

sometimes J∞(π) instead of U).

The latter regularity condition has the same fundamental consequence as in Subsections

7.2.1 and 5.2: a function F ∈ F vanishes on Σ if and only if it is a �nite sum of the type

F =
∑

Fαa,λaD
αa
x ψλaD ,

with Fαa,λa ∈ F . In other words, a function F ∈ F belongs to the ideal I(Σ) if and only if it

reads F = Ψ(ψD), for some Ψ ∈ CDiff(R1,F).

In Subsection 5.1, we assumed on-shell irreducibility, i.e., we assumed that there are no

on-shell �rst stage Noether identities. More precisely, there does exist a generating irre-

ducible set of Noether operators RaδαD
α
x , or, still, a horizontal linear di�erential operator

∆1 ∈ CDiff(π∗∞(ρ1), π∗∞(ρ2)). In particular, we have RaδαD
α
x δuaL ≡ 0, for all δ ∈ {1, . . . ,K},

or, equivalently, ∆1(δu•L) ≡ 0. Note that the LHS of the algebraized Euler-Lagrange equations

δu•L = 0 is the representative morphism ψD of a not necessarily linear di�erential operator

D ∈ DO(π, ρ1). The universal linearization of the latter is a horizontal linear di�erential opera-

tor `D ∈ CDiff(π∗∞(π), π∗∞(ρ1)). When linearizing the identity ∆1(ψD) ≡ 0, we get ∆1◦`D = 0.

Since ∆1 is generating, it does not vanish and, for any operator ∇ ∈ CDiff(π∗∞(ρ1), π∗∞(ρ′2)),

such that ∇(ψD) ≡ 0, there is an operator � ∈ CDiff(π∗∞(ρ2), π∗∞(ρ′2)), such that ∇ ≈ � ◦∆1,

see Equation (9). Hence, roughly speaking, the restriction ∆1|Σ is an on-shell compatibility

operator for `D|Σ, and the mentioned on-shell irreducibility means that there is no on-shell

compatibility operator for ∆1|Σ, see Equation (5).

We now come back to the context of [Ver02]. The restricted linearization `D|Σ of the

considered operator D admits a compatibility operator ∆Σ ∈ CDiff(R1|Σ,R2|Σ). One of the

�rst results in [Ver02] states that ∆Σ can be extended to an operator ∆1 ∈ CDiff(R1,R2), such

that ∆1(ψD) = 0. Just as any other horizontal linear di�erential operator, the extension ∆1

admits a formally exact compatibility complex. However, the latter is a priori neither �nite,

nor are its F-modules Ri modules of sections of vector bundles. One of the main assumptions

of [Ver02] is that there exists a �nite formally exact compatibility complex

R1
∆1−→ R2

∆2−→ . . .
∆k−2−→ Rk−1 −→ 0 , (24)

whose F-modules Ri are all modules Ri = Γ(Ri) = Γ(π∗∞(ρi)), where the ρi : Fi → X are rank

ri smooth vector bundles, and whose arrows are horizontal operators ∆i ∈ CDiff(Ri,Ri+1).

This hypothesis is of course an o�-shell reducibility condition.

6.2 KTR induced by a compatibility complex

Formal exactness implies in particular that, when applying the horizontal in�nite jet func-

tor J̄∞ to the complex (24), we obtain an exact sequence of F-modules:

J̄∞(R1)
ψ̄∞∆1−→ J̄∞(R2)

ψ̄∞∆2−→ . . .
ψ̄∞∆k−2−→ J̄∞(Rk−1) −→ 0 . (25)
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Next we use the left exact contravariant Hom functor HomF (−,F), what leads to the exact

sequence

HomF (J̄∞(R1),F)
−◦ψ̄∞∆1←− HomF (J̄∞(R2),F)

−◦ψ̄∞∆2←− . . .

−◦ψ̄∞∆k−2←− HomF (J̄∞(Rk−1),F)←− 0 (26)

of F-modules. The identi�cation of representative morphisms with the corresponding di�er-

ential operators �nally gives the exact sequence

CDiff(R1,F)
−◦∆1←− CDiff(R2,F)

−◦∆2←− . . .
−◦∆k−2←− CDiff(Rk−1,F)←− 0 . (27)

The completion

0 −→ CDiff(Rk−1,F)
−◦∆k−2−→ CDiff(Rk−2,F)

−◦∆k−3−→ . . .
−◦∆1−→ CDiff(R1,F)

−(ψD)−→ F −→ 0

(28)

of the latter sequence by −(ψD) is a complex of F-modules for the natural grading given by

the subscripts of the Ri. This complex, which is exact in all spots, except, maybe, in degrees

0 and 1, is actually made of F [D]-modules. Indeed, in view of Equation (101), we have

F [D] := F ⊗D ' CD(J∞(π)) := CDiff(F ,F) ,

so that the F [D]-action is given by left composition (except for F). Hence, the arrows of this
complex are F [D]-linear maps and the complex itself is a di�erential graded F [D]-module

(CDiff(R•,F), δKT) ∈ DGF [D]M ,

where δKT is the direct sum of the maps in (28). The graded symmetric tensor algebra functor

SF sends this underlying module to the free di�erential graded F [D]-algebra

(KT, δKT) := (SF CDiff(R•,F), δKT) ∈ DGF [D]A , (29)

whose di�erential is a degree −1 graded derivation of the graded symmetric tensor product.

The latter complex is the Koszul-Tate complex, in the sense of [Ver02], associated to the

considered partial di�erential equation.

The homology space H0(KT) is easily computed and the above sequences suggest that the

higher homology spaces might vanish. Indeed, the module of 0-cycles is F and the module

of 1-chains is CDiff(R1,F). Due to the above-mentioned fundamental consequence of the

regularity condition, the ideal I(Σ) coincides with the image of −(ψD), i.e., with the module

of 0-boundaries. Hence, we get H0(KT) = C∞(Σ).

To prove that the homology spaces Hp(KT), p ≥ 1, do vanish, it su�ces to show that the

KT complex (29) coincides � as claimed � with the KT complex de�ned in [Ver02] and to use

the corresponding result therein. The algebra of KT chains is de�ned in [Ver02] as the graded

polynomial function algebra Pol(J̄∞(R•)). As usual, the polynomial functions Pol(J̄∞(R•))

are the smooth functions F(J̄∞(R•)) that are polynomial along the �bers of the considered
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bundle � here J̄∞(R•)→ J∞(π). Just as the polynomial functions of a vector bundle G→ X

are de�ned by

Pol(G) := Γ(SG∗) ' SOΓ(G∗) = SO HomO(Γ(G),O) ,

the polynomial functions considered here are de�ned by

Pol(J̄∞(R•)) := SF HomF (J̄∞(R•),F) ' SF CDiff(R•,F) .

Hence, the KT chains of [Ver02] and those de�ned above do coincide. Moreover, the KT

di�erential is de�ned in [Ver02] as an odd evolutionary vector �eld δ of J̄∞(R•). Such a

graded derivation, when restricted as here to Pol(J̄∞(R•)), is completely de�ned by its values

on the polynomial functions that are linear along the �bers, i.e., on HomF (J̄∞(R•),F) '
CDiff(R•,F) � and by its values on F . But on ∇i ∈ CDiff(Ri,F) (resp., F ∈ F), this
evolutionary �eld is given by δ(∇i) = ∇i ◦ ∆i−1, if i ≥ 2, and by δ(∇1) = ∇1(ψD) (resp.,

δ(F ) = 0) [Ver02, Proposition 5.]. Hence, the odd derivations δ and δKT coincide, the KT

complexes (Pol(J̄∞(R•)), δ) and (KT, δKT) coincide, and so do their homologies.

6.3 KTR induced by a compatibility complex versus classical KTR

We compare the coordinate KT complex (KT, δKT) for Euler-Lagrange equations in a regu-

lar and on-shell irreducible gauge theory (Section 5) with the coordinate KT complex (KT, δKT)

for a not necessarily linear PDE subject to regularity and o�-shell reducibility conditions (Sec-

tion 6).

First, we focus on the KT chains. Since

C : F ⊗O Diff(Γ(ρ•),O)→ CDiff(R•,F)

is an F-module isomorphism (Equation (100)), we get

KT ' SF (F ⊗O Diff(Γ(ρ•),O)) ' F ⊗O SO Diff(Γ(ρ•),O) .

Since we actually work in �xed coordinates, a linear di�erential operator D from sections of a

graded vector bundle ρ• :
⊕k−1

i=1 Fi → X to functions of X reads

D =
∑
α

(D1
α(x) . . . D

∑
j rj

α (x))∂αx , (30)

i.e., is nothing but an (r1 + . . . + rk−1)-tuple of operators in D, or, still, an element of the

non-negatively graded free D-module

V :=
k−1⊕
j=1

rj⊕
λ=1

D · vλ(j)

over formal generators vλ(j) of degree j. Hence, we �nally obtain the F-module isomorphism

KT ' F ⊗O SOV . (31)
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Whereas the complex KT contains anti�elds φ∗ and C∗ � with components φ∗a and C∗δ that

correspond to the considered equations and the irreducible relations between them � , the

complex KT must contain anti�elds v(1), v(2), v(3), ... whose components correspond to the

equations ψD, relations ∆1(−) between them, relations ∆2(−) between relations, ... Hence,

the KT-chains (31) are de�ned along the same lines than the KT-chains (12).

Also other aspects of the two approaches are analogous. Just as the anti�elds φ∗ and C∗

have been interpreted as sections of vector bundles π∗∞Fi → J∞(π), i ∈ {1, 2}, the v(j) will be

viewed as sections of the vector bundles π∗∞Fj → J∞(π), j ∈ {1, . . . , k−1}, i.e., of the bundles
Rj → J∞(π). In other words, the formal parameters vλ(j) are seen as tuples vλ(j)(xi, uaα),

where λ ∈ {1, . . . , rj} and where (xi, uaα) are the base variables. Further, the fundamental

de�nitions (11) will be maintained in the present context:

∂βx · vλ(j) = Dβ
xv

λ(j) = vλβ(j) . (32)

Just as derivatives of sections of a vector bundle overX can be interpreted as sections of the

corresponding in�nite jet bundle, the preceding total derivatives Dβ
x of sections vλ(j)(xi, uaα)

of the bundle Rj → J∞(π), or, even, R• → J∞(π), can be viewed as sections vλβ(j)(xi, uaα) of

the horizontal in�nite jet bundle J̄∞(R•), with �ber coordinates vλβ(j) and base coordinates

(xi, uaα). Hence, the second equality in (32) provides the appropriate result in case the formal

parameters vλ(j) are true sections.

Eventually, we previously introduced the lifts of di�erential operators ∂x` acting on X-

functions f(xi) ∈ O(X) to horizontal di�erential operators

Dx` = ∂x` + ua`α∂uaα (33)

acting on J∞(π)-functions

F (xi, uaα) ∈ F(π) .

Similarly, we lift horizontal di�erential operators Dx` to extended horizontal di�erential oper-

ators

D̄x` = ∂x` + ua`α∂uaα + vλ`β(j)∂vλβ (j) (34)

that act on J̄∞(R•)-functions

F(xi, uaα, v
λ
β(j)) ∈ F(J̄∞(R•)) .

Therefore, the second equality (32) is in accordance with the extended interpretation D̄β
x of

Dβ
x .

We still have to compare the KT di�erentials δKT and δKT. As mentioned above, the

di�erential δKT is completely de�ned by its values on

CDiff(R•,F) ' HomF (J̄∞(R•),F) ' Pol1(J̄∞(R•))

and its values on F . Here superscript 1 means of course functions that are linear in the

�ber coordinates vλβ(j). In the considered �xed coordinates, such a di�erential operator ∇,
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its representative morphism ψ̄∇ and the corresponding linear jet bundle function read (with

obvious notation)

∇v =
∑
β

(. . .∇λβ(j)(xi, uaα) . . .)Dβ
x


...

vλ(j)(xi, uaα)
...

 '

ψ̄∇ v̄ =
∑
β

(. . .∇λβ(j)(xi, uaα) . . .)


...

vλβ(j)(xi, uaα)
...

 '

F∇(xi, uaα, v
λ
β(j)) =

∑
β

(. . .∇λβ(j)(xi, uaα) . . .)


...

vλβ(j)
...

 . (35)

Since δKT vanishes on F , it is completely de�ned by its values on the vλβ(j), exactly as δKT

is fully de�ned by its values on the φα∗a and the Cβ∗δ . Note still, before proceeding, that

the identi�cations for horizontal linear di�erential operators CDiff(Rj ,Rj+1) valued in a not

necessarily rank 1 bundle, are exactly the same, except that the row of coe�cients ∇λβ(j) is

replaced by a matrix of coe�cients ∇µλβ (j + 1, j).

In view of these de�nitions and identi�cations, we have

δKT(vλβ(1)) = δKT(Dβ
xv

λ(1)) = Dβ
x(ψλD) (36)

� which is entirely similar to the de�nition

δKT(φα∗a ) = Dα
x (δuaL) .

For j ∈ {2, . . . , k − 1}, we �nd

δKT(vλβ(j)) = δKT(Dβ
xv

λ(j)) = Dβ
x

(
(∆j−1 v(j − 1))λ(j)

)
=

Dβ
x

(
(∆λµ

γ (j, j − 1))(xi, uaα) Dγ
x v

µ(j − 1)
)

= Dβ
x

(
(∆λµ

γ (j, j − 1))(xi, uaα) vµγ (j − 1)
)
,

in view of the above remark on matrix coe�cients. When interpreting the vµγ (j − 1) as purely

algebraic �ber coordinates of the horizontal jet bundle, rather than as sections of the latter,

we must write

δKT(vλβ(j)) = D̄β
x

(
(∆λµ

γ (j, j − 1))(xi, uaα) vµγ (j − 1)
)

= D̄β
x

(
Fλ∆j−1

)
. (37)

For j = 2, we thus �nd

δKT(vλβ(2)) = D̄β
x

(
∆λµ
γ (2, 1) D̄γ

x v
µ(1)

)
, (38)
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where we omitted the variables (xi, uaα) � which is fully analogous to the de�nition

δKT(Cβ∗δ ) = D̄β
x

(
RµδγD̄

γ
xφ
∗
µ

)
.

We conclude with the observation that the KT di�erential

δKT =
∑
βλ

D̄β
x

(
ψλD

)
∂vλβ (1) +

k−1∑
j=2

∑
βλ

D̄β
x

(
Fλ∆j−1

)
∂vλβ (j) (39)

is the evolutionary vector �eld, or symmetry of the Cartan distribution, that is obtained as

the prolongation δX to the horizontal jet bundle J̄∞(R•)→ J∞(π) of the vertical vector �eld

X =
∑
λ

ψλD ∂vλ(1) +
k−1∑
j=2

∑
λ

Fλ∆j−1
∂vλ(j)

of the bundle R• → J∞(π) with coe�cients in

Pol1(J̄∞(R•)) ⊂ F(J̄∞(R•)) ,

see Equation (117).

6.4 KTR induced by a compatibility complex viewed as D-geometric KTR

Just as in Section 5, the canonical map φ : F 3 F 7→ [F ] ∈ C∞(Σ) is a D-algebra and even

an F [D]-algebra map.

In the proof that the above Koszul-Tate resolution (KT, δKT) is a D-geometric Koszul-Tate

resolution of φ, in the sense of De�nition 1, one of the di�culties will be to switch between

the di�erent viewpoints we used so far:

Pol1(J̄∞(R•)) :' HomF (J̄∞(R•),F) ' CDiff(R•,F) ' F ⊗O Diff(Γ(ρ•),O) ' F ⊗O V ,

(40)

with

V =
k−1⊕
j=1

rj⊕
λ=1

D · vλ(j) .

