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Abstract

This thesis analyses the fault-tolerant nature of Evolutionary Algorithms (EAs) executed
in a distributed environment which is subjected to malicious acts. Such actions are a com-
mon problem in Desktop Grids and Volunteer Computing Systems (DGVCS’s) utilising idle
resources shared by volunteers. Due to the vast computational and storage capabilities pro-
vided at a low cost, many large-scale research projects are carried out using such set-ups.
However, this advantage is obtained at the expense of a challenging, error prone, heteroge-
neous and volatile environment of execution.

In the volunteer-based systems, such as BOINC, the incentives offered to the contributors
attract also malicious users, commonly called cheaters. A cheater typically seeks to obtain
the rewards with little or no contribution at all. Additionally, this group may also include
“crackers” or “black hat hackers” — users motivated by nothing more than a pure satisfaction
from violating computer security.

In this study we use and formalise cheating faults — a model for the behaviours described
above, which are a subtype of byzantine (arbitrary) faults. They are mainly characterised
by the alteration of outputs produced by some or all tasks forming a distributed execution.
The approach differs from the arbitrary faults in its implementation, as usually they are
introduced intentionally and from within the boundaries of a system.

The innate fault resilience of EAs has been previously observed in the literature. However,
this PhD manuscript offers the first, formal analysis of the impact of cheating faults in this
area of optimisation techniques. In particular, the following contributions are proposed:
• An in-depth formal analysis of the cheating-tolerance of parallel Evolutionary

Algorithms (EAs), including proofs of convergence or non-convergence towards valid
solutions in the presence of malicious acts. A step-wise approach is used, focusing firstly
on the most simple variant of an EA that is still of theoretical and practical interest,
i.e. a (1 + 1) EA. Then the results are extended to regular (population-based) EAs.
The analysis shows that the selection mechanism is crucial to achieve convergence of
EAs executed in malicious environments.
• The extension of the study to cheating-resilience of spatially-structured Evo-

lutionary Algorithms (EAs) and gossip protocols. More precisely, we analyse
Evolvable Agent Model (EvAg) relying on Newscast protocol to define neighbourhoods
in the evolution and the communication layers. There, we provide the necessary con-
ditions for convergence of the algorithm in a hostile environment and we show that the
evolutionary process may be affected only by tampering with the connectivity between
the computing resources. After that, we design an effective connectivity-splitting at-
tack which is able to defeat the protocol using very few naïve cheaters. Finally, we
provide a set of countermeasures which ultimately lead to a more robust solution.

These results have been published in several international, peer-reviewed venues and well
recognized international journals.

By the variety of problems addressed by EAs, this study will hopefully promote their usage
in the future developments around distributed computing platforms such as Desktop Grids
and Volunteer Computing Systems or Cloud systems where the resources cannot be fully
trusted.
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

This Chapter introduces the thesis context, develops the motivations for the work and
presents the different contributions.

1.1 Context

Desktop Grids and Volunteer Computing Systems (DGVCS’s) (also known as Global Com-
puting (GC) platforms) are the largest and most powerful distributed computing systems in
the world since their advent in the late 1990s. They offer an abundance of computing power
at a fraction of the cost of dedicated supercomputers. Such systems, whose typical topology
is illustrated in Figure 1.1, are based on volunteer computing: idle cycles of desktop PCs
and workstations voluntarily shared by the users worldwide are stolen through the Internet
to compute parts of a huge problem. Two of the currently best known projects that exploit
this kind of platforms are SETI@home [9] and Folding@home [56], based on Berkeley Open
Infrastructure for Network Computing (BOINC) [7]. The first one is aimed to answer the
question if we are alone in the universe and the second one aids disease research that simulates
protein folding, computational drug design and other types of molecular dynamics).

The latest statistics of BOINC1 are outstanding: 3.26 millions of users, 12.4 millions of
machines and an average computing speed of 120.1 PetaFLOPS.

Many applications from a wide range of scientific domains — including computational
biology, climate prediction, particle physics and astronomy — have used the computing
power offered by such systems. In general, scheduling is handled in the master/worker
model: a server distributes tasks to the participating clients or workers; they subsequently
process their input data and send the computed results back to the server.

One important aspect of GC platforms is the heterogeneity and the extreme volatility of
the resources as their owners may reclaim them without warning, leading therefore to what is
commonly named a crash fault. In addition, the motivation for the users to contribute are
manifold, including the altruistic desire to help or, more importantly, the assignment of credit
points proportionally to a user’s contribution. These points allow to reward hard-working

1See BOINC stats, http://boincstats.com/
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Internet

SA

SA

SA

Figure 1.1: A typical Global Computing (GC) platform.

clients in different ways [94]. Unfortunately, incentives also attract cheaters who seek to ob-
tain these rewards with little or no contribution to the system. This is commonly referred as
cheating faults. Such selfish behavior can be achieved by modifying the client software as
experienced in SETI@home [108]. The presence of cheaters in grid computing system is well-
known and many countermeasures have been proposed in the literature [44,58,140,163,174],
yet at the price of a relatively huge overhead as the only generic approach to detect wrong
results created by lazy participants or malicious cheaters relies on duplication, either total
or partial. Recently, efficient and generic result checking approaches based on partial task
duplication and macro dataflow analysis have been proposed to tackle the issue of massive
attacks in which the number of corrupted results exceed a given threshold [163]. Modifica-
tions (i.e. cheatings) up to the threshold are assumed to be handled by the application itself,
typically by specific low-overhead system-level approaches, such as Algorithm-Based Fault
Tolerance (ABFT) techniques where the fault tolerance scheme is tailored to the algorithm
performed.

This thesis analyses the ABFT nature of Evolutionary Algorithms (EAs) by evaluating
the impact of cheating on computations executed in a distributed and potentially hostile
environment such as a GC platform. Evolutionary Algorithms (EAs) are a class of stochas-
tic search techniques which have been successfully applied to solve a large variety of hard
optimization problems which typically require several days or months of computation. De-
creasing the makespan of the execution is typically obtained by relying on a parallel version
executed in a distributed platform. Yet, as mentioned above, such large scale systems are
prone to errors.

In this context, this work is an attempt to better understand and characterize the
Algorithm-Based Fault Tolerance (ABFT) nature of parallel and distributed EAs against
cheating faults, especially from a formal point of view.

1.2 Motivations

Many previous studies in the literature [37,64,75,111,166] suggested through experiments the
innate resilience of EAs against crash faults. Also, preliminary results have been obtained
against cheating faults [168]. Nevertheless, the following questions remained opened prior to
this work:

2



1.3 Contributions

• Can we formally analyse in which conditions an EA is expected to converge (or not)
towards valid solutions despite the presence of cheating faults?
• Which models for EA executions aid the resilience against cheaters?
• And finally, which properties of the models contribute to the innate resilience?

Also, one important aspect of this thesis was to always validate the theoretical results
with concrete implementations and experiments. In practice, the High Performance Com-
puting (HPC) platform of the University of Luxembourg (UL) was used for this purpose. To
ensure the simulation of large-scale platforms, tremendous computing power were required:
more than 768520 CPU Hours2 was necessary to conduct the experiments proposed in this
manuscript. This represents a total computing effort of around 87 years and 266 days
over a single GFlop machine. . . performed in a 3 years period.

1.3 Contributions

This section details the contributions as well as the different publications produced during
the thesis.
This work covers the following aspects:
• An in-depth formal analysis of the cheating-tolerance of parallel Evolutionary

Algorithms (EAs), including proofs of convergence or non-convergence towards valid
solutions in the presence of malicious acts. A step-wise approach is used, focusing firstly
on the most simple variant of an EA that is still of theoretical and practical interest,
i.e. a (1 + 1) EA. Then the results are extended to regular (population-based) EAs.
The analysis shows that the selection mechanism is crucial to achieve convergence of
EAs executed in malicious environments.
• The extension of the study to cheating-resilience of spatially-structured Evo-

lutionary Algorithms (EAs) and gossip protocols. More precisely, we analyse
Evolvable Agent Model (EvAg) relying on Newscast protocol to define neighbourhoods
in the evolution and the communication layers. There, we provide the necessary con-
ditions for convergence of the algorithm in a hostile environment and we show that the
evolutionary process may be affected only by tampering with the connectivity between
the computing resources. After that, we design an effective connectivity-splitting at-
tack which is able to defeat the protocol using very few naïve cheaters. Finally, we
provide a set of countermeasures which ultimately lead to a more robust solution.

Publications

Whether directly linked to the work presented in this manuscript or through a more general
context, this dissertation led to peer-reviewed publications in journals, conference proceed-
ings or books as follows:
• 1 journal article [114];
• 4 articles in international conferences with proceedings and reviews [112,115,116,165];
• 3 articles in international workshops with reviews [113,117,164];

It is worth to mention that one of these publications received the best student paper
award in the reference international conference on Network and System Security (NSS 2014).

2The term CPU Hours (processor hours) is a measure of the work done; a CPU Hour is the same as a
G-hour, i.e. the measure of the computing work done by one GFlop machine in an hour.
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These publications are now detailed.

Peer-Reviewed Journal (1)

[114] J. Muszyński, S. Varrette, P. Bouvry, F. Seredyński, and S. U. Khan. Conver-
gence Analysis of Evolutionary Algorithms in the Presence of Crash-Faults and
Cheaters. Int. Journal of Computers and Mathematics with Applications (CAMWA),
64(12):3805–3819, Dec 2012.

International Conferences with proceedings and reviews (4)

[116] J. Muszyński, S. Varrette, J. L. Jiménez Laredo, and P. Bouvry. Exploiting the Hard-
wired Vulnerabilities of Newscast via Connectivity-splitting Attack. In Proc. of the
IEEE Int. Conf. on Network and System Security (NSS 2014), volume 8792 of LNCS,
pages 152–165, Xian, China, Oct 2014. Springer Verlag.
Best Student Paper Award.

[115] J. Muszyński, S. Varrette, J. L. Jiménez Laredo, and P. Bouvry. Analysis of the Data
Flow in the Newscast Protocol for Possible Vulnerabilities. In Proc. of Int. Conf.
on Cryptography and Security System (CSS 2014), volume 448 of Communications in
Computer and Information Sciences (CCIS), pages 89–99, Lublin, Poland, Sept 2014.
Springer.

[112] J. Muszyński, S. Varrette, and P. Bouvry. Expected Running Time of Parallel Evo-
lutionary Algorithms on Unimodal Pseudo-Boolean Functions over Small-World Net-
works. In Proc. of the IEEE Congress on Evolutionary Computation (CEC 2013),
pages 2588–2594, Cancún, Mexico, June 2013. IEEE.

[165] S. Varrette, J. Muszyński, and P. Bouvry. Hash function generation by means of Gene
Expression Programming. In Proc. of Int. Conf. on Cryptography and Security System
(CSS 2012), Kazimierz Dolny, Poland, Sept 2012. Annales UMCS ser. Informatica.

International Workshops with reviews (4)

[113] J. Muszyński, S. Varrette, and P. Bouvry. On the Resilience of the Newscast Protocol
in the Presence of Cheaters. In 2014 Grande Region Security and Reliability Day
(GRSRD 2014), Saarbrücken, Germany, Mar. 2014.

[117] J. Muszyński, S. Varrette, J. L. Jiménez Laredo, B. Dorronsoro, and P. Bouvry. Con-
vergence of Distributed Cellular Evolutionary Algorithms in Presence of Crash Faults
and Cheaters. In Proc. of the Int. Conf. on Metaheuristics and Nature Inspired Com-
puting (META 2012), Sousse, Tunisia, Oct. 27–31 2012.

[164] S. Varrette, J. Muszyński, and P. Bouvry. Cheating impact on distributed Evolutionary
Algorithms over BOINC computations. In Proc. of the 19th Int. Conf. on Security
and Intelligent Information Systems (SIIS 2011), Warsaw, Poland, June 13–14 2011.
Extended Abstract.
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1.4 Dissertation Outline

1.4 Dissertation Outline

The manuscript is organized as follows:
• The first part (Part I) presents the essential information required for reading the dis-

sertation. In particular, the background together with some basic notions (linked to
graph theory, distributed computing or Evolutionary Algorithms) are proposed.
• The second part of the thesis (Part II) covers the Cheating-Tolerance of Parallel and

Distributed EAs in Desktop Grids and Volunteer Computing Systems (DGVCS’s).
• The third part (Part III) concludes the manuscript and offers perspectives for future

works.
We now briefly review the outline of the successive chapters of this manuscript.

Part I – Background and Basic Notions

Chapter 2 is mainly an extract of the most essential information from [162] regarding graph
theory, and more precisely random graphs. It starts with an introduction of basic
definitions for graphs and their metrics. After that, common models of random graphs,
their properties and algorithms for their creation are presented.

Chapter 3 reviews distributed computing systems, focusing on their main properties, fea-
tures and applications. Also, overlay networks are presented, as they determine commu-
nication and interaction patterns within distributed applications. Finally, an overview
of failures, robustness and fault-tolerance techniques is proposed.

Chapter 4 is dedicated to the general characteristics and models of Evolutionary Algorithms
(EAs). The generic scheme of an EA is presented, followed by an overview of different
components building the algorithm. Finally, the underlying tools and approaches used
to theoretically analyse EAs are reviewed.

Part II – Cheating-Tolerance of Parallel and Distributed EAs in DGVCS’s

Chapter 5 starts with a discussion about sources of the most common faults present in
DGVCS’s, namely crash and cheating faults. Terms associated with volatility of such
platforms are introduced, which are the main cause of crash failures. After that,
cheating faults in DGVCS’s are formally defined. This is followed by the state-of-the-
art literature review about concrete EAs models for real-world, distributed executions
with a discussion about their fault-tolerance and applicability in DGVCS’s.

Chapter 6 presents one of the main contributions of the thesis. The theoretical model
introduced in Chapter 4 is applied to the EA analysis in a hostile environment. Thanks
to this, conditions for convergence (or non-convergence) toward valid solutions in the
presence of cheaters are given. Finally, general guidelines for fault-tolerant centralised
executions in DGVCS’s are given.

Chapter 7 focuses on the second main contribution of this work: spatially-structured EAs
and gossip protocols for Peer-to-Peer (P2P) executions. First, cheating-tolerance of
distributed EAs is analysed from two perspectives: the evolution and the communi-
cation layers. The study is focused in particular on Evolvable Agent Model (EvAg)
and its reference implementation based on Newscast. The required conditions and
execution schemes allowing the computation to converge toward valid solutions de-
spite malicious acts are developed. After establishing that the global success of the
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optimisation may be affected only by tampering with the communication layer, the
study is directed towards it. Due to the lack of a suitable replacement of Newscast
for EvAg execution, cheating-tolerance of the protocol is analysed in details. As a
result, a connectivity-splitting attack on the network is designed. It is experimentally
demonstrated that the connectivity can be broken in a relatively short time, using very
few naïve cheaters. Finally, this chapter is closed by a discussion and evaluation of
proposed countermeasures, leading to a more robust solution.

At the end of the manuscript, a final part (Part III) features the chapters concluding
the dissertation. At this occasion, some conclusions of the work performed are presented,
together with outlines on perspectives and future work.
Figure 1.2 presents dependencies between the different chapters and therefore proposes a
reading order for the thesis.
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Chapter 2
Random Graphs

Chapter 3
Distributed Computing:

Systems, Overlay Networks
and Fault Tolerance

Chapter 4
Evolutionary Algorithms

Chapter 5
Fault-Tolerant Executions

of EAs in DGVCS’s

Chapter 6
Theoretical Foundation
of Cheating-Tolerance

in Parallel EAs

Chapter 7
Towards

Cheating-Tolerance
in Distributed EAs

Chapter 8
Conclusions & Perspectives

Figure 1.2: Graph of dependencies between the chapters of the thesis.
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Random Graphs

Contents
2.1 Formalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Vertex degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Distance statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Classical random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Small-world graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Scale-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

This chapter is mainly an extract of the most essential information from [162]. It begins
with an introduction of basic definitions for graphs and their metrics. After that, common
models of random graphs, their properties and algorithms for their creation are presented.

Essentially, a random graph of this type is created by a random addition of edges (hence
the name). In details, the construction starts with a collection of n vertices. For each of the(n

2
)

possible edges, an edge (u, v) is added with a probability puv. In a simplified case, for
every pair of distinct vertices u and v, the probability puv is the same.

In the late 1950s, the theoretical foundations of random graphs were laid by Paul Erdös
and Alfréd Rényi. After that, it was discovered that this construct could be used to describe
many naturally occurring phenomena [162]. Since that, research in this area was expanded
and applied to many fields — from neurology, through traffic management, to communication
networks [162].

In the sequel, terms graphs and networks will be used interchangeably, the same applies
to vertices and nodes.

2.1 Formalities

Intuitively a graph consists of a collection of vertices connected by edges, where each edge
joins exactly two vertices (Definition 2.1.1, example — Figure 2.1).

Definition 2.1.1 (Graph). A graph G = (V,E) consists of a collection of vertices V and
a collection of edges E. Each edge e ∈ E joins two vertices u, v ∈ V , which is denoted by
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v1

v2

v3

v4

v5

v6

v7

Graph:
G = (V,E)

Vertices:
V = {v1, v2, . . . , v7}

Edges:
E = {e1, e2, . . . , e8}
e1 = 〈v1, v2〉 e5 = 〈v4, v5〉
e2 = 〈v2, v3〉 e6 = 〈v3, v6〉
e3 = 〈v1, v4〉 e7 = 〈v1, v6〉
e4 = 〈v1, v5〉 e8 = 〈v1, v7〉

Figure 2.1: An example of an undirected graph.

v1

v2

v3

v4

v5

v6

v7

a1

a2
a3

a4
a5

a6

a7 a8

a9

a10

a11 Digraph:
D = (V,A)

Vertices:
V = {v1, v2, . . . , v7}

Arcs:
A = {a1, a2, . . . , a10}
a1 = 〈−−−→v1, v2〉 a6 = 〈−−−→v5, v1〉
a2 = 〈−−−→v2, v1〉 a7 = 〈−−−→v4, v5〉
a3 = 〈−−−→v1, v6〉 a8 = 〈−−−→v5, v4〉
a4 = 〈−−−→v4, v1〉 a9 = 〈−−−→v1, v7〉
a5 = 〈−−−→v1, v5〉 a10 = 〈−−−→v2, v3〉

Figure 2.2: An example of a digraph.

e = 〈u, v〉 and u, v are called its end points. If e = 〈u, v〉 then u, v are called adjacent,
and edge e is said incident to vertices u and v.

Sometimes for simplicity V (G), respectively E(G), will be used to describe the set of
vertices, respectively edges, associated with a graph G.

If an edge e joins same vertices (i.e. e = 〈v, v〉), then e is called a loop. If two vertices
may be connected by more than one distinct edge, then such graph is called multigraph.
A graph without loops or multiple edges is called simple.

If the edges have associated direction, graph is described as directed or simply called — a
digraph (Definition 2.1.2, example — Figure 2.2).

Definition 2.1.2 (Directed graph or digraph). A directed graph or digraph D = (V,A)
consists of a collection of vertices V and a collection of arcs A. Each arc a = 〈−→u, v〉 joins
vertex u ∈ V to another (not necessarily distinct) vertex v. Vertex v is called the head of a,
whereas u is its tail.

At times it is beneficial to analyse undirected graph created from directed one (an under-
lying graph). Such construct is described in Definition 2.1.3. The graph G from Figure 2.1 is
the underlying graph of the digraph D from Figure 2.2, end conversely — D is an orientation
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e1
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e1e3

e4
e5

v1

v2
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v4

v5

v6

v7
(b)

Figure 2.3: An example of a subgraph. In (a), a graph G = (V,E) with V = {v1, v2, . . . ,
v7} and E = {e1, e2, . . . , e8}. In (b) a subgraph H = (V ′, E′) of G induced by a
vertex set V ′ = {v1, v2, v4, v5} or by an edge set E′ = {e1, e3, e4, e5}.

of G. This proved to be very often useful in directed networks which do not allow the plain
evaluation of some metrics. For example, in case of distance statistics (see Section 2.2.3),
if there is no directed path between some nodes, metrics become undefined or reach infinite
values. In these cases, the notion of the underlying graph becomes handy. Information
obtained from such analysis is inaccurate, but in practice serves well as an estimation to
describe original graph’s properties.

Definition 2.1.3 (Underlying graph and orientation). A graph G(D) obtained from a di-
graph D by replacing each arc with its undirected counterpart is called an underlying graph.
An orientation is a digraph D(G) created by associating a direction with each edge of the
graph G.

Also, there is often an interest in the analysis of the surrounding of a vertex. In such
cases, definitions of neighbour, in-neighbour and out-neighbour sets are required (see
Definitions 2.1.4 and 2.1.5).

Definition 2.1.4 (Neighbour set). For any graph G = (V,E) and a vertex v ∈ V , the set
of vertices adjacent to v (other than v) is called neighbour set and is denoted by N(v).
Formally

N(v) def= {u ∈ V | u 6= v, ∃e∈E e = 〈u, v〉}

Definition 2.1.5 (In- and out-neighbour sets). For a digraph D = (V,A) and a vertex
v ∈ V , the in-neighbour set N+(v) of v is composed of the adjacent vertices having an arc
with v as its head. Likewise, the out-neighbour set N−(v) of v consists of the adjacent
vertices having an arc with v as its tail. Formally

N+(v) def=
{
u ∈ V | v 6= u,∃

a=
〈−→u,v〉 a ∈ A}

N−(v) def=
{
u ∈ V | v 6= u,∃

a=
〈−→v,u〉 a ∈ A}

The set of neighbours N(v) of a vertex v is defined as N(v) def= N+(v) ∪N−(v).
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Figure 2.4: An illustration of a walk, a path and a cycle in a graph. In (a), a (v1, v2)-walk:
[v1, e4, v4, e3, v3, e5, v1, e4, v4, e3, v3, e2, v2], (b) a path between v1 and v4: [v1, e1,
v2, e2, v3, e3, v4] and (c) a cycle: [v1, e1, v2, e2, v3, e5, v1].

When only part of the graph is of interest and has to be analysed (beyond neighbour sets),
notion of subgraph is required. Definition 2.1.6 introduces a way to determine, whether
a given graph is a subgraph of the other. Definition 2.1.7 presents a method to create a
subgraph given a subset of the vertex or edge set. An example of the introduced notions is
depicted on Figure 2.3.

Definition 2.1.6 (Subgraph). A graph H is a subgraph of G, denoted by H ⊆ G, if
V (H) ⊆ V (G), E(H) ⊆ E(G) and for all e = 〈u, v〉 ∈ E(H), we have that u, v ∈ V (H).

Definition 2.1.7 (Subgraphs induced by a vertex or an edge set). For a graph G = (V,E)
and a subset V ′ ⊆ V , the subgraph induced by V ′ has the vertex set V ′ and an edge set
E′ defined by

E′ def=
{
e ∈ E | e = 〈u, v〉with u, v ∈ V ′}

Similarly, if E′ ⊆ E, the subgraph induced by E′ has the edge set E′ and a vertex set V ′

defined by
V ′ def= {u, v ∈ V | ∃e∈E′ e = 〈u, v〉}

The subgraph induced by V ′ or E′ is denoted by G[V ′] or G[E′], respectively.

Edges or arcs in a graph define immediate relation between vertices. If transitional linkage
is required, definitions of walks, trials, paths and cycles in the network are used (Defini-
tions 2.1.8 and 2.1.9, with a simple illustration on Figure 2.4).

Definition 2.1.8 (Walk, trial, path, cycle). Given a graph G = (V,E), a (v0, vk)-walk in
G is a sequence [v0, e1, v1, e2, . . . vk−1, ek, vk], where vi ∈ V and ei ∈ E. If v0 = vk, then such
walk is called closed. A trial is a walk with all edges distinct, i.e. ∀i 6=j ei 6= ej. A path is a
trial with all vertices distinct, i.e. ∀i 6=j vi 6= vj. A cycle is a closed trial in which all vertices
except v0 and vk are distinct.

Definition 2.1.9 (Directed walk, trial, path, cycle). For a digraph D = (V,A), a directed
(v0, vk)-walk in D is a sequence [v0, a0, v1, a1, . . . vk−1, ak−1, vk], where vi ∈ V , ai ∈ A and
ai = 〈−−−−→vi, vi+1〉. If v0 = vk, then such walk is called closed. A directed trial is a directed
walk with all arcs distinct, i.e. ∀i 6=j ai 6= aj. A directed path is a directed trial with all
vertices distinct, i.e. ∀i 6=j vi 6= vj. A directed cycle is a directed trial in which all vertices
are distinct except for v0 and vk.
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2.2 Metrics

To compare graphs between each other, metrics have to be defined. Along with the def-
initions, the importance of presented measures in the analysis of real-world networks is
discussed.

2.2.1 Vertex degree

Definition 2.2.1 (Vertex degree in undirected graphs). For a given graph G = (V,E), δ(v)
is a degree of a vertex v ∈ V , equal to the number of edges incident with v, where loops are
counted twice. Formally

δ(v) def= |{e ∈ E | ∃u∈V e = 〈u, v〉}|

Definition 2.2.2 (Vertex in- and out-degrees in directed graphs). For a given digraph D =
(V,A), δ+(v) is an in-degree of a vertex v ∈ V , equal to the number of incident arcs having
v as their head. Likewise, δ−(v) is the out-degree of a vertex v, equal to the number of
incident arcs having v as their tail. Formally

δ+(v) def= |{a ∈ A | ∃u∈V a = 〈−→u, v〉}|

δ−(v) def= |{a ∈ A | ∃u∈V a = 〈−→v, u〉}|

Despite its simplicity, vertex degree (Definitions 2.2.1 and 2.2.2) can play a surprisingly
important role in the devising or analysing real-world networks [162]. The main function of
this metric is the identification of key vertices in the graph — those nodes with a high value
of the discussed measure. For example, the degree of a given node can help to estimate the
amount of messages expected per time unit, i.e. the rate of incoming messages. This can
help to avoid possible overloads in the network.

The vertex degree sequence can be used to obtain information about the structure of a
graph. If most of the measurements are the same, the graph is more or less regular — all
vertices have equal roles. If the sequence is very skewed — very few nodes have relatively
high degree, then those vertices play the role of hubs in the network. Their removal could
cause the graph to split [162].

Additionally, an important technique for analysing networks is computation of a vertex
degree distribution, which shows how many vertices have certain degree. In practice,
in-degrees are only taken into account [162]. For example, in case of social networks, the
discussed distribution can show how important are different nodes. This also helps to get
an impression of exactly how more important certain nodes are, by computing the ratio of
in-degrees between different nodes.

Finally, degree correlations can be computed to determine which nodes are typically
connected with each other. For example, in case of social networks, high-degree vertices
are generally connected to each other, whereas in the technological networks, high-degree
vertices are joined with low-degree ones [120,162].

2.2.2 Connectivity

Analysing connectivity allows to asses if delivery of a message between two different nodes
inside the network is possible. It also helps to identify critical nodes, which removal would
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cause the graph to split into components. In case of communication protocols, their robust-
ness can be evaluated by estimating the probability of the graph to split. Connectivity of the
graph can be verified using graph traversal algorithms such as Breath-First Search (BFS) or
Depth-First Search (DFS) [33,162].

Notion of vertex and graph connectivity is introduced in the Definition 2.2.3. In case of
digraphs, where direction of the edge matters, the approach for connectivity analysis differs.
There, definitions of strong and weak connectivity are of interest (Definition 2.2.4).

Definition 2.2.3 (Connected vertices and graph). In a graph G = (V,E), two vertices
u, v ∈ V : u 6= v are connected if there exists a (u, v)-path in G. G is connected if all pairs
of distinct vertices are connected.

Definition 2.2.4 (Strong and weak connectivity of a digraph). If there exists a directed path
between every pair of distinct vertices from digraph D, then D is strongly connected. A
digraph is weakly connected if its underlying graph is connected (see Definition 2.1.3).

The whole graph does not have to be connected. It can consist of a collection of connected
subgraphs, also called components – see Definition 2.2.5. In practice, if the graph is not
connected, the notion of giant component is of interest – see Definition 2.2.6.

Definition 2.2.5 (Component). A component is a connected subgraph of G not contained
in a different connected subgraph of G with more vertices or edges. The number of components
of G is denoted as ω(G).

Definition 2.2.6 (Giant component). A giant component is a component of G of the
maximum size in terms of the number of vertices.

2.2.3 Distance statistics

Another important class of graph metrics are distance statistics. The distance between two
vertices in a graph is expressed as the length of the shortest path between them (Defini-
tion 2.2.7). If this information is computed for the whole graph, the importance of each of
the vertices can be determined along with the partial information about the graph structure
(Definition 2.2.8).

Definition 2.2.7 (Distance). For a graph G = (V,E) (directed or not) and vertices u, v ∈ V ,
the distance between u and v is the length of the shortest (u, v)-path, denoted as d(u, v).

Definition 2.2.8 (Eccentricity, radius, diameter). Given a connected graph G = (V,E), let
d(u, v) denote the distance between vertices u and v (u, v ∈ V ). The eccentricity ε(v) of a
vertex v in G tells how far the farthest vertex from v is positioned, formally:

ε(v) def= max {d(v, u) | u ∈ V }

The radius rad(G) indicates how dispersed the vertices are in the graph G and is defined as
the minimum over all eccentricity values, formally:

rad(G) def= min {ε(v) | v ∈ V }

Finally, the diameter diam(G) describes the maximal distance in the graph, formally:

diam(G) def= max {d(u, v) | u, v ∈ V }
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Figure 2.5: Example of clustering coefficients for nodes in different networks. In (a) cc(v1) =
2·6
4·3 = 1 (vertices from v2 to v5 — neighbours of v1 — are fully connected), (b)
cc(v1) = 2·2

4·3 = 0.3 and (c) cc(v1) = 0 (no edges between neighbours of v1).

In practice, global statistics from Definition 2.2.8 are not powerful enough to discriminate
among graphs [162]. Therefore, distribution of path lengths (in particular the average dis-
tance between vertices) is being used (Definition 2.2.9). For very large graphs (thousands
of nodes), computation of the average path length can be costly and time-consuming [162]. In
such cases, the characteristic path length is preferred, as there exist efficient techniques
for its approximation [162] (in contrast to the previous metric).

Definition 2.2.9 (Average and characteristic path length). Let G = (V,E) be a connected
graph and d(v) denote the average distance from a vertex v to any other vertex u in G:

d(v) def= 1
|V | − 1

∑
u∈V,u 6=v

d(v, u)

The average path length d(G) of a graph G is defined as

d(G) def= 1
|V |

∑
v∈V

d(v)

The characteristic path length of G is defined as the median over all d(u).

2.2.4 Clustering Coefficient

Clustering coefficient (introduced in [176]) measures for a given vertex v, to what extent
its neighbours are neighbours of each other, i.e. to what extent vertices adjacent to v are
also adjacent to each other. Therefore, this statistic gives some information about the graph
structure from the local point of view. For example, high value of the clustering coefficient
indicates existence of communities in the graph — interconnected groups of nodes with
dense links within them and sparse in between [162]. Definition 2.2.10 formalises this metric
for a vertex from a simple connected, undirected graph (examples illustrated on Figure 2.5);
Definition 2.2.11 — for a vertex from a simple connected digraph and Definition 2.2.12 for
both types of graphs (as a global statistic).

Definition 2.2.10 (Clustering coefficient for a vertex from an undirected graph). Given
a simple connected, undirected graph G = (V,E) and a vertex v ∈ V with a neighbour set
N(v), let nv = |N(v)| and mv = |E (G [N(v)])| (the number of edges in the subgraph induced
by neighbour set of v). The clustering coefficient cc(v) for the vertex v with degree δ(v)
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is defined as

cc(v) def=
{
mv/

(nv
2
)

= 2·mv
nv(nv−1) if δ(v) > 1

undefined otherwise

Definition 2.2.11 (Clustering coefficient for a vertex from a digraph). Given a simple
connected digraph D = (V,A) and a vertex v ∈ V with a neighbour set N(v), let nv = |N(v)|
and mv = |A (G [N(v)])| (the number of arcs in the subgraph induced by neighbour set of v).
The clustering coefficient cc(v) for the vertex v with the degree δ(v) = δ+(v) + δ−(v) is
defined as

cc(v) def=
{
mv/

(
2 ·
(nv

2
))

= mv
nv(nv−1) if δ(v) > 1

undefined otherwise

Definition 2.2.12 (Average clustering coefficient). For a simple connected graph G = (V,E),
the average clustering coefficient CC(G) is defined as

CC(G) def= 1
|V ′|

∑
v∈V ′

cc(v)

where V ′ = {v ∈ V | δ(v) > 1}.

