
A Model-driven Approach to Representing and Checking
RBAC Contextual Policies

Ameni Ben Fadhel, Domenico Bianculli, Lionel Briand Benjamin Hourte
SnT Centre - University of Luxembourg, Luxembourg HITEC Luxembourg

{ameni.benfadhel,domenico.bianculli,lionel.briand}@uni.lu benjamin.hourte@hitec.lu

ABSTRACT
Among the various types of Role-based access control (RBAC)
policies proposed in the literature, contextual policies take
into account the user’s location and the time at which she re-
quests an access. The precise characterization of the context
in such policies and the definition of an access decision pro-
cedure for them are non-trivial tasks, since they have to take
into account the various facets of the temporal and spatial
expressions occurring in these policies. Existing approaches
for modeling contextual policies do not support all the var-
ious spatio-temporal concepts and often do not provide an
access decision procedure.

In this paper, we propose a model-driven approach to rep-
resenting and checking RBAC contextual policies. We intro-
duce GemRBAC+CTX, an extension of a generalized con-
ceptual model for RBAC, which contains all the concepts re-
quired to model contextual policies. We formalize these poli-
cies as constraints, using the Object Constraint Language
(OCL), on the GemRBAC+CTX model, as a way to opera-
tionalize the access decision for user’s requests using model-
driven technologies. We show the application of GemR-
BAC+CTX to model the RBAC contextual policies of an
application developed by HITEC Luxembourg, a provider
of situational-aware information management systems for
emergency scenarios. The use of GemRBAC+CTX has al-
lowed the engineers of HITEC to define several new types of
contextual policies, with a fine-grained, precise description
of contexts. The preliminary experimental results show the
feasibility of applying our model-driven approach for making
access decisions in real systems.

1. INTRODUCTION
Several types of Role-based access control (RBAC) poli-

cies1 have been proposed in the literature, together with the
corresponding conceptual models that support them (see,

1RBAC policies are also referred to as “(authorization) con-
straints”. In this paper we will use the word “policies” to
avoid the confusion with “(OCL) constraints”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 9–11, 2016, New Orleans, LA, USA.
© 2016 ACM. ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857709

for example, the recent taxonomy in [5]). In this paper we
focus on contextual policies. A contextual policy restricts
a user to perform an action depending on her context, e.g.,
her location and/or the time at which the action should hap-
pen. For example, a policy that refers to a temporal context
(also called temporal policy) can be expressed in English as
“assign role program chair to user AP from March 4, 2015
to March 11, 2016”. Similarly, a policy that refers to a spa-
tial context (also called spatial policy) can be expressed as
“assign role general chair to user RS if he is located in San
Antonio, TX”.

Contextual policies play a fundamental role in defining the
security level of a system in different types of application do-
mains. Consider, for example, the case of proximity-based
payment systems, in which a user can access her credit card
details stored on a mobile device only in proximity of a com-
patible point-of-sale. Another example is represented by en-
terprise policies that restrict the hours in which an employee
can connect to the corporate network when working from
home. Finally, we remark that this type of policies is vital
in the domain of disaster relief intervention, where HITEC
Luxembourg (the partner for the research project in which
this work has been carried out) is a provider of situational-
aware information management systems for emergency sce-
narios. In such systems, restricting access to resources (e.g.,
satellite photos, sensors data) based on the user context is
an essential and critical requirement.

Precisely characterizing the context in a contextual pol-
icy is non-trivial. For example, temporal policies can refer
to individual time instants (e.g., a specific date and/or time)
or to time intervals. They can also contain periodic expres-
sions (e.g., “every 3 months”) or complex expressions like
“in February, from the second Monday to third Friday, from
10:00 to 12:00”. In the case of spatial policies, the context
can be expressed, for instance, using a distance and a di-
rection with respect to another location (e.g., “6 miles West
from coordinates 48.86N, 2.29E”) or just with a qualitative
attribute (e.g., “100 meters outside the White House”). All
these facets have to be considered when defining an RBAC
model that supports contextual policies. On a par with the
problem of expressing and modeling these policies, there is
also the issue of how to make an access decision (i.e., grant-
ing/denying access requests) based on such policies.

Several RBAC models have been proposed in the litera-
ture to support contextual policies. However, none of them
fully support all the facets of these policies. Moreover, only
some of them provide algorithms to evaluate contextual poli-
cies in order to make an access decision. Furthermore, these

User Role Permission

Object

Operation

Delegation

RBACContext

TemporalContext SpatialContext
Session

revoking
User
0..1

delegate
User
1 delegator

User
1

delegatedPermissions
1..*

roleHierarchy

delegated
Delegation

0..*
delegated

Role
1

RBACUtility

0..*1..*

receivedDelegation 0..*
0..*

0..*

1..* 1..*
user-role
assignment

user-role
delegation

role-
permission
assignment1..* 1..*

role-activation
role-enabling

0..*

0..*

0..*1

userContext

role
Context

0..*

permissionContext 1..*
1..*

1..*
1

0..*

delegate
Role
1

1 0..*

0..*

0..*

0..*

0..* 0..*

Figure 1: A simplified version of the GemRBAC conceptual model.

models are based on the original RBAC model [23] and do
not support advanced non-contextual policies like binding of
duty, delegation, revocation.

Our goal is to define a conceptual model significantly more
expressive than the state of the art, on top of which we
can operationalize the access decision procedure. A more
expressive and operational model critically determines its
applicability in real scenarios. To achieve this goal, we follow
a model-driven approach, based on UML and the Object
Constraint Language (OCL) [17].

To represent RBAC contextual policies, we present Gem-
RBAC+CTX, a conceptual model—expressed in UML—
that contains all the conceptual entities required to accu-
rately specify temporal and spatial contexts in RBAC poli-
cies. GemRBAC+CTX is defined as an extension of Gem-
RBAC [5], our previous proposal for a generalized frame-
work for defining RBAC policies. Since GemRBAC+CTX
is an extension of GemRBAC, it inherits all its benefits,
in particular the support for all types of (non-contextual)
RBAC policies surveyed in [5]. In this way, GemRBAC+CTX
supports both complex contextual policies and all types of
non-contextual policies (including binding of duty, delega-
tion, revocation).

Regarding the operationalization of the access decision
procedure for contextual policies, our model-driven approach
is based on the formalization of contextual policies as OCL
constraints on the GemRBAC+CTX model. The problem
of making an access decision for contextual policies can be
thus reduced to checking the corresponding OCL constraints
on an instance of the GemRBAC+CTX model. We use
OCL since it is the common, standardized language for ex-
pressing constraints in model-driven engineering and it is
well-supported by industry-strength tools. The proposed
OCL-based formalization can facilitate the precise under-
standing of contextual policies by practitioners and paves
the way for the practical verification of these policies, based
on UML modeling tools and OCL checkers (such as Eclipse
OCL [11]).

Furthermore, we report on the application of the proposed
approach to modeling the RBAC contextual policies of a real
system. The use of GemRBAC+CTX has allowed the engi-
neers of HITEC to define 19 new types of contextual policies,
with a fine-grained, precise description of contexts. Based
on the results of the three policies in the case study section,
the time taken by our model-driven approach for making
an access decision ranges from few milliseconds to less than
three seconds per policy, confirming its suitability for the
practical operationalization of access decision procedures.

To summarize, the specific contributions of the paper are:
1) the GemRBAC+CTX conceptual model, to express con-
textual RBAC policies; 2) the templates for the formaliza-
tion of OCL constraints over the GemRBAC+CTX model,
as a way to operationalize the access decision of contextual
RBAC policies; 3) the application of the GemRBAC+CTX
model for the specification of real RBAC policies in an in-
dustrial setting with high contextual requirements.