If we set (x, u) = (xi, uaα), these isomorphisms of F-modules read, in the considered coordinate

context,

∇λβ(j)(x, u) vλβ(j) ' ∇λβ(j)(x, u) vλβ(j)(x, u) ' ∇λβ(j)(x, u) Dβ
x

(
vλ(j)(x, u)

)
'

∇λβ(j)(x, u) ∂βx

(
vλ(j)(x)

)
' ∇λβ(j)(x, u) ∂βx · vλ(j) , (41)

where the vλβ(j) are the polynomial variables, the components of the argument in J̄∞(R•), in
R•, and in Γ(ρ•), as well as the formal parameters of V , respectively (except in the last case,

they are just arguments). In fact, all these F-modules are F [D]-modules, i.e., are endowed
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with a compatible D-action (in the sense that vector �elds θ ∈ D act as derivations on the

F-action). Note �rst that the F-module isomorphism F [D] ' CDiff(F ,F) acts between two

associative unital R-algebras (the statement is obvious for the RHS and comes from Equations

(153) and (154) for the LHS), and respects units and multiplications. Hence, F [D]-modules

are the same than CDiff(F ,F)-modules. We already mentioned that this provides a canonical

F [D]-module structure on CDiff(R•,F), given by left composition. Since F ⊗ODiff(Γ(ρ•),O)

and F ⊗O V are tensor products of D-modules, they are D-modules, and, as the F- and
D-actions are compatible, they are F [D]-modules. Finally, using the F-module isomorphism

ψ : CDiff(R•,F) 3 ∆ 7→ ψ∆ ∈ HomF (J̄∞(R•),F) ': Pol1(J̄∞(R•)) ,

we can push the F [D]-structure on the source forward to the target, thus making ψ an F [D]-

module isomorphism. It is easily seen that the last two F-module isomorphisms in (40) are

also isomorphisms of F [D]-modules. For the next to last isomorphism C : F ⊗ ∆ 7→ F C∆,

consider any linear di�erential operator in F [D] ' CDiff(F ,F), e.g., to simplify, the operator

Ψ = G ⊗ θ ◦ θ′ ' G Cθ ◦ Cθ′, and verify that Ψ · C(F ⊗ ∆) = C(Ψ · (F ⊗ ∆)). The last

isomorphism is con�ned to the coordinate setting and is straightforwardly checked. More

generally, when writing out the coordinate version of the actions of an operator Ψ = ∂αx ' Dα
x

on the isomorphic module elements of Equation (41), we �nd

Dα1
x ∇ D̄α2

x vβ ' Dα1
x ∇ vα2+β(x, u) ' Dα1

x ∇ Dα2+β
x (v(x, u)) '

Dα1
x ∇ ∂α2+β

x (v(x)) ' Dα1
x ∇ ∂α2+β

x · v , (42)

respectively, where we omitted all not absolutely necessary indices and where we simply wrote

formulas of the type ∂α1
x f ∂

α2
x g instead of the full binomial formula.

Above we introduced the KT resolution obtained from a compatibility complex in terms of

horizontal di�erential operators and expressed it later mainly in the polynomial language. To

compare this resolution with our D-geometric de�nition, we have to use the formal parameter

approach

KT = F ⊗O SOV

that we already put forth in Equation (31). In other words, we will apply the identi�cations

(41) and (42). As mentioned above, the Koszul-Tate di�erential δKT is fully de�ned by its

values on the polynomial variables vλβ(j), i.e., on the elements ∂βx · vλ(j) of the free D-module

V . For j = 1, we get from (36) and the de�nition of the D-action of F that

δKT(∂βx · vλ(1)) = Dβ
x(ψλD) = ∂βx · ψλD = ∂βx · δKT(vλ(1)) .

In the case j ∈ {2, . . . , k − 1}, one obtains

δKT(∂βx · vλ(j)) = D̄β
x

(
Fλ∆j−1

)
.

However, the polynomial Fλ∆j−1
is of the form ∇vγ and Equation (42) shows that

∂βx · (∇vγ) = Dβ1
x ∇ D̄β2

x vγ = D̄β
x(∇vγ) .
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Finally,

δKT(∂βx · vλ(j)) = ∂βx · Fλ∆j−1
= ∂βx · δKT(vλ(j)) .

More generally, we have

δKT(D · vλ(j)) = D · δKT(vλ(j)) , (43)

for any D ∈ D, any j ∈ {1, . . . , k − 1}, and any λ ∈ {1, . . . , rj} .

Since any element c of the graded D-algebra KT reads non-uniquely as a �nite sum

c =
∑

F (Dλ1(1) · vλ1(1)) . . . (Dλk−1
(k − 1) · vλk−1(k − 1)) ,

where F ∈ F and Dλj (j) ∈ D, and since the Koszul-Tate di�erential δKT, which is well-de�ned

on KT, acts as a graded derivation, it can be completely computed from its above values on the

vλj (j).

The following stepwise construction of the di�erential graded F [D]-algebra (KT, δKT) is

along the lines of the similar construction of (KT, δKT), see Subsections 5.4 and 7.3.1. We will

mainly insist on di�erences and new aspects.

Let V1 :=
⊕r1

λ=1D · vλ(1) . To endow the graded D-algebra

C1 := F ⊗O SOV1 (44)

with a di�erential graded D-algebra structure d, we set

dvλ(1) := ψλD ∈ F , (45)

extend d to V1 by D-linearity, and equip C1 with the di�erential d given by Equation (148).

Then the natural DGDA-morphism ı1 : (F , 0) 3 F 7→ F ⊗ 1O ∈ (C1, d) is a RSDA. It is easily
seen that δKT coincides on C1 with d, so that the RSDA is actually a DGDA-morphism

ı1 : (F , 0) 3 F 7→ F ⊗ 1O ∈ (C1, δKT) . (46)

Consider now the DA-morphism φ : F → C∞(Σ). To de�ne a DGDA-morphism

q1 : C1 → C∞(Σ) , (47)

it su�ces to set

q1(vλ(1)) = 0 ∈ (C∞(Σ))1 ∩ 0−1(φ(dvλ(1))) , (48)

to extend q1 by D-linearity to V1, and to de�ne q1 in degree 0 by q1(F ) = [F ] and in degree

≥ 1 by q1 = 0. As for Condition (48), note that φ(dvλ(1)) = [ψλD] = 0, in view of the de�nition

of Σ.

An anew application of the same lemma, with (F , 0) (resp., V1) replaced by (C1, δKT) (resp.,

V2 :=
⊕r2

λ=1D · vλ(2)), endows the graded D-algebra

C2 := C1 ⊗O SOV2 (49)
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with a DGDA structure d that is again fully de�ned by

d vλ(2) := Fλ∆1
= ∆λµ

γ (2, 1) D̄γ
x v

µ(1) = ∆λµ
γ (2, 1) ∂γx · vµ(1) ∈ (C1)1 ∩ δ−1

KT{0} ,

where we used the notation introduced in (38) and one of the identi�cations (42). Indeed, we

have

δKT(∆λµ
γ (2, 1) ∂γx · vµ(1)) = ∆λµ

γ (2, 1) ∂γx · δKT(vµ(1)) =

∆λµ
γ (2, 1) ∂γx · ψ

µ
D = ∆λµ

γ (2, 1)Dγ
x(ψµD) = ∆λ

1(ψD) = 0 .

We extend d to V2 and C2 in the standard manner. As δKT is a graded derivation that is

D-linear and coincides with d on the generators vλ(2), we get d = δKT on C2. Hence, the

DGDA-morphism

ı2 : (C1, δKT) 3 c 7→ c⊗ 1O ∈ (C2, δKT) (50)

is a relative Sullivan D-algebra.
We then de�ne a DGDA-morphism

q2 : C2 → C∞(Σ) (51)

by setting

q2(vλ(2)) = 0 ∈ (C∞(Σ))2 ∩ 0−1(q1(δKT v
λ(2))) ,

extending q2 by D-linearity to V2 and by de�ning q2 in degree 0 by q2(F ) = [F ] and in degree

≥ 1 by q2 = 0.

The next application of Lemma 1 in Subsection 7.3.1 starts from the DGDA (C2, δKT) and

the free non-negatively graded D-module V3 :=
⊕r3

λ=1D · vλ(3). To equip the GDA

C3 := C2 ⊗O SOV3 (52)

with a DGDA structure d, we set

dvλ(3) := Fλ∆2
= ∆λµ

γ (3, 2) D̄γ
x v

µ(2) = ∆λµ
γ (3, 2) ∂γx · vµ(2) ∈ (C2)2 ∩ δ−1

KT{0} .

Indeed,

δKT(∆λµ
γ (3, 2) ∂γx · vµ(2)) = ∆λµ

γ (3, 2) ∂γx · δKT(vµ(2)) =

∆λµ
γ (3, 2) ∂γx · (∆µν

ε (2, 1) ∂εx · vν(1)) ' ∆λµ
γ (3, 2) ∂γx · (∆µν

ε (2, 1) Dε
x (vν(1)(x, u))) =

∆λµ
γ (3, 2) Dγ

x (∆µν
ε (2, 1) Dε

x (vν(1)(x, u))) = ∆λ
2 (∆1 v(1)) = 0 .

It is easily checked that d = δKT on C3 : the DGDA-morphism

ı3 : (C2, δKT) 3 c 7→ c⊗ 1O ∈ (C3, δKT) (53)

is a relative Sullivan D-algebra.
Finally, we de�ne a DGDA-morphism

q3 : C3 → C∞(Σ) , (54)
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again by setting

q3(vλ(3)) = 0 ∈ (C∞(Σ))3 ∩ 0−1(q2(δKT v
λ(3)))

and de�ning q3 in degree 0 by q3(F ) = [F ] and in degree ≥ 1 by q3 = 0.

Similarly, we de�ne iteratively, for any j ∈ {4, . . . , k − 1}, a DGDA-morphism

ıj : (Cj−1, δKT)→ (Cj , δKT)

that is a relative Sullivan D-algebra, using the generators vλ(j) and the compatibility relation

∆j−1 ◦∆j−2 = 0, as well as a DGDA-morphism

qj : Cj → C∞(Σ) ,

which vanishes, except in degree 0, where it sends F to [F ].

Since V = V1 ⊕ . . . ⊕ Vk−1, the graded D-algebras SOV = SO(V1 ⊕ . . . ⊕ Vk−1) and

SOV1 ⊗O . . .⊗O SOVk−1 are isomorphic. Hence, the same holds for the graded D-algebras

KT = F ⊗O SOV and Ck−1 = F ⊗O SOV1 ⊗O . . .⊗O SOVk−1 .

It follows that ık−1 ◦ . . . ◦ ı1 : (F , 0) → (KT, δKT) is a DGDA-morphism and thus allows to

endow (KT, δKT) with a DGF [D]A-structure � see Example 1 (the same as the one we obtained

above).

Theorem 4. The Koszul-Tate resolution (KT, δKT) induced by a compatibility complex is a

D-geometric Koszul-Tate resolution of the D-algebra map φ : F → C∞(Σ), in the sense of

De�nition 1 ( in the smooth setting ).

Proof. See analogous proof in Subsection 5.4.

7 Appendix

7.1 Non-linear partial di�erential equations in the jet bundle formalism

The goal of the present subsection is to construct from scratch a number of concepts that

are of importance in the Geometry of PDEs. The text is written in the di�erential geometric

setting of smooth vector bundles π : E → X over a smooth manifold, as well as, partially, in the

corresponding algebraic context of modules P over a commutative unital associative R-algebra
O. Of course, in case there exists an underlying geometric situation, we have O = C∞(X)

and P = Γ(π). Additional details can be found, for instance, in [KV98].

7.1.1 Jets and di�erential operators

Consider a di�erential equation (DE)

ψ(t, φ(t), dtφ, . . . , d
k
t φ) ≡ 0 , (55)
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with self-explaining notation. When de�ning the k-jet of φ(t) by

jkt φ = (φ(t), dtφ, . . . , d
k
t φ) ,

we may rewrite this DE as

ψ(t, u, u1, . . . , uk)|jkt φ ≡ 0 .

Here (t, u, u1, . . . , uk) are independent variables of the so-called k-jet space. Roughly speaking,

the (purely) algebraic equation

ψ(t, u, u1, . . . , uk) = 0 (56)

de�nes a hypersurface Σ0 in the k-jet space (or, better, since t plays a distinguished role,

a subbundle Σ0 of the k-jet bundle), and a solution of the considered DE is nothing but a

function φ(t) such that the graph of its k-jet is located on Σ0 (`graph' means here the image of

jkφ). This is one of the key-aspects of the jet bundle approach to partial di�erential equations

(PDE-s) � which will be formalized in the following.

Let π : E → X be a smooth vector bundle of rank rk(π) = r over a smooth n-dimensional

manifold. For k ∈ N , the k-jet jkmφ at m ∈ X of a local smooth section φ ∈ Γ(π) of π that is

de�ned around m (the latter condition will be understood in the following), is the equivalence

class of all local sections of π, such that in any trivializing chart (x, u) = (xi, ua) of π aroundm,

the local coordinates of these sections coincide at x(m), together with their partial derivatives

at x(m) up to order k (it actually su�ces that they coincide in one trivializing chart). We

de�ne the k-jet set Jk(π) of π by

Jk(π) = {jkmφ : m ∈ X,φ ∈ Γ(π)} .

The k-jet set is a smooth �nite rank vector bundle πk : Jk(π) → X � the k-jet bundle.

Indeed, any trivializing chart (xi, ua) of π induces a trivializing chart (xi, uaα) of πk, de�ned

by

xi(jkmφ) = xi(m) and uaα(jkmφ) = ∂αxφ
a|x(m) ,

where α ∈ Nn and |α| ≤ k. For k ≤ `, there is a `truncation' vector bundle (epi)morphism

πk` : J `(π)→ Jk(π), so that (Jk(π), πk`) is an inverse system. The limit of this diagram is the

∞-jet space π∞ : J∞(π)→ X together with the natural projections πk∞ : J∞(π)→ Jk(π).

Coordinates (xi, uaα) of J∞(π) can be obtained from coordinates (xi, ua) of π, as above, by

de�ning an in�nite number of coordinates uaα that correspond to the partial derivatives ∂αx of

the components φa = ua(φ(x)) of the sections φ of π . We denote the algebra of smooth

functions of Jk(π) by Fk = Fk(π). The canonical epimorphisms πk` induce inclusions Fk ⊂
F` . The colimit of this direct system is the algebra F =

⋃
k Fk (we will also write F(π),

F∞, or F∞(π)) of smooth functions of J∞(π). It follows that any smooth function of J∞(π)

is a smooth function of some Jk(π). Note eventually that jk : Γ(π) → Γ(πk) and that

j∞ : Γ(π) → Γ(π∞) (in fact, we should, as above, consider the case k = ∞ separately, as a

limit case; however, here and in the following, we refrain from presenting these details).

We will use jet bundles to de�ne di�erential operators between sections of vector bundles.

Let π′ : E′ → X be a second vector bundle and take the pullback bundle π∗k(π
′), k ∈ N, see
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π∗kE
′ E′

Jk(π) X

π′

p

π∗k(π′)

πk

Figure 1: Pullback bundle

Figure 1. Consider now the Fk(π)-module of sections Γ(π∗k(π
′)). If π′ : X×R→ X, the latter

can be naturally identi�ed with Fk(π). This justi�es the notation Fk(π, π′) := Γ(π∗k(π
′)). We

denote the composite of

ψ ∈ Fk(π, π′) ⊂ C∞(Jk(π), π∗kE
′)

and p ∈ C∞(π∗kE
′, E′) also by ψ. Hence, ψ ∈ C∞(Jk(π), E′), and, for any point jkmφ ∈ Jk(π),

we have ψ(jkmφ) ∈ E′m, i.e., ψ is a �ber bundle morphism ψ ∈ FB(Jk(π), E′). We thus get an

isomorphism of C∞(X)-modules:

Γ(π∗k(π
′)) = Fk(π, π′) ' FB(Jk(π), E′) . (57)

Since, for every section φ ∈ Γ(π), the composite of

jkφ ∈ Γ(πk) ⊂ C∞(X, Jk(π))

and ψ is a section ψ ◦ (jkφ) ∈ Γ(π′), we see that ψ ∈ Fk(π, π′) implements a map

D : Γ(π) 3 φ 7→ D(φ) = ψ ◦ (jkφ) ∈ Γ(π′) ,

such that the value D(φ)|m only depends on jkmφ. We therefore say that D is a not necessarily

linear di�erential operator of order k between π and π′ .