From the global point of view, there also exist an alternative definition for the clustering
coefficient [121]. It is based on the number of triples and triangles in a graph. For a given
vertex v ∈ V from a simple, connected graph G = (V,E):
• a triangle at v is a complete subgraph of G with exactly three vertices (including v),
• a triple at v is a subgraph of exactly three vertices and two edges incident to v.

The number of triangles and triples at v are denoted as n∆ (v) and nΛ (v) respectively.
Globally for the graph G, n∆ (G) denotes a number of distinct triangles and nΛ (G) —
triples. To avoid confusion (as emphasised in [121]), this statistic will be called a graph
transitivity and is formalised in Definition 2.2.13.

Definition 2.2.13 (Graph transitivity). For a simple, connected graph G, the graph tran-
sitivity τ (G) is the ratio n∆ (G) /nΛ (G).

Sometimes (for instance in the case of a social network analysis) the network density
is used as the clustering coefficient [71, 162, 175]. This measure indicates to what extent a
graph is complete — see Definition 2.2.14.

Definition 2.2.14 (Graph density). The graph density ρ (G) for a simple, undirected
graph G = (V,E) is defined as m/

(n
2
)
, where m = |E| and n = |V |.

As visible, there are different approaches used in the literature to measure the clustering
of a given graph. The usage of the graph density (Definition 2.2.14) is mainly limited to the
social network analysis. On the other hand, the average clustering coefficient and the graph
transitivity are very often simply referred to as the clustering coefficient of a graph,
without specifying which definition is in use, even though they are not equal [121,162]. The
main difference is that the first one ”tends to weight the contributions of low-degree vertices
more heavily” [121]. From the analytical point of view, it is easier to compute the graph
transitivity, whereas the average clustering coefficient is easily calculated on a computer.
Therefore, the second one is widely used in numerical studies and data analysis [121]. In this
work, Definition 2.2.12 will be used (the average clustering coefficient).
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2.2.5 Centrality

The last discussed here, but not the least significant metric is centrality [119]. It allows
identifying ”important” vertices in the graph. Of course, importance of a node depends on
what is actually modelled. For example, if the graph is used to analyse a communication
network, importance of a vertex may be defined as a number of the shortest paths in which
it belongs [162]. This might serve as an indication of the expected workload regarding
processing and forwarding messages [162].

The basic notion of the centrality is a centre of a graph — vertices whose eccentricity is
equal to the radius of the graph (Definition 2.2.15). Following this reasoning, one can say
that a vertex is at the centre of a graph when its distance from all other vertices is minimal.
Therefore, centrality of a vertex could be defined using its eccentricity — Definition 2.2.16.

Definition 2.2.15 (Centre of a graph). Let G = (V,E) be a (strongly) connected graph.
The centre C (G) of a graph G is the set of vertices with minimal eccentricity.

C (G) def= {v ∈ V | ε(v) = rad(G)}

Definition 2.2.16 ((Eccentricity based) vertex centrality). For a (strongly) connected graph
G = (V,E), the (eccentricity based) vertex centrality cE (v) of a vertex v ∈ V is defined
as cE (v) def= 1/ε(v).

It is visible from these formalisations that the farther a vertex is from the centre, the lower
the value of the mentioned metric. Where centrality reaches its maximum for all the nodes
located at the centre of the graph.

Sometimes, it is more useful to determine how close a vertex is to all other vertices. This
requires taking into account distances to all the nodes from a given one. Such metric is called
the closeness and is introduced in Definition 2.2.17.

Definition 2.2.17 (Closeness). Let G = (V,E) be a (strongly) connected graph. The close-
ness cC (v) of a vertex v ∈ V is defined as

cC (v) def= 1∑
u∈V d(v, u)

Closeness comparison between vertices of different graphs may not be very useful [162].
This metric is biased by the graph size — the value for a fixed vertex decreases when more
nodes are added.

There exists also another metric describing ”importance” of a vertex — betweenness
centrality (Definition 2.2.18). In this approach, a node is considered as ”important” if it
lies on many shortest paths connecting two other nodes. Removal of such vertex may increase
the cost of the connectivity between other vertices — different (possibly longer) paths will
have to be followed [162].

Definition 2.2.18 (Betweenness centrality [162]). Consider a simple, (strongly) connected
graph G = (V,E). Let S(x, y) be the set of the shortest paths between two vertices x, y ∈ V ,
and S(x, v, y) ⊆ S(x, y) the ones that pass through a vertex v ∈ V . The betweenness
centrality cB (v) of a vertex v is defined as

cB (v) def=
∑
x 6=y

|S(x, v, y)|
|S(x, y)|
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2.3 Classical random graphs

In 1959, Paul Erdös and Alfréd Rényi introduced two “classical” models for random net-
works [50] (often called Erdös-Rényi networks or simply ER random graphs). In both
of them, only undirected edges are taken into account. First approach is based on two pa-
rameters: the number of vertices — n and the probability — p. Using those variables, an
undirected graph Gn,p with n nodes is created, where two (distinct) vertices are connected
by an edge with a probability p (independently). In the second approach, instead of the
parameter p, number of edges — M is considered. This yields an undirected graph Gn,M
in which M edges are incident to randomly chosen pairs of vertices. The main difference
between both models is that the first one (Gn,p) have no loops or multiple edges between two
distinct vertices, where in the second (Gn,M ) — there is no such restrictions. Even though,
such constraints are often introduced in practice, by limiting the choice to M distinct edges
from the n(n− 1)/2 possibilities [45].

In this work, only simple graphs are of interest. Additionally, the more common approach
is to study the first version of the model, as the second one introduces small dependencies
caused by picking a fixed number of edges [45]. Therefore, the approach based on the
probability p will be considered from now on. In this context, ER (n, p) will be used to
denote the set of all Gn,p graphs.

There are four main metrics used to describe ER random graphs: the degree distribution,
the average path length, the average clustering coefficient and the connectivity.

The vertex degree follows a binomial distribution. For a given node v from an ER (n, p)
graph, let P [δ(v) = k] denote the probability that the degree of v is k. There are

(n−1
k

)
possibilities for choosing k different vertices to be adjacent to v. A vertex v has exactly k

neighbours with the probability equal to pk · (1− p)n−1−k, therefore

P [δ(v) = k] =
(
n− 1
k

)
pk(1− p)n−1−k

As this probability applies to all vertices of an ER (n, p) graph, it is clear that the vertex
degree can be treated as a random variable δ. From this, the mean vertex degree is thus
computed as

δ
def= E [δ] def=

n−1∑
k=1

k · P [δ = k]

Therefore, the vertex degree of an arbitrarily chosen vertex from and ER (n, p) is p(n − 1)
(for the proof see [162]).

For large, connected random graphs G ∈ ER (n, p), the average path length can be esti-
mated [57] as

d(G) = ln(n)− γ
ln(pn) + 0.5

where γ is the Euler constant (approximately equal to 0.5772).
The clustering coefficient of a vertex v is computed as the fraction of edges found between

its neighbours and the maximum number of possible edges between them. From that, it
is clear that the expected value of the clustering coefficient is equal to p (for the details
see [162]). Consequently, for any graph G ∈ ER (n, p), we have CC(G) = p.

In their original work, Erdös and Rényi, discovered that the appearance of many properties
depends on a sharp threshold [45, 50]. These transitions are conditioned by the value of
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p = 1/n. ER (n, p) graphs have different properties below, above and near this critical
value [45].

Probability p influences the most connectivity and as a consequence — an emergence
of a giant component. For large graphs (n → ∞), if p = c/n and c < 1, then most of the
connected components of a graph are small, where the largest has only O (log n) vertices. On
the other hand, if c > 1 there is a constant Θ (c) > 0 that the size of the largest component1

is ∼ Θ (c)n and the second one has O (log n) vertices. The threshold for connectivity
is p = (logn)/n + O (1) — isolated vertices disappear and all the nodes belong to a single
component. For details of all the above estimations see [45].

2.4 Small-world graphs

Erdös-Rényi graphs have small diameters, but have very few triangles [45]. Watts and
Strogatz proposed a new model with a small diameter and a positive density of triangles (i.e.
with a low average path length and a high clustering coefficient) — small-world network.
It found its main application in the area of social networks, where the triangular relations are
present very often. For instance, if A and B are friends and A and C are friends, then it is
highly probable that B and C are also friends. Similarly, for the low average path length, the
experiment of Stanley Milgram from 1967 (sending letters to a specific person, by passing it
to people which the subjects know personally) revealed the resemblance of a social network
to a small-world graph.

The construction of the original model proposed by Watts and Strogatz [176] starts from
a regular lattice (e.g. ring lattice) with n vertices and k edges per vertex. After that, some
edges are rewired at random with probability p. The mentioned rewiring operation is a
simple replacement of each edge (u, v) with an edge (u,w), where w is a randomly chosen
node from the set of vertices other than u, and such that (u,w) does not already belong to
the edge set of the new (modified) graph. Described approach allows the “tuning” of the
network between regularity (p = 0) and disorder (p = 1) [176] (see Figure 2.6). The set of
all such graphs will be denoted as WS (n, k, p).

It is required that n� k � ln(n)� 1 to guarantee connectivity between the nodes [176].
If this condition is met, then it is possible to estimate the asymptotic behaviour of the
average path length and the average clustering coefficient with the probability p converging
to its extremes. For two given graphs S ∈WS (n, k, p) and R ∈ ER (n, p):
• if p→ 0, then d(S) ∼ n/2k � 1 and CC(S) ∼ 3/4,
• if p→ 1, then d(S) ≈ d(R) ∼ ln(n)/ ln(k) and CC(S) ≈ CC(R) ∼ k/n� 1.

It is visible in Figure 2.6 that the regular lattice (a) is a highly clustered, ”large world”
— since the average path length grows linearly with the graph size n. Where the random
network (c) is poorly clustered, the small world one (b) sees its average path length d(G)
growing logarithmically with n [176].

However, the transition between both described states is not linear. As has been exper-
imentally tested for a family of WS (n, k, p), there is a broad interval of p over which the
average path length is almost as small as for random graphs, yet the clustering coefficient is
of greater order (CC(S)� CC(R)) [176].

Nevertheless, the Watts-Strogatz model raises issues with analytic treatment of general
cases — as emphasized by Newman and Watts in [122]. First of all, distribution of the rewired

1Xn ∼ bn (Xn on the order of bn), means that Xn is equal to bn asymptotically, i.e. Xn
bn

→ 1 when n → ∞.
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(a) regular (b) small-world (c) random

p = 0 p = 1
increasing randomness

Figure 2.6: Parameter “tuning” in the Watts-Strogatz model. The initial network consists of
n = 20 vertices, each connected to k = 4 nearest neighbours. With the increase
of the parameter p (probability of rewiring the edge), increases the randomness
— from a regular ring lattice (the left figure, p = 0) to a random graph (the right
figure, p = 1).

edges is not completely uniform (e.g. multiple edges between two vertices are prohibited),
therefore average over different realisations of the randomness is hard to perform. Secondly,
there is a finite probability that the graph will be split during the process of rewiring.
Therefore, average distance between pairs of vertices of the graph and number of quantities
and expressions are poorly defined.

To circumvent these problems, an improved small-world model was proposed in [122].
Starting from a regular lattice, instead of rewiring each edge with a probability p, short-
cuts are added between pairs of vertices chosen uniformly at random. There is also no
prohibition on the existence of loops or multiple edges between two vertices. To preserve
compatibility with the results of Watts and Strogatz, short-cuts are added with probability p
for each existing edge in the original network. This model is equivalent to the Watts-Strogatz
model for small p, whilst being better behaved when p becomes comparable to 1 (for details
see [122]). As we will see later in the manuscript (in Chapter 4 and Appendix B), this
construction was used in the expected runtime analysis of an elitist parallel Evolutionary
Algorithm based on an island model executed over such a small-world network.

2.5 Scale-free graphs

The last type of random graphs described here are scale-free networks. This model was
introduced by Albert-László Barabási and Réka Albert [18]. Scale-free graphs capture prop-
erties of many real-world networks such as World Wide Web links, biological networks or
actor collaborations. The key property is the degree distribution of vertices following power
laws2: P [δ(v) = k] ∼ k−α as k →∞ for α > 1 called the scaling exponent. Which implies
that there are a few high-degree nodes (hubs) and that the number of nodes with a high
degree decreases exponentially.

Opposite to the previously described models, scale-free graphs can be constructed only
through a growth process combined with a preferential attachment [162, 169]. The

2Sometimes simply written as P [k] ∝ k−α.
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2.5 Scale-free graphs

Algorithm 2.1: Construction of a Barabási-Albert random graph.
Data: G0 = (V0, E0) ∈ ER (n, p)

n — number of vertices to add
v1, v2, . . . , vn — vertices to add
m — number of edges to add, m ≤ |V0|

Result: a Barabási-Albert random graph
for i← 1 to n do

Vi ← Vi−1 ∪ {vi};
V ′ ← Vi−1;
E′ ← ∅;
while V ′ 6= ∅ and |E′| < m do

choose a vertex u from V ′ with a probability P [select u] = δ(u) /
∑
w∈V ′ δ(w) ;

V ′ ← V ′ \ {u};
E′ ← E′ ∪ (vi, u);

Ei ← Ei ∪ E′;

method is detailed in Algorithm 2.1. The process starts with a (relatively small) ER random
graph, which is one of the input parameters of the algorithm. At each step of the main for
loop, new node (vi) is added into the vertex set. After that, m edges are created between
vi and randomly chosen, unique vertices from the vertex set from previous step, where the
probability of choosing a node is proportional to its degree. It is imperative that m is
smaller or equal to the size of the original vertex set. The graph created this way is called
a Barabási-Albert random graph or a BA graph. A family of such networks will be
denoted as BA (n, n0,m).

The connectivity of a BA random graph (being a result of Algorithm 2.1) depends on if
the input network was connected (G0). As visible from the algorithm, none of the original
vertices or edges are changed. Additionally, the vertex being added in a current step of the
for loop is connected to the graph from the previous step.

The vertex degree, as mentioned in the introduction of the model, follows the power law.
For a given node v from an BA (n, n0,m) graph, let P [δ(v) = k] denote the probability that
the degree of v is k, then

P [δ(v) = k] = 2m(m+ 1)
k(k + 1)(k + 2) ∝

1
k3

as detailed in [162,169]. Taking a similar approach to the one used in Section 2.3 and treating
the vertex degree as a random variable δ, it can be computed that the average vertex degree
δ is equal to 2m.

The average path length for a graph G ∈ BA (n, n0,m) can be estimated by [57]:

d(G) = ln(n)− ln(m/2)− 1− γ
ln(ln(n)) + ln(m/2) + 1.5

where γ is the Euler constant.
In case of scale-free networks, the analytical expression that estimates the average clus-

tering coefficient has not yet been found [162]. For a graph G ∈ BA (n, n0,m), Bállobas and
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Riordan showed [17] that

CC(G) ∼ m− 1
8

(logn)2

n

2.6 Summary

This chapter introduced basic graph theory and metrics used to compare graphs between
each other. Fundamental models of random graphs were presented, including: ER random
graph, Watts-Strogatz small-world model, and scale-free Barábasi-Albert graph.

We use extensively all metrics defined here in the later chapters, especially in Chapter 5
and 7. As we mentioned earlier in the text, many natural phenomena and technological
creations used in communication exhibit properties of random graphs. Sometimes, these
characteristics are highly required. For instance, many Peer-to-Peer (P2P) networks are
specifically designed to share properties with a random or a small-world graph. As a result,
one can provide some assurances about the communication performance, resilience to network
failures, etc.
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Distributed Computing: Systems, Overlay
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Distributed computing refers to solving large-scale computational problems by their di-
vision into many tasks, each of which are executed by multiple networked and autonomous
devices forming a distributed system.

This chapter starts with an overview of distributed systems, introducing their main prop-
erties, features and applications. After that, overlay networks are presented, as they deter-
mine communication and interaction patterns within distributed applications. Overview of
failures, techniques to tolerate them and a definition of system robustness are closing the
chapter.
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3.1 Distributed systems

Distributed computing can also be defined as a field of computer science studying dis-
tributed systems. The main design goals of such systems can be grouped into two areas:
HPC and High Throughput Computing (HTC). HPC refers to emphasis on the raw speed
performance measured in FLOPS1, associated with large scale scientific and engineering com-
putations [77]. In case of HTC, the performance goal is shifted towards high throughput or
the number of tasks completed per unit of time, which is characteristic for business and web
services applications [77].

3.1.1 Clusters

Clusters (or supercomputers) were initially created to provide large collection of compute,
storage and network resources for scientific and engineering applications. A typical build of
such a system consists of homogeneous software and hardware [34,77]. Stand-alone, dedicated
computers forming a cluster are located in proximity to each other [34]. The machines are
interconnected in a low-latency, high-bandwidth network (such as Gigabit Ethernet, Myrinet,
InfiniBand, etc.) [77]. This design is used to provide a single, integrated HPC environment
with centralised management and control [34,77].

3.1.2 (Cluster-based) Computing Grids

With increasing needs for compute and storage resources, an idea of a grid emerged. Such
a system consists of loosely interconnected clusters from geographically dispersed sites [77].
Typically, it is a heterogeneous platform created to aggregate and share resources.

A grid is managed by a multi-institutional organisation [147]. Even so, each cluster owner
retains control over owned resources, which is reflected in different local policies and software
choices [147]. Because of this management model, a grid is sometimes called a federation
of clusters.

Many national and international grids are built in various parts of the world with support
and funding from governments (mainly) and industry. A local example is Grid’5000 [69] —
initially a French platform spanning nine sites, established for research purposes. At the
time of writing, the project is expanding (11 sites) in the international direction and the UL
is one its active member. Similarly, the successful TeraGrid [34,77] in the United States (11
sites, ended in 2011) has its continuation in a new venture supported by 17 institutions —
Extreme Science and Engineering Discovery Environment (XSEDE) [180].

3.1.3 Desktop Grid and Volunteer Computing System (DGVCS)

The first distributed computing project aiming to utilise idle compute resources was created
in 1978 [149]. The “worm” programs developed by Xerox Palo Alto Research Centre were
able to span machine boundaries and replicate themselves in idle computers connected to
a Local Area Network (LAN) [149]. Tests were conducted in a homogeneous environment
consisting of 100 Xerox Alto Personal Computers (PCs). The success of this project laid the
foundation for opportunistic computer grids, using non-dedicated resources.

1FLOPS — FLoating point Operations Per Second
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Internet

SA

SA

SA

Figure 3.1: Example of a DGVCS implementation.

In the (current) literature on the distributed systems [34,77], DGVCS’s are not presented
in a separate category, but in combination with (cluster-based) grids. However, there are
many differences between these schemes (like availability, level of security, hardware class,
etc.), which aids the clear distinction.

Typically, a desktop grid is composed of heterogeneous, economical and partially avail-
able computers (PCs, workstations, etc.) [19]. An example is depicted in the Figure 3.1.
Depending on the geographic dispersion of the machines, the system can be local or global.
Usage of resources shared by a computer (connected to the desktop grid) may be condi-
tioned on its state, e.g. a task execution is permitted only when the machine is idle2 or
utilisation of some resource is below a certain level. Finally, the system can be private or
public. Private desktop grids are operated within an organisation (like a company, labo-
ratory, university, etc.), whereas public ones rely mostly on volunteer (i.e. user-contributed)
resources. In order to attract volunteers, system owners offer various incentives based on
contributions, such as rewards, credit points, hall of fame, etc. In view of the above, a defi-
nition of volunteer computing can be given as a type of distributed computing with tasks
executed in a volunteer computing system (global, public desktop grid).

DGVCS’s are primarily used to support large-scale scientific projects. The biggest advan-
tage of these systems is the reduction of costs associated with purchase and maintenance
of dedicated hardware and physical space [19]. For instance, a private desktop grid can
be built in a given organisation using owned PCs, laptops and workstations. Of course, a
simple interconnection of these computers is not enough and additional means are needed.
The most popular middleware software used to build such platforms is Condor [99] (renamed
to HTCondor [76] in 2012), which is a specialised workload management system for batch
processing.

In contrast to the cluster-based grids providing HPC environments, desktop-based solu-
tions deliver HTC platforms required in applications focused on processing huge volumes of
data. Volunteer computing projects SETI@home [9] and Folding@home [56] are well known,
widely covered in media examples. First one is used to search for extra-terrestrial intelli-
gence, the second — for disease research that simulates protein folding, computational drug

2A computer can be considered as idle when its CPU is in the idle state or when its user is inactive (the
mouse and keyboard are idle).
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design and other types of molecular dynamics. Thanks to the publicity, they have the largest
number of volunteers. Nevertheless, data-intensive projects are not the only application area
of desktop grids. GIMPS [60] (Great Internet Mersenne Prime Search) is one such instance,
as it mainly requires high CPU power. All three examples (and many alike) have one thing in
common: use of dedicated hardware causes a lack of their economic viability due to the scale
and required resources [19]. This does not mean, that the cost disappears when DGVCS’s is
used, as it is simply passed on the users or donor organisations.

The aforementioned volunteer computing projects belong to the group of single-purpose
DGVCS’s. There are also general solutions (i.e. general-purpose DGVCS’s) like HTCon-
dor [76] (described earlier), Distributed.net [43] and BOINC [7]. Distributed.net is the creator
of the Internet’s first general-purpose distributed computing system, maintaining projects re-
lated to cryptography. BOINC was created in response to security issues associated with
malicious users, identified in SETI@home. It is an open source project facilitating develop-
ment of multi-purpose DGVCS’s, providing a complete tool set for creation, operation and
maintenance of public scientific projects.

Developers of DGVCS’s have to cope with more challenges, than in the case of the previ-
ously described schemes. First, the heterogeneity of the machines composing the system
is much more diverse and should be handled transparently [19]. Donated computers may
have completely different hardware and software configurations (including various versions,
vendors, tweaks, custom modifications etc.). This alone can lead to any unforeseen compli-
cations, conflicts and errors. On top of that, the network connection of each machine may
be characterised by different bandwidth and latency, which has to be taken into account.
Furthermore, volunteer resources are extremely volatile, so availability changes have to be
gracefully handled. Ensuring security of the computers in a private desktop grid is much
easier, than in the public systems. If the organisation is in control of the machines, proper
usage policies may be introduced, which is very difficult in volunteer-based solutions. Fi-
nally, problems related to correctness have to be solved, which is particularly challenging in
public systems. It is so because volunteers are essentially anonymous, which renders them
unaccountable for their actions.

3.1.4 The Cloud Computing Paradigm

Cloud Computing (CC) systems emerged from commercial sector focused on enterprise
applications, where consumers use and pay for what they need on the Internet [147]. Es-
sentially, they implement the vision of computing as a utility through offering “everything
as a service” [34]. Clouds are heavily dependant on dynamically scalable and often virtu-
alised resources, which provide on-demand, instant and elastic environment at the scale
and reliability of a data centre. From the hardware point of view, clouds are built on top of
cluster-based grids. Therefore, these systems are often confused with grids themselves. How-
ever, there is a major difference between them: in clouds, a resource is leased to a consumer
with the full control over it. This is supported by an underlying hypervisor isolating other
resources securely. Whether clouds can provide enough performance and speed in compu-
tation, storage and networking for HPC applications, is a difficult question to answer and
heavily depends on the concrete cloud realisation [167].

Cloud services come from main elements in Information Technology — software runs on a
platform using an infrastructure. This is reflected in different pay-as-you-go, layered service
models: IaaS, PaaS and SaaS. These layers are illustrated in the Figure 3.2 and are now
detailed.
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Figure 3.2: Cloud service models: IaaS, PaaS, and SaaS. On the left all elements building
the system are enumerated, on the right — their membership in the classical
application model is marked. Parts managed by the clients and providers are
appropriately selected.

3.1.4.1 Infrastructure as a Service (IaaS)

The bottom (IaaS) layer is based on different Virtualisation Technologies (VTs) implemented
on physical hardware. Its role is to put together infrastructures consisting of computing, stor-
age, and networking resources demanded by users [77]. This is achieved by deployment and
execution of multiple Virtual Machines (VMs), running guest Operating Systems (OS’s) —
both usually selected by the customers. The users do not control or manage the underlying
cloud infrastructure [77]. Instead, they can supervise the OS’s, storage and deployed applica-
tions [77]. Sometimes, customers receive control over selected networking components [77].
There are many commercial IaaS providers, for example: Amazon EC2 [6], GoGrid [61],
Rackspace [132]. It is also possible to build private clouds using one of many available toolk-
its like Nimbus [123], OpenNebula [126], Cumulus [35], EUCALYPTUS [51], openQRM [127],
OpenStack [128] etc.

3.1.4.2 Platform as a Service (PaaS)

PaaS is the middle layer of cloud services. It enables development, deployment, and man-
agement of user-build applications using provisioned, well-defined, virtualised platform [77].
PaaS is oriented on application lifecycle, hence customers use predefined infrastructures [77].
This includes also available software tools, programming languages and libraries. Such en-
vironments usually differ between providers. For instance, Google App Engine [67] let cus-
tomers run programs in a limited version of Python or Java with access to Google’s database;
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Figure 3.3: Example overlay network defined on a set of interconnected devices.

Salesforce.com’s Force.com [139] supports development in a proprietary Java-like program-
ming language — Apex; and Microsoft Azure [106] is .NET oriented.

3.1.4.3 Software as a Service (SaaS)

Finally, the top SaaS layer refers to browser-based usage of application software serving thou-
sands of customers [77]. The underlying platforms and infrastructures are hidden from the
user. There is a vast choice of such services for business and private use: Google Gmail [68] —
contacts and e-mail management, Google Docs — office tools, Customer Relationship Man-
agement (CRM) from Salesforce.com [139], Facebook [52] — social networking, Flickr [55]
— photo sharing; and many more.

3.2 Overlay networks

Computer networks consist of various network nodes and links. The way these devices are
connected defines a topology. On top of that, an overlay network may be used to specify
communication patterns in the computer network. In this context, nodes correspond to their
physical counterparts, where links are logical — a link in the overlay network is equal to a
path (possibly consisting of many links) in the underlying topology (see Figure 3.3).

A Taxonomy of the possible approaches is proposed in the Figures 3.4. As visible, there
exists two main classes of overlay networks:

1. Centralised — where a central node is connected to the others – see Section 3.2.1,
2. Peer-to-Peer (P2P) – see Section 3.2.2.
The following sections offer a more detailed presentation of these classes and their re-

spective ramifications. Also, chosen examples of the different categories are depicted in the
Figure 3.5.
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Figure 3.4: Taxonomy of overlay networks.

3.2.1 Centralised models

Centralised overlay networks have a simple structure: one node (having a central role in
the system) is connected with the others. The communication in such organisation follows a
request-response messaging pattern. Initiation of the message exchange is usually restricted
— either the central node sends requests or it responds to them. Therefore, there are two
models of centralised overlay networks: client-server and master/worker.

Many of the Internet-based applications follow the client-server architecture. In this
context, a server provides resources or services which may be requested by one or many
clients. The server waits for incoming requests. Every received request is processed and
replied back to the client.

In the master/worker model this relation is reversed. A master node sends requests
for resources or services to worker nodes. Each worker waits for incoming requests. Every
received request is processed and replied back to the master node.

It is not difficult to imagine, that the central node forms a bottleneck (especially in the
client-server architecture). Therefore, a device having this role must be carefully selected. Its
configuration (computing power, memory, storage and network bandwidth) must match the
requirements of the expected workload. In some cases, load balancing and failover systems
are introduced to improve scalability of the solution.

3.2.2 Peer-to-Peer (P2P) models

Peer-to-Peer (P2P) overlay networks were created to address scalability problems for
large, distributed applications. Contrary to the previously described models, the networks
presented here usually consist of equally privileged, equipotent participants, called peers.
In these schemes, symmetry in roles is present — a client may also be a server.

The global view (or simply the view) is the list of all the network members. Each
participant maintains a list of some other peers representing its (partial) knowledge of the
global membership, called a partial view. Maintenance of the global view by each peer is
unrealistic in a large-scale dynamic system as it introduces considerable synchronization costs
with each entering or leaving node [83]. There are two main subtypes of the decentralised
overlay networks — structured and unstructured — determined by the construction of the
partial view and information handling.
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Figure 3.5: Examples of different overlay networks: (a) centralised — client-server or mas-
ter/worker; (b) unstructured, centralised P2P; (c) unstructured, pure P2P; (d)
structured P2P (Chord); (e) unstructured, hybrid P2P.

3.2.2.1 Structured P2P

In case of structured P2P overlay networks, peers are linked in a tightly controlled
and organised way. The name mainly refers to approaches based on the Distributed Hash
Tables (DHTs) used for distributed indexation of content represented by (key, value) pairs.
The structured graph enables efficient discovery (lookup) of data items (value) using their
keys [100], where each peer within the network receives a portion of the index and a routing
table to the subset of the nodes. However, that this class of systems does not support complex
queries [100]. There are many protocols implementing this scheme, for example: Chord [152],
Tapestry [182], Pastry [134], Content Addressable Network (CAN) [133], Kademlia [103] and
Viceroy [102].

3.2.2.2 Unstructured P2P

In contrast to well-structured overlays created by the previous group of models, unstruc-
tured P2P overlay networks (or random overlay networks [162]) keep a high degree
of randomness in the partial view of each peer. The first generation of models include
centralised and pure P2P networks, the second — hybrid (or semi-centralised) net-
works [47].
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Figure 3.6: Relation between faults, errors and failures.

The idea of P2P file sharing was pioneered by Napster [118] in 1999 by the introduction
of the centralised P2P network. In this approach, a central entity is necessary to provide
an index of peers and the resources shared by them. This centralisation forms a possible
bottleneck for massive scalability. Furthermore, it creates a single point of failure. Those
problems were clearly visible when in 2001 Napster had to close its service after the lawsuit
filed by Recording Industry Association of America (RIAA).

Pure P2P networks, such as Gnutella (version 0.4 [155]), Freenet [31] or Newscast [82],
were developed to address the problems associated with centralisation. Without the cen-
tral index, queries for content shared by the nodes are made by flooding mechanisms [100]
(random walks, expanding-ring Time-to-Live (TTL) searches, gossiping, epidemic-lookup,
etc.). The topology of the emerging (random) graph is self-organised — decisions on the
routing are taken locally at each node. Additionally, the diameter of the network is small.
All that, together with the small-world relationship between peers, is the basis of success of
the mentioned protocols.

Request flooding employed in the pure P2P networks generates a potentially huge amount
of signalling traffic [47]. In case of Gnutella this caused the system collapse in 2001, after
enormous number of former Napster users migrated to this network within a few days [151].
To counter this problem, hybrid schemes (like Gnutella 0.6 [156]) were developed. As a result,
a sort of centralisation was re-introduced into the network, creating a hierarchy between the
peers. The central role is shared between designated nodes, called Super-peers. These
hubs have a higher degree of connections than the rest of the nodes (leaves). This does
not mean, that the scalability of the solution is reduced, as the amount of Super-peers scales
according to the network size.

3.3 Faults, fault tolerance and robustness

There are many sources of faults in distributed computing [11] and they are inevitable due
to the defects introduced into the system at the stages of its design, construction or through
its exploitation (e.g. software bugs, hardware faults, problems with data transfer). A fault
may occur by a deviation of a system from the required operation leading to an error (for
instance a software bug becomes apparent after a subroutine call). This transition is called a
fault activation, i.e. a dormant fault (not producing any errors) becomes active. An error is
detected if its presence is indicated by a message or a signal, whereas not detected, present
errors are called latent. Errors in the system may cause a (service) failure (see Figure 3.6)
and depending on its type, successive faults and errors may be introduced (error/failure
propagation).
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The distinction between faults, errors and failures is important because these terms create
boundaries allowing analysis and coping with different threats. In essence, faults are the
cause of errors (reflected in the state) which without proper handling may lead to failures
(wrong and unexpected outcome). Following these definitions, fault tolerance is an ability
of a system to behave in a well-defined manner once an error occurs.

3.3.1 Taxonomies of faults and failures

Faults can be described using eight categories: dimension, phase of creation or occurrence,
persistence, system boundaries, objective, intent, phenomenological cause, and capability [11]
(see Figure 3.7 for detailed description). Each fault may belong to more than one class.
Software bugs, for instance, belong to a category of software faults introduced during the
development phase. Furthermore, they are permanent (until they are removed) and internal.
Such faults are usually non-deliberate and human-made, caused by mistakes (accidental) or
lack of professional competence, introduced without malicious intents (non-malicious).