The paper is structured as follows. Section 2 briefly illus-
trates the GemRBAC model. Section 3 shows how to model
contextual policies with GemRBAC+CTX. Section 4 illus-
trates the templates for the formalization of contextual poli-
cies as OCL constraints on the GemRBAC+CTX model.
Section 5 reports on an industrial application of the pro-
posed approach. Section 6 discusses related work and Sec-
tion 7 concludes the paper.

2. BACKGROUND: THE GEMRBAC MODEL
The GemRBAC model, previously introduced in [5], is a

richer and more expressive extension of the original RBAC
model [23]. GemRBAC has been designed after surveying
the various types of RBAC policies (and the corresponding
model extensions) proposed in the literature. We defined
GemRBAC with the goal of filling the gap among these ex-
tensions by proposing a generalized model that includes all
the conceptual entities required to define all the types of
constraints classified in the survey. In the rest of this sec-
tion we describe the main entities of the GemRBAC model
providing some background information on RBAC. A sim-
plified version of the GemRBAC model is shown in the class
diagram of Figure 1; we refer the reader to [5] for a complete
description.

At the basis of GemRBAC there are the concepts of User,
Session, Role and Permission. A Permission is represented
as a set of Operations on an Object. Permissions are as-
signed to Roles and Roles are assigned to Users; these assign-
ments are captured with associations between the respective
classes. A Session maps a User to a subset of the Roles that
have been assigned to her; this mapping activates the role(s)
for a certain user. A role that can be activated is called en-
abled. Role enabling and activation relations are modeled
as associations between the Role and Session classes. A
permission is enabled if the user is allowed to perform its
associated operations. By analogy to role assignment and
enabling, we model the enabled permissions of a given role
with the enabledPermissions association between the Role

and Permission classes. A user can delegate her role or a
subset of its permissions to another user via a Delegation.

[1..*]
timeexpression

[0..1]
end

-Monday
-Tuesday
-Wednesday
-Thursday
-Friday
-Saturday
-Sunday

DayType
<<enumeration>>

TemporalContext

TimeExpression
+hasDuration():
Boolean

AbsoluteTERelativeTE

+equalTo(t:
TimePoint): Boolean
+isBefore(t:
TimePoint): Boolean
+isAfter(t:
TimePoint): Boolean
+isContained(t:
TimeInterval):
Boolean

-second: Integer
-minute: Integer
-hour: Integer
-day: Integer
-month: Integer
-year: Integer

TimePoint TimeInterval

1
start

+greaterThan(d:
ActivationDuration):
Boolean

-value: Integer
-isContinuous: Boolean

ActivationDuration
+checkHours(u: RBACUtility):
Boolean
+checkDays(u: RBACUtility):
Boolean
+checkDaysRank(u: RBACUtility):
Boolean

ComposedRelativeTE
-period:
Integer
-timeUnit:
TimeUnitType

PeriodicTime

RelativeTime
Interval

+equalTo(t: RelativeTimePoint): Boolean
+isBefore(t: RelativeTimePoint): Boolean
+isAfter(t: RelativeTimePoint): Boolean
+isContained(t: RelativeTimeInterval): Boolean

-index: Integer
RelativeTimePoint

-hour: Integer
-min: Integer

HourOfDay
-day: DayType

DayOfWeek
-day: Integer
-month: Integer

DayOfMonth
-month: Integer

MonthOfYear

-second
-minute
-hour
-day
-month
-year

TimeUnitType
<<enumeration>>

[0..*]
absolute

[0..*]
relative

1
start
1
end

overlay

nextStart

Figure 2: Temporal context in GemRBAC+CTX.

For a Delegation we keep track of the delegator, the delegate
(the user that receives the delegation), their roles at the time
of the delegation, and the delegated role, with associations
between classes Delegation and User, and classes Delegation

and Role. A delegation is put to an end through a revocation
action, which can be explicitly performed by a user or au-
tomatically triggered depending on the context. Contextual
information is modeled with the class RBACContext and its
subclasses TemporalContext and SpatialContext. A tempo-
ral (respectively, spatial) context models the time (location)
on which a given role, or permission, can be enabled/as-
signed; a role or permission can be enabled/assigned if its
contextual information matches the user’s one.

3. MODELING CONTEXTUAL POLICIES
WITH GEMRBAC+CTX

The GemRBAC model has limited support for contex-
tual policies. More specifically: (1) the context assigned to
a role (or a permission) restricts either its assignment or its
enabling but not both; (2) temporal and spatial informa-
tion are represented in a symbolic way, without an explicit
characterization of the actual context. Limitation (1) im-
plies that two policies such as “assign role r to user u in
context ctx1” and “enable role r in context ctx2”, which re-
spectively restricts the assignment and the enabling of the
same role r, cannot be defined on the same model instance.
As for limitation (2), the GemRBAC model cannot be used
to model explicitly the specific aspects of temporal and spa-
tial context, because GemRBAC represents contexts in a
symbolic way (i.e., with identifiers). For example, from the
point of view of temporal context, one cannot explicitly re-
fer to time instants (e.g., “(on) January 21, 2014 at 8:00”)
or periodic expressions (e.g., “every Monday, from 9.00 to
11.00”). From the point of view of spatial context, in Gem-
RBAC, for instance, one cannot define a geo-fence, i.e., a
precise geometric characterization of a context (e.g., “within
a radius of 20 miles from the main building”) or a relative
location (e.g., “100 meters outside the White House”).

To overcome these limitations, we introduce the GemR-
BAC+CTX model, an extension of the GemRBAC model
that supports the definition of richer contextual policies. To
address limitation (1), in the GemRBAC+CTX model we

separate contextual assignment and enabling, both for role
and permission. More explicitly, the context in which a role
should be assigned (as prescribed by a contextual policy)
is modeled with the roleContextAssignment association be-
tween the RBACContext and Role classes; similarly, the con-
text in which a role should be enabled (as prescribed by a
contextual policy) is modeled with the roleContextEnabling

association between these two classes. The context for per-
mission enabling and assignment is modeled in a similar way
with the permissionContextAssignment and permissionContext-

Enabling associations between the RBACContext and Permission

classes. To tackle limitation (2), we enrich the GemRBAC
model with new entities that support the specification of
more detailed temporal and spatial context in policies. We
illustrate these new entities in the rest of this section.

3.1 Modeling Temporal Context
We support richer temporal context specification in the

GemRBAC+CTX model by introducing a new class hier-
archy under class TemporalContext of the GemRBAC model.
The new classes and their associations are shown in the class
diagram in Figure 2.

We extend class TemporalContext by introducing (with a
composition relation) the concept of TimeExpression. A time
expression is composed of absolute and/or relative time ex-
pressions; these concepts are modeled as classes AbsoluteTE

and RelativeTE.
An absolute time expression refers to a concrete point or

interval in the timeline. An absolute time point, modeled
with the class TimePoint, corresponds to a given time instant,
e.g., “January 21, 2014 at 8:00:00”. Hereafter, to improve
the readability we will omit the hours from a time point
when we refer to midnight. A time interval, modeled with
class TimeInterval, corresponds to a segment in the timeline;
a time interval can be either of type bounded or unbounded.
A bounded time interval corresponds, for example, to the ex-
pression “from January 21, 2014 to April 25, 2015”. This
interval has a start TimePoint (January 21, 2014) and an end
TimePoint (April 25, 2015). An unbounded interval corre-
sponds to the expression “starting from October 15, 2013”;
it has only the start TimePoint (October 15, 2013) and is
unbounded to the right.