De�nition 2. A (not necessarily linear) di�erential operator D ∈ DOk(π, π
′) of order k

from π to π′ is a map D : Γ(π)→ Γ(π′) that factors through the k-jet bundle, i.e., that reads

D = ψD ◦ (jk−) , (58)

for some section or �ber bundle morphism ψD ∈ Fk(π, π′) ' FB(Jk(π), E′). This morphism,

which is visibly unique, is the representative morphism of D .

In trivializations of π and π′ over the same chart (U, x) of X, such a k-th order di�erential

operator reads

ψbD(x, ∂αxφ
a) = ψbD(x, uaα)|jkxφ, (a ∈ {1, . . . , rk(π)}, b ∈ {1, . . . , rk(π′)}, |α| ≤ k) . (59)

If both ranks are 1 and we write ψ (resp., t) instead of ψD (resp., x = (x1, . . . , xn)), we recover

ψ(t, φ(t), dtφ, . . . , d
k
t φ) = ψ(t, u, u1, . . . , uk)|jkt φ (60)
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(see beginning of 7.1.1).

The composite of a di�erential operator D ∈ DOk(π, π
′) and a di�erential operator D′ ∈

DO`(π
′, π′′) is a di�erential operator D′ ◦D ∈ DOk+`(π, π

′′) .

The set DOk(π, π
′) is a C∞(X)-module. There is a canonical C∞(X)-module isomor-

phism

DOk(π, π
′) ' Fk(π, π′) ' FB(Jk(π), E′) . (61)

The natural surjective morphisms πk`, k ≤ `, give rise to inclusions DOk(π, π
′) ⊂ DO`(π, π

′),

thus leading to an increasing sequence of C∞(X)-modules. The colimit is the �ltered C∞(X)-

module

DO(π, π′) =
⋃
i

DOi(π, π
′) (62)

of all di�erential operators from π to π′ .

If, for r, r′ ∈ R and φ, φ′ ∈ Γ(π), we have

D(rφ+ r′φ′) = r D(φ) + r′D(φ′) ,

the di�erential operator D is said to be linear. We denote the C∞(X)-submodule made of the

linear di�erential operators of order k (resp., of all linear di�erential operators) from π to π′

by

Diffk(π, π
′) ⊂ DOk(π, π

′) (resp., Diff(π, π′) ⊂ DO(π, π′)) .

In trivializations of π and π′ over the same chart (U, x) of X, a linear di�erential operator

D of order k reads

ψbD(x, ∂αxφ
a) = ψbD(x, uaα)|jkxφ, (a ∈ {1, . . . , rk(π)}, b ∈ {1, . . . , rk(π′)}, |α| ≤ k) , (63)

where the ψbD are C∞(x(U))-linear in the derivatives, i.e.,

ψbD(x, ∂αxφ
a) =

∑
|α|≤k

M b
αa(x)∂αxφ

a .

In fact, a di�erential operator is a linear operator D ∈ Diffk(π, π
′) if and only if its

representative morphism is a vector bundle morphism ψD ∈ VB(Jk(π), E′) (not only a �ber

bundle morphism), i.e., a C∞(X)-linear map ψD ∈ HomC∞(X)(Γ(πk),Γ(π′)) (denoted by the

same symbol). This passage from the vector bundle map to the linear map between sections

allows to replace D(−) = ψD ◦ (jk−), see (58), by D(−) = (ψD ◦ jk)(−) . Therefore,

Proposition 4. A linear di�erential operator D ∈ Diffk(π, π
′) is an R-linear map D :

Γ(π)→ Γ(π′) that factors through the k-jet bundle, i.e., that reads

D = ψD ◦ jk , (64)

for some (and thus unique) vector bundle or C∞(X)-module morphism ψD ∈ VB(Jk(π), E′) '
HomC∞(X)(Γ(πk),Γ(π′)). Hence the isomorphisms of C∞(X)-modules

Diffk(π, π
′) ' VB(Jk(π), E′) ' HomC∞(X)(Γ(πk),Γ(π′)) , (65)
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and

Diff(π, π′) ' VB(J∞(π), E′) ' HomC∞(X)(Γ(π∞),Γ(π′)) . (66)

We close the present section with the remark that, in the case π = π′ = pr1 : X ×R→ X,

the di�erential operators Diff(π, π′) act on functions C∞(X), and that we then write D(X)

instead of Diff(pr1,pr1); in other words:

Remark 5. We denote by D(X) the associative unital R-algebra of linear di�erential operators
acting on functions C∞(X) of a smooth manifold X.

7.1.2 Partial di�erential equations and their prolongations

A second fundamental feature is that one prefers replacing the original system of PDE-s

by an enlarged system, its prolongation, which also takes into account the di�erential conse-

quences of the original one. More precisely, if φ(t) satis�es the original DE (55), we have, for

any ` ∈ N ,

drt (ψ(t, φ(t), dtφ, . . . , d
k
t φ)) = (∂t + u1∂u + u2∂u1 + . . .)rψ(t, u, u1, . . . , uk)|jk+`

t φ =:

Dr
t (ψ(t, u, u1, . . . , uk)) |jk+`

t φ ≡ 0, ∀r ≤ ` . (67)

Let us stress that the `total derivative' Dt or `horizontal lift' Dt of dt is actually an in�nite

sum. The DE (55) and the system of DE-s (67), have clearly the same solutions, so we may

focus just as well on (67). The corresponding system of algebraic equations

(Dr
tψ)(t, u, u1, . . . , uk, uk+1, . . . , uk+r) = 0, ∀r ≤ ` (68)

de�nes a `surface' Σ` in the (k + `)-jet space. A solution of the original DE (55) is now a

function φ such that the graph gr(jk+`φ) is a subset of Σ`. The `surface' Σ` is referred to as

the `-th prolongation of the considered DE or di�erential operator.

To grasp the interest in di�erential consequences, consider for instance the integration

problem ∂xiF = fi (i ∈ {1, . . . , n}) in Rn � where notation is obvious � . The di�erential con-

sequences of this (system of) PDE(s) include the equations ∂xj∂xiF = ∂xjfi (i, j ∈ {1, . . . , n}),
hence, they include the compatibility conditions ∂xjfi = ∂xifj .

In the case k = ` = 1, the equation of Σ0 ⊂ J1 (resp., of Σ1 ⊂ J2) is

ψ(t, u, u1) = 0 (resp., ψ(t, u, u1) = 0 and (Dtψ)(t, u, u1, u2) = 0) ,

(see (68)). Hence, Σ1 is the set of points j2
t0φ ∈ J

2 such that j1
t0φ ∈ Σ0 and

(∂tψ + u1∂uψ + u2∂u1ψ)|j2t0φ = ∂tψ|j1t0φ + dtφ|t0∂uψ|j1t0φ + d2
tφ|t0∂u1ψ|j1t0φ = 0 .

The last requirement means that the tangent vector (1, dtφ|t0 , d2
tφ|t0) at t0 of the curve

(t, φ(t), dtφ) ∈ J1 is an element of the vector space

Tj1t0φ
Σ0 : ∂tψ|j1t0φ t+ ∂uψ|j1t0φ u+ ∂u1ψ|j1t0φ u1 = 0
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that is tangent to Σ0 at j1
t0φ . Thus,

Σ1 = {j2
t0φ ∈ J

2 : gr(j1φ) is tangent to Σ0 at j1
t0φ} . (69)

Observe that the equations of Σ0 and Σ1 show that Σ` is not necessarily a smooth manifold

and that π01 : Σ1 → Σ0 is not necessarily a smooth �ber bundle.

We now de�ne partial di�erential equations and their prolongations in a coordinate-free

manner.

De�nition 3. A partial di�erential equation ( resp., a linear partial di�erential equation )

of order k ( k ≥ 0 ) acting on sections φ ∈ Γ(π) of a vector bundle π, is a smooth �ber ( resp.,

vector ) subbundle πk : Σ0 → X of Jk(π). The `-th prolongation of Σ0 ( 0 ≤ ` ≤ ∞ ) is the

subset

Σ` = {jk+`
m φ ∈ Jk+`(π) : gr(jkφ) is tangent up to order ` to Σ0 at jkmφ} (70)

of Jk+`(π) . A ( local ) solution of Σ0 is a ( local ) section φ of π such that gr(jkφ) ⊂ Σ0 .

Note that the de�nition of the prolongation means that the points jk+`
m φ of Σ` provide `-th

order approximations gr(jkφ) of possible solutions of Σ0 .

Remark 6. 1. In the following we always assume that the considered equation Σ0 ⊂ Jk(π)

is formally integrable (see also Subsection 7.1.6), i.e., that

• the prolongations Σ` are smooth manifolds (0 ≤ ` ≤ ∞), and

• the maps πk+`,k+`+1 : Σ`+1 → Σ` (0 ≤ ` <∞) are smooth �ber bundles.

2. Let us stress as well that it follows from De�nition 3 (see also introduction to the present

subsection 7.1.2) that φ is a solution of Σ0 if

gr(jk+`φ) ⊂ Σ` , (71)

for some 0 ≤ ` ≤ ∞ , and that, conversely, we have (71) for every ` , if φ is a solution.

A PDE (resp., a linear PDE) Σ0 of order k in π is implemented by a di�erential

operator D ∈ DOk(π, π
′) (resp., D ∈ Diffk(π, π

′)), if Σ0 = kerψD, where π
′ : E′ → X is a

vector bundle and where ψD ∈ FB(Jk(π), E′) (resp., ψD ∈ VB(Jk(π), E′)) is the representative

morphism of D . In this case, the di�erential operator j` ◦D is of order k+ ` and acts from π

to π′`. Its decomposition

j` ◦D = ψj`◦D ◦ jk+` (72)

corresponds to Equation (67). In the sequel we write

ψ`D : Jk+`(π)→ J `(π′) (73)

for the representative morphism ψj`◦D of the `-th prolongation j` ◦ D of D. It is now clear

that

Σ` = kerψ`D , (74)

i.e., that the `-th prolongation of the equation is given by the `-th prolongation of the corre-

sponding di�erential operator (see Equation (68)).
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7.1.3 Cartan distribution

An important aspect of πk : Jk(π) → X, k ≥ 0, is that any of the points κk ∈ Jk(π) is

the value at πk(κk) = m of a section jkφ ∈ Γ(πk) that is implemented by a section φ ∈ Γ(π).

This suggests the idea of a possible foliation and, at the in�nitesimal level, of distribution. It

is thus natural to consider the tangent spaces at κk to the n-dimensional manifolds gr(jkφ),

φ ∈ Γ(π), that pass through κk, i.e., with j
k
mφ = κk . Such a tangent space is obviously given

by

im(Tmj
kφ) ⊂ Tκk(Jk(π)) .

We now consider the vector subspace Ckκk spanned by the preceding images, for all sections φ

such that jkmφ = κk, with m = πk(κk) . The assignment

Ck : Jk(π) 3 κk 7→ Ckκk ⊂ Tκk(Jk(π)) (75)

is the Cartan distribution Ck = Ck(π) of Jk(π) . If we are in the presence of a PDE Σ0 ⊂
Jk(π) on π, we also de�ne the Cartan distribution Ck(Σ0) of Σ0 by

Ck(Σ0) : Σ0 3 κk 7→ Ckκk ∩ TκkΣ0 ⊂ TκkΣ0 . (76)

In local coordinates (xi, uaα) of Jk(π), the parametrization jkφ of gr(jkφ) reads jkφ : x 7→
(xi, ∂αxφ

a), with i ∈ {1, . . . , n}, a ∈ {1, . . . , r}, |α| ≤ k . Hence, the derivative Tmj
kφ is given

by (
IIn

(∂xi∂
α
xφ

a)aα,i

)
,

so that its image, expressed in the basis (∂xi , ∂uaα) of Tκk(Jk(π)), is made of the linear combi-

nations of the vectors

∂xi +
r∑

a=1

∑
|α|≤k

∂xi∂
α
xφ

a ∂uaα , i ∈ {1, . . . , n} (77)

(of course, the coe�cients are evaluated at x = x(m) and the base vectors are taken at κk ).

The space Ckκk of the Cartan distribution of Jk(π) is obtained similarly, except that φ runs

through the sections that satisfy jkmφ = κk .

For instance, in the case k = n = r = 1, the space C1
κ1

is spanned by the vectors that are

tangent at κ1 to the curves j1φ : t 7→ (t, φ(t), dtφ) ∈ J1 , with j1
t1φ = κ1 (we set t1 := π1(κ1)),

i.e., by the vectors

(1, dtφ|t1 , d2
tφ|t1) ' ∂t|κ1 + dtφ|t1 ∂u|κ1 + d2

tφ|t1 ∂u1 |κ1 =

(∂t + u1∂u + u2∂u1) |(κ1,d2
tφ|t1 ) = D≤1

t |(κ1,d2
tφ|t1 ) = D≤0

t |κ1 + d2
tφ|t1∂u1 |κ1 , (78)

or, still, by the vectors

D≤0
t |κ1 and ∂u1 |κ1 , (79)

since, if φ varies, the value d2
tφ|t1 runs through R . More generally, we have the
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Proposition 5. Let π : E → X be a vector bundle of rank r over a manifold of dimension n .

For any k ≥ 0 and any κk ∈ Jk(π) , the Cartan space Ckκk = Ckπk(π) is generated by the vectors

D≤k−1
xi

|κk = ∂xi +
r∑

a=1

∑
|α|≤k−1

uaiα∂uaα |κk and ∂uaα |κk ,

i ∈ {1, . . . , n}, a ∈ {1, . . . , r}, |α| = k , (80)

where (xi, uaα) is a trivializing chart of Jk(π) around πk(κk) . In the limit case k = ∞ , the

Cartan space C∞κ∞ is generated by the total derivatives

Dxi |κ∞ , i ∈ {1, . . . , n} . (81)

Let κk ∈ Jk(π), k ≥ 1, and set πk(κk) = m and πk−1,k(κk) = κk−1 . In view of (77), the

vectors D≤k−1
xi

|κk span the tangent space im(Tmj
k−1φ) at κk−1 to the graph gr(jk−1φ) of the

section jk−1φ such that jkmφ = κk . Observe that this n-dimensional subspace of Tκk−1
Jk−1(π)

is completely de�ned by jkmφ = κk and does not depend on the considered section φ (see also

Equation (78)): we denote it by Rkκk and refer to it as the R-space at κk−1 de�ned by κk .

Equations (78) and (80) allow to understand that the Cartan space Ckκk and the R-space Rkκk
are related by

(Tκkπk−1,k)
−1(Rkκk) = Ckκk . (82)

It is quite obvious that the di�erence (82) between the R-spaces and the Cartan spaces, i.e., the

existence of the extra generators ∂uaα (a ∈ {1, . . . , r}, |α| = k), makes the Cartan distribution

Ck = Ck(π) non-integrable. Indeed, take, to simplify, again the case k = n = r = 1 . In view of

(82), the bracket [D≤0
t , ∂u1 ] = [∂t + u1∂u, ∂u1 ] = −∂u of local vector �elds in C1 is not located

in C1 . We easily understand that this di�erence disappears at the limit k = ∞ and that the

Cartan distribution C∞ = C∞(π) is n-dimensional and integrable (indeed [Dxi , Dxj ] = 0 ).

Consider now a PDE Σ0 ⊂ Jk(π) of order k on π (as mentioned before, we systematically

assume that the considered PDE-s are formally integrable).

Remark 7. In the sequel, we deal with limits, e.g., in�nite prolongations Σ∞. To simplify

notation, we omit the sub- and superscripts ∞, whenever no confusion arises, thus writing Σ

(resp., κ, C, . . .) instead of Σ∞ (resp., κ∞, C∞, . . . ).