Failures can also be characterised according to their domain, detectability, consistency and
consequences [11] (see Figure 3.8). Although these classes and their subtypes are relatively
general, there are specific fault models relevant in distributed computing, namely: crash,
omission, duplication, timing, and byzantine failures [154].

The crash failure occurs in four variants, each additionally associated with its persis-
tence. Transient crash failures correspond to the service restart: amnesia-crash (the system
is restored to a predefined initial state, independent on the previous inputs), partial-amnesia-
crash (a part of the system stays in the state before the crash, where the rest is reset to the
initial conditions), and pause-crash (the system is restored to the state it had before the
crash). Halt-crash is a permanent failure encountered when the system or the service is not
restarted and remains unresponsive.

Omission and duplication failures are linked with problems in communication. Send-
omission corresponds to a situation, when a message is not sent; receive-omission — when a
message is not received. Duplication failures occur in the opposite situation — a message is
sent or received more than once.

Timing failures are defined exactly as on Figure 3.8 and occur when time constraints
concerning the service execution or data delivery are not met. This type is not limited to
delays only, since too early delivery of a service may also be undesirable.

The last model — byzantine failure (also called arbitrary) — covers any (very often
unexpected and inconsistent) responses of a service or a system at arbitrary times. In this
case, failures may emerge periodically with varying results, scope, effects, etc. This is the
most general and serious type of failure [154].

3.3.2 Dependable and secure computing

Faults, errors and failures are threats to system’s dependability and security [11]. A sys-
tem is described as dependable, when it is able to fulfil a contract for the delivery of its ser-
vices avoiding frequent downtimes caused by failures. This measure has five attributes [11]:
• availability — readiness for correct service,
• reliability — continuity of correct service,
• safety — absence of catastrophic consequences on the user(s) and the environment,
• integrity — absence of improper system alterations,
• maintainability — ability to undergo modifications and repairs.
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Faults

Dimension
Hardware faults affect hardware or

originate from it

Software faults emerge on the software
level

Phase of creation
or occurrence

Development faults
introduced into the system
during its development or
maintenance

Operational faults created during the service
provision
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Permanent faults present continuously in

time

Transient faults occur for a limited time

System boundaries

Internal faults
a result of a problem
present within the system
boundary

External faults

a condition outside the
system boundary, causing
and propagating errors
through interaction or
interference

Objective

Malicious faults
a result of malicious
(human) activity aimed to
destabilise the system

Non-malicious
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introduced without a
malicious objective

Intent
Deliberate faults caused by intentional

actions

Non-deliberate
faults

a result of unintentional
activity

Phenomenological
cause

Natural faults
caused by natural
phenomena (without
human participation)

Human-made
faults result from human actions

Capability
Accidental faults introduced by chance due

to mistakes

Incompetence
faults

a result of professional
incompetence

Figure 3.7: Eight elementary classes of faults [11].
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Failures

Domain

Content failures
data delivered through the
service interface deviates from
its specification

Timing failures
time constraints concerning the
service execution or data
delivery are not met

Halt failures

i.e. fail-stop, crash-stop or
crash faults; the system
becomes unresponsive, does not
execute any operations, nor
sends any signals

Erratic failures
the service is delivered, but it
is erratic in terms of time and
served content

Detectability

Signaled failures

a problem with a service is
detected and a warning is
dispatched (including false
alarms)

Unsignaled failures a failure is detected, but a
warning is not sent

Consistency
Consistent failures all users perceive the service

malfunction in the same way

Inconsistent
failures

the malfunction is perceived
differently by the users

Consequences

Minor failures
the malfunction is of low
severity and consequence (i.e.
the service is acceptable)...

Catastrophic
failures

usage of the service leads to
significant losses (e.g. cost)

Figure 3.8: Service failures [11].

While the attributes of security are [11]:
• confidentiality — absence of unauthorized disclosure of information,
• availability
• integrity

}
defined as previously.

Identification of threats and attributes does not automatically guarantee secure and de-
pendable computing. For this purpose, four main groups of appropriate methods have been
defined [11]: fault prevention, fault tolerance, fault removal, and fault forecasting.
As visible on Figure 3.9, all of them can be analysed from two points of view — either as
means of avoidance/acceptance of faults or as approaches to support/assess dependability
and security. Fault tolerance techniques aim to reduce (or even eliminate) the amount of
service failures in the presence of faults. The main goal of fault prevention methods is to
minimize the number of faults occurred or introduced through usage and enforcement of var-
ious policies (concerning usage, access, development etc.) The next group — fault removal
techniques — is concentrated around testing and verification (including formal methods).
Finally, fault forecasting consists of means to estimate occurrences and consequences of
faults (at a given time and later).
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Figure 3.9: Means for dependable and secure computing.

3.3.3 Fault tolerance

Fault tolerance techniques may be divided into two main, complementary categories [11]:
1) error detection, 2) recovery. Error detection may be performed during normal service
operation or while it is suspended. The first approach in this category — concurrent
detection — is based on various tests carried out by components (software and/or hardware)
involved in the particular activity or by elements specially designated for this function. For
example, a component may calculate and verify checksums for the data which is processed
by it. On the other hand, a firewall is a good illustration of a designated piece of hardware
(or software) oriented on detection of intrusions and other malicious activities. Preemptive
detection is associated with the maintenance and diagnostics of a system or a service. The
focus in this approach is laid on identification of latent faults and dormant errors. It may
be carried out at a system startup, at a service bootstrap, or during special maintenance
sessions.

After an error of a fault is detected, recovery methods are applied. Depending on the
problem type, error or fault handling techniques are used. The first group is focused
on elimination of errors from the system state, while the second are designed to prevent
activation of faults. In [11], the specific methods are separated from each other, where in
practice this boundary is fuzzy and depends on the specific service and system types.

Generally, error handling is solved through [11]:
1. Rollback [49] — the system is restored to the last known, error-free state. The

approach here depends on a method used to track the changes of the state. A well
known technique is checkpointing — the state of a system is saved periodically (e.g.
the snapshot of a process is stored on a disk) as a potential recovery point in the
future. Obviously, this solution is not straightforward in the case of distributed systems
and there are many factors to consider. In such environment, checkpointing can be
coordinated or not — with differences in reliability and the cost of synchronisation of
the distributed components (for details see: [34, 77,154]).
Rollback can be also implemented through the message logging. In this case, the
communication between the components is tracked rather than their state. In case
of an error, the system is restored by replaying the historical messages, allowing it
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to reach global consistency [154]. Sometimes both techniques are treated as one, as
usually they complement each other.

2. Rollforward — the current, erroneous system state is discarded and replaced with a
one newly created and initialised.

3. Compensation — solutions based on components’ redundancy and replication,
sometimes referred to as fault masking. In the first case, additional components
(usually hardware) are kept in reserve [77]. If failures or errors occur, they are used to
compensate the losses. For example, a connection to the Internet of a cloud platform
should be based on solutions from at least two different Internet Service Providers
(ISPs).
Replication is based on the dispersion of multiple copies of the service components. A
schema with replicas used only for the purpose of fault tolerance is called a passive
(primary-backup) replication [77]. On the other hand, active replication is when
the replicas participate in providing the service, leading to increased performance and
applicability of load balancing techniques [77]. Coherence is the major challenge here,
and various approaches are used to support it. For instance, read-write protocols are
crucial in active replication, as all replicas have to have the same state. Another worth
to note example is clearly visible in volunteer-based platforms. An appropriate selection
policy of the correct service response is needed when replicas return different answers,
i.e. a method to reach quorum consensus is required [77].

These techniques are not exclusive and can be used together. If the system can not be
restored to a correct state thanks to the compensation, rollback may be attempted. If this
fails, then rollforward may be used.

The above methods may be referred to as general-purpose techniques. These solutions
are relatively generic, which aids their implementation for almost any distributed compu-
tation. It is also possible to delegate responsibility for fault tolerance to the service (or
application) itself, allowing tailoring the solution for specific needs — therefore forming an
application-specific approach. A perfect example in this context is ABFT, originally ap-
plied to distributed matrix operations [30], where original matrices are extended with check-
sums before being scattered among the processing resources. This allows detection, loca-
tion and correction of certain miscalculations, creating a disk-less checkpointing method.
Similarly, in certain cases it is possible to continue the computation or the service operation
despite the occurring errors. For instance, unavailable resource resulting from a crash-stop
failure can be excluded from further use. In this work, the idea will be further analysed and
extended to the context of byzantine errors and the nature-inspired distributed algorithms.

Fault handling techniques are applied after the system is restored to an error-free state
(using the methods described above). As the aim now is to prevent future activation of
detected faults, four subgroups according to the intention of the operation may be created.
These are [11]:

1. Diagnosis — the error(s) are identified and their source(s) are located.
2. Isolation — faulty components are logically or physically separated and excluded from

the service.
3. Reconfiguration — if redundant components are available then the previously re-

moved are substituted with them; otherwise the service/platform is reconfigured to
bypass the faulty elements.

4. Reinitialization — the configuration of the system (including its state) is adapted to
the new conditions (removed, added or updated components).
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3.3.4 Robustness

When a given system is resilient to a given type of fault, one generally claims that this system
is robust. Yet defining rigorously robustness is not an easy task and many contributions
come with their own interpretation of what robustness is. Actually, there exists a systematic
framework that permits to define a robust system unambiguously. In fact, this should be
probably applied to any system or approach claiming to propose a fault-tolerance mechanism.
This framework, formalized in [172], answers the following three questions:

Q1 What behavior of the system makes it robust?
Q2 What uncertainties is the system robust against?
Q3 Quantitatively, exactly how robust is the system?

The first question is generally linked to the technique or the algorithm applied. The second
question explicitly lists the type of faults or disturbing elements targeted by the system.
Answering this question is critical to delimit the application range of the designed system
and to avoid counter examples selected in a context not addressed by the robust mechanism.
The third and the last question is probably the most difficult to answer, and at the same
time the most vital to characterize the limits of the system. Indeed, there is nearly always
a threshold on the error/fault rate above which the proposed infrastructure fails to remain
robust and breaks (in some sense). This framework will be applied throughout the thesis to
evaluate the effectiveness of the proposed solutions.

3.4 Summary

There are four main categories of systems for distributed computing: clusters, (cluster-based)
grids, Desktop Grids and Volunteer Computing Systems (DGVCS’s) and clouds. Each of
them with different properties of available resources.

Overlay networks determine how tasks forming a distributed computation interact with
each other. There are two centralised schemes and the distinction between them is deter-
mined by the party initiating the communication. When the interaction starts from the
central node, then the execution is organised in a master/worker pattern. On the other
hand, if the leaf nodes are the active side, then the scheme being used is the client-server.

In decentralised approaches, if the connections between the nodes are determined, then
the organisation is structured. If however, the interactions are defined by a probabilistic
scheme, then the network is unstructured.

Finally, faults, errors and failures were defined with the relations between them, their
sources and types. This was followed by the introduction to the fault tolerance — the way
in which such problems and the different approaches to handle failures may be handled. The
chapter was closed by the definition of robustness of a distributed system — a method to
quantify the fault tolerance.
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Evolutionary Algorithms (EAs) are a class of solving techniques based on the Darwinian
theory of evolution [36] which involves the search of a population of solutions. Members
of the population are feasible solutions and called individuals. Each iteration of an EA
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Algorithm 4.1: General execution scheme of an EA.
t← 0;
Xt ← Generate(); // generate the initial population
Evaluate(Xt); // evaluate population
while stopping criteria not satisfied do

X̂t ← SelectParents(Xt); // select parents
X ′
t ← Modify(X̂t); // recombination + mutation

Evaluate(X ′
t); // evaluate offspring

Xt+1 ← SelectSurvivors(Xt, X ′
t); // select survivors for the next generation

t← t+ 1;

involves a competitive selection that weeds out poor solutions through the evaluation of a
fitness function that indicates the quality of the individual as a solution to the problem. The
evolutionary process involves at each generation a set of stochastic operators that are applied
on the individuals as variations, typically recombination (or cross-over) and mutation.

The chapter starts with a presentation of a general scheme of an EA. This is followed by a
detailed description of different components building the algorithm. Then, possible execution
models for EAs are discussed (namely: parallel, decentralised and distributed) depending on
the population structure being used. Lastly, an overview of popular, theoretical analysis
approaches are presented.

4.1 General scheme of an EA

There exists many useful models of EAs yet a pseudo-code of a general scheme is provided in
Algorithm 4.1. The execution starts with a creation (Generate) of an initial population
(X0) of individuals, followed by their evaluation (Evaluate— an assessment of quality).

The rest of the algorithm is organised in iterations, which in the context of EAs are called
generations (indexed with a discreet time t ∈ N0). At each generation, an offspring
population (X ′

t) is created in three steps:
1. A population of parents (X̂t) is selected (SelectParents).
2. New individuals (X ′

t) are created using variation operators (Modify) applied to the
parents population (X̂t).

3. The new set of feasible solutions (X ′
t) is evaluated (Evaluate).

The iteration ends with a selection of individuals (survivors) (from both sets Xt and X ′
t)

forming a new population (Xt+1) at the next generation.
The execution is terminated after a stopping criteria is met, e.g. a certain generation is

reached.

4.2 Components of EAs

In order to define a particular EA, a number of certain components and procedures have to
be specified: representation of individuals, evaluation method, population model, initialisa-
tion, parents selection mechanism, variation operators, survivors selection mechanism, and
stopping criteria. The performance of the algorithm depends on the selected settings. One
of its key factors is the balance between the “exploration of the new areas of the search
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space and exploitation of good solutions” [2]. This may be measured with the diversity of
the population — the number of different fitness values or individuals present — over time.

A variety of computational methods fits in the framework presented in this section: Genetic
Algorithms (GAs), Evolutionary Strategies (ES’s), Genetic Programming (GP) and Evolu-
tionary Programming (EP). Details for each component are given below.

4.2.1 Representation of individuals

Representation (i.e. definition) of individuals specifies a mapping between the original prob-
lem space and an EA’s solution space (M 6= ∅). Each point in S corresponds to a feasible
(i.e candidate) solution. The process of translation of the original problem space to the
context of an EA is called encoding, and in reverse — decoding. There are many use-
ful representations of individuals, these include: bit-strings {0, 1}n, vectors of real values
(x1, . . . , xn) where xi ∈ R, trees, graphs, etc.

4.2.2 Evaluation method

The evaluation method is one of the key elements of EAs — it guides the search of the
algorithm, providing the quantitative information about the quality of solutions. It defines
a fitness function (i.e. evaluation or objective function) f : M→ R and the pair (M, f)
— an optimisation problem. The algorithm may be guided in two directions:
• Minimisation of f , if x∗ is searched such that f(x∗) ≤ f(x),∀x∈M .
• Maximisation of f , if x∗ is searched such that f(x∗) ≥ f(x),∀x∈M .

The assumption of minimisation or maximisation does not limit the generality of the results,
as there exist the following equivalence [2]:

max {f(x) | x ∈M} ≡ min {−f(x) | x ∈M} .

Therefore, until the end of this section we will focus only on the minimisation of the optimi-
sation problem.

Let f∗ = min {f(x) | x ∈M} be the minimum value of the fitness function for all elements
from the search space M. The goal of the optimisation is to reach the set of optimal
solutions {x ∈M | f(x) = f∗}, i.e. to find an optimal solution — an individual with a
minimal fitness value.

Let d :M×M→ R be some distance measure defined on pairs of points from the search
spaceM, and Nε(x) = {y ∈M | d(x, y) < ε} be a neighbourhood of an individual x ∈M
for some distance ε ∈ R (ε > 0). Then x is a local optimum if f(x) ≤ f(y)∀y∈Nε(x), i.e. x
has the lowest fitness value among its neighbours.

4.2.3 Population model

The population plays a key role in an EA — it holds feasible (tentative) solutions to an
optimisation problem. Its content changes (evolves) during the execution of the algorithm
thanks to the parents and survivors selection mechanisms (described later). Yet, the size (µ)
— typically remains constant.

There exist two main types of the population models: panmictic and spatially-
structured — see Figure 4.1. The models with a spatial structure have two variations:
island and cellular — depending on the granularity of the division.
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Population models

Panmictic Spatially-structured

Island model
coarse-grained

Cellular model
fine-grained

Structured Unstructued

Figure 4.1: Population models in EAs — taxonomy.

Independently on the case, spatially-structured populations promote diversity in compari-
son to the panmictic approach [2, 26, 158]. The solutions spread slower in the population,
improving the exploration properties and preventing the algorithm from getting stuck in a
local optima [2].

4.2.3.1 Panmictic model

The panmictic model (see Figure 4.2a) is the simplest and most used. It is defined with a
single parameter — the population size (µ, i.e. the number of individuals). To small value
may cause a premature convergence, too large — leads to wasted computational resources
(the waiting time for the population-wise fitness improvement might be too long) [105].
The individuals evolve freely in EAs using a single population, i.e. there are no restrictions
imposed on the selection mechanisms — any individual may be chosen.

4.2.3.2 Insland model

A common coarse-grained approach is the island model [2, 26–28, 158] (see Figure 4.2b). In
it, the population is split into n semi-isolated sub-populations — islands or demes, each of
the size µi (usually equal). The parents and survivors selection mechanisms are limited to
each island.

Periodically (with a frequency mf ), selected individuals — migrants — are sent from
one sub-population (the source) to the other (the destination) according to a predefined
topology (depicted with arrows on Figure 4.2b). This process is called migration and a
number of migrated individuals — a migration rate. The choice of migrants and their
integration into the island depends on the predefined migrants’ selection and replacement
mechanisms, e.g. the best solution in the source replaces the worst one in the destination.

The parameter settings depend on the problem being solved. Yet, general guidelines apply.
Dense topologies require less function evaluations to find the global optimum [26]. Too large
island sizes or too high migration rate and frequency, diminish the benefits from the spatial
structure; on the other hand, too low settings decrease the quality of the solution found [26].
Finally, using too many islands is wasting computational resources and does not give any
additional benefits [26].
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(a) (b)

(c) (d)

Figure 4.2: Examples of EAs population models. Each grey circle represents an individual,
white circles — boundaries of the (sub-)populations. In (a) a panmictic model,
(b) an island model — arrows represent the direction of individuals’ migrations
(with migrants above them), (c) a cellular model — structured, (d) a cellular
model — unstructured.

4.2.3.3 Cellular models

In the cellular models, the population is divided into single individuals, i.e. cells. In the
structured approach, the cells are organised in a regular lattice — typically in a two-
dimensional grid or toroid (if the ends of the grid are wrapped around), with a predefined
with (w) and height (h) (see Figure 4.2c) [2]. The parents selection mechanism is applied in
a limited scope of the structure — the neighbourhood of the cell, which is defined with a
distance on the lattice (Figure 4.3 depicts typical set-ups).

The unstructured cellular model is characterised by an irregular organisation of the cells
(see Figure 4.2d) — in a random, small-world or scale-free graph [59, 179] (see Chapter 2).
The population is defined with a size and a specific type of the network. As previously,
the parents selection mechanism is limited to the neighbourhood of the cell, yet in this case
— only to the immediate neighbourhood in the graph. Contrary to the structured model,
the organisation of the cells does not have to remain constant throughout the execution of
the algorithm, therefore the neighbourhoods may change dynamically, co-evolving with the
individuals [85,88,179].
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L5 L9 C9 C13 C21 C25

Figure 4.3: Typical neighbourhoods in a structured cellular model of an EA’s population [2].

Similarly to the previously described models, the size of the population, the topology of
the cells and the neighbourhood definition being used, affect the quality of the search and
have to be carefully selected for a particular application [2, 59,179].

4.2.4 Initialisation

The initialisation is a strategy for creation of the initial population. In most cases, the
first generation of the individuals is created at random — the points from the search space
are picked using a selected distribution. However, additional heuristics may be applied for
specific problems, aiming to create an initial population with higher fitness [48].

4.2.5 Parents selection mechanism

The parents selection mechanism (i.e. mating selection) is responsible for choosing the in-
dividuals to become parents of the next generation. Better solutions should have a higher
chance to be chosen, therefore the process is based on the quality of solutions (in terms of
the fitness value). It is noteworthy that neglecting completely the low-quality individuals
may stop the search at a local optimum, as the exploration property of the algorithm will be
greatly diminished. The selected parents will be subject to mating through the application
of variation operators, creating the offspring.

4.2.6 Variation operators

There are two types of variation operators, both used to create new individuals (children,
offspring) based on the old ones (parents): mutation and recombination (crossover).
Both are stochastic and problem specific. Their role is to provide the means for an EA to
explore the search space. The main difference between the two types of variation operators is
the number of required parameters. Mutation (slightly) alters the representation of a single
individual, whereas crossover — mixes together the representations of at least two parents.
The rationale behind the first operator is to increase the diversity of the population, whereas
in the second case — “mating two individuals with different but desirable features, can
produce an offspring that combines both of those features” [48].

Not all EA models require both types of the variation operators. For instance, in GP —
mutation is often not present at all (only crossover is used), in GA — both operators are
crucial, while in EP — mutation is the only variation operator used (and crossover is not
present) [48].
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4.2.7 Survivors selection mechanism

The survivors selection mechanism is responsible for choosing the individuals forming a
population in the next generation of the EA. The choice is usually based on the quality
of the solutions (their rank). Opposed to the previously described parents selection, the
choice here is often deterministic. For instance, the best solutions from parents and offspring
populations are selected (fitness biased) or only from the children population (age biased).
In case when the proportion between the numbers of parents and offspring is skewed, such
that the first is greater than the second — survivors selection is simply called replacement,
as it more accurately describes the process. Typically, the size of the population remains
constant, yet its alteration is also possible. The survivors selection is called elitist when the
best individuals in the current generation are preserved for the next one at each iteration of
the algorithm.

4.2.8 Stopping criteria

The stopping criteria or termination conditions determine the end of the execution. This
decision depends on the problem being solved. If the optimal fitness value is known, then
the stopping criteria may be based on it (optionally with a given precision ε > 0). However,
it is not always the case and what is more, there are no guarantees that a given EA will
reach the optimum in reasonable time (or in a specific cases — at all). For these reasons,
alternative criteria are also commonly used, like [48]: the elapsed CPU time, the number
of fitness evaluations or generations, no improvement of fitness value during a given period,
etc.

4.3 Parallel, decentralised and distributed executions of EAs

Execution of a simple EA requires high computational resources in the case of non-trivial
problems. It might be encountered when dealing with large individuals (e.g. in case of GA —
long sequences of genes, in case of GP — large parse trees) and/or large populations and/or
when the objective function is CPU or memory intensive. This influences the time required
to evaluate the population, which usually is the costliest operation in EAs. In such cases,
time-to-solution on a single computer might be prohibitively long for practitioners (especially
with usage of GP).

An example of a highly expensive EA for a computer vision problem is described in [161],
where more than 24 hours is required to execute the algorithm. Another instance of even big-
ger requirements was reported by Melab et al. in [104] — predictive mathematical model for
the concentration of sugar in beets was constructed using parallel GA, where the cumulative
CPU time exceeded 27 days. Finally, the MilkyWay@home [32, 40–42] — a volunteer-based
project running on the BOINC [7] platform — used to model the Milky Way galaxy repre-
sents an extreme case. It requires up to 200 hours of CPU time (with an average of 15 hours)
for a single simulation and at least 30.000 simulations to optimise the input parameters [40].
This yields on average above 50 years of computation on a single CPU. Therefore, different
approaches for parallel, decentralised and distributed execution of EAs were proposed to
solve these issues [2, 5].

Distributed systems support three main types of execution: parallel, decentralised and
distributed. The type is determined by relations and interactions between utilised resources.
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Spatially-structured
Coarse-grained Fine-grained

Panmictic Island model Cellular models
Parallel X X X
Decentralised X X X
Distributed X X X

Table 4.1: Execution possibilities of different EA population models in distributed systems.

In a parallel model, one computing node (master) has a dominant role. It manages and
supervises the execution, delegating tasks to other machines (workers). In a decentralised
model, the dominant role is shared between few nodes. Each of them is responsible for man-
aging and supervising the execution, delegating tasks to their own pool of worker machines.
The master nodes may periodically exchange information. In a distributed model, each
machine has an equal role — executing the computation semi-independently, periodically
communicating with other nodes.

The schema of EAs’s execution in a distributed system is conditioned on the population
model being used. A summary is provided in Table 4.1 and the following sections provide
the details.

4.3.1 Parallel execution of any EA

Parallel models of EAs are a well studied subject in the literature [28,42,66,72]. The paral-
lelism is usually performed at the level of individuals’ evaluation, as it is the most demanding
part of the algorithm. A less common option involves additionally a parallel application of
the variation operators. To simplify the discussion, we will consider the parallelism only for
the fitness calculations (until the end of the description of the current approach).

The computation is organised in the master/worker model (see Figure 4.4 and Sec-
tion 3.2.1). Generally the panmictic (i.e. single) population (see Section 4.2.3.1) is used,
following the structure of the distributed resources. The master node runs the algorithm
and sends individuals to the workers for evaluation, after which — collects the results.

Two execution modes are possible: synchronous and asynchronous. In a synchronised
approach, the master node waits until all individuals are evaluated before proceeding to the
next generation. If the number of workers is smaller than the population size being used, then
it takes more than one round of tasks’ delegation to continue the evolution. Additionally, if
worker nodes have different processing speeds, then the whole execution is suspended until
the slowest machine returns the result [26,158].

For a better load balancing and performance, the asynchronous mode may be used. The
solution is called the steady-state reproduction [105] and it is characterised by the lack
of the concept of generation. New individuals are continuously created (using the parents
selection mechanism and variation operators) and sent for the fitness computation for each
free (not computing at the moment) worker. The evaluated offspring is inserted into the
population as soon as the result is returned (following the replacement mechanism).
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Figure 4.4: Parallel execution of an EA in a master/worker model.

4.3.2 Island-based populations: distributed and decentralised executions

Island model translates directly to distributed or decentralised executions. Each sub-popu-
lation is assigned to a single computing node which administers the evolution of individuals.
This forms a distributed execution. The model may be combined with a master/worker
approach at the level of each island, forming a decentralised organisation of the computation
(sometimes referred to as a hierarchical parallel EA [26, 158]).

The last important element left to define is the migration of individuals. The exchange
may be performed synchronously or asynchronously, following some topology [26]. In the first
case, the execution has to be stopped at predefined times (e.g. at the end of each generation)
until the migrants are sent and received. In the latter — sub-populations evolve freely and
the migrants are sent at convenient times. When the incoming individual is received, it
may be incorporated in the population immediately or buffered to be included later. This
approach achieves higher performance, as faster computing nodes do not have to wait for
the slower ones.

4.3.3 Cellular-based populations: distributed executions

Cellular population models natively define the map of computing resources responsible for
managing the cells, executing the EA semi-independently. Each version of the model —
structured and unstructured — has their own reference implementation: the Cellular Evo-
lutionary Algorithm (CEA) [2, 3] and the EvAg [85] (respectively). Typically, the network
in the first case is static and defined by the grid structure of the population, in the second
— by a self-organising, dynamic graph, created by a P2P gossip protocol: Newscast [82].

During the process of parents selection, each cell has to fetch individuals from its neigh-
bours. However, in the case of EvAg there is an additional possibility. Some P2P protocols
allow embedding application-specific data in the information exchanged between the nodes
(like Newscast [82]). This option may be used to create an auxiliary neighbourhood popu-
lation for each cell with a specified replacement policy. In such case, the parents selection
mechanism is used on the set defined above instead of choosing from the actual neighbours
in the communication graph.

Like in the previous models, there are two execution policies — synchronous and asyn-
chronous [2]. The first version involves an auxiliary population, where the offspring is stored
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until all cells are ready to replace their individuals at the end of the generation. In the asyn-
chronous execution, the population is updated with the newly created solutions immediately
(through the survivors selection mechanism). As it was studied in [2,3], the use of the latter
policy allows faster convergence of the population than in the case of the synchronous one.

4.4 Theoretical analysis of EAs

There are two directions in which the theoretical analysis of EAs can be conducted, both
focused on some notion of time (T ). First, the study can be made to verify if the EA is able
to find the solution in a finite time. This is called a convergence analysis, and the aim is
to calculate the probability of success: P {T ≤ t}, for some finite t. The goal of the second
approach is to estimate the expected time (E [T ]) required by the EA to find the optimal
solution of the problem. In all cases, the literature offers theoretical results in both domains,
mostly restricted to elitist EAs.

Note that the presentation of the foundation of probability theory or full development of
the selected methods would have been too space-consuming for this manuscript. The choice
of the presented mathematical tools is dictated by their popularity and this part is not aimed
to act as a comprehensive overview of all approaches. The special attention has been devoted
to the Markov chain model of EAs, as it will be extensively used in the Chapter 6. Therefore,
the interested reader may treat this section as a starting point to the broad subject of the
theoretical analysis of EAs.

4.4.1 General model of an EA used in the theoretical analysis

As EAs are “very complex systems, involving many random factors” [48], models and prob-
lems used in the analysis are generally greatly simplified in comparison to the algorithms
executed in practice. Some variant of the (µ+λ) EA is typically utilised [125] and this model
works as follows:

1. Randomly generate an initial population consisting of µ individuals.
2. Repeat until stopping criteria are satisfied:

a) Create λ offspring by applying a mutation operator to λ chosen individuals from
the parents population.

b) Form a new population through a selection process from µ+λ individuals (parents
+ offspring).

For example, a typical realisation of the algorithm in the runtime analysis involves bit-
string-based individuals (from a set {0, 1}n). In this case, the applied mutation operator
flips each bit with a probability p. The target optimization problem tackle in this case is
usually OneMax (the goal is to reach an individual consisting of maximum number of ones),
LO (leading ones, where the fitness value is based on the number of ones at the beginning
of an individual’s bit-string representation) or other simple variant.

Despite the apparent simplicity of this model, it remains of particular interest for EAs
analysis and should not be treated as a criticism of the approach. The theoretical work avail-
able in the field of EAs is relatively new and “lags behind in comparison to the experimental
results” [125]. Each proof provides some new insights into the internal workings of this class
of the algorithms. Even the simplest model, namely the (1 + 1)-EA, has a great importance,
as emphasised in [125,177]:
• it is very efficient for a lot of functions,
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• it can not get stuck forever in a local optimum,
• it is an initial step for the analysis of more complex EAs.

4.4.2 Schema theory

The schema theory [62] proposed by Goldberg was the first, widely used mathematical tool
in the analysis of EAs. It is applied on binary search spaces, where a schema is a hyperplane
of it. This provides an aggregation method for all possible individuals. A wildcard character
(#, may be substituted with either 1 or 0) is used in its presentation, e.g. 11### corresponds
to all bit-strings with two ones at the beginning, which represents 23 instances or examples.
A schema is characterised with two metrics:
• The order (o) — the number of wildcards in schema’s presentation.
• The defining length (d) — the distance between the outermost defined positions

(which is equal to the number of possible crossover points).
For instance, for H = 0#1##1#1, o(H) = 4 and d(H) = 8− 1 = 7.

Let m(H, t) represents the number of bit-string belonging to a schema H at a generation
t, f(H, t) — the observed average fitness of the schema H at the generation t and ft — the
observed average fitness of the population at the generation t, then:

E [m(H, t+ 1)] ≥ m(H, t) · f(H, t)
ft

· (1− p) . (4.1)

Where p is the probability that the variation operators will destroy the schema H. It is
defined as follows:

p = d(H)
l − 1 · pc + o(H) · pm (4.2)

with l representing the length of the bit-strings, pc and pm — probabilities of crossover and
mutation (respectively). As visible, the schemata with shorter defining length are less likely
to be destroyed.

The equations 4.1 and 4.2 form the schema theorem, which yields that the “low-order
schemata with the above-average fitness increase in successive generations” [48]. The in-
equality in the equation 4.1 is due to the fact that the possibility of creating a new individual
from the schema through mutation is neglected. Yet, the approach is limited in applications
as it does not allow explaining the dynamical or limit behaviour of EAs.