Spatial
Context

+contains(l: Location): Boolean
+overlaps(l: Location): Boolean
+computeRelative(r: RelativeLocation): Location

Location
[0..1]

location

LogicalLocation PhysicalLocation

Polygon
-radius: Double

Circle
-long: Double
-lat: Double
-alt: Double

Point

Polyline [3..*]
segment

1 start

1 end

center

-distance: Double
-unit: UnitType

RelativeLocationlocation
[1..*]

relative
location
[0..1]

-angle: Double
CardinalDirection

-direction: QualitativeType
QualitativeDirection

RelativeDirection

loc[0..1]
dir 1

-inside
-outside

QualitativeType
<<enumeration>>

-label: String

-metres
-kilometres
-miles

UnitType
<<enumeration>>

Figure 3: Spatial context in GemRBAC+CTX.

A relative time expression is an expression that cannot be
mapped directly to a point or an interval in the timeline.
For example, the common expression “(at) 9 a.m.” by it-
self cannot be directly mapped to a point in the timeline
unless another expression, e.g., “(on) May 2, 2015” is speci-
fied. Class RelativeTE has two subclasses, RelativeTime and
PeriodicTime. By analogy with the class AbsoluteTE, the
class RelativeTime has two subclasses, RelativeTimePoint

and RelativeTimeInterval. Class RelativeTimePoint has four
subclasses: HourOfDay refers to a specific hour of the day, e.g.,
“(at) 9 a.m.”; DayOfWeek corresponds to a given day of the
week, e.g.,“(on) Monday” refers to any Monday; DayOfMonth
refers to a day in a month such as“(on) April, 5”; MonthOfYear
refers to a given month, e.g., “(in) April”. Unlike class
TimeInterval, class RelativeTimeInterval always refers to a
bounded time interval, whose start and end points have both
the same type (a subclass of RelativeTimePoint).

Class ComposedRelativeTE can be recursively composed with
itself through the association overlay, to represent compos-
ite time expressions. These composite expressions are re-
quired to have composite elements of different granularity.
We enforce this requirement by defining a structural con-
straint on the model. Informally, a MonthOfYear can over-
lay either a DayOfWeek or an HourOfDay; a DayOfWeek or a
DayOfMonth can overlay only an HourOfDay. The same con-
straint applies if any subclass c of RelativeTimePoint men-
tioned in it is replaced with a RelativeTimeInterval with
bounds of type c. An example of an expression that can be
modeled by composing different instances of ComposedRela-

tiveTE by means of the overlay association is “in February,
from the second Monday to third Friday, from 10:00:00 to
12:00:00”. This expression is modeled by an instance of
MonthOfYear (February) overlaid with an instance of Relative-
TimeInterval, with start- and end-point of type DayOfWeek

(from Monday to Friday), overlaid with an instance of Rela-
tiveTimeInterval, with start- and end-point of type HourOfDay

(from 10:00:00 to 12:00:00). The indexes that refer to a spe-
cific occurrence of Monday and Friday are modeled with the
index attribute, which is defined only for class DayOfWeek.

Class RelativeTE can also represent periodicity in tem-
poral expressions such as “every 3 months”. The periodic-
ity is modeled with its subclass PeriodicTime. Its attribute
period is a numeric value associated with a time unit (e.g.,
day, hour, month) modeled with the attribute timeUnit. A
PeriodicTime is always part of a TimeExpression that has
exactly one AbsoluteTE; the latter defines either the start-
ing time of the period (as in “every 3 months, starting from
April 5, 2015”) or the time interval in which it applies (as in

“every 3 months, from April 5, 2015 to June 8, 2017”). We
assume that each PeriodicTime has a nextStart association
with a TimePoint corresponding to the beginning of the next
period.

In the context of RBAC, a temporal context can have a
time-based policy that represents a bound for the sum of
activation durations of a given role (or permission). For in-
stance, a security engineer could enable a certain role from
Monday to Friday but allow users to activate it only for
two hours over the five days. We keep track of this dura-
tion with class ActivationDuration, which is associated with
classes RelativeTE and AbsoluteTE. Moreover, this duration
can be cumulative (i.e., related to multiple sessions) or non-
cumulative (i.e., related to the current session); this concept
is represented by the boolean attribute isContinuous of the
class ActivationDuration.

3.2 Modeling Spatial Context
Similarly to what we have done for temporal context, we

support richer spatial context specification in the GemR-
BAC+CTX model by introducing a new class hierarchy un-
der class SpatialContext of the GemRBAC model. The new
classes and their associations are shown in the class diagram
in Figure 3.

We extend class SpatialContext by introducing (with a
composition relation) the concept of Location. At a very
high-level, a location represents a specific bounded area or
point in space. A location can be either physical or logical;
these concepts are modeled as classes PhysicalLocation and
LogicalLocation.

A physical location identifies a precise position in a geo-
metric space. We consider three possible ways to express
a physical location and we model them as subclasses of
PhysicalLocation. Class Point represents a geographic co-
ordinate with latitude, longitude and altitude. Class Circle

represents a circular area, characterized by a radius and
a center. Class Polygon is an area enclosed by at least
three segments, which are modeled with class Polyline; each
Polyline is a segment composed of a start and an end Point.
Notice that a Polygon (as a set of Polylines) can model areas
with complex shapes, such as the border of a city.

A logical location is an abstraction of one or many phys-
ical locations. For instance, the logical location “offices on
the second floor” refers to the set of physical locations cor-
responding to the actual office rooms in the second floor
of a building. A logical location can also be a convenient
shorthand to identify a geographical landmark without pro-
viding its coordinates. The concept of logical location is

modeled with class LogicalLocation. We assume that there
is a geocoding function that maps each LogicalLocation to
the corresponding PhysicalLocation(s). A location can be
defined relatively to another location by providing a direc-
tion and optionally a distance. We model these concepts
with class RelativeLocation, which is associated with class
RelativeDirection, and has a distance attribute. The lat-
ter has two subclasses, CardinalDirection and Qualitative-

Direction. Class CardinalDirection represents the degrees
of rotation based on cardinal points on a compass. An exam-
ple of a location using a relative location denoted with a car-
dinal direction is “6 miles West from the Tour Eiffel”. This
expression contains a distance (6 miles), a cardinal direction
(Southwest, i.e., 225°) and a logical location (Tour Eiffel).
Class QualitativeDirection represents a relative proximity
to a location, such as “inside” or “outside”. An example of a
location using a relative location denoted with a qualitative
direction is “100 meters outside the White House”. This
expression contains a distance (100 meters), a qualitative
direction (outside) and a logical location (White House).

Class Location provides some operations that check for
topological relations between locations: operation contains

checks if a location is a part of another one; operation overlaps

checks if two locations share a common area.
In the GemRBAC+CTX model, we model the user’s po-

sition with an association between classes User and Spatial-

Context. This association provides more precise information
than the association between User and RBACContext that was
included in the GemRBAC model (and that is not present
in the GemRBAC+CTX model anymore).