The algebra of functions of the in�nite prolongation Σ ⊂ J∞(π) of Σ0 is the quotient

algebra F(Σ) = F(π)/I(Σ) , where I(Σ) is the ideal of F(π) made of those functions of J∞(π)

that vanish on Σ . If Σ0 is implemented by a di�erential operator D ' ψD (what we assume),

the prolongation Σ is locally given by equations Dα
xψ

b
D = 0, where |α| ≥ 0, b ∈ {1, . . . , rk(π′)},

and ψbD ∈ Fk(π) (see Equations (74) and (68)). Hence, the ideal I(Σ) reads

I(Σ) =
{∑

Fαb D
α
xψ

b
D

}
, (83)

where the sum is �nite and Fαb ∈ F(π) . Since DxiI(Σ) ⊂ I(Σ) , the total derivatives act on

F(Σ) and their restrictions Dxi |Σ are thus vector �elds of Σ. It follows that, for any κ ∈ Σ ,

we have Dxi |κ ∈ TκΣ , so that

Cκ = Cκ(π) ⊂ TκΣ . (84)
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Just as we de�ned above the Cartan distribution of Σ0 ⊂ Jk(π) , we de�ne the Cartan distri-

bution of Σ ⊂ J∞(π) by

C(Σ) : Σ 3 κ 7→ Cκ(Σ) = Cκ(π) ∩ TκΣ . (85)

In view of (84), we get

C(Σ) = C(π)|Σ . (86)

Moreover, not only C(π) , but also the Cartan distribution C(Σ) = C(π)|Σ is n-dimensional

and integrable.

From the construction of the Cartan distribution and Remark 6, it is quite clear that:

Proposition 6. The maximal dimensional (n-dimensional ) integral manifolds of the Cartan

distribution C(π) ( resp., C(Σ) ) are the graphs gr(j∞φ) of the in�nite jets of the local sections

φ ∈ Γ loc(π) ( resp., the local solutions φ ∈ Γ loc(π) of Σ0 ).

Hence, the set of maximal dimensional integral manifolds in (Σ, C(Σ)) can be identi�ed

with the set of solutions of Σ0. Since all relevant information about the original PDE Σ0 is

thus encrypted in the pair (Σ, C(Σ)), the partial di�erential equation Σ0 is frequently identi�ed

with the `di�ety' (Σ, C(Σ)). Di�eties, i.e., `manifolds equipped with a geometric structure'

play a basic role in secondary calculus, i.e., calculus on the solution space of a PDE, in the

sense that all objects of secondary calculus turn out to be cohomology classes of di�erential

complexes growing on di�eties.

7.1.4 Cartan connection

Horizontal vector �elds

Since

C(π) : J∞(π) 3 κ 7→ Cκ(π) ⊂ TκJ∞(π) ,

where Cκ(π) is the tangent space at κ to the graphs gr(j∞φ) of the sections j∞φ that pass

through κ at m = π∞(κ) , the following statements are rather obvious:

• Tκπ∞ : Cκ(π)→ TmX is a vector space isomorphism (it is easily seen that this derivative

sends Dxi |κ to ∂xi |π∞(κ)).

• The F(π)-module CΘ(π) := Γ(C(π)) (resp., Θv(π)) of sections of the subbundle C(π) ⊂
T J∞(π) (resp., of π∞-vertical vector �elds of J

∞(π)) is a submodule of the F(π)-module

Θ(π) of vector �elds of J∞(π) . More precisely, we have

Θ(π) = CΘ(π)⊕Θv(π) . (87)

This suggests the idea of connection, i.e., of a C∞(X)-linear lift (map with the obvious pro-

jection property)

C : Θ(X) 3 θ 7→ Cθ ∈ CΘ(π) . (88)
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Indeed, its su�ces to set, for any κ ∈ J∞(π) with projection π∞(κ) = m,

(Cθ)κ := (Tκπ∞)−1θm ∈ Cκ(π) ⊂ TκJ∞(π) . (89)

This connection C on J∞(π) is the Cartan connection induced by the Cartan distribution

C(π) on J∞(π) .

As, in trivializing coordinates (xi, uaα) of J∞(π) over U around m = π∞(κ), the Cartan

space Cκ(π) is generated by the Dxi |κ, the horizontal vector �elds H ∈ CΘ(π) are locally

generated over functions of J∞(π) by the total derivatives Dxi :

H|π−1
∞ (U) =

∑
j

Hj(xi, uaα)Dxj . (90)

Since Tκπ∞(Dxj |κ) = ∂xj |m, a vector �eld θ|U =
∑

j θ
j(xi)∂xj is lifted to

(Cθ)|π−1
∞ (U) =

∑
j

θj(xi)Dxj . (91)

Let us also mention, for the sake of completeness, that a vector �eld T ∈ Θ(π) ( resp., a vertical

vector �eld V ∈ Θv(π) ) locally reads

T |π−1
∞ (U) =

∑
j

T j(xi, uaα)∂xj +
∑
bβ

T bβ(xi, uaα)∂ubβ
(resp., V |π−1

∞ (U) =
∑
bβ

V b
β (xi, uaα)∂ubβ

) .

(92)

We are now able to rewrite the de�nition of a horizontal lift Cθ in a useful way. If θ ∈ Θ(X)

and F ∈ F(π), and if φ is a local section in Γ(π) that is de�ned around m ∈ X, we get

(j∞φ)∗((Cθ)F )|m = ((Cθ)F )|j∞m φ =
(
(Cθ)j∞m φF

)
|j∞m φ =

(
((Tπ∞)−1θm)F

)
|j∞m φ =

θm(F ◦ j∞φ)|m = θ((j∞φ)∗F )|m .

Indeed, the isomorphism (Tπ∞)−1 sends a partial derivative to the corresponding total

derivative. Observe also that, although the function F ◦ j∞φ depends on φ, its derivative

θm(F ◦ j∞φ)|m depends only on j∞m φ . Hence, the

Proposition 7. For any θ ∈ Θ(X), F ∈ F(π), and φ ∈ Γ loc(π), we have

(j∞φ)∗((Cθ)F ) = θ((j∞φ)∗F ) . (93)

It is clear that we could de�ne the Cartan connection (89) by means of (93), and that

Equation (93) is the generalization of Equation (67).

We already explained that [CΘ(π), CΘ(π)] ⊂ CΘ(π). Moreover, it immediately follows

from (93) that C[θ, θ′] = [Cθ, Cθ′]. In other words, the integrable Cartan distribution of J∞(π)

induces a �at Cartan connection on J∞(π)→ X. Further, the increasing sequence C(Θ(X)) ⊂
CΘ(π) ⊂ Θ(π) is a sequence of Lie subalgebras. Eventually, if Σ is the in�nite prolongation

of a PDE on π, we set CΘ(Σ) := Γ(C(Σ)), where C(Σ) is the Cartan distribution of Σ. This
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F(Σ)-module is locally generated by the Dxi |Σ. When restricting the lifts Cθ to Σ, we get a

connection C : Θ(X)→ CΘ(Σ), the Cartan connection on Σ, which is �at as well. Hence, the

integrable Cartan distribution of Σ induces a �at Cartan connection on Σ → X, which is the

restriction of the connection on the in�nite jet space.

Horizontal di�erential operators

Total di�erential operators (TDOs)

Ψ =
∑
β

Ψβ(xi, uaα)Dβ
x (94)

are known to be of primary importance in Field Theory. The fundamental property is that

TDOs act not only on F(π), but also on F(Σ). This is of course due to the fact that total

derivatives restrict to (horizontal) vector �elds of Σ (see Equation (84)), and is not true for

ordinary di�erential operators

T =
∑
γ

Tγ(xi, uaα) . . . ◦ ∂γj
xj
◦ . . . ◦ ∂γbβ

ubβ
◦ . . . (95)

of J∞(π). An interesting subclass of TDOs are the lifts

C∆ =
∑
β

∆β(xi)Dβ
x (96)

of linear di�erential operators ∆ =
∑

β ∆β(xi)∂βx acting on C∞(X). These lifts can be de�ned

exactly as the lifts of base vector �elds in (93).

Note �rst that di�erential operators act usually not only on functions C∞(X) (resp., on

F(π) (functions of J∞(π))), but act between sections Γ(ηk) (locally: Rrk -valued functions on

`X') of rank rk vector bundles ηk : Ek → X (resp., between sections F(π, ηk) = Γ(π∗∞(ηk))

(locally: Rrk -valued functions on `J∞(π)') of the bullbacks π∗∞(ηk) : π∗∞(Ek) → J∞(π) of

these bundles). Hence, the

De�nition 4. Let π : E → X and ηk : Ek → X (k ∈ {1, 2}) be vector bundles. The lift

of a linear di�erential operator ∆ : Γ(η1) → Γ(η2) is the linear di�erential operator

C∆ : F(π, η1)→ F(π, η2) ( of same order ) de�ned by

(j∞φ)∗((C∆)S) = ∆((j∞φ)∗S) , (97)

where S ∈ F(π, η1) and φ ∈ Γ loc(π).

The di�erence with lifts

Cθ =
∑
j

θj(xi)Dxj ∈ CΘ(π)

of vector �elds is that the horizontal or C-vector �elds CΘ(π) had been de�ned before the lifts

Cθ. Here, i.e., for lifts C∆ of di�erential operators, we still need to �nd the proper de�nition of
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C-di�erential operators CDiff(π∗∞(η1), π∗∞(η2)). In view of (90), these C-di�erential operators
should locally be the TDOs

Ψ =
∑
β

Ψβ(xi, uaα)Dβ
x ,

see 94. Since, for any F ∈ F(π) and any φ ∈ Γ(π), this model C-di�erential operator Ψ

satis�es

(ΨF ) ◦ j∞φ =
∑
β

(Ψβ ◦ j∞φ) ((Dβ
xF ) ◦ j∞φ) =

∑
β

(Ψβ ◦ j∞φ) ∂βx (F ◦ j∞φ) =: Ψφ(F ◦ j∞φ) ,

we have

(j∞φ)∗(ΨF ) = Ψφ((j∞φ)∗F ) ,

where the RHS Ψ• (see its de�nition) is a not necessarily linear di�erential operator in φ ∈ Γ(π)

with values Ψφ in linear di�erential operators on C∞(X). This motivates the

De�nition 5. A linear di�erential operator Ψ : F(π, η1) → F(π, η2) is a C-di�erential
operator Ψ ∈ C Diff(π∗∞(η1), π∗∞(η2)), if, for any φ ∈ Γ(π), there exists a linear di�erential

operator Ψφ : Γ(η1)→ Γ(η2), such that, for any S ∈ F(π, η1), the equality

(j∞φ)∗(ΨS) = Ψφ((j∞φ)∗S) (98)

holds.

This de�nition captures correctly our intuition of C-di�erential operators. Since it is clear
from its de�nition that the lift C of di�erential operators respects composition, we have, locally,∑

β

Ψβ(xi, uaα)Dβ
x =

∑
β

Ψβ(xi, uaα)C(∂βx ) .

It can be shown [KV98] that this result is global:

Proposition 8. Any Ψ ∈ CDiff(π∗∞(η1), π∗∞(η2)) reads

Ψ =
∑
β

ΨβC∆β , (99)

where the sum is �nite, where Ψβ ∈ F(π), and where ∆β ∈ Diff(η1, η2). In other words,

C-di�erential operators are generated over F(π) by lifts.

Moreover, just as TDOs, C-di�erential operators can be restricted to the in�nite prolonga-

tion Σ of a PDE. More precisely [KV98],

Corollary 1. For any C-di�erential operator Ψ : F(π, η1) → F(π, η2) and any in�nite pro-

longation Σ ⊂ J∞(π), there is a linear di�erential operator ΨΣ : F(Σ, η1) → F(Σ, η2) such

that, for every s ∈ F(π, η1), we have ΨΣ(s|Σ) = (Ψs)|Σ .

Finally, we have the important
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Corollary 2. There is a canonical F(π)-module isomorphism

C : F(π)⊗C∞(X) Diff(η1, η2)→ CDiff(π∗∞(η1), π∗∞(η2)) (100)

between the linear di�erential operators with coe�cients in the jet space functions and the

corresponding C-di�erential operators. In particular, in the case of the trivial line bundle

η1 = η2, we get the isomorphism

C : F(π)⊗C∞(X) D(X)→ CD(J∞(π)) . (101)

Proof. Observe �rst that the action of a di�erential operator F ⊗ ∆, with F ∈ F(π) and

∆ ∈ D(X), on a function f ∈ C∞(X) is naturally de�ned by

(F ⊗∆)(f) = F ((∆f) ◦ π∞) .

The action (F ⊗∆)(s), ∆ ∈ Diff(η1, η2) and s ∈ Γ(η1), is de�ned similarly:

(F ⊗∆)(s) = F ((∆s) ◦ π∞) . (102)

The map

C : F(π)⊗C∞(X) Diff(η1, η2) 3 F ⊗∆ 7→ F C∆ ∈ CDiff(π∗∞(η1), π∗∞(η2)) , (103)

is obviously a well-de�ned and F(π)-linear. To prove injectivity, assume that F (C∆)(S) = 0,

for all S ∈ Γ(π∗∞(η1)), in particular, for all S = s ◦ π∞, s ∈ Γ(η1). It follows from (97) that

(F ◦ j∞φ) ∆s = (F ((∆s) ◦ π∞)) ◦ j∞φ = 0 ,

for all s, φ. Eventually, (102) allows to conclude that F ⊗ ∆ = 0 . As for surjectivity, recall

that any C-di�erential operator Ψ reads
∑

β ΨβC∆β , and note that
∑

β Ψβ⊗∆β is a preimage

of Ψ.

Let us summarize in coordinate language what we achieved so far. Consider a PDE

ψb(xi, ∂αxφ
a) ≡ 0 ,∀b ,

whose LHS sends sections φ = (φa(x))a ∈ Γ(π) to sections ψ = (ψb(x))b := (ψb(xi, ∂αxφ
a))b ∈

Γ(η1). We take into account the linear di�erential consequences

∆ ψb(xi, ∂αxφ
a) :=

∑
β

M c
βb(x)∂βx ψb(xi, ∂αxφ

a) ≡ 0 , ∀c

of this equation, where ∆ ∈ Diff(η1, η2). The latter condition can be rewritten in the form

(C∆) ψb(xi, uaα) |j∞x φ =
∑
β

M c
βb(x)Dβ

x ψb(xi, uaα) |j∞x φ ≡ 0 ,∀c ,

thus leading to a C-di�erential operator C∆ ∈ CDiff(π∗∞(η1), π∗∞(η2)). Just as the value

ψb(xi, ∂αxφ
a) |m
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at m ∈ X (in fact we mean here the coordinates of m; the same notational abuse will be

tolerated in the sequel) of the image of φ = (φa(x))a ∈ Γ(π) by a di�erential operator in

DOk(π, η1) only depends on the values ∂αxφ
a|m of the coe�cients of the `Taylor expansion' of

φ at m up to order k, the value∑
β

N c
βb(x

i, uaα)Dβ
x ψb(xi, uaα) |κ

at κ ∈ J∞(π) of the image of ψ = (ψb(xi, uaα))b ∈ Γ(π∗∞(η1)) by a C-di�erential operator in
CDiffk(π

∗
∞(η1), π∗∞(η2)) only depends on the values Dβ

x ψb(xi, uaα)|κ of the total or horizontal

derivatives of ψ at κ up to order k. In fact, the C-di�erential calculus is similar to the ordinary

di�erential calculus. For k ∈ N ∪ {∞}, the horizontal k-jet ̄kκS at κ ∈ J∞(π) of a local

section S ∈ Γ(π∗∞(η1)) that is de�ned around κ is the equivalence class of all such local sections,

whose coordinate forms in a trivializing chart (xi, uaα, v
b) around κ coincide at κ, together with

their total derivatives at κ up to order k.

Remark 8. In the following, if π : E → X and ρ : F → X are two vector bundles, we set

R := π∗∞(ρ) and R := Γ(R) = Γ(π∗∞(ρ)).