4.4.3 Markov chains and Markovian kernels

Let E be a set of a measurable space (E,A) and T be an index set identical with N0 (N0 is
chosen for convenience). Then a family of random variables (Xt : t ∈ T ) on a joint probability
space (Ω,F ,P) is called a stochastic process with discrete time. Additionally, the set
E is called the state space of the process and set T is interpreted as points in time.
If for 0 < t1 < t2 < . . . < tk < t with some k ∈ N and A ∈ A

P {Xt ∈ A |Xt1 , Xt2 , . . . , Xtk} = P {Xt ∈ A |Xtk} (4.3)

then (Xt : t ≥ 0) is called a Markov chain. If additionally

∀s,t,k∈N0∧s≤t P {Xt+k ∈ A |Xs+k} = P {Xt ∈ A |Xs} (4.4)

then the Markov chain is termed as homogeneous, otherwise inhomogeneous.
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For a homogeneous Markov chain (Xt : t ≥ 0) on a probability space (Ω,F ,P) with image
space (E,A), map K : E × A → [0, 1] is called a Markovian kernel or a transition
probability function if
• ∀A∈AK(., A) is measurable,
• ∀x∈EK(x, .) is a probability measure on (E,A).

In particular ∀x∈E∀A∈A∀t∈N0K(x,A) = P {Xt+1 ∈ A |Xt = x}.

Let x ∈ E be a starting state and A ⊆ E be a target set, then a probability to transition
from the state x to the set A within t steps is given by the t-th iteration of the Markovian
kernel:

K(t)(x,A) =

 K(x,A) , t = 1∫
E
K(t−1)(y,A)K(x,dy) , t > 1 (4.5)

where integration is operated with respect to an appropriate measure on (E,A).
Finally, among the various properties of Markov kernels, for all x ∈ E and A ⊆ E the
following definitions will be used throughout this chapter:∫

E

K(x, dy) · 1A(y) =
∫
A

K(x, dy) = K(x,A) (4.6)

K(x,A) +K(x,Ac) = 1 (4.7)

4.4.3.1 Markov model of EAs and convergence conditions

Markov chains have been used quite earlier in the literature [1] as a basis to establish the con-
vergence in a broad sense of EAs. In this context, an EA is modeled as follows: the algorithm
is executed using a population of N individuals represented by the N -tuple (x1, . . . , xN ) with
xi ∈ M for i = 1, . . . , N . M is a search space of a real-valued objective/fitness function
f :M→ R bounded from below (i.e. ∀x∈M f(x) > −∞) and being minimized by the algo-
rithm. This gives a state space E =MN . The population at step t = 0 (called the initial
population) is created using some initial distribution p(.) yielding the random population
X0 = (X0,1, . . . , X0,N ). A population Xt = (Xt,1, . . . , Xt,N ) at a time t > 0 is generated
by so-called genetic operators (described by the associated stochastic kernels K(., .)). These
operators permit evolving the set of feasible solutions and they depend only on its state from
the previous step (t− 1).
The above model leads to a conclusion that the stochastic sequence (Xt : t ≥ 0) is a Markov
chain.

To analyse the ability of an EA to converge in some sense to a specific set associated with
globally optimal solutions of the optimization problem, the term convergence has to be
precisely defined.

Definition 4.4.1 (Complete convergence [136]). Let (Dt) be a sequence of random variables
defined on a probability space (Ω,F , P ). Then (Dt) is said to converge completely to 0,
denoted as Dt

0−→ 0, if for any ε > 0

lim
t→∞

t∑
i=1

P{|Di| > ε} <∞ (4.8)

52



4.4 Theoretical analysis of EAs

Definition 4.4.2 (Convergence in probability [136]). Let (Dt) be a sequence of random vari-
ables defined on a probability space (Ω,F , P ). Then (Dt) is said to converge in probability
to 0, denoted as Dt

P−→ 0, if for any ε > 0

lim
t→∞

P{|Dt| > ε} = 0 (4.9)

It is worth noting here that complete convergence implies convergence in probability.
For the ease of the further analysis, additional notations are defined as follows:
• b(Xt) = min{f(Xt,i) : i = 1, . . . , N} — the best objective/fitness function value of

population Xt at step t ≥ 0;
• f∗ — the global minimum of the objective/fitness function f :M→ R;
• d(Xt) = b(Xt)− f∗ — a distance of the best objective/fitness function value of popu-

lation Xt at step t ≥ 0 to the global optimum f∗;
• Aε = {x ∈ E : d(x) < ε} — a set of ε-optimal states with ε > 0;
• B(x) = {y ∈ E : b(y) ≤ b(x)} — a set of states which are better than or equal to a

state x according to the objective function.
At this point it is possible to introduce the main theorem on top of which the analysis
conducted here is based.

Theorem 4.4.1 (Condition of EA convergence [136]). Let Aε = {x ∈ E : d(x) < ε} with
some ε > 0 be the set of ε-optimal states. An evolutionary algorithm, whose stochastic kernel
satisfies
• ∀x∈Acε=E\Aε K(x,Aε) ≥ δ > 0
• ∀x∈Aε K(x,Aε) = 1

will converge to the global minimum of a real-valued objective function f : M → R with
f > −∞ defined on an arbitrary space M, regardless of the initial distribution.

Proof. See [136].

Corollary 4.4.1. The random sequence (d(Xt) : t ≥ 0) converges in probability to 0 (denoted
as d(Xt)

P−→ 0) and converges completely to 0 (denoted as d(Xt)
0−→ 0).

Now that we have reviewed the mathematical results that permit to define the conditions
of EAs convergence, we are able to analyse the ability of an EA to converge or not to
“good” solutions. Such an analysis is proposed in the Section 6.1. More generally, the
results presented in the Chapter 6 inherits and adapts the Markov model of EAs to take into
account the cheating resilience.

4.4.4 Artificial fitness levels

The approach was introduced in the runtime analysis of (1+1)-EA, dealing with pseudo-
boolean fitness functions (see Definition 4.4.3). Later, the method was extended for usage
in more general settings [125].

Definition 4.4.3 (Pseudo-boolean function [178]). A pseudo-boolean function f : {0, 1}n →
R is a degree-k function with N non-vanishing terms if it can be represented as

f(x1, . . . , xn) =
∑

1≤i≤N
wi
∏
j∈Si

xj (4.10)
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where wi ∈ R− {0} and the size of the sets Si ⊆ {1, . . . , n} is bounded above by k. Degree-1
functions are called linear and degree-2 functions are called quadratic.

Artificial fitness levels are based on creating a partition of the search space (M) into sets
A1, . . . , Am (where m < |M|) called fitness levels that are ordered w.r.t. fitness values (i.e.
A1 <f A2 <f · · · <f Am, see Definition 4.4.4). We say that the algorithm is in Ai or on level
i if the current individual is in Ai.

Definition 4.4.4 (<f -partition). For A,B ⊆ {0, 1}n and f : {0, 1}n → R the relation
A <f B holds if f(a) < f(b) for all a ∈ A and b ∈ B. An <f -partition of {0, 1}n into
non-empty sets A1, . . . , Am is when A1 <f A2 <f · · · <f Am and all a ∈ Am are global
optima.

The introduced partition allows creating a Markov chain using only the m different states.
This leads to a smaller Markov chain transition matrix and simplified calculations [125].

Yet, the fitness value of the population in the elitist EAs can never decrease. Therefore,
if one can derive lower bounds on the probability of leaving a specific fitness level towards
higher levels, this yields an upper bound on the expected running time (see Theorem 4.4.2).

Theorem 4.4.2 (Fitness-level method [98]). For two sets A,B ⊆ {0, 1}n and a fitness
function f let A <f B if f(a) < f(b) for all a ∈ A and all b ∈ B. Partition the search space
into non-empty sets A1, A2, . . . , Am such that A1 <f A2 <f · · · <f Am and Am contains
global optima. For an elitist EA let si be a lower bound on the probability of creating a new
offspring in Ai+1∪ · · ·∪Am, provided the population contains a search point in Ai. Then the
expected number of iterations of the algorithm to find the optimum is bounded by

m−1∑
i=1

1
si
. (4.11)

We used the extension of the Theorem 4.4.2 in [112] to establish the expected runtime
of an elitist, parallel (1+1) EA with cross-over built on top of a Small-World network.
Since this study does not take into account cheating faults, it has not been integrated as
a core contribution in this manuscript, yet the corresponding article have been provided in
Appendix B as an example of a full runtime analysis.

4.4.5 Dynamical systems

Dynamical systems is a method proposed by Vose [170]. The approach is based on an infinite
population. Instead of analysing single individuals, the set of candidate solutions is described
as a n-dimensional vector ~p, where n is the size of the search space. Each entry pti of the
vector contains a proportion of individuals of a type i at a time t.

For the definition of the model, two matrices are needed: M and F — mixing and selection
matrices (respectively). The first one describes the effects of variation operators (mutation
and crossover), the second one — the effects of selection on each individual for a given fitness
function. Based on that, a “genetic operator” is defined as a product of both matrices:
G = F ◦M .
G is a trajectory of the population evolving on a n-dimensional surface. The next set

of candidate solutions is generated through the application of G to the current population:
~p t+1 = G~p t. The “genetic operator” matrix allows identifying attractors in the search space

54



4.4 Theoretical analysis of EAs

— the points towards which the population is drawn. For a full analysis see [171] where the
method is applied to a GA with a fitness proportional selection, a one-point crossover and a
bitwise mutation.

4.4.6 Interacting Particle Systems (IPS)

Interacting Particle Systems (IPSs) are used to model and study the asymptotic behaviour
of GAs [38, 39]. The approach is based on the Markov chains framework to describe the
population and its transitions during the evolutionary process. The GA is defined as a
system of particles from a given measurable space (E,A), in which it randomly evolves
driven by a given fitness function. Its population of N ≥ 1 individuals is modelled as a
Markov chain (not necessarily time homogeneous, see Section 4.4.3): Xt = (X1

t , . . . , X
N
t ) for

t ≥ 0, where Xi
t ∈ E. Optionally, the initial particle system X0 consists of N independent

particles with common law η0 ∈ P (E), where P (E) is a set of all probability measures with
the weak topology on E.

The flow of the empirical measures m associated with the systems of particles Xt is used
instead of “studying the dynamic and limiting process of the so defined Markov chains” [39]:

m(Xt)
def= 1

N

N∑
i=1

δXi
t

(4.12)

where δx is a Dirac measure at x ∈ E.
The empirical measure m(Xt−1) of the population at the time t − 1 determines the

transition to the next one (Xt). Specifically, the next generation Xt consists of N (con-
ditionally) independent random variables with a probability measure Φt(m(Xt−1)), where
Φt : P (E) → P (E), t ≥ 1, is a given collection of sufficiently regular functions defined by
the GA operators and parameters. Following [39]:

In some sense to be defined the empirical measures ηNt
def= m(Xt), t ≥ 0, converge

as the number of particles N → ∞ to a deterministic flow of distributions ηt ∈
P (E), t ≥ 0, solutions of the measure valued dynamical system ηt = Φt(ηt−1),
t ≥ 1. In the measure valued processes literature this system is usually called the
limiting process.

Therefore, the solution forms an infinite population model using a distribution measure
on the search space to describe the behaviour of the finite population [39].

4.4.7 Drift analysis

Drift analysis is a very powerful theoretical tool available for estimating the expected runtime
of EAs. It remains useful when the EA has non-monotonic progress, i.e. when the fitness
value is a poor indicator of progress. Informally, it shows how the challenging problem of
predicting the long-term behaviour of a given evolutionary meta-heuristic can be reduced
to the often trivial problem of describing how the state of the heuristic changes during one
iteration.

This approach derives from the theory of Martingales, a notion used in the nineties to
prove the convergence of EAs using non-elitist selection strategies [137]. The following de-
scription is directly inspired by [125] and the seminal work of He & Hao [73].
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Let S∗ be the set of populations containing the optimal solution of an optimization prob-
lem, S the set of all possible populations, and d(Xt) a distance function for measuring
the distance from population X to S∗, at time-step t. The drift of the random sequence
{d(Xt), t = 0, 1, . . .} at time t is defined by

∆ (d(Xt)) = d(Xt)− d(Xt+1)

Let’s define the stopping time of an EA as τ = min{t : d(Xt) = 0}, which is the first hitting
time on the optimal solution. The main motivation in the concept of drift analysis is that it
may often be easier to estimate the drift of a random sequence rather than τ directly from
the Markov chain. Thus the idea behind drift analysis is quite straightforward:

If the distance of the current solution from the optimal one is d and if the drift
towards the optimal solution is greater than ∆ at each time step, we would need
at most d

∆ time steps to find the optimal solution. Hence the key issue here is to
estimate ∆ and d.

In [73,74], drift conditions are given to determine whether the average time complexity of
an EA to solve a given problem is polynomial or exponential in the problem size. Numerous
drift theorems are available (Additive, multiplicative, variable, population drift etc.) and
actually, a significant number of them originate from other fields than EC. In general, drift
analysis lead to simpler runtime proofs, assuming a good distance function is defined.

4.4.8 Reductionist approaches

Reductionist approaches have their roots in physics and engineering, where the parts of a
complicated system are examined in separation from each other (interactions are neglected).
A typical decomposition of EAs involves analysis of selection-only or variation-only algo-
rithms [48].

In the first case, the term takeover time was introduced [63]. It is defined as a time
required for the fittest individual to completely take over the population. On top of this
approach many parents and survivors selection mechanisms were analysed, using different
theoretical tools such as Markov chains, order statistics or differential equations [12–14, 22,
29,138,150].

For variation-only algorithms, the mixing time was defined as a time at which the “re-
combination brings together building blocks initially present in different members of a popu-
lation” [48] [157]. The outcome of the analysis was that the discussed value should be less
than the takeover time to guarantee a well-performing EA. If it is not a case, then the fittest
individual takes over the population, removing some potentially useful solutions without
giving them the chance to be used in the evolutionary process.

4.5 Summary

In this chapter EAs were introduced. Their general execution schema was presented and all
components were discussed. In some cases, the realisation of an EA might be very costly in
terms of CPU and memory/storage requirements. Therefore, different models for parallel,
decentralised and distributed executions were introduced. Some well-known approaches for
implementation of the schema in distributed systems were discussed (based on the population
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structure), including: a parallel model for any EA, the well-known Island Model, Cellular
Evolutionary Algorithms (CEAs), and Evolvable Agents Model (EvAg).

The fundamental knowledge about the theoretical analysis was presented. There are ba-
sically two directions in which the study may be conducted, both focused on some notion
of time (T ). Either the analysis aims to determine if an EA is able to find the solution in
finite time (convergence analysis) or to estimate the expected time required to find the
optimal solution of the problem (expected runtime analysis). Various approaches exists
for both directions. Providing an exhaustive overview would have been out of the scope of
this manuscript thus we focused only a brief insight of some results being of interest in this
context.
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Chapter 5

Fault-Tolerant Executions of EAs in DGVCS’s
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This chapter starts with an introduction of main challenges for executing applications in
DGVCS’s. The concept of resource availability in volunteer-based platforms is presented
with its main characteristics and metrics. Formalisations of cheating faults and cheating-
tolerance are given, where the first one is used to describe the effects of activities performed
by malicious users (cheaters) and the second — the system’s resilience to them. The cheater
model used in this work is described in detail.

After that, a general guideline is provided helpful when deciding to use the platform for
the execution of a particular case of the optimisation problem and the EA model. The choice
is mainly dictated by the expected performance of the solution.

Finally, fault-tolerant aspects of EAs are presented with the stress on the crash- and
cheating-failures in DGVCS’s. Existing approaches to achieve a fault-tolerant execution of
the algorithm are described. The chapter ends with a presentation of open problems in this
area of research.
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Figure 5.1: Illustration of Host and CPU availability over time.

5.1 Challenges in DGVCS’s

As mentioned in Section 3.1.3, DGVCS’s are very challenging platforms from developers’
point of view. The main challenges are failures caused by resource volatility, compromised
security and insufficient performance. As introduced in Section 3.3.1, each of them on its
own may be a source of various problems. In practice, a significant number of the machines
participating in the platform will commit at least a single (Input/Output (I/O)) error over
time (around 35%) [90]. Moreover, the error rate is not stationary and varies in the course of
time [90]. Furthermore, “about 70% of the errors are caused by only 10% of the hosts” [90].

Nevertheless, some errors and failures are easier to handle than the others. For example,
common omission and duplication failures are usually detected and corrected at the mes-
sage transport level. Timing faults are commonly caused by the problems in the design of
the platform or application. Crash and byzantine failures are the most difficult to handle,
therefore will be presented in this section in detail.

5.1.1 Resources availability

As mentioned above and in Section 3.1.3, a DGVCS creates a very volatile environment. The
number of resources available for the computation varies over time. These fluctuations are
a commons source of crash failures.
There are two ways in which a resource availability can be measured in DGVCS, these
are: host availability and CPU availability (see Figure 5.1). The first one expresses the
probability that a system is operational at a given time:

Ha = uptime
uptime + downtime

where the actual up- and down- times may be measured as times when the system is powered
on and off (respectively). The other possibility, more applicable in the context, is to use the
reachability of a device through the network.

Unfortunately, the host availability alone is not able to fully grasp the dynamic changes
in the availability of resources in a DGVCS. This problem is connected with the utilisation
of idle cycles for computation. To solve it, the CPU availability was introduced: the CPU
is available when it is possible to run the application on the volunteered resource and it is
unavailable otherwise. Its probability may be computed as:

CPUa = time of CPU availability
uptime + downtime
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Figure 5.2: A distribution of CPU availability intervals measured for the BOINC client of
the SETI@home project. The data, extracted from the Failure Trace Archive
(FTA) [53], was collected between April 1st, 2007 to January 1st, 2009. It includes
more than 100.000.000 CPU availability traces of almost 230.000 hosts scattered
all over the world, in total capturing almost 58.000 years of CPU time. The
results presented here are limited to intervals up to 110 minutes.

where uptime is the time when the client application is connected to the platform and
downtime is the time when it is not connected.

There are numerous studies on the subject in the areas of DGVCS’s [80], HPC Clus-
ters [124, 142], Grids [78, 181], Domain Name System (DNS) servers [130], web servers [15],
and P2P networks [20, 70, 141, 146]. All analysing traces gathered from the real projects
with the purpose of building prediction models, characterising resources, and improving
scheduling of jobs. A diverse collection of such data is available in the Failure Trace Archive
(FTA) [53,79,92]. The datasets differ in measurements taken (host versus CPU availability),
resource types (private, enterprise, home, work, school), scale (number of hosts participating)
and duration (the time period over which the measurements are taken).

The distinction between the host and CPU availabilities is crucial. For example, the
majority of hosts in DGVCS’s and P2P networks are available for less than an hour [20,
80, 141, 146]. However, the actual time during which the computation may run on the
resource in the volunteer fashion may be just a fraction of the previously mentioned value.
In extreme cases, this range may consist of many, very short intervals of CPU availability
(for example, each of them below one second) with the host available for 99% of time. As a
result, such a resource would not be very useful (or even completely useless) for distributed
computation [80].

Figure 5.2 presents distribution of CPU availability intervals captured for the BOINC
client of the SETI@home project [80, 81]. The data was collected between April 1st, 2007
to January 1st, 2009. It includes more than 100.000.000 CPU availability traces (and
the same number of unavailability traces) of almost 230.000 hosts scattered all over the
world, capturing in total almost 58.000 years of CPU time. In the study of Javadi et
al. [80], from which we acquired this data, the actual CPU utilisation of a host is ignored.
Instead, the resource is considered as available for computation if the associated with it
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BOINC client reports it as “free”. The exact definition of this term is one of the client-side
configuration options. Finally, as emphasised in the study, the data was recorded at the level
of the BOINC client and it is independent from the SETI@home project. This means, that
if the host was executing any of the project’s applications, it is still represented in the trace
as available.

It can be seen from the data in Figure 5.2 that the distribution of interval’s lengths is
significantly biased towards short CPU availability times. We can observe this trend in the
data at all scales (minutes, hours, days, etc.). It is worth to note here, that only 497 intervals
were shorter than 1 minute (barely visible on the figure). The maximum CPU availability
time captured by the study equals to 13216 hours (≈ 550 days). It is important to note here
that more than 25% of the collected intervals are equal to or shorter than one
minute. Therefore, the assertion that this platform is highly volatile is not an exaggeration.

The availability status may change for a number of reasons. In DGVCS’s, the most
likely cause of this may be that the resource is no longer idle (e.g. a mouse or a keyboard
became active) or a failure occurred (see Section 3.3.1). If the status change is the result
of a deliberate (but non-malicious), user’s action (e.g. scheduled downtime, user closes the
application, etc.) then the system can be notified (i.e. graceful shutdown). The dynamic
changes over time of resources availability and membership in the platform is called the
churn [153]. Such variations are common and unavoidable in DGVCS’s. Therefore, the
system has to be designed to handle them transparently, for instance by the reconfiguration
or through the built-in self-organisation. The worst possible scenario of churn is when a
given portion of the resources frequently leaves the system or crashes and is immediately
replaced by the new ones [83]. It is so, because it not only requires multiple reconfigurations
of the platform, but also these new resource have to be initialized.

5.1.2 Cheating faults and cheating-tolerance

Volunteers in DGVCS’s are tempted to participate in the platform through various incentives.
There are five basic mechanisms to provide such motivators, all with their own challenges
and drawbacks [95]:
• Payment-based — participation is rewarded with a payment. It may be a real monetary

reward or virtual (i.e. “some tokens that can be redeemed for other services” [95]).
• Auction-based — the resources are auctioned, where members of the platform are

chosen through bidding (depending on the context, with the highest or the lowest
price).
• Exchange-based — the service is exchanged between the participants in a synchronous

and stateless transaction (pure barter-based solution).
• Reciprocity-based — contrary to the exchange-based approach, interactions involving

resource sharing have a state and a history, which creates the base for the exchange.
• Reputation-based — a generalised version of the previous approach. “The system

records a score for each participant based on the assessment made by other members of
the platform” [95].

However, in scientific projects like SETI@home [9] or Folding@home [56] the incentive is
usually based purely on fame. Each active member is rewarded with points proportionally
to the contribution. In turn, these scores are used to create publicly available rankings of
participants.
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5.1.2.1 Cheater’s objectives and cheating possibilities

Usually, malicious users of DGVCS’s seek to obtain mentioned rewards with little or no
contribution to the system. Their main objective is to stay undetected as long as possible
maximising the profit. This activity may be purely passive, when the aim is to obtain the
payment with as little work as possible. It may also be active with a goal to delay the end
of the execution. This is motivated by the fact that the increased amount of work (therefore
overall computation time) should also yield more possibilities to obtain the gratification.

However, obtaining offered incentives does not have to be the only motivation. “Crackers”
or “black hat” hackers are a perfect example of such approach. These are users which “violate
computer security for little reason beyond maliciousness, personal gain or satisfaction” [110].

Generally, malicious users can simulate or cause any failure relevant in distributed comput-
ing (see Section 3.3.1). However byzantine failures are the most useful, flexible, and hardest
to detect. The rest are easily discovered and their effect is very limited (usually only to the
node causing the problems).

Intentional introduction of byzantine failures into the system may be done by altering (i.e.
corrupting) results or messages being sent. As such data is not true (in the meaning of not
genuine or not authentic), it may be defined as cheated, the process of its production and
transfer as cheating, and the user sending it as a cheater.

Cheaters may organise themselves into colluding groups with the aim to feed incorrect
results [25]. It might be voluntary or not. The second case is usually the effect of a virus or
a bug in the code [25].

5.1.2.2 (Lazy) Cheater Model

Distributed computation can be defined in terms of tasks, their assignment and execution
on the available resources. Therefore, cheating at the level of a task (T ) execution will be
now formalized, following its first definition in [168].

Let W1(T ) be the total work i.e. the number of unit operations of T and W∞(T ) be its
depth work, i.e. the maximal number of unit operations on a critical path when executed
on an unbounded number of processors. For the sake of simplicity, we assume that for
each task T that takes part of the execution, there always exists a cheated version T ′ that
secretly replace T when cheating is conducted. In the sequel, T ′ is defined with the following
constraints:

1. The prototype of T ′, i.e. its signature (as defined in the C/C++ programming language)
is unaffected by the cheating. In particular, T ′ has the same function name, arity,
argument types, and (more importantly) return type than T . This is justified by the
fact that the cheaters want to stay in the system as long as possible. Falsifying the
return type of task will probably lead to a crash fault that can help to immediately
identify the cheater. Whereas, if the attacker is satisfied with corrupting only the
return value (and not its type), he can expect this modification to be hidden during a
sufficient long time for him to stay in the system and collect credits.

2. The result of T ′ is altered such that it has the worst impact on the execution without
consuming more computing power than T , i.e.

W1(T ′) ≤W1(T ) and W∞(T ′) ≤W∞(T ) (5.1)
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This last constraint models “lazy” cheaters that want little or no contribution to the system.
The notion of “the worst impact” is more difficult to define and is specific to the considered
application and granularity of the execution. Its role is to provide an upper bound on the
cheating impact in the analysis conducted here.

Additionally, it is assumed that the cheaters possess full knowledge about the com-
putation and the platform. Such assumption is not far from reality, because most of the
volunteer-based projects release the sources of the applications to the public. This is done in
order to gain the trust of the volunteers. However, it also increases the system’s susceptibility
to attacks, because anyone with the proper technical knowledge can carry out an analysis of
the published materials.

5.1.2.3 Cheating-tolerance

Similarly to a definition given in Section 3.3, cheating-tolerance may be defined as an
ability of a system to behave in a well-defined manner once cheating occurred in the system.
There are few possible approaches to achieve tolerance of this kind of errors in DGVCS’s.
The main directions are:

1. Usage of a special algorithm for task’ scheduling [25], where cheating-tolerance is
achieved through redundancy (or compensation) (see Section 3.3.3).

2. Implementation of an ABFT design. In this case either specific features of the executed
algorithm are exploited or the application is designed in a way which allows treating
cheating faults transparently.

5.2 Executing EAs in DGVCS’s

There is a growing interest of the community gathered around the parallel and distributed
EAs for utilisation of vast resources offered by DGVCS’s [21, 24, 41, 88, 129, 144] for time-
consuming applications. However, not all available models or optimised problems are suitable
for execution in the platform. This section provides general guidelines that should be taken
into consideration when choosing DGVCS’s.

5.2.1 Is the optimised problem suitable for execution in DGVCS’s?

The main criteria for the optimised problem to be considered suitable for execution in
DGVCS’s are the CPU time required for the evaluation of a single individual and its de-
mands for memory and storage. As mentioned is Section 3.1.3, DGVCS’s consist of various
computing nodes, typically geographically dispersed, with different network bandwidths and
latencies (not to mention the overall performance). Therefore, the evaluation time should be
much longer than the time required to send an individual for its fitness value computation.
Otherwise, there is no benefit from using the platform, only extending the execution time
and increasing the complexity of the software. An ideal example was reported by Desell
et al. in [42] from a real-world project (MilkyWay@home) running parallel EAs. There,
the evaluation on a high-end CPU takes around an hour, on a slow CPU — days and on a
high-end double precision GPU — under 2 minutes.
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5.2.2 Which EA execution models are suitable for the platform?

From the models presented in Section 4.3 (and summarised in Table 4.1), two approaches can
be dismissed outright from the execution in DGVCS’s: the distributed, structured Cellular
model and the distributed Island model. The remaining approaches do not pose any problems
induced by the platform and related to performance.

Any solutions relying on the rigid relations between the computing resources are at best
problematic to implement in a volatile platform provided by DGVCS’s. In the case of CEAs
(see Sections 4.2.3.3 and 4.3.3), the grid-based structure is hard to maintain. A lot of the
computing time would be devoted exclusively to the reconstruction and reconfiguration of
the connections between the cells. Therefore, the distributed version of the approach is not
suitable for the execution in DGVCS’s and the parallel version is preferred.

The distributed Island model has a very limited scalability. As described in Section 4.2.3.2:
using too many islands is wasting computational resources and does not give any additional
benefits to the evolutionary process [26]. Therefore, implementations adopting the scheme
are not able to utilise the potential of DGVCS’s. What is more, any plausible crash failures
may lead to huge losses of individuals, thus implementing a checkpointing mechanism (see
Section 3.3.3) is necessary (which increases not only the complexity of the software but also
the execution time). For these reasons, the decentralised version of the approach is preferred
for DGVCS’s. The islands should be located on the controlled, secure and stable resources
with single tasks (like evaluation of the individuals) delegated to the volunteered machines.

5.3 Fault-tolerant aspects of EAs in DGVCS’s: related works and
open problems

A set of recent studies [37,64,75,86,109,111] illustrate what seems to be a natural resilience
of EAs against a model of destructive faults (crash faults, see Section 3.3.1). With a properly
designed execution, the system experiences a graceful degradation [37,64,86]. This means,
that up to some threshold and despite the failures, the results are still delivered. However,
it either requires more time for the execution or the returned values are further from the
optimum being searched.

There are two types of computing resources in DGVCS’s: managed by the platform owner
and volunteered. In case of the first type, it is generally assumed that they are always in a
“safe state” as proper technical solutions may be adopted to provide 24/7 availability [7]. The
volunteered nodes are the main concern. The approach to tolerate failures depends on the
specific execution model. However, there are three typical solutions applied in DGVCS’s [65]
against crash and cheating failures:

1. Checkpointing — the state of the computation is periodically stored and if a failure
occurs, the execution is restarted from the last, correct save point. Depending on the
location of the storage, there are two approaches:

a) Local — a task is restarted on the same node from the local checkpoint after
recovery from the failure.

b) Centralised — checkpoints are stored on a checkpointing server. After a failure,
a task is restarted from the last checkpoint on a new node.

2. Re-execution (i.e. retry) — a task is executed again on a new resource after a failure.
3. Replication (i.e. redundancy) — same task is sent to two or more nodes. Either the
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first result from a failure-free execution is accepted and stored, or the results from all
replicas are collected and the final output is dictated by the majority. This technique
has to be combined with at least one from above to deal with a failure of all nodes
executing the copies of the task.

Checkpointing may be used in parallel and distributed executions. It introduces some
overhead to the computation linked to the process of preparing and storing the state of the
application. The method is reasonably effective, however rarely used in the context of EAs
as more efficient, problem specific solutions are available — see Sections 5.3.1.1 and 5.3.2.

Replication and re-execution are typically used in tandem for parallel applications. The
first one ensures correctness of the results, while the second — that all tasks will be executed.
Their application in the context of EAs is described in Sections 5.3.1.2 and 5.3.1.3.

5.3.1 Crash- and cheating-tolerant executions of parallel EAs

As described in Section 4.3.1, two types of nodes are employed in parallel EAs: the master
and workers. While executing the algorithm in DGVCS’s, the master node resides in the
safe environment of the platform owner and the single tasks (like evaluations of individuals)
are delegated to the volunteered resources (workers).

First the dynamic populations approach will be presented. It is an ABFT feature of EAs,
allowing the population size to change during the execution without significant losses in
the quality of the final solution. In particular, this property can be used to tolerate crash
failures. This is followed by a description of two, fully fault-tolerant execution schemes. The
first one is based on generic techniques available in DGVCS’s (and particularly in BOINC),
the second one — tailored especially for asynchronous, parallel EAs (empirically validated
and used in practice in MilkyWay@home [40,42]).

5.3.1.1 Dynamic populations

The dynamic populations [54,93,101,160] were first introduced in the context of minimis-
ing fitness stagnation (countering the lack of progress during the search). In these solutions,
the population size is reduced and/or increased in a controlled manner during the algorithm
execution. For instance, Fernandez et al. [54] proposed a new operator called plague, linearly
reducing the number of individuals over time.

However, the approach differs in the context of crash faults experienced in DGVCS’s. The
process of changing the population size is no longer controlled, but occurs randomly with
node or communication failures. At first, it was empirically demonstrated that no special
techniques are needed to achieve crash-tolerance in EAs [37, 64]. If a node experienced
a failure, the individual being evaluated is simply considered lost and the search continues
without it. The main assumption in these works was that once a computing resource becomes
unavailable, it will never become available again. This leads to a decreasing population size
over time, following the node failures. If the number of individuals was set to compensate the
losses at the beginning of the search, then the algorithm experiences a graceful degradation
— the final result of the computation is equal or close to the fault-free execution.

In [65] the work was extended. In this context, the unavailable resources may become
available again. When nodes rejoin the search after recovering form the failures, new indi-
viduals are created and added to the population. Ultimately, further improving the graceful
degradation of the algorithm. In [65] the new individuals were created randomly. Such
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approach improves the diversity of the population, allowing in some cases to find better
solutions than the fault-free executions [65]. In [86] additional options were explored, where
the new individuals were created following the reproduction scheme or through applying a
local search on the existing candidate solutions.