4. CHECKING CONTEXTUAL POLICIES
WITH OCL

The GemRBAC+CTX model can be used to represent
the state of the system from the point of view of RBAC.
As explained in Section 3, the context in which a Role (or a
Permission) can be enabled or assigned (as prescribed by a
contextual policy), is captured on the UML model. RBAC
contextual policies can then be checked by verifying OCL
constraints on the GemRBAC+CTX model. In this way,
an access decision (e.g., allowing a user to activate a role)
can be performed by checking whether an instance of the
GemRBAC+CTX satisfies the OCL constraints associated
with it. In the rest of this section we provide several tem-
plates that can be used to formalize contextual RBAC poli-
cies for role enabling or assignment as OCL constraints on
the GemRBAC+CTX model. These RBAC policies are
based on real policies defined in our industrial case study.

In the definition of the OCL constraints, we make some
working assumptions. We assume that each snapshot con-
tains the time at which it was taken (modeled as an as-
sociation between classes RBACUtility and TimePoint) and
the current day of week (modeled as an association be-
tween classes RBACUtility and DayOfWeek). This assumption
can be guaranteed by applying a timestamp to each snap-
shot. We also assume that the position of the user is always
known, by means of a GPS; this is very reasonable nowadays.
Lastly, we assume that policies are not conflicting with each
other; e.g., we avoid the case of having two policies, one en-
abling (assigning) and another one disabling (unassigning)
the same role/permision in the same context; consistency

check of RBAC policies (which guarantees conflict-free poli-
cies) is outside the scope of the paper.

All OCL constraints have been made publicly available,
together with an Ecore version of the GemRBAC+CTX
model, at
https://github.com/AmeniBF/GemRBAC-CTX-model.git.

4.1 Policies with temporal context
A policy on role enabling with an absolute time expression

restricts the time interval at which a role can be enabled, as
in “role r1 is enabled from January 21, 2014 to April 25,
2015”. This policy can be checked by verifying the following
OCL invariant of the class Session:

1 context Session inv AbsoluteBTIRoleEnab:

2 let u : RBACUtility = RBACUtility.allInstances(),

3 r : Role = Role.allInstances() ->

4 select(r : Role|r.idRole = ’r1’),

5 temporalContext: Set(RBACContext) =

6 r.roleContextEnabling -> select(c |

7 c.oclIsTypeOf(TemporalContext)),

8 timeE: Set(AbsoluteTE) = temporalContext.

9 oclAsType(TemporalContext).timeexpression.

10 absolute ->flatten()->asSet(),

11 timeI: Set(AbsoluteTE) = timeE -> select(e |

12 e.oclIsTypeOf(TimeInterval) and

13 e.oclAsType(TimeInterval).end->notEmpty())

14 in if timeI.oclAsType(TimeInterval) ->

15 exists(i| u.getCurrentTime().isContained(i)) then

16 self.enabledRoles -> includes(r)

17 or self.activeRoles -> includes(r)

18 endif

In this OCL expression, we first select the instance cor-
responding to role r1 (lines 3–4). Then, we retrieve the
list temporalContext of temporal contexts in which the role
should be enabled (lines 5–7) and compute, over the ele-
ments of this list, the list timeE of absolute expressions as-
signed to them (lines 8–10). In this example, since there is
only one TemporalContext object containing one AbsoluteTE

object, the timeE list will include only one instance of TimeIn-
terval whose start and end TimePoints corresponds to “Jan-
uary 21, 2014” and “April 25, 2015”. Since the enabling tem-
poral context in the policy is expressed as a bounded time
interval, we have to select, among the elements of timeE,
the list timeI of expressions in the form of a time interval
(lines 11–13) with a bounded end point; this last condition
is checked with the expression at line 13. Afterwards, we
check if the time when the snapshot was taken—obtained by
calling the operation getCurrentTime of class RBACUtiliy—is
contained in one of the time intervals in list timeI (lines 14–
15). If this is the case, we check whether role r1 is in the list
of enabled or active role of the current session (lines 16–17).

A policy on permission assignment with a relative time
expression restricts the time at which a permission can be
assigned to a role. As explained in Section 3, we support
different forms of relative time expression. For the pur-
pose of illustration, we consider a relative time expression
structured as a DayOfWeek (or a RelativeTimeInterval with
bounds of type DayOfWeek), which, subsequently, can over-
lay an Hour (or a RelativeTimeInterval with bounds of type
Hour). An example of a policy with a relative time expression
of this form is “assign role r1 to user u1 only from Wednes-
day to Friday, from 10:00 to 14:00”. Such a policy can be

checked by verifying the following OCL invariant of the class
Permission:

1 context Permission inv DayOfWeekHourPermAssign:

2 if self.idPermission = ’p1’ then

3 let u: RBACUtility = RBACUtility.allInstances(),

4 day: RelativeTimePoint = u.getDayOfWeek(),

5 r: Role = Role.allInstances() ->

6 select(r : Role | r.idRole = ’r1’),

7 temporalContext: Set(RBACContext) = self.

8 permissionContextAssignment -> select(c |

9 c.oclIsTypeOf(TemporalContext)),

10 timeE: Set (ComposedRelativeTE) = temporalContext.

11 oclAsType(TemporalContext).timeexpression.

12 relative.oclAsType(ComposedRelativeTE)

13 -> flatten() -> asSet(),

14 days: Set (ComposedRelativeTE) = timeE ->select(t|

15 (t.oclIsTypeOf(RelativeTimeInterval) and

16 t.oclAsType(RelativeTimeInterval).start.

17 oclIsTypeOf(DayOfWeek) and day.isContained

18 (t.oclAsType(RelativeTimeInterval)))

19 or (t.oclIsTypeOf(DayOfWeek) and

20 day.equalTo(t.oclAsType(DayOfWeek))))

21 in if days -> exists (t| t.checkHours(u)) then

22 self.roles -> includes (r)

23 else

24 self.roles -> excludes (r)

25 endif

26 endif

In this OCL expression if the current permission is p1, we
select the day corresponding to the day of week at which the
snapshot was taken, by calling the getDayOfWeek operation
of the class RBACUtility (lines 3–4). Then, we select the
instance corresponding to role r1 (lines 5–6). We retrieve
the list of temporal contexts temporalContext in which the
permission should be assigned to role r1 (lines 7–9) and com-
pute, over the elements of this list, the list timeE of relative
time expressions assigned to them (lines 10–13). Based on
the type of policy described above, we have to select, among
the elements of timeE, the list days of relative time expres-
sions having a ComposedRelativeTE of type DayOfWeek or of
type RelativeTimeInterval with bounds of type DayOfWeek

(lines 14–20). While selecting the time expressions in this
list, we check whether the day at which the snapshot was
taken is contained in the selected TimeExpression. To do
so, we check separately for the DayOfWeek, by calling oper-
ation equalTo of class RelativeTimePoint (line 20), and for
the RelativeTimeInterval by calling operation isContained

of class RelativeTimePoint (line 17). In this specific exam-
ple, list days will include a TimeExpression that contains
two ComposedRelativeTE. These objects are: a RelativeTime-

Interval (whose start and end RelativeTimePoints corre-
spond to “Wednesday” and “Friday”); and a RelativeTime-

Interval (whose start and end RelativeTimePoints corre-
spond to “10:00” and “14:00”). We remark that the first
object overlays the second. We check whether the time at
which the snapshot was taken is contained in one of the
TimeExpressions in days. To do so, we check the hours over-
laid by the day(s) of the week by calling operation checkHours

of class ComposedRelativeTE (line 21). If the check succeeds,
we require role r1 to belong to the list of roles of permission
p1 (line 22). Otherwise, we require the role not to be in this
list (line 24). Because of space limitations, in the remaining

of this section we focus only on the specification of policies
at the role level.