The set

J̄k(H1) = {̄kκS : κ ∈ J∞(π), S ∈ H1}

is a vector bundle H1,k : J̄k(H1)→ J∞(π), called the horizontal k-jet bundle. A trivializing

chart (xi, uaα, v
b) of H1 induces a trivializing chart (xi, uaα, v

b
β) of H1,k given by

xi(̄kκS) = xi(κ), uaα(̄kκS) = uaα(κ), vbβ(̄kκS) = Dβ
xS

b|κ . (104)

As already suggested here above, the C-di�erential or horizontal di�erential operators

Ψ ∈ CDiffk(H1, H2)

are those

Ψ ∈ HomR(H1,H2)

that factor through the horizontal k-jet bundle J̄k(H1), i.e., that read Ψ = ψ ◦ ̄k, for some

(and thus unique) vector bundle map

ψ ∈ VB(H1,k , H2) ' HomF(π)(Γ(J̄k(H1)),H2) .

Actually, the whole theory of jet bundles can be transferred to horizontal jet bundles [Ver02].

Indeed, it follows from what has been said that, in the coordinate setting, horizontal jet bundles

are just jet bundles with extra coordinates uaα in the base.
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7.1.5 Classical and higher symmetries I and II

Classical symmetries I

The concept of symmetry is of fundamental importance in many �elds of Science and

deserves special attention. The notion is quite straightforward � at least in elementary situ-

ations. For instance, when thinking about an axial symmetry of a plane domain S, we get

a permutation p such that p(S) = S. Similarly, a symmetry of an equation Σ0 ⊂ Jk(π)

should be a �ber bundle automorphism (or, just a di�eomorphism) ψ of Jk(π) such that

ψ(Σ0) = Σ0 . (105)

However, since the essential structure of Jk(π) is the Cartan distribution Ck (i.e., the in�nitesi-
mal object that encodes jet prolongations of sections), it seems natural to ask that a symmetry

respect the Cartan distribution (or, better, that its tangent map does).

In the following, we focus on automorphisms of Jk(π) that respect Ck, thus omitting

Condition (105) at the �rst set-out. We refer to such automorphisms as Lie automorphisms

of πk. In particular, we may ask whether it is possible to build a Lie automorphism of πk as

a prolongation of an automorphism of π.

Prolongations of di�eomorphisms and vector �elds

It is easily seen that, if Ψ = (ψ0, ψ) is a �ber bundle automorphism of π : E → X, we can

prolong it to a �ber bundle automorphism j`Ψ := (ψ0, j
`ψ) of π` : J `(π) → X. It actually

su�ces to recall that ψφψ−1
0 ∈ Γ(π), for any φ ∈ Γ(π) (as elsewhere in this text, we do

not insist here on the possibility that φ might be de�ned only locally), and to consider the

well-de�ned �ber bundle automorphism

j`ψ : J `(π) 3 j`mφ 7→ j`ψ0(m)(ψφψ
−1
0 ) ∈ J `(π) .

It is easily seen that the lift j`Ψ is a Lie automorphism, i.e., that, for any κ` ∈ J `(π), the

inclusion

(Tκ`j
`ψ)(C`κ`) ⊂ C

`
j`κ`

ψ (106)

holds. Indeed, if κ` = j`mφ and if (Tm j
`φ)(vm) (vm ∈ TmX) denotes an element of C`κl , we

have

(Tκ` j
`ψ)(Tm j

`φ)(vm) = Tψ0(m)(j
`(ψφψ−1

0 ))(Tmψ0 vm) ∈ C`j`κ`ψ
.

Let us still mention that the prolongation j`ψ : J `(π)→ J `(π) of ψ : J0(π)→ J0(π) is really

a lifting, in the sense that π0 ` ◦ j`ψ = ψ ◦ π0 ` .

Instead of considering �nite automorphisms or di�eomorphisms, we can take an interest

in in�nitesimal ones, i.e, in vector �elds. Note that a vector �eld Ξ ∈ Θ(π0), i.e., a �eld of

π : E → X (we avoid writing Θ(π), since this notation is used instead of the more precise

Θ(π∞)), is a π-projectable vector �eld if and only if Tπ Ξe = ξπ(e) , for all e ∈ E, i.e., if and
only if there is a vector �eld ξ ∈ Θ(X) that is π-related to Ξ. It is well-known that this means
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that π intertwines the �ows ψΞ
t and ψξt , i.e., that π ◦ ψΞ

t = ψξt ◦ π (assume for simplicity that

the �ows are globally de�ned). In other words, ΨΞ
t = (ψξt , ψ

Ξ
t ) is a 1-parameter group of �ber

bundle isomorphisms of π : E → X, and it can thus be prolonged to a 1-parameter group of

Lie isomorphisms j`ΨΞ
t = (ψξt , j

`ψΞ
t ) of π` : J `(π)→ X. The latter implements a vector �eld

j`Ξ ∈ Θ(π`) � the `-jet prolongation of the projectable vector �eld Ξ ∈ Θ(π0) � . In other

words, the lift j`Ξ is given by

(j`Ξ)j`mφ = dt|t=0j
`
ψξt (m)

(ψΞ
t φψ

ξ
−t) ,

and the �ow of the prolongation j`Ξ of Ξ is the prolongation j`ψΞ
t of the �ow of Ξ, and it is

thus made of Lie isomorphisms. The explicit coordinate computation of the lift of

Ξ =
∑
j

Aj(xi)∂xj +
∑
b

Bb(xi, ua)∂ub =
∑
j

Aj(∂xj + ubj∂ub) +
∑
b

(Bb −Ajubj)∂ub (107)

leads to

j`Ξ =
∑
j

AjD≤`−1
xj

+
∑
b

∑
|β|≤`−1

Dβ
x(Bb −Ajubj)∂ubβ (108)

[Kru73]. Note that the �rst term (resp., second term) of the lift is obtained by extending the

total derivatives D≤0
xj

in (107) to D≤`−1
xj

(resp., by adding new terms whose coe�cients are the

corresponding total derivatives of the coe�cients in (107)).

Hence, any �ber bundle automorphism of π (resp., any projectable vector �eld of π) can

be prolonged to a �ber bundle automorphism of π` (resp., a vector �eld of π`) that respects

(whose �ow respects) the Cartan distribution C`. The result can be generalized to arbitrary

di�eomorphisms ψ : J0(π) → J0(π) (resp., vector �elds Ξ ∈ Θ(π0)). More precisely, any

di�eomorphism (resp., vector �eld) of π can be lifted to a di�eomorphism (resp., vector �eld) of

π` that (whose �ow) respects the Cartan distribution. We refer to such distribution respecting

di�eomorphisms and vector �elds as Lie transformations and Lie �elds, respectively (in the

case of J0(π), any vector in TeE is tangent to a section, so C0
e = TeE, and Lie transformations

(resp., Lie �elds) are just di�eomorphisms (resp., vector �elds)). The lift to π` of an arbitrary

vector �eld of π0, i.e., of

Ξ =
∑
j

Aj(xi, ua)∂xj +
∑
b

Bb(xi, ua)∂ub =
∑
j

Aj(∂xj + ubj∂ub) +
∑
b

(Bb −Ajubj)∂ub (109)

is locally given by the same formula (108) as before [Vit11]. Even more generally, any Lie

transformation (resp., Lie �eld) of πk can be lifted to a Lie transformation (resp., Lie �eld)

of any πk+`. Conversely, any Lie transformation (resp., any Lie �eld) of π` is the lift of a

di�eomorphism (resp., a vector �eld) of π, at least if rk(π) > 1, [KV98], [Vit11].

Classical symmetries II

In view of what has been said above, a symmetry of an equation Σ0 ⊂ Jk(π) is a

Lie transformation ψ of Jk(π) such that ψ(Σ0) = Σ0. As mentioned before, we do in this

text usually not insist on possible local characters. For instance, we could consider here local



On four Koszul-Tate resolutions 40

symmetries of Σ0 ⊂ Jk(π), i.e., Lie transformations ψ of an open subset U ⊂ Jk(π) such

that ψ(U ∩ Σ0) = U ∩ Σ0. Also the notion of in�nitesimal symmetry of an equation

Σ0 ⊂ Jk(π) is now clear. It is a Lie �eld τ of Jk(π) that is tangent to Σ0, i.e., such that

τκ ∈ TκΣ0, for all κ ∈ Σ0.

Higher symmetries I

Let us recall that we systematically assume that the considered equations are formally

integrable. Just as a Lie transformation (resp., a Lie �eld) of Jk(π) lifts to a Lie transformation

(resp., a Lie �eld) of any Jk+`(π), a symmetry (resp., an in�nitesimal symmetry) of Σ0 ⊂ Jk(π)

lifts to a symmetry (resp., an in�nitesimal symmetry) of any Σ` ⊂ Jk+`(π) (the converse is

true as well) [KV98, Prop. 3.23]. Hence, a symmetry (resp., an in�nitesimal symmetry) of Σ0

induces a symmetry (resp., an in�nitesimal symmetry) of Σ := Σ∞. To avoid di�eomorphisms

of in�nite dimensional spaces, we consider in the following only in�nitesimal symmetries and

call them just symmetries. Further, we will study not only the symmetries of Σ that are

implemented by symmetries of Σ0 (such induced symmetries are Lie �elds, i.e., the derivatives

of the di�eomorphisms obtained from their �ows respect the Cartan distribution), but `all

symmetries' of Σ (such `higher symmetries' will respect the Cartan distribution in a generalized

sense).

Recall that a symmetry of Σ = Σ∞ is a vector �eld T ∈ Θ(π) of J∞(π) that is tangent

to Σ and that is Lie. A higher symmetry of Σ (or simply a symmetry of Σ whenever no

confusion is possible) is a vector �eld T ∈ Θ(π) that is tangent to Σ and respects the Cartan

distribution C = C(π) of J∞(π), not in the preceding sense that the derivatives of its �ow

respect C, but in the sense that

[T, CΘ(π)] ⊂ CΘ(π) , (110)

where CΘ(π) = Γ(C(π)) is the space of Cartan �elds.

Symmetries of the Cartan distribution

Just as above, where we omitted �rst Condition (105), we will forget now temporarily the

tangency condition, and study in�nite jet space vector �elds that satisfy the Cartan condition

(110). These �elds will be called in the following symmetries of C. In view of the Jacobi

identity, the space ΘC(π) of symmetries of C is a Lie R-subalgebra of Θ(π). Since C is integrable,
Cartan �elds CΘ(π) are trivially symmetries of C, and, by de�nition, they thus form a Lie

ideal of ΘC(π). The quotient

sym(π) := ΘC(π)/CΘ(π)

is the Lie algebra of proper symmetries of C. In view of the Cartan connection (87), we

have the direct sum decomposition

ΘC(π) = CΘ(π)⊕ EΘ(π) , (111)

where

EΘ(π) = {T ∈ Θv(π) : [T, CΘ(π)] ⊂ CΘ(π)} . (112)
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It follows that

sym(π) ' EΘ(π) , (113)

i.e., that any proper symmetry of C is naturally represented by a vertical symmetry, or, still,

by an evolutionary vector �eld.

Vertical vector �elds V ∈ Θv(π) are characterized by the property Tπ∞ (V ) = 0, i.e., by

the property V (f) = 0, for all f ∈ C∞(X). Indeed,

V (f) = V (f ◦ π∞) = df(Tπ∞ (V )) = (Tπ∞ (V ))(df) .

If V ∈ Θv(π), we get

[V, Cθ](f) = V (Cθ(f))− Cθ(V (f)) = V (θ(f)) = 0 ,

for any θ ∈ Θ(X) and any f ∈ C∞(X), so that [V, C(Θ(X))] ⊂ Θv(π). On the other hand,

since Cartan �elds CΘ(π) are generated over F by lifts C(Θ(X)), the symmetry or evolutionary

condition [T, CΘ(π)] ⊂ CΘ(π) is equivalent to [T, C(Θ(X))] ⊂ CΘ(π), for all T ∈ Θ(π). Hence,

for V ∈ Θv(π), the evolutionary condition is equivalent to

[V, C(Θ(X))] ⊂ Θv(π) ∩ CΘ(π) = {0} .

Since lifts C(Θ(X)) are locally generated over C∞(X) by total derivatives, the symmetry

or evolutionary condition reads, locally and for vertical �elds V , [V,Dxi ] = 0, or, still,

[V,Dxi ](u
a
α) = 0, i.e., since Dxi = ∂xi + ubiβ∂ubβ

so that Dxiu
a
α = uaiα,

V a
iα = V (uaiα) = V (Dxiu

a
α) = Dxi(V (uaα)) = DxiV

a
α .

In other words, V ∈ Θv(π) is a local symmetry or evolutionary �eld if and only if its coe�cients

satisfy

V a
iα = DxiV

a
α . (114)

This shows that evolutionary vector �elds V ∈ EΘ(π) are completely determined (locally, by

their coe�cients V a, i.e., globally) by their restriction V |F0 ∈ Derv(F0,F).

Hence, there is a 1:1 correspondence between EΘ(π) and Derv(F0,F). It is worth to further

elaborate on this idea. Let X ∈ Der(F0,F). Locally, this is a vector �eld X of J0(π) with

coe�cients in functions of J∞(π):

X =
∑
j

Aj(xi, uaα)∂xj +
∑
b

Bb(xi, uaα)∂ub =
∑
j

Aj(∂xj +ubj∂ub) +
∑
b

(Bb−Ajubj)∂ub . (115)

Such a �eld can of course be prolonged to a �eld of J∞(π) in the way speci�ed by formula (108),

exactly as in the particular cases (107) and (109) � except that ` = ∞ here. The prolonged

vector �eld (108) is the sum of a term in CΘ(π) (horizontal �elds are locally generated over

F by total derivatives) and a term in EΘ(π) (see Equation (114)). In particular, if we start

from X ∈ Derv(F0,F), i.e., locally, from

X =
∑
b

Bb(xi, uaα) ∂ub , (116)
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we obtain the evolutionary vector �eld

δX =
∑
b,β

Dβ
xB

b ∂ubβ
∈ EΘ(π) . (117)

Note that a local vertical derivation (116) is the same as a local section B = (Bb(xi, uaα))b of

π∗∞(π). The point is that this isomorphism

Derv(F0,F) ' Γ(π∗∞(π)) = F(π, π) =: κ(π) (118)

holds globally and that the local evolutionary �elds (117), computed from the global X ∈
Derv(F0,F), can be glued to provide a global evolutionary �eld δX ∈ EΘ(π).

It is noteworthy that the 1:1 correspondence

δ : κ(π) 3 X 7→ δX ∈ EΘ(π) (119)

allows to push the F(π)-module structure of κ(π) forward to EΘ(π) (this multiplication is

di�erent (!) from that of vector �elds of π∞ by functions of π∞) and to pull the Lie algebra

structure of EΘ(π) back to κ(π).

Eventually, the 1:1 correspondence δ allows introducing a linearization of a not necessarily

linear di�erential operator D ∈ DO(π, π′) ' ψD ∈ F(π, π′) between two vector bundles π and

π′ . For any X ∈ κ(π), one can extend the action on F(π) of δX ∈ EΘ(π) to an action on

F(π, π′). Locally, this claim is obvious � the point is that the extended action is actually a

global one. The operator

`D : κ(π) 3 X 7→ `DX := δXψD ∈ F(π, π′) (120)

is the so-called universal linearization operator of D. In view of (117), we have

`DX = δXψD =
∑
b,β

∂ubβ
ψDD

β
xX b . (121)

In fact, the partial derivatives ∂ubβ
(b ∈ {1, . . . , rk(π)}) act on the components ψaD (a ∈

{1, . . . , rk(π′)}) of ψD. In other words, the coordinate expression of the linearization operator

is

`D =
∑
β

(
∂ubβ

ψaD

)
a,b
Dβ
x , (122)

where a (resp., b) refers to the row (resp., column). The linearization of any (not necessarily

linear) di�erential operator

D ∈ DO(π, π′)

is a ( linear ) horizontal di�erential operator

`D ∈ CDiff(π∗∞(π), π∗∞(π′)) . (123)

Observe also that the coe�cients ∂ubβ
ψD of the linearization of D ' ψD or of kerψD = Σ0 are

coe�cients of the equation of the tangent space of Σ0.
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Higher symmetries II

To upgrade an evolutionary vector �eld V ∈ EΘ(π) of J∞(π) to a symmetry of Σ0 (a

proper generalized symmetry of the equation Σ0), we must (see classical symmetries of Σ0)

still add the requirement that Vκ ∈ TκJ∞(π) be tangent to the prolongation Σ ⊂ J∞(π) when

κ ∈ Σ: Vκ ∈ TκΣ, for all κ ∈ Σ. In other words, the considered evolutionary �eld is a symmetry

of the equation Σ0 if and only if it acts on functions F(Σ) of the in�nite prolongation Σ of

Σ0. The space of all symmetries of Σ0 is a Lie R-algebra that we denote by EΘ(Σ).