5.3.1.2 Generic solutions from BOINC

The BOINC framework [7] provides a set of generic solutions supporting parallel executions
of applications. Its computing model provides validation and retry mechanisms [10]. The
first one is employed to ensure the correctness of the results (returned from the worker
nodes), the second one — ensures that each task is eventually executed. Tasks are performed
independently on two or more (different) nodes (redundant execution, see Section 3.3.3),
their outputs are compared, looking for a quorum. The quorum is reached if the majority of
results returned for a single task are equivalent. In this case, the canonical result is marked
as valid and nodes participating in its computation are rewarded. Otherwise, more instances
of a task are generated as needed until the quorum is reached.

Based on above, both (synchronous and asynchronous) parallel execution schemas de-
scribed in Section 4.3.1 may be used without any modifications, resulting in a fault-tolerant
run of the algorithm. However, if the steady-state reproduction (the asynchronous model)
is used, as reported in [42] for the MilkyWay@home: a large amount of computation is
wasted on validation. Only a fraction (less than 4%) of evaluated individuals make into
the population and as the search progresses it is more difficult to find better solutions (fur-
ther decreasing the ratio to less than 2%). Therefore, they proposed an improved execution
schema for parallel EAs (presented in the subsequent section).

BOINC also contains a mechanism for adaptive replication [8]. It is based on a measure
of trust: a host gains trust if its results validate, it looses it — when the returned outputs
are invalid. This leads to occasional validation of results from trusted hosts. However, the
mechanism is unsuitable for executions of EAs, as a single, invalid individual (e.g. with a
wrong fitness value) remaining in the population (e.g. when the elitist selection mechanisms
are used) may invalidate or decrease the effectiveness of the search [42].

5.3.1.3 Improved BOINC-based approach

As mentioned in the previous section, when the asynchronous parallel model for EA ex-
ecutions is used, only a small fraction (less than 4%) of evaluated results make into the
population [42]. This ratio decreases with the progress of the search to less than 2% [42]. On
top of that, only 0.5% of the results were reported as invalid in the real-life executions from
the MilkyWay@home project [42]. Therefore, a solution limiting the number of required
validations (i.e. additional fitness values computations) is desirable.

Desell et al. proposed in [40, 42] to utilise two populations in the search: one containing
only validated individuals, the other one — non-validated (but evaluated) ones. A solution
after its first evaluation is inserted into the non-validated population (replacing the worst
candidate) only if it can improve the validated set. An individual is moved from the non-
validated population to the validated one (replacing the worst solution) when it reached a
quorum. The approach was tested with two validation strategies: pessimistic (Figure 5.3a)
and optimistic (Figure 5.3b). When the first strategy is used, new individuals are cre-
ated only from the validated population (using the specified reproduction mechanism) and
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Figure 5.3: An improved BOINC-based approach for fault-tolerant execution of EAs. In (a)
the pessimistic strategy, (b) the optimistic strategy.

solutions from the non-validated population are submitted for validation at some (adap-
tive) validation rate. The optimistic strategy is used with an assumption that most of
the non-validated results are correct. In this case, new individuals are created using the
non-validated population and the solutions from this set are also submitted for validation at
some (adaptive) validation rate. If a candidate from the non-validated group was found to be
incorrect, it is replaced with a one from the validated population. Additionally, if the newly
created individual is never returned evaluated — it is simply considered as lost (adopting
the dynamic populations scheme, see Section 5.3.1.1).

If the validation rate is too low, then while using the pessimistic strategy, it may take a lot
of time before a good solution is used to create new individuals [40]. On the other hand, in
the case of the optimistic approach — the incorrect individuals last longer, generating more
(potentially) poor candidate solutions [40]. Another issue is that simple rejecting results
without their validation, just because they do not improve the current validated population,
attracts cheaters [40]. Constantly reporting bad results gives free rewards for the “done”
computation.

To solve these issues, a combination of BOINC’s quorum and adaptive replication scheme
(see [8]) was adopted for the execution of EAs [40]:
• If there are free worker machines, new individuals (initially with a quorum of 1) are

created from the validated population — in the pessimistic approach, or from the
non-validated one — if the optimistic strategy is used.
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• When the evaluated individual is returned for the first time:
– If it cannot improve the validated population, it is submitted for validation (its

required quorum value is increased to the specified one) with a chance equal to the
host’s error rate (initially 0.1, multiplied by 0.95 for each correct result, increased
by 0.1 — for the incorrect ones). This measure of trust is bounded to the range
from 0.1 to 1.

– If it can improve the validated population, then an attempt to add it to the
non-validated population is made and the individual is submitted for validation
(increasing its required quorum value).

The optimistic validation leads to faster convergence and shorter execution times [40,42].
The justification is simple: it is beneficial for the search to quickly use newly found good
individuals. This was visible for the results obtained by the pessimistic strategy, which
required much higher number of validations [42].

5.3.2 Crash-tolerant execution of distributed EAs

As described in Section 4.3, in distributed environment, there is no distinction between the
importance of nodes involved in the computation. In the context of DGVCS’s, the resources
provided by the platform owner are typically designated only to start and gather the results
from the execution. However, an option remains to delegate some nodes to participate in
the run of the application at the level equal with the volunteered machines.

As emphasised in Section 5.2.2, only EAs based on unstructured, cellular populations
provide the best fit for distributed executions in DGVCS’s. Solutions typically relay on P2P
overlay networks (see Section 3.2.2) to define relations between the cells. All research in the
area is focused on the resilience against node crashes and the performance of the models.

Crash-tolerance is achieved thanks to the decentralised structure of the algorithm [86,
145,179], by the natural extension of the dynamic populations approach (see Section 5.3.1.1)
from the parallel environment. Initially, the influence of churn on the evolutionary search was
analysed in the area of P2P-based Particle Swarm Optimisation (PSO) using simulations.
At first, it was demonstrated through simulated node failures by Scriven et al. in [143]
that multi-objective PSO algorithm in failure-prone environment shows resilience to small
failure rates. However, the quality of the solution degrades at the high rate of failures. Later
on, Banhelyi et al. in [24] showed that churn (simulated through node restarts during the
execution) might be helpful in escaping from local optima in the context of P2P PSO and P2P
branch and bound algorithm. Finally, the approach was extended by Scriven et al. in [145],
exploring different ways to handle the changes in nodes’ availability. They demonstrated
that the best strategy is to fill gaps with new particles in the approximated pareto front.

The first and currently the only solution designed for massive scalability and crash-
tolerance in distributed EAs is the Evolvable Agent Model (EvAg) [85–88].

5.3.2.1 Evolvable Agent Model (EvAg)

Evolvable Agent Model (EvAg) (briefly described in Section 4.3.3) is a complete approach
for distributed executions of EAs, first proposed in [87] and further extended in [86,88]. Its
population follows the unstructured, cellular model (see Section 4.2.3.3) with each cell (i.e.
Evolvable Agent) acting independently on two layers: evolution and communication.
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On the evolution layer, each agent runs the standard EA loop: parents selection, appli-
cation of variation operators, evaluation of the offspring, and survivors selection (or in this
context, simply — replacement). The execution can be synchronous or asynchronous (see
Section 4.3.3), with the latter being a typical setting, additionally increasing the robustness
of the solution [143].
The communication layer affects the neighbourhood of each cell, as the population is struc-
tured using a P2P overlay network (see Section 3.2). The reference implementation is based
on Newscast [82] — a pure P2P gossip (i.e. epidemic) protocol (presented in detail in Chap-
ter 7). In such network, randomness is exploited to virally disseminate information and
to maintain connectivity in a self-organised, small-world equilibrium. It emerges from the
loosely-coupled and distributed run of the protocol within different and independent nodes
(see Appendix C for more details).

Crash-tolerance of the scheme is partially inherited from Newscast which is used to organise
the cells. Its epidemic nature provides high resilience and self-healing properties against
churn [83, 173]. Depending on the protocol settings, the connectivity between the nodes is
maintained even at extremely high node failure rates (reaching 90%) [82].

The participants may join or leave the execution of the algorithm at any moment. Any
of the nodes involved in the computation may serve as the entry point for new volunteers.
To deal with the joining nodes at the evolution layer, any of the solutions described in
Section 5.3.1.1 may be used, namely: new individuals can be created randomly, following
the reproduction scheme or though local search performed by the new node. The individuals
located at the leaving nodes are simply considered lost.

The solutions described above were analysed by Laredo et al. in [86], based on real-world
traces of host availability measured and reported in [91]. Experiments were conducted under
two scenarios: nodes that fail, never become available again; and with host-churn (nodes
can join and leave the system). The results from the first scenario confirm the findings
described earlier in this chapter: low failure rates do not influence the quality of the final
solution and the large number of failing nodes damages the optimisation process. However,
EvAg loosing up to 70% of its original population, still outperforms the results obtained from
a parallel EA with a panmictic population, running in a failure-free environment [86]. In
the host-churn scenario, the results again confirm previously presented findings: the quality
of solutions is preserved (and in some cases even improved) despite the fluctuations in the
number of available resources. “Furthermore, the hybridization of the P2P approach with the
local search policy has provided the most outstanding results: the volunteer system needs to
lose up to 90% of the initial resources to diminish the algorithmic performance” [86].

5.3.3 Open problems

To the best of our knowledge, there existed a single study attempting to provide a theoretical
analysis of the impact of cheating-faults on the EA executions. A tentative sketch of proof
was initiated in [168], based on the convergence results found in the context of Interacting
Particle System (IPS) [39] used to model GAs. Yet the approach suffers from various flaws
(see [114] for details) that do not permit concluding rigorously on the convergence of the
algorithm.

In Chapter 6, we present the work published in [114], directly inspired by the results
found in the seminal article of Rudolph [136], where we addressed the convergence problem
in a malicious environment. The conducted study allows identifying critical components of
parallel EAs. Additionally, it gives some insights why the genetic material from potentially
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erroneous individuals may be used for breeding new solutions (like in Section 5.3.1.3) without
preventing the algorithm from converging to the set of optimal solutions.

To the extent of our knowledge, no studies have been conducted on the cheating-tolerance
of distributed EAs in DGVCS’s. The topic is relatively new and slowly gaining popularity in
the community. Therefore, in Chapter 7 we will identify the critical elements of distributed
EAs and in particular — EvAg, aiming to extend its resilience to both causes of failures in
DGVCS’s.

5.4 Summary

In this chapter we presented characteristics of resources availability in DGVCS’s and the
important term associated with it — CPU availability. The difference between host and CPU
availabilities is that the first measurement describes overall uptime of a given resource, where
the second — the actual readiness for volunteer computation. In practice, the intervals of
the latter may be very short, which was illustrated using the CPU availability trace collected
from a real platform — BOINC — executing the SETI@home project. Where this interval
was as short as 1 minute for more than 25% of all availability states.

After this, the second major threat in DGVCS’s was presented — malicious activities and
cheaters. The high anonymity of the platform members allows them to exploit various vul-
nerabilities build-in within the solution. Such behaviour is additionally motivated by the
fact, that Volunteer Computing Systems (VCS’s) offer various incentives for their partici-
pants. Therefore, malicious users try to obtain these rewards with little or no contribution
to the project, which leads to the formalisation of cheating faults and creation of a (Lazy)
Cheater Model — mimicking the behaviour.

Having identified main challenges of the platform, we moved to the context of executing
EAs in DGVCS’s (summarised in Table 5.1). First, we specified general properties of opti-
misation problems and EA execution models suitable for the platform from the perspective
of scalability and performance. Geographical dispersion and diverse hardware of volunteered
resources affect efficiency of communication between the machines. Hence, the main factor
for suitability of the optimisation problem is the evaluation time of a single solution. It has
to outweigh the communication cost and increased complexity of the software.
Regarding the execution models, the parallel model is the safest choice. It offers very good
scalability and performance in the platform. It is well analysed empirically, and widely used
in practice in volunteer-based projects. Generally, crash failures may be simply ignored up
to a certain point. There are also solutions supporting cheating-tolerant executions. The
decentralised Island model (the hierarchical parallel EA) may be used as a natural extension
of the above, offering better resource utilisation.
Distributed executions of EAs pose the biggest challenge in DGVCS’s. Any rigid structure
between the volunteered resources is hard to maintain in a volatile environment. Therefore,
the structured cellular models are not well suited for the execution in DGVCS’s.
The distributed Island model would use a limited number of volunteered nodes, which is
dictated by the useful number of islands (too many bring no benefit to the optimisation
process, wasting the resources). Additionally, potential crash failures would lead to huge
losses of individuals (the whole sub-populations).
The unstructured cellular models have the greatest potential, tolerating the volatile envi-
ronment very well. However, none of the distributed models were analysed in a malicious
environment and their applicability in DGVCS’s remains an open problem.
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Chapter 6

Theoretical Foundation of Cheating-Tolerance
in Parallel EAs
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The objective of this chapter is to answer the following question mentioned in Section 1.2:
Can we formally analyse in which conditions an EA is expected to converge (or not) towards
valid solutions despite the presence of cheating faults?

To reach the goal, the convergence analysis is performed using a step-wise approach. We
first concentrate on the most simple variant of an EA — the (1 + 1) model that is still of
theoretical and practical interest as highlighted in Section 4.4.1. In short, in this approach
the size of the population is restricted to one individual and the crossover operator is not
used. In the second step, the results are extended to regular (population-based) EAs. The
ABFT nature of EAs against cheating faults is theoretically demonstrated. The theoretical
model of the algorithm introduced in Section 4.4.3 is used throughout the sections of this
chapter. Finally, cheating impact on parallel EA computations (typically on top of DGVCS’s)
is discussed.
Extract of notations in Appendix A might be helpful while following the reasoning presented
in this chapter.

6.1 Convergence analysis in a fault-free environment

This section recalls the convergence analysis from [136]. One iteration of the algorithm is
divided into two phases: modification and selection. Associated Markovian kernel can be
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t ← 0
create x0

create y from xt using
genetic operators

f(y) ≥ f(xt)

xt+1 ← y xt+1 ← xt

t ← t + 1

true false

Figure 6.1: Execution scheme of a (1 + 1) EA with the elitist selection.

described as a product kernel defined below [136]:

K(x,A) = (KmKs)(x,A) =
∫
E

Km(x,dy) ·Ks(y,A) (6.1)

where Km is a modification (mutation / mutation-crossover) kernel and Ks is a selection
kernel. In all algorithms presented here, the selection phase is performed by an elitist selec-
tion. It can be implemented in many ways, but all of them have in common one property:
the best individual in the current population is not worse than the best from the previous
one.

6.1.1 Convergence of (1 + 1) EA

In this case of the (1 + 1) EA, the population consists of a single individual, which in every
iteration of the algorithm is used to generate exactly one offspring. Therefore, the state
space is E =M. For the illustration of the algorithm execution see Figure 6.1.

It is assumed that the phase of generating the offspring is performed by modification (in
this case mutation only) kernel Km(x,A), which allows transition to any set Aε ⊆ A from
any state x ∈ E, in short:

∀ε>0∀x∈E∀Aε⊆AKm(x,Aε) > 0 (6.2)

Additionally, each individual is modified at random independently. The selection phase is
described by the elitist selection kernel:

Ks(y,A;x) = 1A∩B(x)(y) + 1A(x) · 1Bc(x)(y) (6.3)

and may be interpreted as follows [136]:
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“If a state y ∈ E is better or equal than a state x (i.e. y ∈ B(x)) and also in a
set A, then y transitions to the set A, and more precisely to the set A ∩ B(x),
with probability one. If y is worse than x (i.e. y ∈ Bc(x)) then y is not accepted.
Rather, y will transition to the old state x with probability one. But if x was in
set the A then y will transition to x ∈ A with probability one. All other cases
have probability zero”.

Combining these two definitions together gives the following product kernel1:

K(x,A) =
∫
E

Km(x, dy) ·Ks(y,A)

= Km(x,A ∩B(x)) + 1A(x) ·Km(x,Bc(x))

Applying restriction to the set Aε of ε-optimal solutions, either Aε ⊂ B(x), in which case
x /∈ Aε (1Aε(x) = 0), Aε ∩B(x) = Aε and

K(x,Aε) = Km(x,Aε)

or in case of B(x) ⊆ Aε, x ∈ Aε (i.e. 1Aε(x) = 1), Aε ∩B(x) = B(x) and

K(x,Aε) = Km(x,B(x)) +Km(x,Bc(x)) = 1 from (4.7)

Therefore, the Markovian kernel restricted to the set Aε is

K(x,Aε) = 1Aε(x) + 1Acε(x) ·Km(x,Aε)

which fulfils the preconditions of Theorem 4.4.1 and consequently the algorithm will converge
to the global minimum of a real-valued objective function.

6.1.2 Convergence of population-based EA

A population-based EA (considered here) consists of N individuals (from arbitrary set M),
which in every iteration of the algorithm are used to generate N offspring (also from the
same set M). Therefore, the state space is E =MN .

Now it is needed to replace previously defined mutation kernel Km by the corresponding
modification kernel, fulfilling the same properties (summarized in Equation 6.2). With a
special version of the elitist selection, the selection kernel could be defined as follows:
• If y ∈ E is in B(x) ∩A then population transitions to A.
• If y ∈ E is not in B(x) (i.e. the best individual of the population y is worse than the

best individual of the population x) then entire population is rejected.
So the population-based selection kernel is identical to the individual-based version defined
in Equation (6.3) and a structure of the kernel K defined in case of (1 + 1) EA remains
valid.

However, under the usual elitist selection (which is analysed further in this chapter),
in second case described above, the best individual is re-inserted — somehow — into the
population y yielding y′ = ebest(x, y) ∈ B(x). Where the map ebest : E×E → E encapsulates
the method to re-insert the best individual of x ∈ E into y. Consequently, the elitist selection

1For the full development of this equation see [136].
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t ← 0
create X0

create Y from Xt

using genetic operators

b(Y ) ≥ b(Xt)

Xt+1 ← Y Xt+1 ← ebest(Xt, Y )

t ← t + 1

true false

Figure 6.2: Execution scheme of a population-based EA with elitist selection.

kernel becomes:

Ks(y,A;x) = 1A∩B(x)(y) + 1A(x) · 1Bc(x)(y) · 1A(ebest(x, y)) (6.4)

For an illustration of the algorithm execution, see Figure 6.2.
Combining this elitist selection kernel with the modification kernel (both defined above)

gives the following product kernel2:

K(x,A) =
∫
E

Km(x,dy) ·Ks(y,A)

= Km(x,A ∩B(x)) + 1A(x) ·
∫

Bc(x)

Km(x, dy) · 1A(ebest(x, y))

Applying restriction to the set Aε of ε-optimal solutions, then either Aε ⊂ B(x), in which
case x /∈ Aε (1Aε(x) = 0), Aε ∩B(x) = Aε and

K(x,Aε) = Km(x,Aε) .

Or in case of B(x) ⊆ Aε, x ∈ Aε (i.e. 1Aε(x) = 1), Aε ∩B(x) = B(x) and since ebest(x, y) ∈
B(x) ⊆ Aε (which leads to 1Aε(ebest(x, y)) = 1):

K(x,Aε) = Km(x,B(x)) +Km(x,Bc(x)) = 1 from (4.7)

Therefore, the Markovian kernel restricted to the set Aε is

K(x,Aε) = 1Aε(x) + 1Acε(x) ·Km(x,Aε)

2See footnote 1.
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which fulfils preconditions of Theorem 4.4.1 and consequently the algorithm will converge to
the global minimum of a real-valued objective function.

6.2 Convergence analysis in a hostile environment

The model of a cheater behavior assumed in our study is the Bernoulli process. At any
given point in time a task is either cheated (with a probability 0 ≤ δc < 1) or it is executed
without any modifications. The execution history of a task is not taken into account when
this decision is made. It is also assumed that there is no cooperation between the cheaters,
therefore cheating is performed independently.

6.2.1 Convergence of (1 + 1) EA with cheating at the mutation level

Based on the mutation kernel definition in Equation (6.2), the cheated mutation kernel can
be defined as:

Kcheat
m (x,A) = δc · 1A(x) + (1− δc) ·Km(x,A) (6.5)

where δc corresponds to the probability of cheating. The above equation means that if
cheating occurred (with probability δc) and state x was in a set A, then it will stay in this
set (lazy cheater model). If cheating did not occur then x will transition to the set A with
probability of uncheated version of the mutation. Selection kernel is defined like previously
(see Equation (6.3)).

Theorem 6.2.1. (1 + 1) EA with transition kernels defined above will converge to the global
minimum of a real-valued objective function f :M→ R with f > −∞ defined on an arbitrary
space M, regardless of the initial distribution, despite cheating at the level of mutation.

Proof.

K(x,A) =
∫
E

Kcheat
m (x, dy) ·Ks(y,A;x)

=
∫
E

Kcheat
m (x, dy) · 1A∩B(x)(y) from (6.3)

+ 1A(x) ·
∫
E

Kcheat
m (x,dy) · 1Bc(x)(y)

= Kcheat
m (x,A ∩B(x)) + 1A(x) ·Kcheat

m (x,Bc(x)) from (4.6)

= δc · 1A∩B(x)(x) + (1− δc) ·Km(x,A ∩B(x)) from (6.5)

+ 1A(x) · [δc · 1Bc(x)(x) + (1− δc) ·Km(x,Bc(x))]
= δc · 1A∩B(x)(x) + (1− δc) ·Km(x,A ∩B(x))

+ δc · 1A∩Bc(x)(x) + (1− δc) · 1A(x) ·Km(x,Bc(x))
= δc · 1A(x) + (1− δc) ·Km(x,A ∩B(x))

+ (1− δc) · 1A(x) ·Km(x,Bc(x))

Applying restriction to the set Aε of ε-optimal solutions, then either Aε ⊂ B(x) in which
case x /∈ Aε (1Aε(x) = 0), Aε ∩B(x) = Aε and

K(x,Aε) = (1− δc) ·Km(x,Aε)
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Or in case of B(x) ⊆ Aε, x ∈ Aε (i.e. 1Aε(x) = 1), Aε ∩B(x) = B(x) and

K(x,Aε) = δc + (1− δc) ·Km(x,B(x)) + (1− δc) ·Km(x,Bc(x))
= δc + (1− δc) · [Km(x,B(x)) +Km(x,Bc(x))]
= δc + 1− δc = 1 from (4.7)

Therefore, the Markovian kernel restricted to the set Aε is

K(x,Aε) = 1Aε(x) + 1Acε(x) · (1− δc) ·Km(x,Aε)

Consequently, (1 + 1) EA with cheating at the level of mutation will converge to the global
minimum of a real-valued objective function (according to Theorem 4.4.1).

6.2.2 Non-convergence of (1 + 1) EA with cheating at the selection level

Mutation kernel is defined like in Section 6.1.1. The elitist selection kernel with cheating
becomes:

Kcheat
s (y,A;x) = δc · [1A∩Bc(x)(y) + 1A(x) · 1B(x)(y)] + (1− δc) ·Ks(y,A;x) (6.6)

where Ks(y,A;x) is defined like previously (see Equation (6.3)). The above equation can be
interpreted as follows: if cheating occurred (with probability δc) and state y ∈ E is not worse
than state x (i.e. y ∈ Bc(x)) but also in set A, then y transitions to the set A, and more
precisely to the set A ∩ Bc(x). If y is better than x (i.e. y ∈ B(x)) then y is not accepted
and will transition to old state x given that x ∈ A. If cheating did not occur then y will
transition to the set A with probability of uncheated version of selection.

Theorem 6.2.2. (1 + 1) EA with transition kernels defined above may not converge to the
global minimum of a real-valued objective function f : M → R with f > −∞ defined on
an arbitrary space M, regardless of the initial distribution, due to cheating at the level of
selection.

Proof.

K(x,A) =
∫
E

Km(x,dy) ·Kcheat
s (y,A;x)

= δc ·
[ ∫
E

Km(x,dy) · 1A∩Bc(x)(y) from (6.6)

+ 1A(x) ·
∫
E

Km(x,dy) · 1B(x)(y)
]

+ (1− δc) ·
∫
E

Km(x,dy) ·Ks(y,A;x)

= δc · [Km(x,A ∩Bc(x)) + 1A(x) ·Km(x,B(x))] from (4.6)

+ (1− δc) ·
[ ∫
E

Km(x, dy) · 1A∩B(x)(y) from (6.3)
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+ 1A(x) ·
∫
E

Km(x, dy) · 1Bc(x)(y)
]

= δc · [Km(x,A ∩Bc(x)) + 1A(x) ·Km(x,B(x))]
+ (1− δc) · [Km(x,A ∩B(x)) + 1A(x) ·Km(x,Bc(x))]

Applying restriction to the set Aε of ε-optimal solutions, then either Aε ⊂ B(x) (1Aε(x) = 0),
in which case x /∈ Aε, Aε ∩B(x) = Aε, Aε ∩Bc(x) = ∅ and

K(x,Aε) = (1− δc) ·Km(x,Aε).

Or in the case of B(x) ⊆ Aε, x ∈ Aε (i.e. 1Aε(x) = 1), Aε ∩ B(x) = B(x), Aε ∩ Bc(x) =
Aε \B(x) and

K(x,Aε) = δc · [Km(x,Aε \B(x)) +Km(x,B(x))]
+ (1− δc) · [Km(x,B(x)) +Km(x,Bc(x))]

= δc · [Km(x,Aε)−Km(x,B(x)) +Km(x,B(x))] + 1− δc
= δc ·Km(x,Aε) + 1− δc

Therefore, the Markovian kernel restricted to the set Aε is

K(x,Aε) = 1Aε(x) ·
(
1− δc + δc ·Km(x,Aε)

)
+ 1Aεc(x) · (1− δc) ·Km(x,Aε)

There is a probability of losing the optimal solution, such that (1 + 1) EA with cheating
at the level of selection may not converge to the global minimum of a real-valued objective
function (according to Theorem 4.4.1, the above kernel does not fulfill preconditions for
convergence).

Now the results will be extended to regular, population-based EAs.

6.2.3 Convergence of population-based EA with cheating at the modification
level

The Markovian kernels used in this section are defined like previously:
• uncheated modification kernel Km(x,A) — see Equation (6.2),
• cheated modification kernel Kcheat

m (x,A) — see Equation (6.5),
• elitist selection kernel Ks(x,A) — see Equation (6.3).

Theorem 6.2.3. Population-based EA with transition kernels defined above will converge to
the global minimum of a real-valued objective function f :M→ R with f > −∞ defined on
an arbitrary space M, regardless of the initial distribution, despite cheating at the level of
modification.

Proof.

K(x,A) =
∫
E

Kcheat
m (x,dy) ·Ks(y,A;x)

=
∫
E

Kcheat
m (x,dy) · 1A∩B(x)(y) from (6.4)

81



Chapter 6 Theoretical Foundation of Cheating-Tolerance in Parallel EAs

+ 1A(x) ·
∫
E

Kcheat
m (x,dy) · 1Bc(x)(y) · 1A(ebest(x, y))

= Kcheat
m (x,A ∩B(x)) from (4.6)

+ 1A(x) ·
∫

Bc(x)

Kcheat
m (x,dy) · 1A(ebest(x, y)) from (4.6)

= δc · 1A∩B(x)(x) + (1− δc) ·Km(x,A ∩B(x)) from (6.5)

+ 1A(x) ·
∫

Bc(x)

[δc · 1dy(x) + (1− δc) ·Km(x,dy)] · 1A(ebest(x, y))

= δc · 1A∩B(x)(x) + (1− δc) ·Km(x,A ∩B(x))

+ 1A(x) · δc ·
∫

Bc(x)

1dy(x) · 1A(ebest(x, y))

+ 1A(x) · (1− δc) ·
∫

Bc(x)

Km(x, dy) · 1A(ebest(x, y))

Applying restriction to the set Aε of ε-optimal solutions, then either Aε ⊂ B(x), in which
case x /∈ Aε (1Aε(x) = 0), Aε ∩B(x) = Aε and

K(x,Aε) = (1− δc) ·Km(x,Aε) .

Or in the case of B(x) ⊆ Aε, x ∈ Aε (i.e. 1Aε(x) = 1), Aε ∩ B(x) = B(x) and since
ebest(x, y) ∈ B(x) ⊆ Aε (leading to 1Aε(ebest(x, y)) = 1):

K(x,Aε) = δc · 1B(x)(x) + (1− δc) ·Km(x,B(x))

+ δc ·
∫

Bc(x)

1dy(x) + (1− δc) ·
∫

Bc(x)

Km(x,dy)

= δc + (1− δc) ·Km(x,B(x)) + (1− δc) ·Km(x,Bc(x)) from (4.6)

= δc + (1− δc) · [Km(x,B(x)) +Km(x,Bc(x))]
= δc + 1− δc = 1 from (4.7)

Therefore, the Markovian kernel restricted to the set Aε is

K(x,Aε) = 1Aε(x) + 1Aεc(x) · (1− δc) ·Km(x,Aε)

Consequently, the population-based EA with cheating at the level of modification will con-
verge to the global minimum of a real-valued objective function (according to Theorem 4.4.1).

6.2.4 Non-convergence of population-based EA with cheating at the selection
level

The modification kernel is defined like previously, see Equation (6.2). The elitist selection
kernel with cheating becomes:

Kcheat
s (y,A;x) = δc ·

[
1A∩Bc(x)(y) + 1B(x)(y) · 1A(x) · 1A(eworst(x, y))

]
+ (1− δc) ·Ks(y,A;x)

(6.7)
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where Ks(y,A;x) is defined in Equation (6.4). For this definition additional map eworst :
E×E → E is needed, which encapsulates the method to insert the worst individual of y ∈ E
into x.

Equation (6.7) can be interpreted as follows: if cheating occurred (with probability δc) and
a state y ∈ E is worse than a state x (i.e. y ∈ Bc(x)) and also in a set A, then y transitions
to the set A, and more precisely to the set A ∩ Bc(x). If y is better than x (i.e. y ∈ B(x)),
then y is not accepted and will transition to the state composed from the worst individuals
of both populations (x and y), given that this state is in the set A. If cheating did not occur,
then y will transition to set A with probability of uncheated version of selection.

Theorem 6.2.4. Population-based EA with transition kernels defined above may not con-
verge to the global minimum of a real-valued objective function f : M → R with f > −∞
defined on an arbitrary space M, regardless of the initial distribution, due to cheating at the
level of selection.

Proof.

K(x,A) =
∫
E

Km(x,dy) ·Kcheat
s (y,A;x)

= δc ·
[
Km(x,A ∩Bc(x)) from (6.7)

+ 1A(x) ·
∫

B(x)

Km(x, dy) · 1A(eworst(x, y))
]

+ (1− δc) ·Ks(y,A;x)

= δc ·
[
Km(x,A ∩Bc(x))

+ 1A(x) ·
∫

B(x)

Km(x, dy) · 1A(eworst(x, y))
]

+ (1− δc) ·
[
Km(x,A ∩B(x)) from (6.4)

+ 1A(x) ·
∫

Bc(x)

Km(x,dy) · 1A(ebest(x, y))
]

Applying restriction to the set Aε of ε-optimal solutions, then either Aε ⊂ B(x) in which
case x /∈ Aε (1Aε(x) = 0), Aε ∩B(x) = Aε, Aε ∩Bc(x) = ∅ and since ebest(x, y) ∈ B(x) ⊆ Aε
(leading to 1Aε(ebest(x, y)) = 1):

K(x,Aε) = (1− δc) ·Km(x,Aε) .

Or in the case of B(x) ⊆ Aε, x ∈ Aε (i.e. 1Aε(x) = 1), Aε ∩ B(x) = B(x), Aε ∩ Bc(x) =
Aε \B(x) and
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K(x,Aε) = δc ·
[
Km(x,Aε \B(x))

+
∫

B(x)

Km(x,dy) · 1Aε(eworst(x, y))
]

+ (1− δc) ·
[
Km(x,B(x))

+
∫

Bc(x)

Km(x,dy) · 1Aε(ebest(x, y))
]

= δc ·
[
Km(x,Aε \B(x))

+
∫

B(x)

Km(x,dy) · 1Aε(eworst(x, y))
]

+ (1− δc) · [Km(x,B(x)) +Km(x,Bc(x))]

= δc ·
[
Km(x,Aε)−Km(x,B(x))

+
∫

B(x)

Km(x,dy) · 1Aε(eworst(x, y))
]

+ 1− δc from (4.7)

≤ 1− δc · [1−Km(x,Aε)]

The Markovian kernel restricted to the set Aε (both cases combined together) has a proba-
bility of losing optimal solution, such that population-based EA with cheating at the level of
selection may not converge to the global minimum of a real-valued objective function (accord-
ing to Theorem 4.4.1, the above kernel does not fulfill preconditions for convergence).