A policy on role assignment with a relative time expression
containing an index of a specific DayOfWeek restricts the day
in which a given user can acquire a given role, as in “assign
role r1 to user u1 on the 2nd Monday of June”. This policy
can be checked by verifying an OCL invariant of the class
Role:

1 context Role inv indexRoleAssign:

2 let u: RBACUtility = RBACUtility.allInstances(),

3 month: ecore::EInt = u.getCurrentTime().month,

4 day: RelativeTimePoint = u.getDayOfWeek(),

5 u1: User = User.allInstances() ->

6 select(m : User | m.idUser = ’u1’),

7 temporalContext: Set(RBACContext) = self.

8 roleContextAssignment -> select(c |

9 c.oclIsTypeOf(TemporalContext)),

10 timeE: Set(ComposedRelativeTE) = temporalContext.

11 oclAsType(TemporalContext).timeexpression.

12 relative.oclAsType(ComposedRelativeTE)

13 -> flatten() -> asSet()

14 in self.idRole = ’r1’

15 and self.users -> includes (u1) implies

16 timeE -> exists(t | t.oclIsTypeOf(MonthOfYear)

17 and t.oclAsType(MonthOfYear).month = month

18 and t.checkDayIndex(u))

In this invariant we first select the month and day of week
at which the snapshot was taken by calling the getCurrentTime

and getDayOfWeek operations of class RBACUtility (lines 3–
4). Then, we select the instance corresponding to user u1

(line 6). We retrieve the list temporalContext of temporal
contexts in which the role should be assigned (lines 7–9)
and compute, over the elements of this list, the list timeE of
time expressions assigned to them (lines 10–13). The impli-
cation at lines 14–18 states that if the current role is r1 and
user u1 is a member of this role, the temporal context for
role assignment should match the current DayOfWeek; this
condition is verified by calling operation checkDayIndex of
class ComposedRelativeTE.

A policy on role assignment with time expression contain-
ing a periodic expression restricts the time at which a role
can be assigned to a user as in“user u1 acquires role r1 every
5 days starting from July 10, 2014 at 16:00”. This policy can
be checked in OCL as an invariant of class Role:

1 context Role inv periodicUnboundTIRoleAssign:

2 let u: RBACUtility = RBACUtility.allInstances(),

3 u1: User = User.allInstances() ->

4 select(m : User | m.idUser = ’u1’),

5 temporalContext: Set(RBACContext) =

6 self.roleContextAssignment -> select(c |

7 c.oclIsTypeOf(TemporalContext)),

8 timeE: Set (TimeExpression) =

9 temporalContext.oclAsType(TemporalContext).

10 timeexpression.absolute

11 -> flatten() -> asSet(),

12 absoluteE: Set (TimeExpression) = timeE ->

13 select (t | t.absolute.oclAsType(TimeInterval)

14 ->exists(a| a.start.equalTo(u.getCurrentTime())

15 or a.start.isBefore(u.getCurrentTime()))),

16 periodicE: Set(PeriodicTime)= absoluteE.

17 relative.oclAsType(PeriodicTime)

18 -> flatten() -> asSet()

19 in self.idRole= ’r1’ and self.users->includes(u1)

20 implies periodicE.nextStart->select(a |

21 a.equalTo(u.getCurrentTime()))->notEmpty()

In this invariant, we first select the instance corresponding
to user u1 (lines 3–4). We retrieve the list temporalContext

of temporal contexts in which the role should be assigned
to user u1 (lines 5–7) and compute, over the elements of
this list, the list timeE of time expressions assigned to them
(lines 8–11). In this example, the list timeE will include
a TimeExpression with an unbounded TimeInterval whose
start TimePoint corresponds to “July 10, 2014 at 16:00”.
Then we select among the element of list timeE, the list
(absoluteE) of expressions having an absolute TimeInterval

that contains the TimePoint at which the snapshot was taken
(lines 12–15). We check this containment by comparing
the time at which the snapshot was taken with the start
TimePoint of the unboundedTimeInterval. Afterwards, we
retrieve the list of PeriodicTime objects in each expression
in list absoluteE (lines 16–18). The implication at lines 19–
21 states that if the current role is r1, and user u1 is member
of this role, the time at which the snapshot was taken should
match the starting time (derived from the nextStart associ-
ation) of the next period.

A policy on role enabling with a duration associated with
an absolute time expression restricts the activation of a role
up to a specific duration, as in “enable all roles on April 23,
2015 from 8:00 to 18:00; each role can be active for 3 hours
cumulatively”. This policy can be checked in OCL as an
invariant of class Session:

1 context Session inv DurationAbsoluteBTIRoleEnab:

2 let u : RBACUtility = RBACUtility.allInstances(),

3 rolesA: Set(Role) = self.enabledRoles ->

4 select (r:Role| r.getCurrentAbsoluteTE(u)

5 -> notEmpty() and

6 r.getCurrentAbsoluteTE(u).hasDuration())

7 in rolesA -> forAll(r: Role |

8 r.getCurrentAbsoluteTE(u).duration.

9 greaterThan(u.getCumulativeActiveDuration

10 (r,self.user, r.getCurrentAbsoluteT(u).

11 duration.timeUnit)))

In this OCL constraint, we select a subset (list rolesA) of
the roles enabled in the current session (lines 3–6). This
subset includes the roles whose temporal context for en-
abling contains an absolute time expression that matches
the time at which the snapshot was taken (checked by call-
ing the operation getCurrentAbsoluteTE of the class Role).
For each role in rolesA, this absolute time expression should
be associated with a duration (checked by calling the oper-
ation hasDuration of the class AbsoluteTE). Then, we check
whether the duration of each role in the list is less than
the duration specified in its temporal context for enabling
(lines 7–11). We assume that the duration of the activation
of each role for each user is recorded in a database and made
available through the operation getCumulativeActiveDuration

of class RBACUtility.

4.2 Policies with spatial context
A policy on role assignment with a physical location for-

bids the role assignment when the user is not located in a
physical location belonging to the role spatial context for

assignment, as in “role r1 is assigned to user u1 only if the
latter is in location loc1”. We assume that loc1 is of type
PhysicalLocation. This policy can be checked in OCL as an
invariant of class Role:

1 context Role inv physicalLocationRoleAssign:

2 let u1 : User = User.allInstances() ->

3 select(m: User | m.idUser = ’u1’),

4 spatialContext: Set(RBACContext) = self.

5 roleContextAssignment -> select(c |

6 c.oclIsTypeOf(SpatialContext)),

7 locPh: Set(PhysicalLocation) = spatialContext.

8 oclAsType(SpatialContext).location.

9 oclAsType(PhysicalLocation)->flatten()

10 ->asSet()

11 in if self.idRole = ’r1’ and loc -> exists(l|

12 l.contains(u1.userLocation.location.

13 oclAsType(PhysicalLocation))) then

14 self.users -> includes(u1)

15 else

16 self.users -> excludes(u1)

17 endif

In this OCL expression, we first select the instance corre-
sponding to user u1 (lines 2–3). Then, we retrieve the list
spatialContext of spatial contexts at which the role should
be assigned to user u1 (lines 4–6) and compute, over the
elements of this list, the list locPh of physical locations as-
signed to them (lines 7–10). We check if the current role is
r1 and if a physical location in list locPh matches the user’s
location, by calling the operation contains of class Location.
If this is the case, the list of roles assigned to user u1 should
contain role r1 (lines 11–14). If it is not the case, the role
should not be included in this list (line 16).

A policy on role assignment with a logical location is
checked in a similar way by replacing the instances of Physi-
calLocation with instances of LogicalLocation.