To �nish this review of symmetries, we ask what classical and higher symmetries mean lo-

cally, in coordinates, in the case the considered formally integrable equation Σ0 is implemented

by a di�erential operator D ' ψD, i.e., Σ0 = kerψD .

Let �rst τ ∈ Θ(πk) be a Lie �eld that is tangent to Σ0. This Lie �eld is (if rk(π) > 1) the

lift τ = jkΞ of a vector �eld Ξ ∈ Θ(π0). Further, the tangency property means locally that,

for any κk ∈ Σ0, we have

LjkΞψD|κk '
1

h
(ψD(κk + hτκk)− ψD(κk)) = 0 . (124)

This is exactly the concept of in�nitesimal symmetry used in Physics (it means that the

in�nitesimal transformation induced by Ξ transforms a solution into a solution up to terms of

order ≥ 2 in the in�nitesimal parameter).

Consider now X ∈ κ(π), as well as the corresponding proper symmetry δX ∈ EΘ(π)

of C. As mentioned, this �eld is a symmetry δX ∈ EΘ(Σ) of Σ0 if and only if it acts on

F(Σ) = F(π)/I(Σ), where I(Σ) is the ideal made of those functions of F(π) that vanish on

Σ. Let U run through an open cover of J∞(π) by coordinate patches. Locally I(Σ) is given

by

I(Σ)|U =
{∑

FαaD
α
xψ

a
D

}
,

where the sum is �nite and the coe�cients are functions in F(π) de�ned on U . Hence, the

symmetry condition δX I(Σ) ⊂ I(Σ) means that, for any U of the considered cover, we have

0 = (δX I(Σ))|U∩Σ = (δX
∑

FαaD
α
xψ

a
D)|U∩Σ =

∑
Fαa|U∩Σ(δXD

α
xψ

a
D)|U∩Σ =∑

Fαa|U∩Σ(Dα
x δXψ

a
D)|U∩Σ =

∑
Fαa|U∩ΣD

α
x (δXψ

a
D)|U∩Σ ,

where we used (114) and the fact that horizontal di�erential operators restrict to F(Σ). Even-

tually, if Σ0 is, as assumed, implemented by D, the Σ0-symmetry condition for δX is

(δXψD)|Σ = 0 , (125)

or, still,

(`DX )|Σ = `D|ΣX|Σ = 0 , (126)

since `D is a horizontal di�erential operator and can thus be restricted. In other words, if we

denote the restrictions of the linearization `D (resp., of the generating section X ) by `Σ (resp.,

XΣ), we get the
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Proposition 9. Let Σ0 be a formally integrable PDE in π, implemented by a di�erential

operator and with in�nite prolongation Σ. An evolutionary vector �eld δX generated by X ∈
κ(π) is a symmetry δX ∈ EΘ(Σ) of Σ0 under the necessary and su�cient condition that

XΣ ∈ ker `Σ . (127)

7.1.6 Compatibility complex, formal exactness, formal integrability

Compatibility complex and formal exactness

An overdetermined system is a system of linear equations that are not independent, so

that the existence of a solution is subject to compatibility conditions.

The simplest example of an overdetermined system is a system of linear equations

LX = C, where L ∈ gl(p × n,R), X ∈ Rn, and C ∈ Rp, whose rank ρ(L) 6= p. This means

that, between the (LHSs of the) equations, i.e., between the rows Li ? of L, there do exist non-

trivial linear relations. In the following, we assume for simplicity that there is exactly one such

relation, Lp ? =
∑p−1

j=1 λjLj ?, with λj ∈ R. This existence of non-trivial linear relations

between the equations is equivalent to the existence of a non-zero linear operator, in the

considered case, a non-zero linear operator Λ = (λ1, . . . , λp−1,−1) ∈ gl(1 × p,R), such

that Λ◦L = 0. Hence, the existence of a solution X requires that C satis�es the compatibility

condition C ∈ ker Λ, i.e., Cp =
∑p−1

j=1 λjCj . In this case, the original system reduces to

L′X = C ′, with self-explaining notation, and, in view of our assumption, we have ρ(L′) = p−1.

Of course, a homogeneous system always reduces. The most general solution then depends

on n− (p− 1) ≥ 0 parameters, so that C ∈ imL and the complex

Rn L−→ Rp Λ−→ R

is exact.

Another basic example is integration in Rn, which corresponds to the system of linear

PDEs d0 f = ω, where d0 : C∞(Rn) → Ω1(Rn) is the de Rham di�erential. The non-trivial

linear partial di�erential relations

∂xj∂xif − ∂xi∂xjf = 0 (128)

between the PDEs can be equivalently written as d1 d0 = 0, where the non-zero linear

partial di�erential operator d1 is the de Rham operator on 1-forms:

C∞(Rn)
d0−→ Ω1(Rn)

d1−→ Ω2(Rn) .

The existence of a solution implies that the compatibility condition ω ∈ ker d1 holds. Since the

complex is exact, we then have ω ∈ im d0, i.e., the considered PDE admits a solution.

More generally, let D ∈ Diff(π, π′) be a linear di�erential operator between smooth sections

of vector bundles π : E → X and π′ : E′ → X over a manifold X. The linear (homogeneous)
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PDE implemented by D ' ψD is called overdetermined, if there exists a non-zero linear

di�erential operator ∆ ∈ Diff(π′, π′′), such that

Γ(π)
D−→ Γ(π′)

∆−→ Γ(π′′)

is a complex (of C∞(X)-modules). We then say that ∆ is a compatibility operator for D,

if the pair (∆, π′′) is universal in the obvious sense.

Just as the original operator D can be overdetermined (non-trivial linear di�erential rela-

tions between the corresponding equations � compatibility operator), a compatibility operator

∆ can itself be overdetermined (relations between the relations � new compatibility operator).

This then leads to a compatibility complex of the original operator D :

Γ(π)
D−→ Γ(π′)

∆1−→ Γ(π′′)
∆2−→ Γ(π

′′′
)

∆3−→ . . .

In fact, anyD ∈ Diffk(π, π
′) admits a compatibility complex in the abelian category Mod(O)

of modules over O = C∞(X), but not necessarily in the non-abelian category rC∞VB(X)

of �nite rank smooth vector bundles over X. Indeed, for any k1 ∈ N, the algebraized k1-

prolongation ψk1
D ∈ HomO(Γ(πk+k1),Γ(π′k1

)) of D admits a cokernel ψ ∈ HomO(Γ(π′k1
),P2) in

Mod(O), which represents a di�erential operator ∆1 ∈ Diffk1(π′,P2). Since ψ is the cokernel

of ψk1
D , the operator ∆1 satis�es ∆1 ◦ D = ψ ◦ jk1 ◦ D = ψ ◦ ψk1

D ◦ jk+k1 = 0. In fact ∆1 is

universal and is thus a compatibility operator of D. When turning the crank again and again,

we obtain a compatibility complex of D:

Γ(π)
D−→ Γ(π′)

∆1−→ P2
∆2−→ P3

∆3−→ . . . (129)

Here we actually use the algebraic approach � in the frame of O-modules � to di�erential oper-

ators, see for instance [KV98], [GKP13b], [GKP13a]. However, the O-modules P2,P3, . . . are

not necessarily projective of �nite rank, i.e., they are not necessarily modules Γ(π′′),Γ(π′′′), . . .

of sections of vector bundles.

In the following, we stay within the setting of algebraic di�erential operators and consider

a diagram of the type we just used to construct a compatibility operator:

· · · −→ Pi−1
∆i−1−→ Pi

∆i−→ Pi+1 −→ · · ·

jki−1+ki+`

y jki+`
y j`

y
· · · −→ J ki−1+ki+`(Pi−1)

ψ
ki+`
∆i−1−→ J ki+`(Pi)

ψ`∆i−→ J `(Pi+1) −→ · · ·

(130)

Here Pi−1,Pi,Pi+1 are O-modules, ∆i−1 ∈ Diffki−1
(Pi−1,Pi), ∆i ∈ Diffki(Pi,Pi+1), ` ∈ N,

and J k(P) is the algebraic counterpart of Γ(Jk(P )), where P → X is a vector bundle and

Jk(P ) is the ordinary k-jet bundle (`algebraic counterpart' means that, in the geometric case

P = Γ(P ), we have J k(P) = Γ(Jk(P ))).



On four Koszul-Tate resolutions 46

The bottom row of (130) is made of prolonged algebraized operators, or, still, prolonged

formal operators (acting on formal derivatives). The study of formal operators is referred to

as the formal theory.

It is clear (see above) that one of the main questions in the context of compatibility

complexes is exactness (exactness of the top row in (130)), i.e., `the question whether the

considered equation admits a solution whenever the compatibility condition is satis�ed'. The

question of exactness can of course also be considered in the (simpler) formal theory (exactness

of the bottom row).

More precisely, a compatibility complex (top row) is called formally exact, if the corre-

sponding formal complex (bottom row) is exact, for any ` ∈ N. In this case, the main task is

to look for criteria for (true) exactness of the original (top row) complex.

We will not investigate the latter problem. On the other hand, it is important to know

that [KV98], for any su�ciently large k1 ∈ N, the compatibility complex (129) is formally

exact, for any operator D. We actually have the

Proposition 10. Any linear di�erential operator D ∈ Diff(π, π′) admits a formally exact

compatibility complex. The same is true for any horizontal linear di�erential operator D ∈
C Diff(π∗∞(η), π∗∞(η′)).

Formal integrability

Let us now brie�y comment on formal integrability of a linear partial di�erential equation

Σ0 or linear di�erential operator D.

The �rst observation is that the category rC∞VB(X) is not Abelian. Indeed, kernels, like

e.g., Σ` = kerψ`D, are not necessarily vector bundles over X. The reason is that, if ψ : E → E′

is a map of vector bundles over X, the rank ρ(ψm) of the linear map ψm : Em → E′m may

vary with m ∈ X. Then, the kernel kerψ :=
∐
m∈X kerψm is a bundle of vector spaces of

varying dimension rk(E)− ρ(ψm). However, if the rank ρ(ψ) is constant, it is easily seen that

the kernel kerψ is a vector bundle over X. Therefore, it is natural to ask that D ' ψD be

regular, i.e., that the rank ρ(ψ`D) be constant, for any ` ∈ N, or, still, that Σ` = kerψ`D be a

vector bundle over X, for any ` ∈ N.

The second remark is that, if D is of order k, the prolongation Σ` is the kernel in Jk+`(E)

of the di�erential consequences ψ`D up to order ` of the equation ψD = 0. It follows that any

solution in Jk+`+1(E) of the system ψ`+1
D = 0 (di�erential consequences up to order ` + 1)

projects by πk+`,k+`+1 to a solution in J
k+`(E) of the system ψ`D = 0 (di�erential consequences

up to order `):

πk+`,k+`+1Σ`+1 ⊂ Σ` .

On the other hand, any family jk+`
m φ (m ∈ X) of solutions of ψ`D = 0 can be extended to a

family jk+`+1
m φ (m ∈ X) of solutions of ψ`+1

D = 0. Of course, the best situation is when any

solution of ψ`D = 0 can be extended to a solution of ψ`+1
D = 0, i.e., when

πk+`,k+`+1Σ`+1 = Σ` .
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We thus understand that the existence of extended formal solutions, i.e., formal integra-

bility, is a simplifying requirement.

Actually we say that a linear di�erential operator D ' ψD is formally integrable, if it is

regular and if extended formal solutions do exist, i.e., more precisely, if Σ` is a vector bundle,

for all ` ∈ N, and the vector bundle map πk+`,k+`+1 : Σ`+1 → Σ` is surjective, for all ` ∈ N. In
the present text, all partial di�erential equations Σ0, even those that are not implemented by

a di�erential operator, are assumed to be formally integrable in the sense of Remark 6

[KV98].

7.2 Remarks on gauge theories

Much of what will be said in this text about regular irreducible gauge theories can be better

understood with the Koszul resolution of a regular surface and some aspects of electromag-

netism in mind. In the following, we use without reference results and notation of Subsection

7.1.

7.2.1 Koszul resolution of a regular surface

Let Σ be an embedded p-dimensional submanifold of Rn. This means that, for each x ∈ Σ,

there is an open neighborhood Ω ⊂ Rn such that Σ ∩ Ω is described by a regular cartesian

equation f ∈ C∞(Ω,Rn−p). By `regular' we mean that the equations fa ∈ C∞(Ω,R) are

independent, i.e., that the rank ρ(∂xf) is equal to n − p, for all x ∈ Σ ∩ Ω. Assume for

simplicity that the �rst n − p columns of the Jacobian matrix are independent and use the

decomposition x = (x′, x′′) ∈ Rn−p × Rp. Then, locally, in the neighborhood of Σ, we have

f = f(x′, x′′) ⇔ x′ = x′(f, x′′). It follows that, locally, in the new coordinates (f, x′′), the

equation of Σ is f = 0, or, still, fa = 0, for all a.

To avoid obscuration by technicalities, we often ignore in the sequel such local

aspects (thus following [Bar10], which is our main reference for the Koszul-Tate resolution of

shell functions in a regular irreducible gauge theory).

One of the fundamental consequences of regularity is the structure of the ideal I(Σ) made

of those smooth functions C∞(Rn) that vanish on Σ. It is clear that any linear combination

F =
∑

a Faf
a, Fa ∈ C∞(Rn), of the equations belongs to I(Σ). Conversely, if F ∈ I(Σ), we

get, working in the new coordinates (f, x′′),

F (f, x′′) =

∫ 1

0
dt
(
F (tf, x′′)

)
d t =

∑
a

fa
∫ 1

0
(∂faF ) (tf, x′′) d t =:

∑
a

Faf
a .

We are now prepared to recall the construction of the Koszul resolution of the function

algebra C∞(Σ) of

Σ : fa = 0, ∀a ∈ {1, . . . , n− p} , (131)

where the fa are the �rst coordinates of an appropriate coordinate system (f, x′′) of Rn. The
Koszul resolution of C∞(Σ) is then the chain complex made of the free Grassmann algebra

K = C∞(Rn)⊗ S[φa∗]



On four Koszul-Tate resolutions 48

on n−p odd generators φa∗ � associated to the equations (131) � and of the Koszul di�erential

δK =
∑
a

fa ∂φa∗ . (132)

Of course, the claim that this complex is a resolution of C∞(Σ) means that the homology of

(K, δK) is given by

H0(K) = C∞(Σ) and Hk(K) = 0, ∀k > 0 . (133)

At least the result concerning the 0-homology space is quite clear. Indeed, in degree 0, the

cycles are the functions in C∞(Rn) and the boundaries are the elements of

δK{
∑
b

Fb φ
b∗} = {

∑
a

Fa f
a} = I(Σ) ,

so that H0(K) = C∞(Σ) .

7.2.2 Electromagnetism - an Abelian gauge theory

In Minkowski space R3,1, and with respect to any intertial observer or coordinate system,

the behavior of the electromagnetic �eld ( ~E, ~B) = ( ~E(x, y, z, t), ~B(x, y, z, t)) is governed by

Maxwell's equations, which read in the vacuum,

~∇ · ~E = 0, ~∇ · ~B = 0, ~∇∧ ~E = −∂t ~B, ~∇∧ ~B =
1

c2
∂t ~E, (134)

where c is the celerity of light. The second and third equations can be equivalently written as

~B = ~∇∧ ~A and ~E = −~∇F − ∂t ~A . (135)

Here, ~A = ~A(x, y, z, t) and F = F (x, y, z, t) are the vector and scalar potentials, respectively.