6.3 Applying the results in parallel executions of EAs

The analysis proposed in this chapter shows that the validity of the selection mechanism
is crucial to achieve the convergence of EAs. Typically, the parallel execution of an EA is
organised in the master/worker model (see Section 4.3.1) with a delegation of single tasks
(in the most cases: the evaluation of individuals).

In this approach, the main EA loop (including the selection) is performed by the mas-
ter node which is a trusted resource in a DGVCS (therefore, never cheating). The breed-
ing and the evaluation of new individuals can be executed by the workers. Even though
these machines (among which cheaters can be located) are not directly responsible for the
selection process (the parents or the survivors), they can still influence it. This can be
achieved by altering the fitness value assigned to a particular individual. For instance, in
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case of minimisation of the objective function f :M→ R, the fitness value can be reversed
f cheat(x) = 1/f(x). This way, the worse genetic material will be chosen in favour of a better
one during the selection process.

In case of the elitist selection considered in the analysis, at least the “best so far” member of
the population has to be treated specially. It has to be assured that in the next generation, the
new best individual is indeed not worse than the previous one (despite of possible cheating).
The aforementioned can be achieved by re-evaluating the candidates for the new “best so
far” before updating the population.

A direct application of the results from this chapter can be found in the execution schemes
presented in Section 5.3.1.3. The assessment of the search progress (and in particular the
survivor selection) is made using only the verified (re-evaluated) individuals. However, as
Desell et al. empirically demonstrated in [40, 42], the non-validated results can be used for
breeding new candidate solutions (which is equivalent to possible cheating at the modification
level), obtaining faster convergence and shorter execution times.

6.4 Summary and perspectives

In this chapter, we proposed a formal analysis that permits to conclude on the robustness (or
non-robustness) of EAs when executed in a parallel environment subjected to malicious acts.
Whereas some preliminary studies illustrate the remarkable resilience of EAs against crash
failures, the enclosed convergence results offer new insights on the subject in the presence of
cheaters. More precisely, the proposed analysis permits concluding formally on the robustness
(or non-robustness) of parallel EAs. Table 6.1 summarizes the contributions of this thesis
from this perspective.

The fact that there exists some cases where an EA always converges despite the presence
of cheating faults is quite encouraging. This will promote the usage of EAs in the future
developments around distributed computing platforms such as Desktop Grids and Volunteer
Computing Systems or Cloud systems where the resources cannot be fully trusted. In par-
ticular, our work shows that the modification step of an EA can be “safely” executed on
the untrusted workers without any special protection: if cheating is present at this level,
it will not affect the convergence of the optimisation search towards valid and (hopefully)
optimal solutions. In this sense, EAs can be considered to have an Algorithm-Based Fault
Tolerance (ABFT), hence to be fault-tolerant without any extensions. Alternatively, our
study also highlights that as soon as cheating happens at the selection level and no special
validation mechanisms are used, there is a chance that the algorithm will not converge. This
means that in this case, additional measures have to be introduced.

Finally, the convergence towards valid and optimal solutions despite the presence of cheat-
ing faults does not mean that the optimisation search will end within a reasonable execution
time (compared to a fault-free environment). Nevertheless, the existing empirical studies in-
dicate that for small cheating rates (less than 0.5%) it is beneficial to use the non-validated
genetic material in the process of creating new candidate solutions. In future works, it would
be interesting to analyse theoretically the impact of cheating on the execution time which
combined with this study would create a clear guideline for the practical applications.
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Towards Cheating-Tolerance in Distributed
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In the previous chapter, an in-depth formal analysis of the cheating-tolerance of the parallel
EAs has been presented. It included proofs of convergence (or not) towards the optimal
solutions when the execution is performed on top of a DGVCS subjected to malicious acts.
Here we would like to extend our investigation in the direction of distributed EAs. More
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precisely, we propose to analyse Evolvable Agent Model (EvAg). The solution relies on a
gossip P2P protocol named Newscast, used to define neighbourhoods in the evolution and
the communication layers. As introduced in the Chapter 5, it is the only distributed EA
model able to utilise vast computing resources offered by DGVCS’s. Moreover, the approach
has been already analysed and proved to be effective in the presence of churn (the volatility
of resources).

This chapter starts with an introduction of the necessary conditions for convergence of
EvAg in a hostile environment. Independently on the approach used at the evolution layer,
cheating-tolerance of the communication protocol is necessary to guarantee the successful
execution of the search. Due to the lack of suitable, cheating-tolerant replacement for News-
cast, the rest of the chapter is devoted to locate the problem and to find a way to solve it.
First, the malicious acts and their impact at the communication layer are formalised with
an introduction of the simulation environment. Then, the vulnerabilities in Newscast are
located through a data flow analysis. This is followed by the development of an effective
cheating scheme able to exploit the flaws in the original design. Finally, the solution towards
countering the attack is presented.

7.1 Cheating-tolerance of Evolvable Agent Model (EvAg)

As introduced in Section 5.3.2.1, Evolvable Agent Model (EvAg) works on two layers: evolu-
tion and communication. Each cell (i.e. Evolvable Agent) acts independently on both layers,
where the first layer heavily depends on the latter. It is caused by the definition of the
neighbourhood of each cell, which is determined by the network structure (i.e. links between
the nodes) obtained from the execution of Newscast [82] — a pure P2P gossip protocol.
Cheating-tolerance of the whole scheme may be achieved only if this property is provided on
both layers. Therefore, the analysis will be made in both directions.

7.1.1 Cheating-tolerance at the evolution layer

As detailed before (in Section 5.3.2.1), each cell (in EvAg) runs the standard EA loop at the
evolution layer:

1. Parents are selected from the neighbourhood.
2. An offspring is created through the application of the variation operators on the parent

solutions.
3. The newly created solution is evaluated.
4. The individual stored in the cell is possibly replaced by the offspring.

Regardless of whether the replacement is synchronous or asynchronous, in a standard dis-
tributed execution, non of the above operations are delegated to other nodes. Consequently,
on the current layer, the only “attack vector” for a malicious user is to provide an invalid
(i.e cheated, corrupted) individual with an increased chance of being chosen as a parent.
For instance, it could be the worst solution encountered by the cheater (during the current
execution) with the reversed fitness, or simply: a random specimen with a high objective
value.

Therefore, a decision has to be made: if parents should be validated or not (i.e. evaluated
again, locally at the current cell). This yields two strategies for validation: pessimistic
and optimistic, similarly to the improved BOINC-based execution scheme for parallel EAs
(Section 5.3.1.3). However, adapted to the level of a single, independent cell.
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(a) (b)

Figure 7.1: The worst case scenario with a cheating-intolerant communication layer for EvAg.
In (a) a snapshot of the population structure created by the fault-free execution
of a P2P protocol, (b) a snapshot of the population structure altered by 10
malicious users. Cheaters control fully all neighbourhoods at the latter stage.

7.1.1.1 Pessimistic strategy: validate the parents

Validation of all individuals obtained from the neighbourhood of a cell would waste a lot
of CPU time. For this reason, only the selected parents (or the parent, if the individual
currently stored in the cell is chosen or selected in advance) should be re-evaluated in the
pessimistic strategy. If an invalid solution is detected, it is removed from the neighbourhood
set and the selection with validation is performed again. When all individuals obtained from
the neighbourhood proved to be invalid, it indicates a serious problem: the node is faulty,
the execution is attacked by malicious users or many nodes are failing. Hence, the situation
should be reported to the owner of the node/nodes and/or the owner of the platform.

Assuming the fault-free state of the node, the above scheme allows progression of the
search at the level of a single cell despite cheated individuals present in its neighbourhood.
However, the global success of the optimisation depends on the communication layer. Despite
the fault-tolerant execution of the evolution at each cell, the overall progress of the search
may be crippled or even stopped. For instance, a group of malicious users may try to
takeover the network, concentrating all the connections on them (forming a communication
hub, see Figure 7.1). To stop the progress of the search, they do not have to send corrupted
individuals — it is enough to provide all the time the same genetic material. This would cause
the stagnation, and possibly stop the optimisation process at a local optimum. Additionally,
in the worst case, the cheaters may leave at the same moment, splitting completely the
population into single cells.
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7.1.1.2 Optimistic strategy: no validation (an ABFT approach)

In the optimistic strategy, no validation is performed. The creation of the offspring, its
evaluation and the replacement mechanism are executed locally. Therefore, the individual
stored in the cell and the newly created one are bound to be valid at all times within the
boundaries of the node (assuming that it is in a fault-free state). It should also be pointed
out that even poor solutions have a potential to create good individuals.

However, if the search will progress globally (at the population level) or at the level of the
cell, depends on many factors. Most of them are related again to the protocol being used at
the communication layer and the hardware involved in the computation. In a particular case,
it would be possible to estimate (or at least measure empirically) the expected number of
cheated individuals in the neighbourhood and their persistence. This would allow assessing, if
the approach is viable or not. Yet, as will be demonstrated later in this chapter, the protocol
used in the original solution is not cheating-tolerant and there is no suitable replacement for
it. Hence, we decided to dedicate our efforts to analyse the communication scheme in order
to locate the cause of the problem and propose some methods to remove the issues, leaving
the optimistic strategy as an open question for future research.

7.1.2 Cheating-tolerance at the communication layer

As previously identified, cheating-tolerance at the communication layer is crucial for a suc-
cessful execution of EvAg regardless of the validation strategy of individuals. The cheating-
tolerant evolution layer alone, does not guarantee reaching the optimal solution (even with
properly defined building components of the EA, see Section 4.2). Therefore, now we will
present in details the original solution, analysing its resilience to the potential, malicious
activities.

7.1.2.1 Newscast: details and cheating-intolerance of the scheme

Newscast is a gossip protocol proposed by Jelasity and van Steen in [82] for interconnect-
ing large-scale distributed systems. Without any central services or servers, the protocol
differs from other similar approaches by its simplicity. Membership management follows an
extremely simple protocol. In order to join the system, a node only needs to contact a con-
nected node from which it gets a list of neighbours. Whereas to leave — it requires to stop
communicating for a predefined time. The dynamics of the system follow a probabilistic
scheme able to keep a self-organized equilibrium. Such an equilibrium emerges from the
loosely-coupled and decentralized run of the protocol within the different and independent
nodes. The emerging graph behaves as a small-world topology allowing a scalable infor-
mation dissemination (see Section 2.4). Despite the simplicity of the scheme, Newscast is
particularly fault-tolerant against crash failures and exhibits a graceful degradation without
requiring any extra mechanism other than its own emergent behaviour [173].

Algorithms 7.4, 7.1 and 7.2 show the pseudo-code of the protocol. Each node keeps its own
set of neighbours in a cache (i.e. a view) containing c ∈ N entries, referring to c other nodes
in the network without duplicates. Each entry provides a reference to a node, a time-stamp
of the entry creation (allowing replacement of old items) and optionally application-specific
data (see Figure 7.2).

There are two different tasks that the algorithm carries out within each node. The active
thread (Algorithm 7.1) which pro-actively initiates a cache exchange once every cycle (one
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Cache entry

Figure 7.2: Cache entry in Newscast. The address and time-stamp are mandatory. The first
field identifies the creator of the entry, the second — the time of creation used
in the mechanism responsible for replacement of old items. Application-specific
data can be optionally embedded.

Algorithm 7.1: Active thread of Newscast.
while true do

wait tr;
nodej ← select a node from cachei;
send cachei and datai to nodej ;
receive cachej and dataj from nodej ;
cachej ← Update(nodei, nodej , cachej , dataj);
cachei ← Aggregate(cachei, cachej);

Algorithm 7.2: Passive thread of Newscast.
while true do

wait until cachek and datak is received from nodek;
send cachei and datai to nodek;
cachek ← Update(nodei, nodek, cachek, datak);
cachei ← Aggregate(cachei, cachek);

cycle takes tr time units) and the passive thread (Algorithm 7.2) that waits for data-exchange
requests.
Every cycle, each nodei initiates a cache exchange. It selects randomly a neighbour nodej
from its cachei with uniform probability. Then, the nodes nodei and nodej exchange their
caches and data (respectively datai and dataj). At nodei, the entry from cachej referring
to nodei is substituted with a new item containing the address of nodej and its data dataj
(Algorithm 7.3). Conversely, the same operation is performed at nodej . Eventually, the
caches are merged at both nodes following the aggregation function (Algorithm 7.4). It
consists of picking the freshest c items from both caches to form a single cache. Since
this function is applied at both nodes (the one initiating the request and the one serving
the request), the result is that nodei and nodej will have some entries in common in their
respective caches.

Newscast was not designed to be cheating-tolerant and as our preliminary experiments
showed — it is not. The problem is located at the aggregation function (i.e. the caches
merging operation). Even a single node, exhibiting byzantine behaviour — deliberate or
not — flooding the network with incorrect entries (filled with non-existing addresses/IDs) is
able to disconnect some fault-free machines. The issue is further amplified by the protocol
mechanics, as the corrupted information spreads in the network, leading to collateral damage
in other parts of the communication graph.

91



Chapter 7 Towards Cheating-Tolerance in Distributed EAs

Algorithm 7.3: Function for updating the cache content.
// a cache is a set of c entries
function Update(nodea, nodeb, cacheb, datab) is

newEntry ← create a new entry using the address of nodeb and datab;
cacheresult ← cacheb \ {entry reffering to nodea} ∪ {newEntry};
return cacheresult;

Algorithm 7.4: Cache aggregation/merge function.
// a cache is a set of c entries
function Aggregate(cachea, cacheb) is

cacheresult ← cachea ∪ cacheb;
keep the c freshest items in cacheresult according with the time-stamp;
return cacheresult;

7.1.2.2 No suitable, cheating-tolerant replacement for Newscast

The problem of malicious users is not new in the context of P2P networks and in particular
— gossip protocols. There are many existing attempts to solve it. Cheating-tolerance (or
more general — byzantine fault tolerance) is usually achieved at the cost of limited gossip
performance or loss of other (desirable) properties, like decentralisation or scalability.

Generally, solutions are based on cryptography or operational constraints. In the
first case either the centralisation is re-introduced into the scheme (forming an unstructured-
centralised or hybrid-P2P overlay network, see Section 3.2.2) or the local view of each peer
becomes only a simulated feature, as members of the network have to possess and maintain
the full, global view (i.e. information about all active nodes). When it comes to introducing
the operational constants, the available solutions are simply focused on limiting the number
of gossips (send and received). We now proceed to a short overview of the concrete solutions
found in the literature of the subject.

Minsky and Schneider in [107] proposed path verification protocols, based on the
assumptions that it is possible to determine a sender of each message and that no data al-
teration is possible during its transit over the network. The solution allows tolerating fixed
amount (t) of faults.
First, the authors introduced a direct verification scheme, where a message is accepted
when it is received directly from the sender or when t + 1 of the neighbours accepted it al-
ready. As a consequence, the initial spread of a fresh update is relatively slow. However, the
speed of information dissemination increases over time, as more and more nodes accept the
gossip, i.e. the probability of contacting someone who already accepted the message grows
over time.
The path verification protocols extend the previous idea. Each message contains addi-
tionally the path which it travelled through the network. In this case, a message is accepted
only if it arrived directly or from t+ 1 disjoint paths. This allows not yet verified gossips to
spread much further within the network, in turn increasing the rate at which the messages
are accepted. However, storing and managing all encountered updates combined with their
paths require substantial storage and computational resources.

JetStream [131], Fireflies [89] and Veracity [148] are based on principals found in social
networks. The first two utilise mechanisms for predictable, pseudo-random, and verifiable
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gossiping. Such approach combined with ignoring unexpected connections, limits the amount
of gossips between the nodes. Additionally, each peer in Fireflies stores the global view
on the network and uses only a small part of it for the protocol execution. Despite the
embedded cryptographic solutions, scalability and reliability of gossip is maintained up to
a certain point. Frequent malicious activities increase the computational effort associated
with communication.
In Veracity on the other hand, a slightly different approach is used. The protocol is executed
on top of a fully functional DHT service, increasing the complexity of the solution. Messages
are accepted, when they are checked by a (small) set of other nodes from the DHT network.
However, the base of the protocol opens additional directions of attacks [84].

Puppetcast [16] is a protocol based on a re-introduced centralisation. Essentially, each
member of the network holds two partial views:

1. A signed, constant view — received from the central server and used to respond to in-
coming connections. It remains static until the next contact (update or re-registration)
with the central authority.

2. A local, modifiable view — used for the actual execution of the protocol, updated with
new descriptors at each view exchange.

This protocol is efficient at maintaining connectivity between the members of the network if
the central server is operational and reachable at all times. However, it forms a single point
of failure and the main target for attacks. If the additional data is signed with the view,
then the information spread is greatly limited. If it is not, then it has to be fetched from the
network before each use, increasing the amount of traffic. What is more, such solution would
not be very efficient at high churn rates (i.e. with highly volatile resources). Its effectiveness
in such situation greatly depends on the frequency of exchange of the signed view.

An interesting implementation of gossiping was proposed by Bortnikov et al. in [23]. They
performed a theoretical analysis of a bias in the local view of each peer caused by the mali-
cious activities. This lead to creation of Brahms protocol, in which an additional sample of
the nodes was introduced (comparing to the standard scheme). This set is built from all de-
scriptors received during the view exchanges, using min-wise independent permutations [23].
Such construct ensures uniform distribution of the sample regardless of the frequency and
order in which the addresses are collected. Random elements from this set are added to
the view during its update. The approach proved to be effective in a testing environment,
however in a real-world setting, when the churn is present, the uniform random sample is
impossible to achieve [84]. This is caused by the method of its construction, which heavily
depends on a stable environment.

The last protocol described here, is a prestige-based solution proposed by Jesi et al. in [84].
It has a unique feature in comparison to the previously described schemes — an exploratory
view exchange. Each node, during its synchronisation cycle, additionally to following
the standard send-receive scheme, sends a predefined number of requests for gossip to
randomly chosen peers. If B receives such message from A, it has to respond with its view,
for which A sends its own. Lists of descriptors collected this way are used to compute
and maintain local statistics on neighbourhoods of each node. This allows identification of
structural abnormalities in the neighbourhoods (e.g. hubs are “over-represented in the partial
views” [84]) and blocking responsible peers from communication. As suggested by authors,
like in the previous case (Brahms), it is possible to build a sample of network members,
which in case of disconnection or view pollution may be used to restore full connectivity and
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performance. However, the solution might be broken by sending the views containing old or
random addresses (and in a realistic scenario — most probably belonging to inactive/non-
existing nodes). In such case, the efficiency of the communication would be significantly
crippled, increasing the overhead associated with maintenance of the statistics and the local
repository of known nodes.

None of the above solutions would be able to support the execution of Evolvable Agent
Model (EvAg) in a VCS. Only Puppetcast and the prestige-based protocol may partially
exhibit the small-world properties of the communication graph, which are the most desired for
EvAg. Without such feature, the optimisation performance of the model would be decreased
(for example, see Appendix B). Additionally, the Puppetcast does not adopt well to high-
churn rates which are present in DGVCS’s and the prestige-based protocol may be broken
by the (lazy) cheater model (see Section 5.1.2.2) used in this work. Therefore, we decided
to extend the original solution, tailoring it for distributed execution of EAs, in particular —
EvAg.

7.2 Towards cheating-tolerance of Newscast

Newscast protocol was designed with emphasis on the ease of membership management.
It was intended to interconnect vast amount of computing resources in a highly dynamic,
decentralized P2P environment. Every client (node) can join and leave the network at any
time without prior notification. However, the simplicity of the protocol leaves space for
abuse.

The biggest problem is the assumption that the cache content received during the message
exchange is correct. Solving this issue is not trivial. Direct verification of the cache entries
is infeasible, as it would waste many communication cycles. Existing solutions limit the
flexibility and scalability of the approach (as reviewed in the previous section), focused on
keeping all the nodes connected together. Nevertheless, this strict requirement could be
relaxed for distributed executions of EAs.

Evolutionary Algorithms tolerate loss of genetic material during the execution (see Sec-
tion 5.3.1). In particular, in EvAg up to 90% of the resources may be lost before the algo-
rithmic performance of the solution is diminished [86]. If the pessimistic validation strategy
is used at the evolution layer (see Section 7.1.1), the effort at the communication layer can be
shifted towards keeping the largest number of non-malicious nodes connected together for as
long time as possible. In such approach, the malicious resources would limit the computing
performance of affected nodes (immediate neighbours and the ones to which the cheated
information spread). Essentially, both types would act as crashed or inefficient machines.

7.2.1 Formalisation of cheating and experimental setup

Before proceeding to examine cheating faults in the context of Newscast, it is necessary to
specify the background of the analysis. In the first place, the kind of cheaters and their
activities must be clearly defined. Then, the method to measure the impact of cheating is
required. Finally, the approach taken to obtain the data used in the whole analysis has to
be outlined.
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7.2.1.1 Malicious users and cheating faults

As mentioned earlier, the problem of malicious users in the context of P2P protocols is
not new (see Section 7.1.2.2). The cheaters may act individually or in the organised groups,
attracted in both cases by various incentives (see Section 5.1.2). Until the end of this chapter,
we assume that the malicious users act independently and without cooperation, following
the (Lazy) Cheater Model introduced in Section 5.1.2.2.

Messages of the protocol, exchanged between the nodes, are the obvious target of cheaters.
We assume that the tampering is performed directly by the cheating nodes and not in transit.
This can be achieved either by altering the message just before it is sent or by implementing
the malicious client of the protocol. As explained before, the information is assumed to follow
the correct (and expected) format to avoid fast detection and removal from the network.
Therefore, the goal is to alter the content of the message.

In Newscast, messages contain the cache of each node (its full copy), containing c ∈ N
entries (see Section 7.1.2.1). Each item holds the time of its creation, the address (i.e. ID) of
a node and optionally application-specific data. In the remainder of this chapter we assume
that the cache entries contain only the first two informations. Therefore, the goal of a cheater
is to alter the address and the creation time of each entry. Obviously to provide the best
possible spread of the cheated items in the network, the time-stamps should be set to the
most recent time. Sending the message filled in with entries containing only the cheater
address is pointless, as uniqueness of the addresses in the cache is easy to verify. Hence, the
best approach for a “lazy” cheater is to set all the addresses to random ones. This way, most
likely the entries will refer to non-existing peers (for instance, IPv6 uses 128-bit addresses
giving approximately 3.4× 1038 possible values).

7.2.1.2 Impact of cheating faults on the connection graph

The presence of cheated entries in the caches of the peers leads to the decreasing number
of valid links between non-malicious nodes. To analyse this effect and its consequences, we
need to introduce some preliminary definitions.
Let Gt = (Vt, At) be a directed connection graph at a given time t, consisting of the set of
vertices Vt and the set of arcs At between them. Vt corresponds to the set of nodes in the
network at the time t. An arc a = 〈−−−→vi, vj〉 ∈ At connecting the vertex (or the node) vi ∈ Vt
with the node vj ∈ Vt, reflects the fact that vj is in the cache (i.e. the view) of vi. The
cache size of each node remains constant within the graph Gt, i.e. |cachei| = c ∀vi∈Vt∧t≥0.
Execution of the protocol leads to a series of graphs Gt, given an initial graph G0.

For the sake of simplicity, we will assume that the number of non-malicious nodes in the
network is constant and equal to nhonest ∀t≥0. In addition, there are ncheating ∀t≥tc malicious
nodes i.e. cheaters, joining the network at the time tc (all at the same simulation step). This
leads to a partition of the set of vertices in Vt between non-malicious (i.e. honest) nodes and
cheaters. Thus, Vt = V honest

t ∪ V cheating
t , where |V honest

t | = nhonest and |V cheating
t | = ncheating.

An important concept to measure the robustness of the protocol against cheaters is the size
of the connected components of non-malicious nodes in Gt. Let Ghonest

t be a subgraph of Gt
induced by the vertex set V honest

t (see Definition 2.1.7). A j-th (weakly) connected component
Ĉj in Ghonest

t is a maximal subgraph of Ghonest
t such that every node in Ĉj is reachable from

every other node in Ĉj (see Definitions 2.2.3 and 2.2.4). In the sequel, Ĉmax
t will denote the

connected component of maximum size (the giant component, see Definition 2.2.6) at a given

95



Chapter 7 Towards Cheating-Tolerance in Distributed EAs

(a) (b)

Figure 7.3: An example of bootstrap of the Newscast network. In (a) a sample network
consisting of 36 nodes at the initial step of the simulation, in (b) the same network
after bootstrap of Newscast (with the cache size set to 20).

time t. Obviously 0 < |Ĉmax
t | ≤ nhonest. Now we can formalize the impact of cheating failures

on the connection graph.

Definition 7.2.1 (Impact of cheating failures). Let Ĉmax
t be the (weakly) connected com-

ponent of maximum size in the subgraph Ghonest
t of Gt induced by the set of honest nodes

V honest
t , at a given time t. We say that the protocol was subject to cheating iff there exist a

sequence of points in time (of the size greater than one) such that |Ĉmax
t | and the number of

edges in Ghonest
t are strictly decreasing1.

The above definition excludes a possibility of a spontaneous partitioning of the com-
munication graph. It may happen during a fault-free execution of a given protocol due
to its probabilistic nature and the limited knowledge about the network at each node (see
Appendix C). However, in such case, the number of edges in Ghonest

t would stay constant.

7.2.1.3 Simulation: the implementation and the execution scheme

In order to perform the analysis presented in this chapter, we implemented in Java a simulator
for the protocol execution, including all cheating models presented in the following sections.
The resulting framework contains a set of monitoring sensors able to track the complete state
of the network — from the nodes to the individual cache entries. This allows gathering various
network statistics (e.g. connectivity, clusters, etc.). Thanks to the GraphStream [46]
Java library, the tool is able to graphically display the dynamics of the system (e.g. active
connections, link updates, etc.).

1A sequence (a1, a2, a3, . . .) is strictly decreasing iff ai+1 < ai for every i ≥ 1.
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During the execution, the whole simulation is divided into steps (called simulation/syn-
chronization steps). In each of them, every node is selected once with a uniform probability
to initiate a cache-exchange according to the protocol specification (see Section 7.1.2.1).
That is: establishing an outgoing connection, sending own cache, receiving a cache from the
destination and performing the cache merge.

At the onset of every experiment (step 0), the network is initialized as a bidirectional grid
lattice (Figure 7.3a). Then we let the protocol run for 50 steps (i.e. bootstrap), which
enables the network to converge into a self-organized equilibrium (Figure 7.3b). The actual
time required to reach this desired state is usually below 25 steps and depends greatly on the
actual configuration (the number of nodes, the cache size, etc.). The external interactions
(all malicious activities) are made after the bootstrap, i.e. starting at the 51st step.

All simulations were executed assuming idealised environment. This means that other
faults can not occur. The nodes and links are fully operational throughout the whole sim-
ulation. In particular, making a connection from one node to another is always successful
provided that the destination address exists.

7.2.2 Locating possible vulnerabilities through a data flow analysis

In order to better understand the root of the problem in the protocol design, we analysed
what happens with each cache and all the entries during the execution. The experiments
presented in this section are divided into two groups.
In the first group, the data flow characteristics were measured in a fault-free environment.
This allows determining how the content of the caches are changing during the protocol
execution. Additionally, it provides an insight about the spread of cache entries in the
network, the time they are present after their creation and the number of connections made
using them.
In the second group, the measurements were made for cheated entries. The analysis was
conducted with two simplified fault models: a one-time and a constant corruption of the
whole cache of a randomly selected node.

7.2.2.1 Data flow in a fault-free environment

In the first place, we wanted to check if the connectivity will spontaneously split without
cheating faults present. For all network and cache sizes used in the experiments presented in
this chapter, a connection graph was not divided for 100 executions, lasting 10000 simulation
steps each.

Figures 7.4 and 7.5 present the amount of data exchanged between the nodes during
a connection. This value is understood as the actual number of entries changed in the
respective caches, not as the raw amount of data transferred between the nodes. As visible,
the results are independent of the network size. The average number of entries changed
for the cache size equal to 20 is around 12 (in the source cache) and 8 (in the destination
cache) — respectively 23 and 14 for the cache size equal to 40. The spread of the results is
maintained in both cases, independently on the network size. What might be surprising, is
the lack of the symmetry between the entries changed at the source and at the destination.
This indicates that, on average, the source of the connection has older entries in its cache
than the destination.

Actually, this lack of symmetry is caused by the distribution of indegrees in the network
(the outdegrees are always equal to the cache size). Figure 7.6 shows an example for a

97



Chapter 7 Towards Cheating-Tolerance in Distributed EAs
0

10
20

30
40

0
10

20
30

40
0

10
20

30
40

0
10

20
30

40
0

10
20

30
40

0
10

20
30

40
0

10
20

30
40

0
10

20
30

40
0

10
20

30
40

0
10

20
30

40
0

10
20

30
40

0
10

20
30

40

Entries changed in source cache

Network size

N
um

be
r 

of
 e

nt
rie

s 
ch

an
ge

d

100 200 300 400 500 1000

Cache size

20
40

Figure 7.4: Number of entries changed during a single connection in the source cache. Values
are measured over 100 executions (for the first 1000 merges) for all the parameter
combinations.
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Figure 7.5: Number of entries changed during a single connection in the destination cache.
Values are measured over 100 executions (for the first 1000 merges) for all the
parameter combinations.

Newscast network consisting of 1000 nodes with the cache size set to 20. High values of the
indegree are observed for more than half of the nodes, which makes them more probable to
become a destination of some connection. Hence, causing more frequent cache merges and
fresher content.

Figure 7.7 shows the number of nodes visited (inserted into the cache of a node) by the
cache entries, Figure 7.8 — the time spent in the network, and Figure 7.9 — the number
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Figure 7.6: Example of the indegree distribution for a network consisting of 1000 nodes with
the cache size set to 20. The values are measured at the beginning of the simu-
lation step for 1000 steps (after bootstrap) for 100 executions. Altered colors in
the background correspond to the number of nodes equal to 10% of the original
network.
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Figure 7.7: Number of visited nodes measured for the first 10000 correct entries, fully re-
moved from the network, for 100 executions for all the parameter combinations.

of connections established using the entries present in the network. Whiskers on the figures
mark the extremes. As visible, all measured values are on average independent from the
network size and depend only on the cache size. For small networks, some cache entries may
spread to most of the nodes in the network (for instance, the maximum value obtained for
the network size equal to 100). However on average they reach 9 (respectively 19) nodes —
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Figure 7.8: Time spent in the network by the first 10000 correct entries, fully removed from
all the nodes, for 100 executions for all the parameter combinations.
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Figure 7.9: Number of connections made using the first 10000 correct entries, fully removed
from the network, for 100 executions for all the parameter combinations.

for the cache size equal to 20 (respectively 40). The mean number of synchronization steps
required to completely remove an entry is equal to 3 for all the test cases, and in the worst
case — 5. Majority of the cache entries created during the protocol execution are never used
to make an outgoing connection, where at most some entries are used only 10 times.

7.2.2.2 Flow of cheated entries

Turning now to the analysis of the cheated entries in the network subjected to the influence
of simple cheating models. First, the altered items are injected once into the cache of a node
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Figure 7.10: Number of visited nodes measured for cheated entries, fully removed from the
network, for 100 executions for all the parameter combinations. Cache size of
them are injected into the cache of a randomly chosen node at the random
moment during the 51st synchronization step (i.e. after bootstrap).
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Figure 7.11: Time spent in the network by cheated entries, fully removed from all the nodes,
for 100 executions for all the parameter combinations. Cache size of them are
injected into the cache of a randomly chosen node at the random moment during
the 51st synchronization step (i.e. after bootstrap).
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Figure 7.12: Number of connections made using cheated entries, fully removed from the
network, for 100 executions for all the parameter combinations. Cache size
of them are injected into the cache of a randomly chosen node at the random
moment during the 51st synchronization step (i.e. after bootstrap).

chosen accordingly to a uniform distribution law, at the random moment (again selected
uniformly), during the first synchronisation step after bootstrap. Results are depicted in
Figures 7.10, 7.11 and 7.12.
As immediately visible, the information spread in the network (Figure 7.10) is worse than
previously — maximum values are below half of the ones obtained earlier and the averages
are below 5 nodes. It is caused by the simplified cheating model. The whole cache of the
chosen node is corrupted, hence it is not able to successfully initiate any outgoing connection.
This situation persists until the first successful merge operation is invoked by some other
member of the network, which in some rare cases may never happen as a consequence of the
indegree distribution (see Figure 7.6).
The results presented on Figure 7.11 show the self-healing property of Newscast in case of
cheating failures. The cheated items are removed on average in around 5 synchronisation
cycles, independently on the network size. If a single node would have to seed out the
corrupted data without help from other nodes, it would take at least “cache size” synchroni-
sation cycles. Interestingly, an extreme case was observed for the network consisting of 500
peers and the cache size equal to 40. It took more than 50 simulation steps to remove the
cheated entries. The situation was caused by their rapid spread in the neighbourhood of the
attacked node which resulted in swapping the cheated entries between a group of nodes.
Similar to the fault-free environment, most of the corrupted entries are never used to ini-
tiate an outgoing connection — a failure causes the removal of the entry from the cache.
Therefore, in most cases the cheated data is present in the network until its replacement
with fresher information.