A policy on role assignment with a relative location forbids
the role assignment when the user is not located in a relative
location belonging to the role spatial context for assignment,
as in “enable role r1 only within 3 meters outside location
loc1”. Location loc1 can be either of type PhysicalLocation

or LogicalLocation. This policy is checked in OCL as an
invariant of class Session:

1 context Session inv relativeLocationRoleEnabling:

2 let r1 : Role = Role.allInstances() ->

3 select(r : Role| r.idRole = ’r1’),

4 spatialContext: Set(RBACContext) = self.

5 roleContextEnabling -> select(c |

6 c.oclIsTypeOf(SpatialContext)),

7 loc: Set(Location) = spatialContext.

8 oclAsType(SpatialContext).location

9 ->select(l|l.relativelocation->notEmpty())

10 ->flatten()->asSet(),

11 relativeLoc: Set(Location)= loc -> collect(l|

12 l.computeRelative(l.relativelocation))

13 ->flatten()->asSet()

14 in if relativeLoc -> exists(l|self.user.

15 userLocation.location -> exists(pos|

16 l.contains(pos))) then

17 self.enabledRoles -> includes(r1)

18 or self.activeRoles -> includes(r1)

19 else

20 self.enabledRoles -> excludes(r1)

21 and self.activeRoles -> excludes(r1)

22 endif

In this OCL invariant, we first select the instance corre-
sponding to role r1 (lines 2–3). We retrieve list spatialContext
of spatial contexts at which the role should be enabled (lines 4–
6) and compute, over the locations assigned to each element
in this list, the list loc of all locations associated with a
relative one (lines 7–10). For each location in list loc, we
compute in relativeLoc the location resulting from the call
to operation computeRelative of class Location (lines 11–13).
This operation takes in input RelativeLocation and is ap-
plied to a PhysicalLocation or LogicalLocation, hereafter
called base location. It returns the location resulting from
the application to the base location of the parameters (dis-
tance and direction) of the relative location. The resulting
location is always of type PhysicalLocation. We check if
any of locations in relativeLoc matches the user’s position
(lines 14–16). If it is the case, the role r1 should be en-
abled or active (lines 17–18). Otherwise, the role should be
disabled (lines 20–21).

Closing remarks. In this section we have shown how the
access decision for spatial and temporal RBAC policies de-
fined according to the GemRBAC+CTX model can be re-
duced to the verification of OCL constraints of an instance
of the GemRBAC+CTX model. For space reasons, we have
considered temporal and spatial policies in isolation. Nev-
ertheless, we support also composite context-based policies,
i.e., policies that contain both a temporal and a spatial con-
text. These policies can be checked in OCL by a logical
conjunction of the individual OCL constraints correspond-
ing to the composite spatial and temporal policies. The
OCL formalization presented here is at the core of a model-
driven approach for checking RBAC policies, whose com-
plete description (including technological aspects) is outside
the scope of the paper. For example, we have assumed that
at any time during the execution of the system for which
RBAC policies are defined, we could take a snapshot of the
system state and represent it as an instance of the GemR-
BAC+CTX model. This assumption is based on previous
work of some of the authors on model-driven run-time ver-
ification [10], which shows how a run-time system can be
represented as a “live” instance of a conceptual model, on
which to check OCL constraints.

5. INDUSTRIAL APPLICATION
In this section we report on the application of our ap-

proach based on GemRBAC+CTX for the modeling of a
real application and of its RBAC contextual policies. This
application has been developed by a provider of situational-
aware information management systems for emergency sce-
narios. The application allows different (humanitarian) or-
ganizations to participate to various missions by provid-
ing emergency aid to refugees and casualties. An RBAC
system controls the access to mission resources. Due to
space limitations, we present a small excerpt of the ap-
plication and consider only a subset of the actual RBAC
entities. Moreover, the description has been sanitized for
confidentiality reasons. We assume the system to have two
Users, Joe and Kim; three Roles, agencyAdmin, mission-
Admin and missionMember ; one Permission noBandwidth-
Limit ; one TemporalContext (hereafter referred to with the id

freeTime) that ranges from 00.00 to 06.00 and from 20.00 to
23.59 during weekdays and all-day during the weekend; one
SpatialContext Zone1. The following contextual policies are
defined for the system:

PL1: permission noBandwidthLimit is assigned to role
missionMember only during freeTime. This policy is typi-
cally used to ensure a fair use of the available bandwidth.

PL2: role agencyAdmin is enabled only outside Zone1.
This policy is typically used to ensure that administrative
tasks are performed, for security reasons, outside the area
of the mission.

PL3: role missionAdmin is enabled only inside Zone1.
This policy is typically used for guaranteeing that mission
management is done locally.
The object diagram in Figure 4 depicts a small subset of
the instance of the GemRBAC+CTX model that corre-
sponds to a system state during the mission. Roles agen-
cyAdmin and missionMember are assigned both to Joe and
to Kim. Role missionAdmin is assigned to Joe. According
to policy PL1, the temporal context for assignment of per-
mission noBandwidthLimit is freeTime. It is modeled as
a TimeExpression composed of four RelativeTimeIntervals.
Interval weekend has a start (Saturday) and end (Sunday)
RelativeTimePoint of type DayOfWeek. Interval weekDays has
a start (Monday) and end (Friday) RelativeTimePoint of type
DayOfWeek. Interval weekDays overlays hours1 and hours2:
these intervals are of type HourOfDay. Let us consider the
case in which one wants to check policy PL1 on this in-
stance. This policy can be checked using the OCL invari-
ant DayOfWeekHourPermAssign introduced in Section 4.1. The
if condition at line 21 is false because the time at which
the snapshot was taken is not included in the temporal
context for enabling permission noBandwidthLimit. Hence,
we follow the else branch, calling operation excludes at
line 24. Since role missionMember is not assigned to per-
mission noBandwidthLimit, policy PL1 is not violated.

According to policy PL2, the spatial context for enabling
role AgencyAdmin is modeled as a LogicalLocation (LLAgen-
cyAdmin) associated with a RelativeLocation (rloc1) that
contains a QualitativeDirection (inside). The spatial con-
text for enabling role MissionAdmin, indicated in policy PL3,
is modeled in a similar way (see LLMissionAdmin, rloc2).
The snapshot in Figure 4 includes an instance of RBACUtility
that captures the TimePoint and the DayWeek at which it was
taken (Monday, May 4, 2015 at 12:15:23). In this snap-
shot, users are connected to the system; we model this with
Sessions. In session sesJoe, role missionAdmin is active and
role missionMember is enabled for user Joe. In session sesKim,
roles missionMember and agencyAdmin are enabled for user
Kim. This model instance also captures the location of the
two users at the time of their connection. Each of these loca-
tions is represented with an association between each User

and his SpatialContext, which contains an object of type
Point. Objects pK and pJ refers to the position of users Kim
and Joe. We assume that only Joe is located in the defined
zone Zone1. We now consider the case in which one wants
to check policy PL2 on this model instance. This policy can
be checked on both Sessions, sesKim and sesJoe, using the
OCL invariant relativeLocationRoleEnabling (shown in sec-
tion 4.2) parametrized with role agencyAdmin. For Session

sesKim, the if condition at lines 14–16 is true because Kim,
according to the assumption made above, is outside Zone1,
meaning that her position (object pK) is contained in the lo-