In the sequel, we use the space-time coordinates x1 = x, x2 = y, x3 = z, and x4 = ct.

The principle of Special Relativity, as well as experimental facts, show that, if the considered

coordinates change, the components

A1 = A1,A2 = A2,A3 = A3, and A4 =
−1

c
F

transform according to the 1-form transformation law

Aµ = ∂xµx
′νA′ν ,

so that A = Aµ dxµ = A′ν dx′ν is a form A ∈ Ω1(R3,1) .

The Minkowski space R3,1 with the �at Minkowski metric is the local model of a Lorentzian

4-manifold X. When working in a local chart domain U of X, we usually view A as a form

A ∈ Ω1(U)⊗ g,

valued in g = u(1) = iR. Since g is the Lie algebra of the unitary group G = U(1) = S1,

the potential A is a local connection 1-form in a trivialization (U,Φ) of a principal G-bundle
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L over X. It is easily seen that the freedom of choice concerning the (clearly not unique

antiderivative (see (135)) or) potential A is given by

Bµ = Aµ + ∂xµθ , (136)

where θ is an arbitrary function. Therefore, if the considered trivialization (U,Φ) or observer

changes to (U ′,Φ′), what corresponds to a smooth transformation

t : U ∩ U ′ → G , (137)

the form A will change to B. However, since the matrix t is a number in the present case, the

relation (136) between A and B is exactly (the coordinate form of) the transformation law

B = t−1At + t−1 d t (138)

of the local connection 1-form of a connection 1-form ω of the principle bundle L. The

function θ chosen by a given observer, or even the observer itself, is called a gauge, and the

transformation (136) of this gauge is a gauge transformation. In Mathematics, an observer

or his trivialization are often regarded as a gauge, a transformation like (137) is referred

to as a gauge transformation, and Equation (138) is the transformation law � under gauge

transformation � for local connection 1-forms.

If we use the preceding conclusion that the electromagnetic potential is nothing but a

connection ω ∈ Ω1(L) ⊗ g on a G-bundle L → X over a Lorentzian manifold (X, g), as a

principle of electromagnetism, a number of known results come automatically. Indeed, a short

computation shows that the local form

F ∈ Ω2(U)⊗ g

of the curvature Ω of ω, which is here given by F = dA, i.e., in coordinates, by

Fµν = ∂xµAν − ∂xνAµ ,

is exactly the electromagnetic tensor. Hence, under a gauge transformation, the electromag-

netic tensor changes according to the transformation law

F ′ = t−1Ft

for local curvature 2-forms. Since, as mentioned, t is a number here, we get F ′ = F , i.e., we
see that the electromagnetic tensor is gauge invariant, or, still, that the electromagnetic �eld

is a physical observable. Moreover, the obvious equation dF = d2A = 0 straightforwardly

leads to

∂xλFµν + ∂xµFνλ + ∂xνFλµ = 0 ,

which is easily seen to be equivalent to the Maxwell equations (135). Hence, these Maxwell

equations follow automatically from general properties of connections and are thus of geometric

nature.
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The two remaining equations can be found, in a trivialization (U,Φ) of L over a local

orthonormal coordinate chart (U, (x1, x2, x3, x4)) of (X, g), as the dynamical equations of the

fundamental potential �eld A, via variational calculus. The indices of the components of local

tensor �elds, in particular those of the components Aµ (resp., Fµν) of A (resp., F), can be

lifted by means of the `metric' g � which in the considered coordinates is given by the diagonal

matrix (1, 1, 1,−1). Take now the Lagrangian L de�ned by

L = −1

4
FµνFµν .

The corresponding Euler-Lagrange equations read

∂xνFνµ = 0 , or DxνFνµ = 0 ,

depending on whether we view L as a function of R3,1, or, since it is essentially given by

∂xµAν ' Aν;µ , as a function of the �rst jet bundle of T ∗R3,1. These equations are equivalent

to the �rst and fourth Maxwell equations, which are thus dynamical ones.

Electromagnetism is a prototypical example of a (an Abelian) gauge theory (since its

structure or symmetry group G is Abelian).

7.2.3 Regular irreducible gauge theories

In �eld theory, �elds are sections φ ∈ Γ(π) of a vector bundle π : E → X. Since

we consider here gauge theories from the standpoint of Physics, we work systematically in a

trivialization of E (�ber coordinates u = (u1, . . . , ur) � we will sometimes write ua instead

of u) over a coordinate patch of X (coordinates x = (x1, . . . , xn)), or we just assume that

E = Rn×Rr. The dynamics of the considered �eld theory is given by a distinguished functional

S acting on compactly supported sections φ ∈ Γ(π),

S[φ] =

∫
X
L(xi, uaα)|jk−1φ dx ∈ R ,

where the Lagrangian L is a function L ∈ F(πk−1) of the (k−1)−jet bundle of π (jet bundle

coordinates (xi, uaα)) such that L(xi, 0) = 0 (it su�ces to set F̃ (xi, uaα) := F (xi, uaα)−F (xi, 0),

for any F ∈ F , to see that F = C∞(X) ⊕ F̃ , where the functions in F̃ vanish on the zero

section). Equivalently, we may use the corresponding Euler-Lagrange equations

δuaL|jkφ = (−Dx)α∂uaαL|jkφ = 0 , (139)

where δua is the algebraized Euler-Lagrange operator, see Subsection 7.1.

The extended algebraized Euler-Lagrange equations

Dα
x δuaL = 0 (140)

de�ne the constraint surface Σ in the in�nite jet space J∞(π). The solutions φ of the original

Euler-Lagrange equations (139) are those compactly supported sections φ ∈ Γ(π) that satisfy
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the condition (j∞φ)(X) ⊂ Σ . If a function f ∈ F(π) of J∞(π) vanishes on Σ, i.e., if f ∈ I(Σ),

we write f ≈ 0 .

As for any system of linear equations, we may �nd linear relations between the considered

equations (140), i.e., relations of the type

Na
αD

α
x δuaL ≡ 0 , (141)

with Na
α ∈ F(π). It is easy to write such relations, if we use coe�cients in I(Σ), i.e., that

vanish on the `shell' Σ. Indeed, for any functions n[ab] ∈ F(π) (that are antisymmetric in

a, b), we have the linear relation n[ab]∂ubL ∂uaL ≡ 0 between the equations ∂uaL = 0. What

we actually have in mind are non-trivial linear relations, i.e., relations of the type (141), but

with at least one coe�cient Na
α /∈ I(Σ) (on-shell reducibility). We refer to such relations as

non-trivial Noether identities.

A deep result, which is already present in elementary Mechanics, is the 1:1 correspondence

between, roughly speaking, `symmetries of the action' (resp., `gauge symmetries') and con-

served currents (resp., Noether identities). It motivates the de�nition of a gauge theory as

a �eld theory (see above) with non-trivial Noether identities.

The e�cient investigation of gauge theories is subject to some regularity conditions that we

now describe. More precisely, the regularity conditions for `irreducible' gauge theories

can be formulated as follows:

Assumption 1. For any ` ∈ N, the LHSs Dα
x δuaL of the equations of Σ, up to order k+ `

(i.e., since L ∈ F(πk−1), we consider derivatives Dα
x up to order `), can be separated into two

packages Ea and E∆ (of course, the ranges of (α, a) and of (a,∆) are the same) (we could

even only ask that the Dα
x δuaL and the (Ea, E∆) be related by an invertible matrix, i.e., that

Dα
x δuaL = Mαa

a Ea +Mα∆
a E∆ ,

where the matrix M = (Mαa
a ,Mα∆

a ), with row index (α, a), is invertible; however, to simplify,

we ignore this matrix in the following, just as we ignore, as mentioned before, a number of

local aspects).

Assumption 2. The functions Ea ∈ F(πk+`) are independent. This is the actual regular-

ity condition (see Subsection 7.2.1). In other words, we assume that (locally � but we ignore

this restriction) the Ea = Ea(x
i, uaα) can be chosen as the �rst variables of a new coordinate

system (xi, Ea, u
′′a
α ) in Jk+`(π):

(xi, u′aα , u
′′a
α )↔ (xi, Ea, u

′′a
α ) .

Assumption 3. The functions E∆ are linear consequences of the functions Ea: E∆ =

F a
∆Ea, with F a

∆ ∈ F(πk+`). It follows that E∆ = 0, if Ea = 0: the Ea (resp., E∆) are the

independent (resp., dependent) equations.

To illustrate what has been said, we consider the example of electromagnetism. Depending

on whether we interpret the Aµ and their derivatives ∂xνAµ as functions of the base R3,1, or,
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on the contrary, as independent variables Aµ,Aµ; ν in the jet space, we must view the following

operators ∂λ as partial derivatives ∂xλ or as total derivatives Dxλ .

The non-extended Euler-Lagrange equations read

δAµL = ∂νFνµ = ∂ν∂
νAµ − ∂µ∂νAν = −∂4∂4Aµ + ∂i∂iAµ − ∂µ∂4A4 − ∂µ∂iAi , (142)

where 1 ≤ µ, ν ≤ 4 and 1 ≤ i ≤ 3. As a consequence, we get the non-trivial Noether identity

∂µδAµL = ∂4δA4L+ ∂iδAiL ≡ 0 . (143)

Here `identity' means, depending on the chosen interpretation, that the equality holds for all

sections A and all base points x, or, equivalently, for all points of the jet space. Of course,

Identity (143) implies the identities

∂(β1,β2,β3,β4)∂µδAµL = ∂(β1,β2,β3,β4)∂4δA4L+ ∂(β1,β2,β3,β4)∂iδAiL ≡ 0 , (144)

where ∂(β1,β2,β3,β4) means ∂βx or Dβ
x , depending on the chosen standpoint.

Equation (142) splits into

δAjL = −∂4∂4Aj + ∂i∂iAj + ∂j∂4A4 − ∂j∂iAi = −Aj; 44 +Aj; ii +A4; 4j −Ai; ij

and

δA4L = ∂4∂4A4 − ∂i∂iA4 − ∂4∂4A4 + ∂4∂iAi = −A4; ii +Ai; 4i .

These non-extended algebraized Euler-Lagrange equations allow us to computeAj; 44 andA4; 11

in terms of the other jet space variables and the new coordinates Ej := δAjL and E4 := δA4L.
Hence, Ej , E4 belong to the �rst package Ea of independent equations that can be chosen as

�rst coordinates of a new system.

However, the derivatives Dα
x δAµL, where α 6= 0, are not independent, in view of (144):

the Dβ
xDx4δA4L are dependent equations E∆ . The challenge resides in the proof that all the

other equations Dα
x δAµL are independent equations Ea. This is actually a consequence of some

geometric facts.

Assumption 4. The dependent equations E∆ are total derivatives of a �nite number

of dependent equations Eδ = F b
δEb, i.e., there is a �nite number of generators Eδ by

derivation: E∆ = Dβ
xEδ.

In the case of electromagnetism, for instance, there is a unique generator, namely Eδ =

Dx4δA4L .

Assumption 5. Note that the di�erences E∆ −F a
∆Ea ≡ 0 are non-trivial Noether identi-

ties. We assume that, if E∆ = Dβ
xEδ, the derivative D

β
x of the Noether identity Eδ−F b

δEb ≡ 0

is the preceding Noether identity associated to E∆ . If we write this requirement out, we �nd

an invertibility condition for some matrix, which is called the irreducibility assumption of

the considered gauge theory.

Observe that the latter hypothesis is satis�ed in electromagnetism.
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7.2.4 Higher symmetries III

In this subsection, we explain the concepts of symmetry of the Euler-Lagrange equations,

symmetry of the action, and gauge symmetry, in the context of a regular irreducible gauge

theory. As usual, we denote the coordinates of the considered trivial bundle π : E = Rn×Rr →
X = Rn by (xi, ua) and the Lagrangian of the theory by L(xi, uaα) .

As mentioned above, a vector �eld X of J0(π) with coe�cients in functions of J∞(π)

(see Equation (115)) can be prolonged to a �eld of J∞(π) in the way described by Equation

(108) (with ` = ∞). This prolongation j∞X ∈ Θ(π) is the sum of a horizontal vector �eld

AjDxj ∈ CΘ(π) and an evolutionary vector �eld δX ∈ EΘ(π).

In conformity with the symmetry conditions (124) and (125), which ask that the prolon-

gation of the considered vector �eld annihilates the algebraized equation on-shell, we say that

the generalized vector �eld X ∈ Der(F0,F) is a symmetry of the Euler-Lagrange

equations δuaL|jkφ = 0 ,∀a , if
δX(δuaL) ≈ 0 , ∀a . (145)

As said before, the requirement means that the in�nitesimal transformation induced by X

transforms a solution into a solution up to terms of order ≥ 2 in the in�nitesimal parameter.

As for the concept of symmetry of the action, remember �rst a well-known fact of La-

grangian Mechanics. The gauge transformation (136), or, more precisely, the transformation

F ′ = F − ∂tθ, ~A′ = ~A+ ~∇θ ,

where θ is a function of time and positions, modi�es the generalized electromagnetic potential

U = e(F −~v · ~A), where e is the charge and ~v the velocity of the considered particle, and thus

leads to di�erent Lagrangians L and L′. However, it is easily seen that the latter di�er by

the total derivative L′ − L = dt  of a function  of time and positions, and that the Euler-

Lagrange equations associated to L and L′, hence, the dynamics, are therefore the same. This

observation can be extended to the present �eld theoretic context. Two Lagrangians L,L′ ∈ F̃
implement the same Euler-Lagrange equations if and only if they di�er by a total divergence:

δuaL = δuaL′, ∀a ⇔ L′ − L = Dxi
i, i ∈ F̃ .

This indicates that two action functionals SL and SL′ , which are de�ned by Lagrangians L and

L′, coincide (on all compactly supported sections) if and only if the underlying Lagrangians

L,L′ di�er by a total divergence. It is thus natural to identify the space of action function-

als SL with the space of classes [L] of functions L ∈ F̃ considered up to total divergence.

Alternatively, an action can be viewed as a class [Ldx], where dx = dx1 . . .dxn and where

Ldx ' Ldx+Dxi
i dx .

A symmetry of the action is now a generalized vector �eld X, such that

δX[Ldx] = [0] .
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This de�nition only makes sense, if we de�ne how the prolongation δX acts on the di�erential

form dx and show that its action on [Ldx] is well-de�ned. We con�ne ourselves here to

mentioning that the symmetry condition �nally reads

δXL = Dxi
i ,

where i ∈ F , i.e., just requires that δXL be a total divergence. Moreover, any symmetry of

the action is a symmetry of the Euler-Lagrange equations (but the converse is not true).

Eventually, a gauge symmetry is a symmetry

X(f) = Aj(xi, uaα)∂xj +Bb(xi, uaα)∂ub = Aj(∂xj + ubj∂ub) + (Bb −Ajubj)∂ub (146)

of the action, whose coe�cients

Aj = Aj(f) = AjαD
α
xf and Bb = Bb(f) = Bb

βD
β
xf

are the values of some total di�erential operators on an arbitrary / a varying function f ∈ F .

Symmetries of the action (resp., symmetries of the action obtained as value of a gauge

symmetry on a speci�c / a �xed function f ∈ F) are often termed as global symmetries

(resp., local symmetries). Further, we call symmetry in characteristic form a symmetry

given by a vertical generalized vector �eld

X = Cb(xi, uaα)∂ub ∈ Derv(F0,F) .

For all types of symmetry (symmetry of the Euler-Lagrange equations, symmetry of the action,

or gauge symmetry), any symmetry X (see Equation (146)) provides a symmetry

X = (Bb −Ajubj)∂ub

in characteristic form (note that X is a symmetry, since δX = δX ).

7.2.5 Noether's theorems

Einstein quali�ed Noether's result as a monument of mathematical thinking. The tight

relationship between symmetries and conserved quantities is part of each course in Classical

Mechanics. More precisely, Noether's theorems claim that there exists a 1:1 correspondence

between (equivalence classes of) symmetries of the action in characteristic form and (equiv-

alence classes of) `conserved currents', and that there exists a 1:1 correspondence between

gauge symmetries in characteristic form and Noether identities.