Figures 7.13 and 7.14 presents results obtained when the content of the cache of a randomly
chosen node is flooded with cheated entries at every simulation step. The time required to
disconnect any node is surprisingly short, since it averages on 8 simulation steps for cache size
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Figure 7.13: Time to the first disconnection in the network with the cache of a randomly
chosen node (fixed during the execution) constantly flooded with cheated entries.
The data was gathered for all the combinations of simulation parameters over
100 executions.
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Figure 7.14: The number of disconnected nodes (at the first disconnection time) with the
cache of a randomly chosen node (fixed during the execution) constantly flooded
with cheated entries. The data was gathered for all the combinations of simu-
lation parameters over 100 executions.
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equal to 20 (respectively, 10 for the cache size equal to 40), for all the network sizes. In some
extreme cases even 90 synchronization steps are needed (see result obtained for the network
consisting of 400 nodes with cache size set to 40). It is worth to notice that not always the
flooded node is disconnected as the first and only one. Average number of nodes affected by
the cheating during the experiments oscillates between one and two. The maximum value
obtained — 9 — occurred for a network consisting of 1000 nodes with cache size set to 20.
For every single execution, at least one node got disconnected.

7.2.2.3 Summary of the results

During the execution of Newscast, indegrees of the nodes are distributed unevenly. However,
the observed values of this statistic are changing over time. For instance, a node having
the highest indegree might have the lowest number of neighbours after few synchronisation
cycles. Such imbalance in the indegree distribution promotes better spread of the information
from a group of the nodes to the rest of the network. The peers having many neighbours
posses (and quickly acquire) the freshest cache entries from their surrounding.

On average, an entry created at a given node spreads to almost half of the cache size of its
neighbours within three synchronisation cycles. Additionally, the address which it contains
is hardly ever used to establish a connection. Hence, they are almost never verified.

A naive approach to corrupt with cheated entries the whole cache of a given node is not
very effective. This stops partly the spread of the malicious data in the network, affecting
fully the attacked peer and slightly some of its neighbours. The Newscast network is able to
sift the cheated entries (i.e. self-heal), independently if the corruption was performed once
or constantly, in the worst case loosing a very limited number of nodes.

In the next section, we will design and analyse for a malicious client of Newscast. Basing
on the results presented above, we will propose an effective scheme for independent, non-
cooperative cheaters.

7.2.3 The connectivity-splitting attack

As discussed earlier, a naive malicious approach involving the corruption of the whole cache
of a given node is not very effective. However, an option to implement an evil-intentioned
client of the protocol was unexplored. In this section we will propose and analyse such
solution, basing on the discoveries made previously.

7.2.3.1 An effective scheme for a malicious client

Implementing from scratch a malicious client of the protocol opens more possibilities com-
pared with altering the already implemented scheme. Such evil-intentioned peer does not
have to follow any of the previously imposed constraints. Most of all, it can actively choose
the nodes as potential victims of the attack. Further, its view does not have to be limited by
the cache size, as the cheater may gather information about the global state of the network
during the protocol execution.

When a cheating client makes or responds to a connection, it sends a cache filled in
with cheated entries (the freshest possible, containing random addresses — as explained
earlier in Section 7.2.1.1). Nodes which receive and merge such data would have (with a high
probability) only one valid address (referring to the cheater) to make an outgoing connection.
However, there is a high chance that some other peer contains an entry pointing to the victim

104



7.2 Towards cheating-tolerance of Newscast

Figure 7.15: A visualisation of a problem with cheaters accepting addresses from incoming
connections. Nodes connected only to the cheater start to flood him with ran-
dom addresses.

node. Therefore, after some time, the corrupted cache may be restored to a partially valid
state by an incoming connection (i.e. self-heal). Nevertheless, there is a side effect of this
process, as the falsified information will also spread virally into the network. This raises
questions which will be answered by the experiments:

1. How many times does the cheater have to connect to a node to fully disconnect it?
2. Do these connections have to be consecutive?

Consequently, we have also explored the option for cheaters to choose more than one target
at a time, following the round-robin principal. The victims are exchanged after the desired
number of connections to them is reached (a frequency of target change).

Each cheater inserts independently the cache size c of random addresses into the network at
each cache-exchange. Over time, some generated entries are returned to them. This problem
is most noticeable after a significant number of nodes are connected only to the malicious
client (see Figure 7.15). Thus, we propose to ignore information received during the incoming
connections. This will only slightly affect the process of discovering the network, because
information about its members is still obtained through the outgoing communication.

What is more, due to the lack of the cooperation, malicious nodes do not know about
each other. Consequently, the information about which addresses where generated by the
other malicious nodes is not shared. Moreover, cheaters could connect to each other, flooding
themselves with random entries. This could lead to a situation when the set of discovered
addresses is very big, mainly filled by the invalid entries. As a solution, we propose to assign
a priority for discovered addresses, determining the target of the next outgoing connection.
Its value is defined by the number of occurrences of a given address during all the previous
cache-exchanges. It is motivated by the fact that the valid entries should appear more often
than the generated ones. Additionally, it allows following the observed indegree distribution,
improving the spread of cheated entries in the network. After a successful connection to a
given address, its priority is decreased by one to ensure that the cheater will not be stuck
with a single target.
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Figure 7.16: Time required to disconnect a single, uniformly selected at random node.

7.2.3.2 Discovering the optimal parameters for a malicious client

The purpose of the first experiment was to determine an estimate on the simulation steps
required to completely disconnect one peer from the system. Figure 7.16 shows the results for
a one cheater attacking a single, uniformly selected at random target from the network. As is
visible, the obtained values are comparable within the same cache size settings, independently
from the network size. In most of the cases, the simulation time required to remove all links
to and from a single target fits in the range from 1 to 20. Basing on these results we have
chosen a range for frequency of target changes from 1 to 20 for the upcoming group of tests.
It is also worth to note here, that the persistent attack on a single node can take a long time
— as it is required for the network to lose all the information about the target. In some cases
it took above 100 simulation steps to complete the task by the cheater. This time mainly
depends on how well the given address is widespread in the network, as how it was explained
earlier — any incoming connection can partially heal the cache of the node.

The last group of the experiments required to configure the malicious client was aimed
to determine how frequently the target has to be changed to obtain the best performance.
Additionally, it provided the data helpful to decide whether it is beneficial to attack at once
more than one node. Figures 7.17 and 7.18 present the results. As is clearly visible, the
best performance is obtained with one target changed for each outgoing connection. Other
combinations of cheater parameters are causing degradation of efficiency and stability of the
performance. In the optimal configuration, the network is fully disconnected in less than 800
simulation steps (on average) for a cache size equal to 20 and in less than 1000 simulation
steps for a cache size equal to 40 (values are better visible on Figure 7.19). Results for smaller
networks are not presented, as they follow a similar trend (only the scale is different).

7.2.3.3 Assessing the performance of the attack

Finally, having the full configuration of a non-cooperative malicious client, we move to the
assessment of their efficiency. Figure 7.19 presents the average speed of the network degra-
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Figure 7.17: Influence of frequency of target changes and number of targets on network dis-
connecting time with one cheater present in the network consisting of 500 nodes
and cache size equal to 20.
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Figure 7.18: Influence of frequency of target changes and number of targets on network dis-
connecting time with one cheater present in the network consisting of 500 nodes
and cache size equal to 40.

dation for different numbers of nodes and both cache size settings. All the values are scaled
to the range of [0, 1] through the division of the average biggest cluster size (from 100 exe-
cutions) by the network size, i.e. |Ĉmax

t |/|V honest
t | (which yields the probability that a given

node n ∈ Ĉmax
t ). The speed is almost linear for all the combinations of the relevant parame-

ters, until there is a small cluster left (consisting of less than 20% of the original number of
nodes). Nevertheless, the network is fully disconnected in less than 1000 simulation steps for
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Figure 7.19: Disconnecting speed compared between different network and cache sizes with
only one cheater. Probability that a node belongs to the Ĉmax

t is computed by
division of the average biggest component size by the network size.
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Figure 7.20: Disconnecting speed compared between different cache sizes and amount of
cheaters working in the network consisting of 500 nodes. Probability that a
node belongs to the Ĉmax

t is computed by division of the average biggest com-
ponent size by the network size.

all the cases. Given that the actual Newscast implementation2 sets the synchronisation time
to 10 seconds, 1000 simulation steps stand for less than three hours of a real execution of a
P2P system. This allows us to conclude that even one cheater in the network, following the
presented model, can have a devastating effect on the functioning of the Newscast network.

2http://dr-ea-m.sourceforge.net/
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So far, we have shown and described results for only one cheater attacking the protocol.
Figure 7.20 presents the influence of the number of cheaters varying from 1 to 5 on the network
consisting of 500 nodes with cache sizes set to 20 and 40. It is important to emphasize here
again, that cheaters do not know about each other and do not collaborate. Despite the lack
of any kind of information sharing between malicious nodes, more of them causes faster loss
of the connectivity — for 5 malicious nodes it happens in less than 300 simulation steps,
which corresponds to one hour of a real execution time (as mentioned above). Additionally,
it is visible that the influence of the bigger cache size loses its value when more cheaters are
present in the network (the gap between both settings decreases).

Finally, Figures 7.21 and 7.22 present the scalability of the solution. If the number of
cheaters scales proportionally with the network size, the efficiency of the malicious nodes
can be maintained. Moreover, cheating nodes do not interfere with each other, which is
the effect of prioritizing the choice of a connection destination according to its frequency of
appearance during the interaction with the rest of the network.

7.2.3.4 Summary of the results

The proposed scheme for a malicious client proved to be effective and scalable. Prioritising
the targets by their frequency of appearance during the cache-exchanges is the only mech-
anism required for the effectiveness of the solution. The scalability is achieved thanks to
ignoring the cache entries from incoming connections. With such settings, cheaters do not
disturb each other much and do not get stuck on cheating one another.

The analysis shows that the uncoordinated, independent cheaters are a serious threat for
Newscast. Even a few malicious clients can break the connectivity in the network really fast.
Moreover, the model is hard to detect at the level of each node as it does not lead to the
formation of any anomalies easily detectable in the neighbourhood. The only symptom is a
decreasing number of (working) links between the hones nodes, which is similar to churn. In
case when the random addresses can not be used, they might be substituted with the ones
coming from the discovered set. The least represented nodes during the cache-exchanges are
most likely inactive.

7.2.4 Countering the attack

So far this chapter focused on a way to break the connectivity in the Newscast network,
exploiting the protocol design. In the following section we will propose an improvement to
the execution scheme allowing tolerating uncoordinated malicious clients.

Simplicity of Newscast aids exploring various scenarios and extensions. The application
considered in this thesis — the distributed execution of EAs and namely Evolvable Agent
Model (EvAg) — allows relaxing some requirements in contrast to the typical approaches
found in the literature (see Section 7.1.2.2). As discussed earlier in Section 5.3.2.1, some
computing resources may be lost during the execution of the algorithm without diminishing
its performance. Therefore, the absolute resilience against cheaters at all times is not needed
— the fluctuations in the number of nodes participating in the computation may be present.

A typical DGVCS has two main types of machines: belonging to the owner of the platform
and volunteered (see Section 3.1.3). The first type is characterised by its high stability,
security and a full control. On the contrary to the second, consisting of volatile resources
with the lack of security guarantees and control.
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 Ĉ

 tm
ax

50 200 400

500 nodes, 5 cheaters
400 nodes, 4 cheaters
300 nodes, 3 cheaters
200 nodes, 2 cheaters
100 nodes, 1 cheater

Figure 7.21: Scalability of the proposed malicious client for different network sizes and the
cache size equal to 20. Probability that a node belongs to the Ĉmax

t is computed
by division of the average biggest component size by the network size.
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 Ĉ

 tm
ax

50 200 400

500 nodes, 5 cheaters
400 nodes, 4 cheaters
300 nodes, 3 cheaters
200 nodes, 2 cheaters
100 nodes, 1 cheater

Figure 7.22: Scalability of the proposed malicious client for different network sizes and the
cache size equal to 40. Probability that a node belongs to the Ĉmax

t is computed
by division of the average biggest component size by the network size.

We propose to delegate some machines belonging to the DGVCS owner to participate in
the computation. Only these nodes should be used as the entry points for new volunteers
joining the system. The entry point can be obtained from the central server managing the
whole computation. The delegated machines might share with each other the set of active
volunteer addresses. An encountered client which did not join the computation through any
of the entry points might be easily blocked. Any address outside of the registered pool can
be sift from the cache entries flowing through the nodes acting as the entry points. Moreover,
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these delegated resources can be utilised to gather and verify the results.
However, such approach alone can not guarantee maintaining the connectivity between the

nodes. The volunteered resources should contact some entry point from time to time. During
such connection, the whole cache of the peer should be overwritten with the received entries.
Such approach corresponds to the reconnecting to the network, but without restarting the
computation at the given node. The periodicity of the reconnection is the most important
aspect. Too low values would cause forming the communication hubs at the entry points,
increasing their load required to serve all the requests. What is more, the self-organisation
property of the network may be lost. Hence, the reconnection period should be as high as
possible.

The original design, as shown before, may lose the connectivity really fast. It would
require a lot of designated machines to distribute the load caused by the low reconnection
periods. However, the resilience to cheating faults could be increased by limiting the number
of exchanged cache entries during a connection (without modifying the cache size). This
in turn would decrease the impact of cheaters on the connection graph and the spread of
corrupted data in the network. Therefore, we will analyse in this section the influence of this
limit on the connection graph and its effectiveness against the previously proposed malicious
client.

7.2.4.1 Limiting the merge against uncoordinated malicious clients

The approach to limit the merge operation is motivated by the fact, that plain tampering
with the time-stamps of the cache entries allows them to spread rapidly in the network. As
cheating clients actively initiate the outgoing connections, they can choose a specific node
and overwrite its cache — all c ∈ N entries. The same happens when any of the cheaters
responds to the incoming request. However, during the connection between non-malicious
peers, the number of updated items is a lot lower. In case of the destination of the connection,
the change in the view does not exceed (on average) half of the cache size; in the source —
its only slightly above the mentioned value.

As visible on Figures 7.23 and 7.24, limiting the number of exchanged cache entries to at
least c/2 of the freshest items rapidly decreases the effectiveness of a single cheater. Within
1000 simulation steps, only few nodes are disconnected, independently from the cache size.
We observed the same trend for smaller networks (results are omitted for clarity). The 40%
limit (8 and 16 items for the respective cache size equal to 20 and 40) allows maintaining
almost full connectivity throughout the execution.

With the increased number of malicious clients (to 10) the situation changes. Figures 7.25
and 7.26 present the results. The performance of cheating is still impaired, but less effectively.
In this case there is a bigger difference between the results obtained for different cache sizes.
Without any limitation on the cache merge, the networks with the cache sizes equal to 20
were fully disconnected in around 50 simulation steps faster than for the same setups with
the bigger views. However, as soon as the limitation on the merge operation is introduced
— the difference in cheating-tolerance is more apparent. For a small cache and the 50%
limit, less than 10% of the nodes stay connected in the biggest component at the end of the
simulation. For a cache size equal to 40, more than 50% of the peers can still cooperate.
In the previously optimal configuration — the 40% limit (8 and 16 items for the respective
cache size equal to 20 and 40), some nodes are still lost. For the view of the size 20, more
than 20% of nodes are disconnected, for 40 — more than 10%. Decreasing the limit further,
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Figure 7.23: Disconnecting speed for one cheater, compared for different limits on the cache
exchange for the Newscast network consisting of 1000 nodes with the cache
containing 20 entries.
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Figure 7.24: Disconnecting speed for one cheater, compared for different limits on the cache
exchange for the Newscast network consisting of 1000 nodes with the cache
containing 40 entries.

solves the problem. Thus, if the merge operation is limited to the 30% of all the entries in
the cache, the network stays almost fully connected and the end of the execution.

Further increase in the malicious activity (to 100 cheaters) can be matched again with
an appropriate limit. Figures 7.27 and 7.28 present the results. Limiting cache-exchange
operation to 15% of the freshest entries allows tolerating the cheaters in the network with a
slight loss of the computing resources (less than 10% at the end of the execution). It is worth
noting that the increasing number of the malicious clients combined with the decreasing limit
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 Ĉ

 tm
ax

50 200 400 600 800 1000

Limit (#entries)

20% (4)
30% (6)
40% (8)
50% (10)
100% (20)

Figure 7.25: Disconnecting speed for 10 cheaters, compared for different limits on the cache
exchange for the Newscast network consisting of 1000 nodes with the cache
containing 20 entries.
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 Ĉ

 tm
ax

50 200 400 600 800 1000

Limit (#entries)

20% (8)
30% (12)
40% (16)
50% (20)
100% (40)

Figure 7.26: Disconnecting speed for 10 cheaters, compared for different limits on the cache
exchange for the Newscast network consisting of 1000 nodes with the cache
containing 40 entries.

starts to reverse the benefit from the bigger cache size. The influence of cheaters is greater
for the networks consisting of nodes with bigger views (compare Figures 7.25 and 7.27 with
7.26 and 7.28).

In conclusion, the increasing number of malicious clients in the network may be matched by
the bigger cache sizes combined with the limitation on the exchanged items. The complete
solution depends on the expected number of cheating participants. In the optimal case,
the approach presented in this section should be combined with a detection method of the
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Figure 7.27: Disconnecting speed for 100 cheaters, compared for different limits on the cache
exchange for the Newscast network consisting of 1000 nodes with the cache
containing 20 entries.
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Figure 7.28: Disconnecting speed for 100 cheaters, compared for different limits on the cache
exchange for the Newscast network consisting of 1000 nodes with the cache
containing 40 entries.

malicious users (or at least with a mechanism to detect their activity). This could be the
task assigned for the delegated resources of the DGVCS owner. Then, the scheme could be
dynamically adapted to the current situation. For high activity of the cheaters, the limit
should be decreased, whereas for the low one — it should return to higher levels. However,
application of the approach has its limitation — the number of the exchanged cache entries
between the nodes can not be decreased indefinitely as at some point the resulting scheme
starts to lose its flexibility.
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Figure 7.29: Influence of the cache-exchange limit on the average indegree in the Newscast
network consisting of 1000 nodes with the cache containing 20 entries.
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Figure 7.30: Influence of the cache-exchange limit on the average indegree in the Newscast
network consisting of 1000 nodes with the cache containing 40 entries.

7.2.4.2 Influence of the limit on the connection graph

Limiting the number of cache entries exchanged during a connection between two nodes does
not only affect the cheating clients but also the non-malicious part of the network. Now, we
will analyse the impact of this alteration in the protocol on the connection graph.

The first and the most noticeable effect concerns the indegree distribution in the graph.
Figures 7.29 and 7.30 present the average value of this statistic through 100 executions at
the 50th simulation step. The data was gathered for each combination of the parameters:
the network and the cache sizes, and the different limits. The trend is identical for all the
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cases, therefore we only present the results for the network consisting of 1000 nodes.
On both figures, the distribution is right-skewed3 for all the limits. The smaller it the number
of the exchanged cache entries, the closer is the peak number of nodes having an indegree
close to the cache size. Additionally, the distribution is more narrow with the decreasing
limit. Hence, the number of peers in the network having the extreme values of indegree is
reduced. These trends are amplified with the decreasing number of the exchanged items.
All that means that the introduced restriction positively affects the load of each node. The
expected number of incoming connection is more even. However, this has a side effect
manifested by the slower information dissemination.

The small-world properties of the newscast Network are also affected by the introduced
limit. Figures 7.31 and 7.32 present the results — the average path length (APL) and the
average clustering coefficient (CC). The presented values are the average from 100 execu-
tions, measured for networks consisting of 1000 nodes with different limits on the number
of exchanged entries. Figure 7.31 presents the data obtained for the cache size set to 20,
whereas Figure 7.32 — for 40. As previously, the measurements for smaller networks are
characterised by the similar trends, therefore they are omitted from the discussion.
The initial values of the APL are high due to the initialisation phase (described in Sec-
tion 7.2.1.3). The average path length in a grid consisting of 1000 nodes is approximately
17,88. This value drops to the lower levels with the progress in the execution of the protocol.
Hence, the range of the vertical axis was limited to increase the readability of the relevant
values.

As visible on Figures 7.31 and 7.32, the time required to reach the self-organised equilib-
rium in the network extends with the decreasing limit on the number of exchanged entries.
Both statistics also converge to lower values. As previously, these trends are amplified with
the decreasing number of exchanged entries. Generally, the networks with a bigger cache
size are less affected by the change in the protocol mechanics. It is worth noting that the
equilibrium is reached in all the cases within the bootstrap time (50 simulation steps) set for
the experiments presented before.

7.2.4.3 Summary of the results

Limiting the number of exchanged cache entries during a connection proved to be an effective
method against the cheating model introduced in this chapter. Even at 50%, the solution
gives satisfactory results. The nodes stay connected in the biggest component much longer
without significantly affecting the initial (small-world) properties of Newscast. Yet, further
decrease of the limit, allowing tolerating greater number of the malicious clients, has more
influence on the protocol operation.

Limiting the cache-exchange to the 30% of the freshest entries proves to tolerate almost
completely up to 1% of the malicious users4 during 1000 simulation steps. On the other hand,
decreasing the limit to 15% allows resisting the attack from 100 cheating clients (10%).
However, such serious change affects the small-world properties of the connection graph.
Therefore, the adjustment should be made dynamically during the execution of the protocol,
to minimise the impact of the approach on the executed computation.

3Right-skewed distribution — the right tail is longer with the mass concentrated on the left.
410 cheaters connected to the network consisting of 1000 non-malicious nodes.
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Figure 7.31: Influence of the cache-exchange limit on the average clustering coefficient (CC)
and the average path length (APL) in the Newscast network consisting of 1000
nodes with the cache containing 20 entries.

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

CC (network size = 1000, cache size = 40)

Simulation time step

A
ve

ra
ge

 c
lu

st
er

in
g 

co
ef

fic
ie

nt

1 10 20 30 40 50

Limit (#entries)

15% (6)
20% (8)
25% (10)
30% (12)
35% (14)
40% (16)
45% (18)
50% (20)
100% (40)

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

APL (network size = 1000, cache size = 40)

Simulation time step

A
ve

ra
ge

 p
at

h 
le

ng
th

1 10 20 30 40 50

Limit (#entries)

15% (6)
20% (8)
25% (10)
30% (12)
35% (14)
40% (16)
45% (18)
50% (20)
100% (40)

Figure 7.32: Influence of the cache-exchange limit on the average clustering coefficient (CC)
and the average path length (APL) in the Newscast network consisting of 1000
nodes with the cache containing 40 entries.
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7.3 Summary and perspectives

In this chapter, we have analysed cheating-tolerance of distributed Evolutionary Algorithms
(EAs). Our study was mainly focused on Evolvable Agent Model (EvAg) — the only dis-
tributed model able to utilise vast computing resources offered by Desktop Grids and Vol-
unteer Computing Systems (DGVCS’s). Its reference implementation relies on Newscast —
a Peer-to-Peer (P2P) gossip protocol, defining the neighbourhoods at the evolution and the
communication layers. Following a probabilistic scheme, the system is able to keep a self-
organized equilibrium. The emerging connection graph behaves as a small-world topology
allowing a scalable information dissemination, aiding the optimisation search. The existing
empirical studies of the whole solution, found in the literature of the subject, indicate its
natural resilience to crash failures. This property is inherited from the evolutionary process
and the communication protocol.

To the extent of our knowledge, the solution has not been analysed before in the context
of cheating faults. As we demonstrated, it is possible to ensure cheating-tolerant execution
at the evolution layer but the global success of the optimisation search depends mainly on
the communication protocol. Newscast was not designed to be cheating-tolerant and as our
experiments demonstrated — it is not. The problem of malicious users is not new in the
context of Peer-to-Peer (P2P) networks, nevertheless we did not find a suitable, cheating-
tolerant replacement for the protocol.

Therefore, we performed an in-depth analysis of Newscast against cheaters. First, we ex-
amined the data flow in the original protocol which revealed and explained the vulnerabilities
build-in in the original design. Later, we developed an efficient, non-cooperative malicious
client of Newscast — flooding the network with the freshest, random (non-valid) entries.
Conducted experiments reveal that the protocol is sensitive to such attack. Its successful
execution leads to the graph being split after a relatively short time from the moment when
the cheaters start their activities. Finally, we demonstrated that it is possible to decrease
the influence of malicious clients by limiting the number of exchanged cache entries to the
fraction of the freshest items.

However, the complete solution based on the approach described above requires further
research including churn, the asynchronous environment and the cheating-tolerance against
cooperative cheaters. The proposed execution scheme aids further extensions with detection
and prevention mechanisms, hopefully providing in the future a robust and scalable protocol,
creating a solid foundation for the execution of Evolvable Agent Model (EvAg) in Desktop
Grids and Volunteer Computing Systems (DGVCS’s).
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Chapter 8

Conclusions & Perspectives
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This chapter recalls the context of the dissertation, summarizes the different contributions
developed during the thesis and details the challenges and perspectives opened by this work.

8.1 Summary

Evolutionary Algorithms (EAs) have gained popularity for more than 40 years now as a
successful framework able to deal efficiently with a wide range of difficult problems. These
include classical NP-hard combinatorial and diverse real-world optimisation problems, typ-
ically difficult to solve using traditional search methods. Especially the latter can be non-
linear, highly constrained, multi-objective and/or include many uncertainties.

Many models of EAs have been proposed over the years — see Chapter 4 for details.
However, their theoretical analysis has been long ignored until the seminal work of Günter
Rudolph [135] in the 1990s. Since then, major progress have been made, especially in the
last 10 years. However none dealing with aspects of fault-tolerance.

In this thesis, we were interested in a better understanding of the theoretical foundations
of EA robustness, especially when the execution might be corrupted by malicious acts. Such
actions are a common issue in large-scale Desktop Grids and Volunteer Computing Sys-
tems (DGVCS’s) utilising idle resources shared by volunteers. The incentives offered to the
contributors attract also malicious users, commonly called cheaters. A cheater typically
seeks to obtain the rewards with little or no contribution at all.
Due to the vast computational and storage capabilities provided by DGVCS’s at a low
cost, many large-scale research projects are carried out using such set-ups. However, this
advantage is obtained at the expense of a challenging, error-prone, heterogeneous and volatile
environment of execution.

In this context, this work offers a formalisation of cheating faults — a subtype of byzan-
tine (arbitrary) faults — modelling the malicious behaviours described above. The actions
of cheaters are mainly characterised by the alteration of outputs produced by some or all
tasks forming a distributed execution. The approach differs from the arbitrary faults in the
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implementation, as cheating faults are introduced intentionally from within the boundaries
of a system. More importantly, we propose in this thesis a theoretical analysis of the inherent
resilience of EAs against cheaters.
There are two directions in which the theoretical analysis of an EA can be conducted, both
focused on some notion of time. One can either study whether the EA is able to find the
solution in a finite time (convergence analysis) or one might wish to estimate the expected
time required by the EA to find the optimal solution of the problem (expected runtime
analysis). We mainly focused on the first direction in this manuscript. However, throughout
the work on this thesis, a complete runtime analysis have been performed for a new type of EA
with a population structured in a small-world graph. This led to a significant improvement of
the state-of-the-art results proposed in the literature regarding the asymptotic upper bound
for the expected parallel runtime.

More generally, this thesis permits revealing the convergence conditions of parallel EAs,
a first contribution for which a specific conclusion is proposed in Section 8.1.1. A sec-
ond contribution lies in the domain of spatially-structured EAs and gossip protocols. The
cheating-tolerance analysis was conducted for Evolvable Agent Model (EvAg), relying on
Newscast protocol to define neighbourhoods at the evolution and the communication layers.
A specific conclusion on this topic is proposed in Section 8.1.2.

8.1.1 Contributions to the cheating-tolerance of parallel EAs

Many previous studies suggested through experiments the innate resilience of EAs against
crash faults [37, 64, 75, 111, 166]. In this thesis, the enclosed convergence results by means
of Markov chain modelling, offer new theoretical insights on the convergence of EAs despite
the presence of cheaters. As mentioned before, cheating faults can be modelled as the
surreptitious alteration of the output values produced by some or all tasks of the program
being executed. Such a selfish behaviour is unfortunately common on Desktop Grid and
Volunteer Computing System (DGVCS) platforms and can affect BOINC-based EAs such
as the MilkyWay@home project [40,42,66].

The provided analysis permits concluding formally on the robustness (or non-robustness)
of an EA. Table 6.1 on page 86 summarizes our contributions from this perspective. The fact
that there exists some cases where an EA always converges despite the presence of cheating
faults is quite encouraging. This will promote the usage of EAs in the future developments
around distributed computing platforms such as Desktop Grids and Volunteer Computing
Systems or Cloud systems where the resources cannot be fully trusted. In particular, our
work shows that the modification step of an EA can be “safely” executed on the untrusted
workers without any special protection: if cheating is present at this level, it will not affect
the convergence of the optimisation search towards valid and (hopefully) optimal solutions.
In this sense, EAs can be considered to have an Algorithm-Based Fault Tolerance (ABFT),
hence to be fault-tolerant without any extensions. Alternatively, our study also highlights
that as soon as cheating happens at the selection level and no special validation mechanisms
are used, there is a chance that the algorithm will not converge. This means that in this
case, additional measures have to be introduced.

122



8.1 Summary

8.1.2 Contributions to the cheating-tolerance of distributed EAs and gossip
protocols

We have extended the cheating-tolerance analysis to spatially-structured Evolutionary Al-
gorithms (EAs) and gossip protocols. Our study was mainly focused on Evolvable Agent
Model (EvAg) — the only distributed model able to utilise vast computing resources offered
by Desktop Grids and Volunteer Computing Systems (DGVCS’s). Its reference implementa-
tion relies on Newscast — a Peer-to-Peer (P2P) gossip protocol, defining the neighbourhoods
at the evolution and the communication layers. Following a probabilistic scheme, the system
is able to keep a self-organized equilibrium. The emerging connection graph behaves as a
small-world topology allowing a scalable information dissemination, aiding the optimisation
search. The existing empirical studies of the whole solution, found in the literature of the
subject, indicate its natural resilience to crash failures. This property is inherited from the
evolutionary process and the communication protocol.

To the extent of our knowledge, the solution has not been analysed before in the context
of cheating faults. As we demonstrated, it is possible to ensure cheating-tolerant execution
at the evolution layer but the global success of the optimisation search depends mainly on
the communication protocol. Newscast was not designed to be cheating-tolerant and as our
experiments demonstrated — it is not. Therefore, we performed an in-depth analysis of the
protocol against cheaters. First, we examined the data flow in Newscast, which revealed and
explained the vulnerabilities build-in in the original design. Later, we developed an efficient,
non-cooperative malicious client of the protocol — flooding the network with the freshest,
random (non-valid) entries. Conducted experiments reveal that the protocol is sensitive
to such attack. Its successful execution leads to the connection graph being split after a
relatively short time from the moment when the cheaters start their activities. Finally, we
demonstrated that it is possible to significantly decrease the influence of malicious clients. It
was achieved by limiting the number of exchanged cache entries to the fraction of the freshest
items without substantially affecting the original, small-world properties of the solution.

8.1.3 General conclusion

The theoretical analysis of evolutionary computation has made immense progress during the
last 10 years. This Ph.D. comes in this trend, and offer novel perspectives as regards the
resilience of EAs against cheating faults. This insight not only leads to a better understanding
of the fault-tolerance nature of EAs, but it also provides design guidelines for developing more
robust approaches.