Joe: User

Kim: UsermissionMember: Role

missionAdmin: Role

agencyAdmin: Role

scAgencyAdmin: SpatialContext

LLAgencyAdmin: LogicalLocation

noBandWithLimit: Permission

tcNoBand: TemporalContext

teNoBand:
TimeExpressionweekend: RelativeTimeInterval

weekDays: RelativeTimeInterval

hours2:
RelativeTimeInterval

hours1: RelativeTimeInterval overlay

overlay

Monday: DayOfWeek Friday: DayOfWeek

Sunday:
DayOfWeek

Saturday:
DayOfWeek

06: HourOfDay

-day: Monday -day: Friday

-day:
Saturday

-day:
Sunday

00: HourOfDay
-hour: 0
-minute: 0

-hour: 6
-minute: 0

24: HourOfDay
-hour: 23
-minute: 59

20: HourOfDay
-hour: 20
-minute: 0

PermissionContext
Assignment

RoleContext
Enabling

scMissionAdmin: SpatialContextRoleContext
Enabling

s:RBACUtility CT:
TimePoint

-second: 23
-minute: 15
-hour: 12
-day: 4
-month: 05
-year: 2015

Wedneday:
DayOfWeek

-day: Wednesday

rloc1:
RelativeLocation

LLMissionAdmin: LogicalLocation

rloc2: RelativeLocation

inside: QualitativeDirection

outside: QualitativeDirection

-direction: inside

-direction: outside

-label: Zone1

-label: Zone1

sesKim: Session

sesJoe: Session

scKim: SpatialContext

scJoe: SpatialContext

pJ: Point

pK: Point

URA URA

URA
URA

URA

RE

RA

Legend
RE: role enabling
RA: role activation
URA: user-role assignment

RE

RE

Figure 4: An instance of the GemRBAC+CTX model representing a system state of the example application.

cation LLAgencyAdmin associated with the spatial context for
enabling role agencyAdmin (object scAgencyAdmin). Hence,
we follow the then branch, calling the operation includes at
lines 17–18. Since role agencyAdmin is enabled in the ses-
sion, this operation returns true, meaning that policy PL2
is not violated for Kim. Policy PL3 is checked in a similar
way on sessions sesKim and sesJoe, using the same OCL in-
variant parametrized with role missionAdmin. This policy
is not violated since role missionAdmin is not enabled for
Kim (i.e., there is no association between objects sesKim and
missionAdmin) and is active for Joe (i.e., there is an associa-
tion between sesJoe and missionAdmin).

Evaluation. In the evaluation of the industrial application,
we mainly focused on assessing whether all contextual poli-
cies required by the application could be expressed with our
approach. The new model has allowed the security engineers
of our partner to define 19 new types of RBAC contextual
policies. With these new policies, engineers can now tune
the definition of fine-grained (from the point of view of con-
text) RBAC policies. This is a major improvement over the
previous solution, which granted permissions under any con-
text, for the lack of better specification methods. Moreover,
since the GemRBAC+CTX defines structural constraints
among entities, it will prevent end-users to define RBAC
policies that are not well-formed.

Overall, the application of the modeling approach sup-
ported by GemRBAC+CTX has been warmly welcome by
the security engineers of HITEC. Nevertheless, the engi-
neers also reported some drawbacks of our current approach.
In particular, they remarked that defining RBAC policies
as OCL constraints on the GemRBAC+CTX class model
was sometimes cumbersome, especially for complex policies
(with large corresponding models). To address this limita-
tion, as part of future work, we plan to define a domain-
specific language (DSL) on top of the GemRBAC+CTX
model, to allow the definition of policies at a higher-level of
abstraction, using a syntax close to natural language.

We also assessed the performance of our model-driven ap-
proach in terms of the time required to provide an access de-
cision, i.e., the time needed to evaluate an OCL constraint
corresponding to a certain contextual RBAC policy. We
used a laptop with a 2.2 GHz Intel Dual-Core i7 CPU and
16GB of memory, running Eclipse Mars Service Release 1,
JavaSE-1.8, Eclipse OCL v.4.1.0. The evaluation of policies
PL1–PL3 on the complete model (with 67 roles, 252 per-
missions, 914 users, 400 temporal contexts and 700 spatial
contexts) took 24 ms for PL1, 2847 ms for PL2, and 2405 ms
for PL3. We considered the worst-case scenario when all the
roles are active and all the roles are assigned to permission
p1. These results confirm the suitability of our approach
for operationalizing access decisions for contextual policies
in real applications. Although scalability studies on policy
checking are out of the scope of this paper, we are confi-
dent in the scalability of our approach also for much larger
models. For example, community experience [19] shows that
Eclipse OCL can check complex OCL constraints on models
with millions of elements in few seconds.

6. RELATED WORK
Several extensions of the original RBAC model [23] have

been proposed in the literature to express temporal and/or
spatial contexts. The first proposed temporal model, TR-
BAC [6], introduces temporal policies on role enabling. It
supports absolute, relative and periodic time. A generaliza-
tion of this model, called GTRBAC [13], includes temporal
policies on role assignment. It also supports the specifi-
cation of temporal policies restricting the activation dura-
tion of a given role. A limitation of these two models is
the lack of support for temporal policies at the permission
level. As for spatial extensions of RBAC, GeoRBAC [7] in-
troduces spatial policies on role enabling. LRBAC [20] and
SRBAC [12] support policies with spatial context not only
for role enabling but also for user-role and role-permission

Table 1: Support of policies in RBAC models

Contextual policies Scope Decision Non-contextual

ART PTE I AD PL LL RL CP PA PE RA RE algorithm policies [5]

TRBAC [6] + + + - - - - N/A - - - + + 2/18
GTRBAC [13] + + + + - - - N/A - - + + + 9/18
GeoRBAC [7] - - - - + + - N/A - - - + + 4/18
LRBAC [20] - - - - + + - N/A + - + + + 2/18
SRBAC [12] - - - - + + - N/A + - + + - 3/18
STARBAC [2] + + - - + + - + - + - + - 0/18
ESTRBAC [1] + + + - + + - + + - + + + 3/18
STRBAC [22] + + - - + + - - + - + + + 7/18
GSTRBAC [18] + + - - + + - + + - + + - 8/18
OrBAC [9] + + - - + + - + - + - + + 5/18
LotRBAC [8] + + + + + + + + + - + + - 6/18
GemRBAC+CTX + + + + + + + + + + + + + 18/18

Legend. ART: Absolute and Relative TE; PTE: Periodic TE; I: Index; AD: Activation Duration; PL: Physical Location; LL: Logical
Location; RL: Relative Location; CP: Composite context-based policies, RA: User-role Assignment, RE: Role Enabling, PA: Role-
permission Assignment, PE: Permission Enabling.

assignment. However, these models do not support spatial
policies for permission enabling and have limited support for
role disabling. Among RBAC extensions that support both
temporal and spatial policies, there is STARBAC [2], with
support for contextual policies for role enabling. ESTR-
BAC [1] extends STARBAC to support contextual policies
for role enabling and both user-role and role-permission as-
signment. STRBAC [22] does not support the definition of
composite context-based policies. This limitation is over-
come by GSTRBAC [18]. OrBAC [9] defines context as an
additional condition restricting the user access in different
organizations, and abstracts away from the usual concepts
of spatial and temporal context. STRBAC, GSTRBAC, and
OrBAC do not support the concepts of index and activation
duration for temporal policies, and the concept of relative lo-
cation for spatial policies. LotRBAC [8] extends GTRBAC
by assigning a location to each user, role and permission. It
does not support permission enabling and the specification
of the perimeter of physical locations.

Regarding checking contextual policies defined over the
models surveyed above, the SRBAC [12], STARBAC [2],
GSTRBAC [18] and LotRBAC [8] models do not come with
any access decision algorithm.