The latter correspondence is via formal adjoint operators. More precisely, ifNa
αD

α
x δuaL ≡ 0

is a Noether identity, we consider the total di�erential operator N with components Na =

Na
αD

α
x , and de�ne the corresponding gauge symmetry in characteristic form X (f) = Ca(f)∂ua

as the adjoint N+ of N , i.e., by Ca(f) = Na+(f) = (−Dx)α (Na
αf). The converse associa-

tion is similar. It follows that non-trivial Noether identities correspond to non-trivial gauge

symmetries in characteristic form.
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7.3 Partial di�erential equations and algebraic D-geometry

7.3.1 Construction of non-split relative Sullivan D-algebras

For convenience, we recall Lemma 1 of [BPP15b] that is needed in the main part of this

text.

Lemma 1. Let (T, dT ) ∈ DGDA, let (gj)j∈J be a family of symbols of degree nj ∈ N, and let

V =
⊕

j∈J D · gj be the free non-negatively graded D-module with homogeneous basis (gj)j∈J .

(i) To endow the graded D-algebra T ⊗ SV with a di�erential graded D-algebra structure

d, it su�ces to de�ne

dgj ∈ Tnj−1 ∩ d−1
T {0} , (147)

to extend d as D-linear map to V , and to equip T ⊗ SV with the di�erential d given, for any

t ∈ Tp, v1 ∈ Vn1 , . . . , vk ∈ Vnk , by

d(t⊗ v1 � . . .� vk) =

dT (t)⊗ v1 � . . .� vk + (−1)p
k∑
`=1

(−1)n`
∑
j<` nj (t ∗ d(v`))⊗ v1 � . . . ̂̀. . .� vk , (148)

where ∗ is the multiplication in T . If J is a well-ordered set, the natural map

(T, dT ) 3 t 7→ t⊗ 1O ∈ (T � SV, d)

is a RSDA.

(ii) Moreover, if (B, dB) ∈ DGDA and p ∈ DGDA(T,B), it su�ces � to de�ne a morphism

q ∈ DGDA(T � SV,B) (where the di�erential graded D-algebra (T � SV, d) is constructed as

described in (i)) � to de�ne

q(gj) ∈ Bnj ∩ d−1
B {p d(gj)} , (149)

to extend q as D-linear map to V , and to de�ne q on T ⊗ SV by

q(t⊗ v1 � . . .� vk) = p(t) ? q(v1) ? . . . ? q(vk) , (150)

where ? denotes the multiplication in B.

7.3.2 Jet functor

We now give some explanations about the construction of the jet functor

J∞ : qcCAlg(OX)→ qcCAlg(DX) .

For simplicity, we assume that the smooth scheme X is a smooth a�ne algebraic variety, so

that we can substitute global sections to sheaves � but the same proof goes through in the

general case. We denote by O (resp., D) the algebra OX(X) (resp., DX(X)).



On four Koszul-Tate resolutions 56

The functor J∞ must be left adjoint to the forgetful functor For, i.e., for B ∈ OA :=

CAlg(O) and A ∈ DA := CAlg(D), we must have

HomDA(J∞B,A) ' HomOA(B,ForA) , (151)

functorially in A,B. The construction of J∞B is quite natural. We start from the D-module

D⊗OB, and consider the D-algebra SO(D⊗OB) over D⊗OB. Since Equation (151) suggests

the existence of an O-algebra morphism B → J∞B, we de�ne J∞B as the quotient of the

D-algebra SO(D ⊗O B) by a D-ideal such that the natural inclusion

i : B 3 b 7→ 1⊗ b ∈ SO(D ⊗O B)

becomes an O-algebra morphism π◦i : B → J∞B when composed with the natural projection

π. Since an O-algebra morphism is an O-linear map (a condition that is automatically veri�ed)

that respects the multiplications and the units, we must ensure that

π(1⊗ (bb′)) = π(1⊗ b)� π(1⊗ b′) = π((1⊗ b)� (1⊗ b′)) and π(1⊗ 1B) = π(1) ,

where 1 (resp., 1B) denotes the unit in O (resp., B) and where � is the symmetric tensor

product (we denote the product of two residue classes by the same symbol). Hence, we

consider the D-ideal K generated by the elements

D ·
(
(1⊗ b)� (1⊗ b′)− 1⊗ (bb′)

)
∈ SO(D ⊗O B) and D · (1⊗ 1B − 1) ∈ SO(D ⊗O B) ,

where D · denotes the action by an arbitrary di�erential operator D ∈ D.
It now su�ces to show that

J∞ : OA 3 B 7→ J∞B := SO(D ⊗O B)/K ∈ DA

possesses the adjointness property (151).

If f : J∞B → A is a D-algebra morphism, the map

f̃ : B 3 b 7→ f(π(1⊗ b)) ∈ ForA

is obviously an O-algebra morphism.

Conversely, let g : B → ForA be an O-algebra morphism. The map

ḡ : D ⊗O B 3 D ⊗ b 7→ D · (g(b)) ∈ A

is a well-de�ned D-module morphism. Since SO(D ⊗O B) is the free D-algebra over the D-
module D⊗OB, the D-module morphism ḡ can be uniquely extended to a D-algebra morphism

ḡ : SO(D ⊗O B) → A. As ḡ vanishes on K (note that ḡ(1) = 1A, where 1A is the unit in A),

it descends to the quotient J∞B. Hence the searched D-algebra morphism ḡ : J∞B → A.

Let now π : E → X be a smooth morphism of smooth a�ne algebraic varieties. The

total sections OEX(X) of the pushforward OEX by π of the structure sheaf OE of E form an

O-algebra, whose image J := J∞(OEX(X)) by the jet functor is a D-algebra. This algebra is
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the D-geometric counterpart of the function algebra F = F(π) of the in�nite jet space J∞(π)

of a smooth vector bundle π : E → X.

To gain insight into this statement, consider the example π : E = R2 3 (t, x) 7→ t ∈ X = R.
To compare this di�erential geometric situation with our former algebraic geometric setting,

we de�ne O = OX(X) := R[t] and B := OEX(X) = OE(E) := R[t, x]. It is easily seen that

the symmetric algebra SO(D⊗O B) coincides with the polynomial algebra R[t, ∂it ⊗xj ], where
i, j ∈ N. When dividing the ideal K out, we obtain

J = R[t, x, ∂t ⊗ x, ∂2
t ⊗ x, . . .] .

Indeed, the initial generator ∂t ⊗ x2 (resp., ∂t ⊗ 1B), for instance, coincides in the quotient

with

∂t ⊗ x2 = ∂t · ((1⊗ x)� (1⊗ x)) (resp., ∂t ⊗ 1B = ∂t · 1) .

This generator is thus a polynomial in ∂t ⊗ x and 1 ⊗ x ' x (resp., is thus equal to 0, since

∂t acts on the element 1 of the D-module O) and can therefore be omitted in the quotient.

Hence, the announced result. When setting x(k) := ∂kt ⊗ x, we get

J = R[t, x, x(1), x(2), . . .] ,

i.e., we obtain the polynomial function algebra of the jet space J∞(π).

Observe eventually that the vector �eld ∂t acts on a function in J as a derivation, see

above, and that by de�nition ∂t · x(k) = x(k+1). This means that

∂t · x(k) = (∂t + x(1)∂x + x(2)∂x(1) + . . .)x(k) = Dt x
(k) ,

where Dt is the total derivative. In other words, the action of a di�erential operator of the base

on a function in J coincides with the action of the corresponding total di�erential operator.

7.3.3 Proof of Proposition 1

Let π : E → X be an a�ne morphism of schemes (i.e., a locally ringed space morphism

Π = (π, π]) : (E,OE)→ (X,OX) such that there is an a�ne cover of X whose preimages by π

are a�ne), in particular a vector bundle. In the following, we consider the sheaf OE ∈ Sh(E)

as sheaf OEX := π∗OE ∈ Sh(X), where π∗ denotes the direct image of sheaves. It is known

[Har97] that π∗ induces an equivalence of the categories qcMod(OE) and qcMod(OX)∩Mod(OEX) ,

with self-explaining notation. It follows that OEX ∈ qcMod(OX). Moreover, OEX is clearly a

unital commutative ring and thus an algebra OEX ∈ qcCAlg(OX). Indeed, such an algebra

is a commutative monoid in qcMod(OX), i.e., it is an object in qcMod(OX) that carries an

associative unital commutative multiplication, which is a morphism in qcMod(OX). These

conditions are obviously satis�ed for OEX . As for OX -linearity, note that, if V ⊂ X is open,

f ∈ OX(V ) and F ∈ OEX(V ) = OE(π−1(V )), the ring morphism π] : OX(V ) → OE(π−1(V ))

allows to de�ne the OX -action by f ·F := π](f)?F , where ? is the ring multiplication. Hence,

the multiplication ? is OX(V )-bilinear, i.e.,

? : OEX(V )⊗OX(V ) OEX(V )→ OEX(V )

isOX(V )-linear, and this presheaf morphism induces a sheaf morphism ? : OEX⊗OXOEX → OEX .
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7.3.4 Di�erential operators with coe�cients in a D-algebra

Let X be a smooth scheme and let A ∈ qcCAlg(DX) with multiplication ? (let us recall

that DX is generated by the sheaf OX of functions and the sheaf ΘX of vector �elds). We

denote the action on a ∈ A by f ∈ OX (resp., θ ∈ ΘX) by f · a (resp., ∇θ a). An element

f ∈ OX is viewed as element in A via the identi�cation f ' f · 1A . Hence,

f · a = f · (1A ? a) = (f · 1A) ? a ' f ? a . (152)

The ring A[DX ] of di�erential operators with coe�cients in A is the DX -module

A[DX ] = A⊗OX DX

endowed with the associative unital R-algebra structure • de�ned, for a, a′ ∈ A, θ ∈ ΘX , and

D ∈ DX , by
(a⊗ 1O) • (a′ ⊗D) = (a ? a′)⊗D (153)

and

(1A ⊗ θ) • (a′ ⊗D) = (∇θ a′)⊗D + a′ ⊗ (θ ◦D) . (154)

This multiplication is canonically extended to a �rst factor of the type

a⊗ (f ◦ θ ◦ θ′) = ((a ? f)⊗ 1O) • (1A ⊗ θ) • (1A ⊗ θ′) .

It is straightforwardly checked that the usual relations like, e.g., θ ◦ θ′ = θ′ ◦ θ+ [θ, θ′], do not

lead to any contradiction. Moreover, the embedding

A 3 a 7→ a⊗ 1O ∈ A[DX ]

is an associative algebra morphism (i.e., A is a subalgebra of A[DX ]), whereas the embedding

ΘX 3 θ 7→ 1A ⊗ θ ∈ A[DX ]

is a Lie algebra morphism (i.e., ΘX is a Lie subalgebra of A[DX ]). These inclusions satisfy

θ • a− a • θ = ∇θ a

and f • θ = f ◦ θ, and extend to an associative algebra morphism

DX 3 D 7→ 1A ⊗D ∈ A[DX ] .

Consider now an algebra A ∈ qcCAlg(DX), i.e., a commutative monoid in the symmetric

monoidal category (qcMod(DX),⊗OX ,OX). In the following, it is understood that all modules

are left modules. An A-module in the category qcMod(DX) is an objectM ∈ qcMod(DX)

together with an A-action, i.e., a DX -linear map µ : A ⊗M → M that satis�es the usual

action conditions. Of course, DX -linearity is equivalent to OX - and ΘX -linearity. Let m ∈M
and set a / m := µ(a⊗m). Since

f · (a⊗m) = (f · a)⊗m = a⊗ (f ·m)
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( resp.,

∇θ(a⊗m) = (∇θ a)⊗m+ a⊗ (∇θm) ),

OX -linearity (resp., ΘX -linearity) of µ means that

f · (a / m) = (f · a) / m = a / (f ·m) (155)

( resp.,

∇θ(a / m) = (∇θ a) / m+ a / (∇θm) ). (156)

In view of (152), Condition (155) means exactly that

f ·m = f / m . (157)

Remark 9. In the following, it will be understood that OX ⊂ A and that the OX-action on

A (resp., onM) coincides with the A-action.

The compatibility between the A- and DX -actions of an A-module in the category of DX -
modules then reduces to the condition (156) requiring that vector �elds act on / as derivations.

The next result can be found for instance in [BD04].

An A-module in the category qcMod(DX) is the same as an A[DX ]-module that is quasi-

coherent as OX-module.

Indeed, an A[DX ]-action � onM provides an action a / m ' (a ⊗ 1O) �m and an action

D .m ' (1A ⊗D) �m; conversely, an A-action / and a DX -action . onM allow to de�ne an

action

(a⊗D) �m = ((a⊗ 1O) • (1A ⊗D)) �m ' (a •D) �m = a / (D .m) . (158)

More precisely, assume for instance that we are given an A-module in qcMod(DX), and de�ne

� from / and . as indicated in (158). In view of (155), this action is well-de�ned on A[DX ] =

A⊗OX DX , and in view of (156), we get, when taking (154) and (158) into account,

((1A ⊗ θ) • (a⊗ 1O)) �m = (1A ⊗ θ) � ((a⊗ 1O) �m) .

The remaining veri�cations are left to the reader.

Let now M,N be two A[DX ]-modules that are quasi-coherent as OX -modules, i.e., two

A-modules in qcMod(DX). A morphism f :M→N is just an A- and DX -linear map. Hence,

Proposition 11. Let X be a smooth scheme and let A ∈ qcCAlg(DX). The category

qcMod(A[DX ]) of OX-quasi-coherent A[DX ]-modules and the category ModqcMod(DX)(A) of A-
modules in qcMod(DX) coincide.

IfM,N ∈ qcMod(A[DX ]), the A-moduleM⊗A N is a DX -module for the canonical OX -
and ΘX -actions; the A-action is DX -linear, so that M⊗A N ∈ qcMod(A[DX ]). In fact, the

category (qcMod(A[DX ]),⊗A,A) is symmetric monoidal.



On four Koszul-Tate resolutions 60

7.3.5 DG algebras over di�erential operators with coe�cients in a D-algebra

A commutative monoid A in (qcMod(A[DX ]),⊗A,A) is a (quasi-coherent associative unital

commutative) A[DX ]-algebra. More precisely, just as a DX -algebra is an OX -algebra and a

DX -module such that vector �elds ΘX act as derivations, an A[DX ]-algebra is an (associative

unital commutative) A-algebra and an A[DX ]-module A ∈ qcMod(A[DX ]) such that vector

�elds ΘX act as derivations. In other words, an A[DX ]-algebra is an A-algebra (say with

A-action / and multiplication ∗) and a DX -module A ∈ qcMod(DX) such that vector �elds act

as derivations on / and on ∗. Similarly,

De�nition 6. A di�erential non-negatively graded A[DX ]-algebra is a di�erential

graded commutative A-algebra, as well as a di�erential graded DX-module A• ∈ DG+qcMod(DX),

such that vector �elds act as derivations on the A-action on A• and on the multiplication of

A• . A morphism of DG A[DX ]-algebras is a morphism of DG DX-modules that is A-linear and
respects the multiplications and the units. The category of DG A[DX ]-algebras and morphisms

between them will be denoted by DG+qcCAlg(A[DX ]) .

In other words, a DG A[DX ]-algebra is a DG A-algebra, as well as a DG DX -algebra, such
that the A-action and the DX -action are compatible in the sense that vector �elds ΘX ⊂ DX
act on the A-action / as derivations.

Example 1. Let A be, as above, a DX -algebra. Any DG DX -algebra morphism f : A → B•
allows to endow B• with a DG A[DX ]-algebra structure, i.e., to view B• as an object B• ∈
DG+qcCAlg(A[DX ]). Indeed, it su�ces to set

a / b := f(a) ?B b ,

with self-explaining notation. Veri�cations are straightforward (see also Remark 9). In partic-

ular, A can be interpreted as DG A[DX ]-algebra with A-action / given by the A-multiplication
?A .
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