Table 1 summarizes to which extent the RBAC models
discussed above support the various concepts related to con-
textual policies. It also indicates the scope (assignment/en-
abling of permissions and/or roles) in which such policies
can be used, the availability of an access decision algorithm,
and the number of types of non-contextual policies (as iden-
tified in the taxonomy presented in [5]) they support. As
one can see, the GemRBAC+CTX model proposed in this
paper is the only one that supports 1) all the various spatio-
temporal concepts for contextual policies; 2) the use of such
policies for the assignment and enabling of both roles and
permissions; 3) a checking procedure for these policies; 4) a
complete support for non-contextual properties.

As for the use of UML and OCL for modeling and checking
RBAC policies, several approaches have been proposed (such
as [4, 16, 24, 15, 21, 25]); we refer the reader to our previous
work [5] for a detailed discussion.

7. CONCLUSION AND FUTURE WORK
Several application domains require the definition of RBAC

policies that restrict access based on the location of the user
or the time at which she requests the access. These policies
are called contextual policies and come with many facets,
ranging from complex types of temporal expressions to dif-
ferent types of locations and their topological relations. The
conceptual RBAC models proposed so far in the literature
do not support all the facets of contextual policies and pro-
vide limited support to evaluate these policies in order to
make an access decision.

In this paper we presented GemRBAC+CTX, a concep-
tual model that contains all the entities required to accu-
rately specify temporal and spatial contexts in RBAC poli-
cies. We formalized these policies as OCL constraints on the
GemRBAC+CTX model, as a way to operationalize the
access decision for user’s requests. We reported on the ap-
plication of GemRBAC+CTX to model the RBAC policies
of a real application in the domain of disaster relief inter-
vention. The use of GemRBAC+CTX has allowed security
engineers to define 19 new types of contextual policies, with
a fine-grained, precise description of contexts. The prelimi-
nary experimental results show the suitability of our model-
driven approach for checking RBAC contextual policies.

As part of future work, we plan to extend GemRBAC+CTX
based on the recent proposals that support proximity-based
policies [14] and geo-social ones [3]. We also plan to define
a domain-specific language on top of the GemRBAC+CTX
model, to allow the definition of RBAC policies using a syn-
tax close to natural language. The proposed model-driven
approach for policy checking could also be integrated into
a platform for model-driven run-time enforcement, tailored
for checking policies defined using GemRBAC+CTX.

8. ACKNOWLEDGMENTS
This work has been supported by the National Research

Fund, Luxembourg (FNR/P10/03) and by a grant by HITEC
Luxembourg. Ameni Ben Fadhel is also supported by the
Faculty of Science, Technology and Communication of the
University of Luxembourg.

9. REFERENCES
[1] S. Aich, S. Mondal, S. Sural, and A. Majumdar. Role

Based Access Control with Spatiotemporal Context for
Mobile Applications. In Trans. on Comput. Sci. IV,
volume 5430 of LNCS, pages 177–199. Springer, 2009.

[2] S. Aich, S. Sural, and A. Majumdar. STARBAC:
Spatiotemporal Role Based Access Control. In Proc.
of the OTM Conferences 2007, volume 4804 of LNCS,
pages 1567–1582. Springer, 2007.

[3] N. Baracaldo, B. Palanisamy, and J. Joshi.
Geo-Social-RBAC: A location-based socially aware
access control framework. In Proc. of NSS 2014,
volume 8792 of LNCS, pages 501–509. Springer, 2014.

[4] D. Basin, J. Doser, and T. Lodderstedt. Model Driven
Security: From UML Models to Access Control
Infrastructures. ACM Trans. on Soft. Eng. and Meth.,
15:39–91, 2006.

[5] A. Ben Fadhel, D. Bianculli, and L. Briand. A
comprehensive modeling framework for role-based
access control policies. Journal of Systems and
Software, 107:110–126, September 2015.

[6] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A
Temporal Role-based Access Control Model. ACM
Trans. Inf. Syst. Secur., 4(3):191–233, Aug. 2001.

[7] E. Bertino, B. Catania, M. L. Damiani, and
P. Perlasca. GEO-RBAC: A Spatially Aware RBAC.
In Proc. of SACMAT 2005, pages 29–37. ACM, 2005.

[8] S. Chandran and J. Joshi. LoT-RBAC: A Location
and Time-Based RBAC Model. In Proc. of WISE
2005, volume 3806 of LNCS, pages 361–375. Springer,
2005.

[9] F. Cuppens and N. Cuppens-Boulahia. Modeling
contextual security policies. Int. JIS, 7(4):285–305,
2008.

[10] W. Dou, D. Bianculli, and L. Briand. Revisiting
model-driven engineering for run-time verification of
business processes. In Proc. of SAM 2014, volume 8769
of LNCS, pages 190–197. Springer, September 2014.

[11] Eclipse. Eclipse OCL tools.
http://www.eclipse.org/modeling/mdt/?project=ocl.

[12] F. Hansen and V. Oleshchuk. SRBAC: A spatial
role-based access control model for mobile systems. In
Proc. of NORDSEC2003, pages 129–141, 2003.

[13] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor.
A Generalized Temporal Role-based Access Control
Model. IEEE Trans. Knowl. Data Eng., 17(1):4–23,
January 2005.

[14] M. S. Kirkpatrick, M. L. Damiani, and E. Bertino.
Prox-RBAC: A proximity-based spatially aware
RBAC. In Proc. of GIS 2011, pages 339–348. ACM,
2011.

[15] M. Kuhlmann and M. Gogolla. Modeling and
validating Mondex scenarios described in UML and
OCL with USE. Formal Aspects of Computing,
20:79–100, 2008.

[16] M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive
validation of OCL models by integrating SAT solving
into USE. In Proc. of TOOLS 2011, volume 6705 of
LNCS, pages 290–306, 2011.

[17] OMG. Object Constraint Language.
http://www.omg.org/spec/OCL/, 2012.

[18] A. Ramadan, A.-L. Mustafa, R. Indrakshi, and

F. Robert B. Specification, Validation, and
Enforcement of a Generalized Spatio-Temporal
Role-Based Access Control Model. IEEE Syst. J.,
7(3):501–515, September 2013.

[19] I. Ràth and E. Willink. Fast, faster and super-fast
queries.
http://www.eclipse.org/modeling/mdt/ocl/docs/
publications/EclipseConEurope2012/FastQueries.pdf,
October 2012. EclipseCon Europe.

[20] I. Ray, M. Kumar, and L. Yu. LRBAC: A
Location-Aware Role-Based Access Control Model. In
Proc. of ICISS 2006, volume 4332 of LNCS, pages
147–161. Springer, 2006.

[21] I. Ray, N. Li, R. France, and D.-K. Kim. Using UML
to visualize role-based access control constraints. In
Proc. of SACMAT 2004, pages 115–124, 2004.

[22] I. Ray and M. Toahchoodee. A Spatio-temporal
Role-Based Access Control Model. In Proc. of DBSec
2007, volume 4602 of LNCS, pages 211–226. Springer,
2007.

[23] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based Access Control Models.
Computer, 29(2):38–47, 1996.

[24] K. Sohr, T. Mustafa, X. Bao, and G.-J. Ahn.
Enforcing role-based access control policies in web
services with UML and OCL. In Proc. of ACSAC
2008, pages 257–266. IEEE, 2008.

[25] M. Strembeck and J. Mendling. Modeling
Process-related RBAC Models with Extended UML
Activity Models. Information and Software
Technology, 53:456–483, 2011.