By the variety of problems addressed by EAs, this study will hopefully promote their usage
in the future developments around distributed computing platforms such as Desktop Grids
and Volunteer Computing Systems or Cloud systems where the resources cannot be fully
trusted. BOINC-based EA projects such as MilkyWay@home [40, 42] could directly benefit
from the outcomes of this work.

Answering the research questions posed in Section 1.2:
• Can we formally analyse in which conditions an EA is expected to converge (or not)

towards valid solutions despite the presence of cheating faults?
• Which models for EA executions aid the resilience against cheaters?
• And finally, which properties of the models contribute to the innate resilience?

123



Chapter 8 Conclusions & Perspectives

We have successfully conducted the convergence analysis of parallel EAs subjected to
malicious acts. It resulted in specifying the required conditions for the algorithm to guide
the optimisation search towards valid and (hopefully) optimal solutions.

Both EA execution models (parallel and distributed) analysed in the context of DGVCS’s
and cheaters, aid the resilience against malicious users. In either case, robust solutions are
possible. In parallel EAs it is easier to verify validity of the results returned by the volunteered
resources, however this affects the global progress of the search as possible cheating influences
the whole population. On the other hand, in the distributed executions, the population is
divided. Therefore, the influence of malicious users is constrained to their neighbourhoods.
The responsibility for the global success of the optimisation search is transferred partially on
the communication protocol, which has to limit the number of resources affected by cheating.

Finally, the stochastic properties of the algorithm and its execution models contribute the
most to the resilience against cheaters. The unpredictable behaviour of the solution makes
it difficult to cheat efficiently. Additionally, the division of the population into small sub-
populations (or single individuals) greatly limits the possible area of the system affected by
the malicious activities.

8.2 Perspectives and future work

In this thesis we proposed a theoretical and practical analysis of the fault-tolerant nature of
parallel or distributed Evolutionary Algorithms (EAs), when executed in a distributed envi-
ronment subjected to malicious acts commonly encountered in Desktop Grids and Volunteer
Computing Systems (DGVCS’s).

As a future work, our theoretical analysis could be extended to other models of EAs (with
different selection and modification schemas). It is also interesting to analyse in which steps
of the algorithm cheating has the biggest influence on the evolutionary process and the exe-
cution time.
The cheater model could also be further extended to be more sophisticated. Instead of choos-
ing the cheating points at random, they could be selected according to their harmfulness.
Cooperation of the malicious users was also not considered in this study and can be of in-
terest for further research.
Moreover, we are now interested in the formal analysis of the overhead induced by the cheat-
ing faults. Indeed, the fact that the EA still converges towards valid and optimal solutions
despite the malicious tampering with the process, does not mean that this will happen in a
reasonable execution time (compared to an execution in a fault-free environment).

Regarding the development around the cheating resilience of spatially-structured EAs and
gossip protocols, we plan to build a robust scheme supporting long-lasting executions based
on the analysis presented in this thesis. Furthermore, detection techniques of malicious acts
could be build-in in the solution to actively remove cheaters from the computation, typically
through collaborative blacklisting approaches. The cooperation of the malicious users was
also not considered, yet it is a greater threat to a distributed execution than to the parallel
one. We plan to develop an efficient, cooperative cheating clients, test our solution against
them and propose further improvements. Finally, having the full solution, it is necessary to
check how it performs in a more realistic, asynchronous environment, when the dynamics of
the peer participation (i.e. churn) is present.
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Appendix A

Table of Notations for Chapter 6

Classical notations found in the literature relative to the convergence of EA are used in this
thesis. In particular, most of the conventions taken in this work are directly inspired by the
seminal article of Rudolph [136]. They are now briefly reminded.

Description
M search space

f :M→ R Fitness/objective function minimised by EA, bounded
from below ∀x∈Mf(x) > −∞

N number of individuals
X0 = (X0,1, . . . , X0,N ) initial population (at step t = 0) chosen according to

some initial distribution p(.); ∀t≥0∀i=1,...,NXt,i ∈M
E =MN state space

K(., .) stochastic kernel describing transition of population
from step t to t + 1 for t > 0 using so-called genetic
operators

(Xt : t ≥ 0) Markov chain with values in a set E of a measurable
space (E,A)

f∗ = min{f(x) : x ∈M} global optimum

Additional definitions:

• K(t)(x,A) =

 K(x,A) , t = 1∫
E
K(t−1)(y,A)K(x,dy) , t > 1 — t-th iteration of the Markovian

kernel for any set A;
• b(Xt) = min{f(Xt,i) : i = 1, . . . , N} — the best objective/fitness function value of

population Xt at step t ≥ 0;
• f∗ — global minimum of the objective/fitness function f :M→ R;
• d(Xt) = b(Xt)−f∗ — distance of the best objective/fitness function value of population
Xt at step t ≥ 0 to the global optimum f∗;
• Aε = {x ∈ E : d(x) < ε} — set of ε-optimal states with ε > 0;
• B(x) = {y ∈ E : b(y) ≤ b(x)} — set of states which are better than or equal to the

state x according to the objective function.

127





Appendix B

Expected Runtime Analysis in a Fault-free
Environment for an elitist parallel
Evolutionary Algorithm

One key motivation behind this PhD research is a better understanding of the theoretical
foundations of EAs, especially when the execution is corrupted by malicious acts. With the
ambition to characterise the impact of cheating faults on the expected runtime of EAs, we
were investigating potentially good candidates for a resilient spatially-structured EA. With
this in mind, we found a Peer-to-Peer (P2P) EA whose population is structured using News-
cast gossip protocol [85].

In the attempt to model and analyse the algorithm, we arrived to a simplified network
topology with the small-world properties. This leaded not only to a complete theoretical
runtime analysis of this type of EA, it also permitted to improve the state-of-the-art results
proposed in the literature. The study [112], were finally the cheating aspects are absent,
remains of interest in the scope of this manuscript. Thus, we decided to include it as an
appendix. It can also serve as an illustration of a full runtime analysis, complement to the
overview provided in the Section 4.4.
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Expected Running Time of Parallel Evolutionary Algorithms on Unimodal
Pseudo-Boolean Functions over Small-World Networks

Jakub Muszyński, Sébastien Varrette, and Pascal Bouvry
In Proc. of the IEEE Congress on Evolutionary Computation (CEC 2013), pages 2588–2594,

Cancún, Mexico, June 2013. IEEE.

Abstract — This paper proposes a theoretical and experimental analysis
of the expected running time for an elitist parallel Evolutionary Algorithm
(pEA) based on an island model executed over small-world networks. Our
study assumes the resolution of optimization problems based on unimodal
pseudo-boolean functions. In particular, for such function with d values,
we improve the previous asymptotic upper bound for the expected parallel
running time from O(d

√
n) to O(d logn). This study is a first step towards

the analysis of influence of more complex network topologies (like random
graphs created by P2P networks) on the runtime of pEAs. A concrete im-
plementation of the analysed algorithm have been performed on top of the
ParadisEO framework and run on the HPC platform of the University of
Luxembourg (UL). Our experiments confirm the expected speed-up demon-
strated in this article and prove the benefit that pEA can gain from a small-
world network topology.

Algorithm B.1: General scheme of an EA in pseudo-code.
t← 0;
Generation(Xt); // generate the initial population
Evaluation(Xt); // evaluate population
while stopping criteria not satisfied do

X̂t ← ParentsSelection(Xt); // evaluate population
X ′
t ← Modification(X̂t); // cross-over + mutation

Evaluation(X ′
t); // evaluate offspring

Xt+1 ← Selection(Xt, X ′
t); // select survivors for the next generation

t← t+ 1;

B.1 Introduction

Evolutionary Algorithms (EAs) are a class of solving techniques based on the Darwinian
theory of evolution [36] which involves the search of a population Xt of solutions. Feasible
solutions are called individuals and members of the population. Each iteration of an EA
involves a competitive selection that weeds out poor solutions through the evaluation of a
fitness value that indicates the quality of the individual as a solution to the problem. The
evolutionary process involves at each generation a set of stochastic operators that are applied
on the individuals, typically recombination (or cross-over) and mutation. There exists many
useful models of EAs, the most popular and widely applied being the sequential EA, for
which a pseudo-code of the general execution scheme is provided in Algorithm B.1. In that
case, a single population (panmixia) of individuals is used.
Adding parallelism to EAs is relatively simple [159] and implies interesting features as de-
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scribed in [4], more precisely:
• the reduction of the time to locate a solution (faster algorithms),
• the reduction of the number of function evaluations (cost of the search),
• the possibility of handling larger populations using parallel platforms for running the

algorithms,
• the improved quality of the solutions worked out.

From the large variety of parallel EAs models that exist in the literature [4], this work targets
coarse-grain distributed EAs based on an island model: several populations connected by
a graph structure run in parallel and evolve independently for some time before periodically
exchanging part of their best individuals to neighboring island i.e. adjacent population in
a migration process. This model is well suited for parallel and distributed execution on
computing cluster or grids.

Many experimental results are reported on all types of EAs yet despite the long history and
very active research in the area, only few papers in the literature addresses the theoretical
foundation of EAs, whether at the level of convergence proofs or running time analysis.
In a previous work [114], we studied the inherent resilience of EAs toward crash faults
and cheating when executed on a distributed and potentially hostile environment such as a
DGVCS platform. In particular, we proved the convergence of the algorithm toward valid
solution despite the presence of fault under some conditions. The open question left at that
moment was a careful analysis of the expected running time of EAs. When investigating this
aspect and searching for potentially good candidate for a resilient distributed EA, we came to
a P2P EA whose population is structured using the NewsCast gossiping protocol [82,88,96].
In the attempt to model and analyze the expected running time of this algorithm, we arrived
to a simplified network topology close to a small-world graph. This leaded not only to a
completed theoretical running time analysis over a new type of EA, it also permits improving
the state-of-the-art results proposed in the literature. This article details this analysis which
has been performed on the most simple variant of a pEA that is still of theoretical and
practical interest: an elitist (1 + 1) pEA where the size of the population is restricted to
one individual and where a cross-over step intervene with probability pc. Its pseudo-code is
proposed in the Algorithm B.2.

This paper is organized as follows: section B.2 details the background of this work and
defines the small-world network model at the heart of this study. Section B.3 holds the main
contribution of this paper as it details the theoretical analysis that exhibit a upper bound
on the asymptotic running time of an elitist (1 + 1) pEA with cross-over whose islands
are structured over a small-world network. The section B.4 validates the theoretical bound
on concrete runs performed on the HPC platform of the University of Luxembourg (UL).
Additional experiments are provided that illustrate the speed-up obtained by adding new
communication edges to the initial infrastructure. Finally, section B.5 concludes the paper
with a summary of our results and future directions.

B.2 Context & Motivation

B.2.1 Optimisation algorithm

We consider the maximization of a unimodal pseudo-boolean function f : {0, 1}n → R (see
Definitions B.2.1 and B.2.2), where n denotes the number of bits. The optimization algorithm
is pEA (see Algorithm B.2). We assume that there is a topology given by an undirected
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Algorithm B.2: Elitist parallel (1 + 1) EA with crossover.
// initialization
for i← 1 to number of islands (µ) do

xi ← uniform random sequence {0, 1}n;
// evolution
while optimal solution is not found do

parallelfor i← 1 to number of islands (µ) do
yi ← xi with each bit flipped with probability 1/n;
if f(yi) ≥ f(xi) then xi ← yi;
broadcast xi to all neighbours;
zi ← migrant with maximum fitness value;
zi ← crossover of zi and xi with probability pc;
if f(zi) ≥ f(xi) then xi ← zi;

graph, where vertices are islands and edges indicate neighbourhoods between them. Each
island (i.e. vertex, node) is responsible for evolutionary process of one population (in our
case one individual) and communication with its neighbours in the topology.

Definition B.2.1 (Pseudo-boolean function [178]). A pseudo-boolean function f : {0, 1}n →
R is a degree-k function with N non-vanishing terms if it can be represented as

f(x1, . . . , xn) =
∑

1≤i≤N
wi
∏
j∈Si

xj (B.1)

where wi ∈ R− {0} and the size of the sets Si ⊆ {1, . . . , n} is bounded above by k. Degree-1
functions are called linear and degree-2 functions are called quadratic.

Definition B.2.2 (Unimodal function). Unimodal functions are those functions where the
global optimum is unique and can be reached from each point from the search space by 1-bit
mutations.

For the experimental part we consider in this paper function LO (leading ones) — mea-
suring the length of the longest prefix consisting of ones only (see Eq. B.2) — as a concrete
example for our theorems.

LO(x1, . . . , xn) =
n∑
i=1

i∏
j=1

xi (B.2)

B.2.2 Model of a Small-World Network

The original Small-world network model proposed by Watts and Strogatz [176] consists of a
regular lattice (e.g. ring lattice) with some edges rewired at random with probability p (see
Fig. B.1). This approach allows to “tune” the graph between regularity (p = 0) and disorder
(p = 1). Such construct exhibits a high clustering coefficient (found in social networks) and
a low average path length (like in true random graphs), even for quite small values of p.
In context of information spreading, rewiring creates a kind of short-cuts between different
parts of the graph.
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Figure B.1: An example of small world-graph with edges rewiring consisting of 24 nodes.
Parameters: d = 1, k = 1, p = 0.25.

Model described above causes problems with an analytic treatment as emphasized by
Newman and Watts in [122]. First of all, distribution of short-cuts is not completely uniform
(e.g. multiple edges between two vertices are prohibited), therefore average over different
realizations of the randomness is hard to perform. Secondly, there is a finite probability that
the graph will be split during the process of rewiring the edges. Therefore, average distance
between pairs of vertices of the graph and number of quantities and expressions are poorly
defined.

To circumvent these problems, a new small-world model is proposed [122]. Starting from
regular lattice, instead of rewiring each edge with probability p, short-cuts are added between
pairs of vertices chosen uniformly at random. There is also no prohibition on the existence
of loops (edge from the given vertex to itself) and multiple edges between two vertices. To
preserve compatibility with the results of Watts and Strogatz, short-cuts are added with
probability p for each existing edge on the original lattice (see Fig. B.2). This model is
equivalent to the Watts-Strogatz model for small p, whilst being better behaved when p

becomes comparable to 1.

B.3 Upper bound on the expected running time of an elitist
(1 + 1) EA with cross-over built on top of a Small-World
network

Our theoretical analysis is based on the approach proposed by Lässig and Sudholt [98] de-
rived from fitness levels method [178]. In this technique, search space is divided into sets
A1, . . . , Am called fitness levels that are ordered w.r.t. fitness values (i.e. A1 <f A2 <f
· · · <f Am, see Definition B.3.1). We say that an island is in Ai or on level i if the current
individual is in Ai. In elitist EA (our case, see Algorithm B.2), fitness value in the whole
population can never decrease. Therefore, if one can derive lower bounds on the probability
of leaving a specific fitness level towards higher levels, this yields an upper bound on the
expected running time (see Theorem B.3.1).
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Figure B.2: An example of the small-world graph with short-cuts adding, consisting of 24
nodes. Parameters: d = 1, k = 1, p = 0.25. For the current (red ) node,
all the green nodes belong to its neighbourhood surface of radius 2 (A(2)).
Neighbourhood volume of radius 2 (V (2)) for this node, consists of red , yellow

and green nodes.

Definition B.3.1 (<f -partition). For A,B ⊆ {0, 1}n and f : {0, 1}n → R the relation
A <f B holds if f(a) < f(b) for all a ∈ A and b ∈ B. An <f -partition of {0, 1}n into
non-empty sets A1, . . . , Am is when A1 <f A2 <f · · · <f Am and all a ∈ Am are global
optima.

Theorem B.3.1 (Fitness-level method for pEAs [98]). Consider a partition of the search
space into fitness levels A1 <f A2 <f · · · <f Am such that Am only contains global optima.
Let si be (a lower bound on) the probability that a fixed island running an elitist EA creates a
new offspring in Ai+1∪· · ·∪Am, provided the island contains a search point in Ai. Let µt for
t ∈ N denote (a lower bound on) the number of islands that have discovered an individual in
Ai ∪ · · · ∪Am in the t-th generation after the first island has found such an individual (i.e. a
lower bound on the number of informed islands). Then the expected parallel running time
of the pEA on f is bounded by

E[T par] ≤
m−1∑
i=1

∞∑
t=0

(1− si)
∑t

j=1 µt (B.3)

Proof. See [98].

For the current best fitness level i, let ψi(x) denote the random number of generations
until at least x islands are informed. Then expected parallel running time of the pEA can
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be further bounded by

E[T par] ≤
m−1∑
i=1

ψi(x) +
∞∑

t=ψi(x)
(1− si)

∑t

j=1+ψi(x) x

 (B.4)

≤
m−1∑
i=1

(
ψi(x) +

∞∑
t=0

(1− si)
∑t

j=1 x

)
(B.5)

=
m−1∑
i=1

ψi(x) +
m−1∑
i=1

∞∑
t=0

(1− si)
∑t

j=1 x (B.6)

i.e. it is a time required to spread the information about individual at fitness level i to x

islands plus the remaining optimization time from this point.
So now we need to find an estimation of the time required to spread the information

ψi(x) in the modified small-world network model proposed in [122]. Assuming that whole
communication happens in parallel, ψi(x) can be bounded by the radius r of a neighbourhood
of volume V (r) (defined on the graph), consisting of at least x vertices (x ≤ V (r)), multiplied
by the expected time required to inform a single island. Lets define p+ [98] as the lower bound
on the probability of informing a vertex in the network. Then the expected time to inform
a single island is bounded from above by 1/p+. Therefore

ψi(x) ≤ r

p+
(B.7)

Following the analysis presented in [122], we have:

V (r) =
r∑

r′=0
a(r′)

[
1 + 2ξ−dV (r − r′)

]
(B.8)

Where:
• a(r) — the surface area of a “sphere” of radius r on the underlying lattice of the model,

i.e. the number of nodes which are exactly r steps away from any vertex.
• ξ — length-scale; the typical distance between the ends of short-cuts on the lattice.

ξ = 1
(φkd)

1
d

(B.9)

• k — number of next-nearest neighbours on the underlying lattice (for the full expla-
nation see [122, section II]).
• d — dimension of the underlying lattice.

For one dimension (d = 1, a ring lattice) and k = 1, we have:
• a(r) = 2 for all r.
• ξ = 1

φ .
Approximating the sum with an integral and then differentiating with respect to r, we get

dV
dr = 2 + 4φV (r) (B.10)
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which has a solution (with boundary condition V (0) = 0)

V (r) = e4φr − 1
2φ (B.11)

Assuming that 0 < φ ≤ 1 and rearranging for r, we have the value which we searched for

r = ln (2φV (r) + 1)
4φ (B.12)

Therefore
ψi(x) ≤ ln (2φx+ 1)

4φp+
(B.13)

Theorem B.3.2. For every unimodal function with d function values

E[T par] = O (d logn)

when executed using the elitist parallel (1 + 1) EA with crossover (where pc ≤ 1−Ω(1)), on
a modified small-world network based on ring lattice with k = 1, if µ ≥ n.

Proof. An informed island informs uninformed neighbour when no crossover is performed,
hence p+ ≥ 1− pc. We choose an <f -partition of the search space into subsets A1 <f A2 <f
· · · <f Ad, where Ai contains all search points with the i-th smallest function value. The
probability of improving the fitness from level i is at least

si ≥
1
n
·
(

1− 1
n

)n−1
≥ 1

en (B.14)

since there is at least one search point in the next fitness level which is at Hamming distance
one.

Setting x = n and substituting all of the variables with their bounds in Eq. B.6, gives:

E[T par] ≤
d−1∑
i=1

ln (2φn+ 1)
4φ(1− pc)

+
d−1∑
i=1

∞∑
t=0

(
1− 1

en

)tn
(B.15)

Since
ln (2φn+ 1)
4φ(1− pc)

= O (logn) (B.16)

and ∞∑
t=0

(
1− 1

en

)tn
= 1

1−
(
1− 1

en

)n (B.17)

which has a limit with n going to infinity

lim
n→∞

1
1−

(
1− 1

en

)n = 1 + 1
e

1
e − 1

(B.18)

We finally get
E[T par] = O (d logn) (B.19)
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Algorithm Lattice Bound Condition

State of the art results:
(1 + 1) EA — O (dn) —

parallel (1 + 1) EA ring O
(
dn

1
2
)

µ ≥ (en)
1
2

parallel (1 + 1) EA grid O
(
dn

1
3
)

µ ≥ (en)
2
3

parallel (1 + 1) EA full graph (Kµ) O
(
d+ dn

µ

)
= O (d) µ ≥ Ω(n)

Contribution of this article:
parallel (1 + 1) EA ring + short-cuts O (d logn) µ ≥ n

Table B.1: Comparison with existing results for unimodal pseudo-boolean functions.

Parameter Value
Number of executions 1000

(p) probability of a short-cut
minimum 0.0
maximum 1.0
step size 0.1

(µ) population size
minimum 10
maximum 200
step size 10

(n) problem size
minimum 10
maximum 200
step size 10

(pc) probability of one-point crossover 0.3
Probability of gene mutation 1/n

Table B.2: Parameters used to execute the experiments.

Table B.1 presents comparison with the existing results (see [98]). As it is visible, our
proposition improves the upper bound compared to the state-of-the-art solutions at relatively
low cost of additional communication over the short-cuts. Presented approach can be
used to derive upper bounds to other lattices (different values for parameters d
and k).

B.4 Experimental Validation

Proposed solution was validated experimentally to see the impact of the number of short-cuts
(probability p) on the running time of pEAs. For the purpose of the tests, the algorithm (see
Algorithm B.2) was implemented using ParadisEO1 library. We maintained compatibility
with the theoretical model of the network in the experiments (see section B.2.2, descrip-
tion of the small-world graph with short-cuts adding). All the tests were executed on the
HPC@Uni.lu2 platform. Parameters for the executions are gathered in Table B.2. Results
are presented on Fig. B.3–B.8. It is worth to note here, that for:

1http://paradiseo.gforge.inria.fr
2https://hpc.uni.lu
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Figure B.3: Results for the function LO (Eq. B.2). The population size (µ) is equal to the
problem size (n) in every test case.

• Fig. B.3 and Fig. B.6 the population size (µ) is equal to the problem size (n) in every
test, which is exactly the case in the theoretical model,
• Fig. B.4 and Fig. B.7 the population size (µ) is fixed and equal to 200, which is

compatible with the theoretical model,
• Fig. B.5 and Fig. B.8, population size (µ) is equal to 100 through the tests, which is

not compatible with the theoretical model.
As it is clearly visible on all of the figures mentioned above, even for small values of p

we get significant improvement on the convergence time in all of the cases. For example on
Fig. B.3, with the problem size equal to 200, from around 1300 generations we go down to
around 850 generations (on average over 1000 executions) just by adding 10% of new edges
to the original lattice (p = 0.1, which creates 20 additional connections in the network).
This gives speed-up of around 35%, which is visible on Fig. B.6. A described tendency is
maintained for all of the tests.

As Fig. B.5 indicates, there is still some place for improvement in the condition on the
minimum population size (µ). For the problem sizes (n) greater than 100, population size
(µ) is too small according to the theory, but still the tendency described above is maintained,
even though execution time is longer (measured in number of generations). It is also visible
on all of the figures, that for the probabilities of short-cuts (p) greater than 0.3, improvement
starts to be lower.

Experimental results could be further enhanced by restricting the types of permitted ad-
ditional connections — loops and multiple edges can be easily avoided.
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Figure B.4: Results for the function LO (Eq. B.2). The population size (µ) is fixed and equal
to 200 in every test case.
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Figure B.5: Results for the function LO (Eq. B.2). The population size (µ) is fixed and equal
to 100 in every test case.
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Figure B.6: Speed-up for the function LO (Eq. B.2) compared to a basic ring lattice. The
population size (µ) is equal to the problem size (n) in every test case.
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Figure B.7: Speed-up for the function LO (Eq. B.2) compared to a basic ring lattice. The
population size (µ) is fixed and equal to 200 in every test case.
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Figure B.8: Speed-up for the function LO (Eq. B.2) compared to a basic ring lattice. The
population size (µ) is fixed and equal to 100 in every test case.

B.5 Conclusion & future work

In this paper convergence of pEAs executed over small-world networks was analysed. Pro-
posed solution allows to increase convergence speed of pEAs with relatively low increase in
communication cost. Only few additional connections in the network decrease convergence
time significantly.

Theoretical analysis included in this paper provides upper bound on pEAs running time of
order O (d logn) for unimodal pseudo-boolean functions with d function values. Conducted
experiments confirm expected speed-up, which in certain cases can exceed 50%.

In future work we plan to extend presented study for more complex connection graphs,
like P2P networks generated by Newscast protocol used in highly scalable Evolutionary
Computations [88,96,97]. Finally finishing with resilience analysis of pEAs executed in P2P
environment, where like in every volunteer computing network, malicious/erroneous acts are
common [90].
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Gossip protocols define a pure P2P network (see Section 3.2.2) over a large set of computing
resources. The essence of the solution lays in the exploitation of randomness to virally
disseminate information and to maintain connectivity in a self-organised (independent of the
initial state) equilibrium. Such equilibrium emerges from the loosely-coupled and distributed
run of the protocol within different and independent nodes. The epidemic nature provides
high fault resilience and self-healing properties at the cost of an overhead in terms of messages
routing performance [83].

We start this section with the introduction of a (slightly modified) generic gossip protocol
proposed by Jelasity et al. in [83]. We show and describe how the partial knowledge of
the global membership (i.e. the partial view, see Section 3.2.2) is build, maintained and
exchanged by each peer. Despite the simplicity of the framework, it can be used to describe
many of the existing epidemic protocols, facilitating their analysis and comparison.

After the introduction of the general model, we move to a discussion about the metrics
and fault tolerance of the emerging network. There we describe how different settings for
local management and exchange of gossips influence these properties.

Cheating faults and other malicious activities are a well-known problem in the area of P2P
networks and in particular, their epidemic models. At the end of this section, we discuss dif-
ferent attack models leading to the performance degradation, disruptions in communication,
data loss, etc.

C.1 Generic gossip protocol

P2P protocols are oriented around the maintenance and management of the partial views of
the peers. As defined in Section 3.2.2, a partial view is a list-like structure which contains the
addresses or identifiers of some other members of the network. It represents the local (partial)
knowledge of a peer about the global membership. In the context of gossip protocols, the
partial view is called a cache and its content — the cache entries — are extended with
additional information (see Figure C.1):
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Address/ID Time-stamp

 Mandatory

Application-specific data

 Optional



Cache entry

Figure C.1: Cache entry in a gossip protocol.

Algorithm C.1: Definition of the select function for the cache of a generic gossip pro-
tocol.
method cache.select(c, H, S, list):

cache.append(list);
cache.removeDuplicates();
cache.removeOldItems(min(H, cache.size()− c));
cache.removeFromHead(min(S, cache.size()− c));
cache.removeAtRandom(cache.size()− c);

• a mandatory time-stamp holding the creation time of an entry (sometimes the age of
an entry is used instead),
• an optional application-specific data which is disseminated virally within the net-

work.
The cache provides standard functionality of a list data structure extended with additional
operations specific for the protocol:
• size() — returns the current size of the cache,
• append(list) — appends a list of cache entries and the end of the cache,
• permute() — randomly changes the order of cache entries within the current content

of the cache,
• selectPeer() — randomly chooses a peer to initiate the cache exchange,
• removeDuplicates() — removes duplicated entries (the freshest are kept),
• removeOldItems(n) — removes n ∈ N oldest cache entries,
• removeFromHead(n) — removes n ∈ N entries from the head of the cache (not neces-

sarily the youngest/freshest)
• removeAtRandom(n) — removes n ∈ N random cache entries,
• moveOldestToTail(n) — move n ∈ N oldest cache entries to the end of the cache,
• head(n) — create a sub-list consisting of n first cache entries,
• select(c, H, S, list) — updates the content of the cache with the entries from the list,

following the constraint on the cache size c ∈ N, utilising additional parameters H ∈ N
and S ∈ N defining specific behaviour of the protocol (introduced later in detail). The
definition of this method is presented in Algorithm C.1.

Two threads are used for the protocol’s execution: active (Algorithm C.2) and passive
(Algorithm C.3), where the first one is responsible for initiating the communication (i.e.
cache exchange), the second — for waiting and responding to the requests. Properties
of the specific protocol’s implementation depends on the following parameters: push, pull,
c ∈ N, H ∈ N, S ∈ N, and T ∈ N.

The push and pull define the direction of the communication. Jelasity et al. in [83] demon-
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Algorithm C.2: Active thread of a generic gossip protocol.
while true do

wait for T time units; // T — synchronisation time
p← cache.selectPeer();
buffer ← ∅; // empty list
if push then

cache.permute();
cache.moveOldestToTail(H);
ownEntry ← (ownAddress, currentTime, data); // create a new cache entry
buffer.append(ownEntry);
buffer.append(cache.head(c/2− 1));

send buffer to p;
if pull then

receive bufferp from p;
cache.select(c, H, S, bufferp);

strated that the push-pull model should be used, as the push-only and pull-only schemes can
partition the network. Additionally, the pull-only approach is not very useful in practice,
because it is impossible for the newly joined peers to spread any messages or information
about themselves to the previously connected nodes.

The size of each cache is limited by the parameter c. However, this constraint is fulfilled
only at the ends of the while loops in Algorithms C.2 and C.3. During their execution, the
cache may grow beyond c cache entries. Additionally, it is guaranteed that any subsequent
removals of entries in the select method (Algorithm C.1) will not decrease the size of the
partial view below c entries.

Alongside with c, parameters S and H control the final characteristics of the implemented
protocol. “Parameter S controls the priority that is given to the addresses received from
the peer” [83], i.e. “the diversity of the union of the two new views” [83]. Its name comes
from swap, as it is the actual number of the exchanged cache entries. H on the other hand,
comes from healing, as it influences the self-healing property of the protocol. It controls
“the number of the oldest cache entries moved to the end of the cache” [83] and the number
of those removed during the pull phase of the execution. Its value should be below or equal
to c/2 defined together with S from 0 to c/2−H.

Frequency of communication’s initiations is configured by the parameter T . If the imple-
mentation of the protocol is synchronous, then it is the time after which each peer initiates
a single, outgoing connection.

Although the framework defined above is quite general and multiple gossip-based protocols
fit into its frame, some minor changes are needed in specific applications. For example, if
the peer selection schema is different from random, then the method selectPeer() has to
be redefined. Or for instance, if some functionality is not needed, then it may be removed
(like permute(), if the order of cache entries does not have to be altered before sending the
view to the other peer).

Finally, the last key functionality to be defined is the membership management. In
the simplest schema, a node has to connect to any peer from the network to join the system
and to leave — cease the communication. In more complex solutions, designated servers
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Algorithm C.3: Passive thread of a generic gossip protocol.
while true do

receive bufferp from p;
if pull then

cache.permute();
cache.moveOldestToTail(H);
ownEntry ← (ownAddress, currentTime, data); // create a new cache entry
buffer.append(ownEntry);
buffer.append(cache.head(c/2− 1));
send buffer to p;

cache.select(c, H, S, bufferp);

may participate in the protocol’s execution, gathering the global view (see Section 3.2.2 for
the exact definition) of the network. Each joining peer may contact any of such nodes to get
from it the initial content of the cache.

C.2 Properties of the protocol induced by the specific settings

In [83], Jelasity et al. analysed different settings of the parameters described in the previous
part and their influence on the emerging network properties. The study includes mainly the
connectivity, the in-degree distribution, the average path length, and the clustering coefficient
(see Section 2.2 for detailed definitions). Additionally, a behaviour of protocols in various
configurations is analysed in presence of churn (see Section 5.1.1) and crash failures (see
Section 3.3.1).

Next to the crucial push-pull policy described earlier, a very important setting is the
maximum cache size c. Unfortunately, there is no clear guideline for its choice, because it
heavily depends on the specific protocol’s instance. For example, in a simple Newscast [82]
model, the minimum suggested value of c is 20, which guarantees with a high probability
that the emerging network will not partition over time independently of the number of peers
(the result was obtained experimentally in [82]).

Due to the fact that the parameters H and S are linked, and in addition must take integer
values, the number of possible states is limited (see Figure C.2). The properties of protocols
defined at the extreme points of the triangle are as follows [83]:
• Blind (H = 0, S = 0) — each cache contains a random, never changing subset of

peers. This setting does not produce a useful protocol, because it is not able to adopt
to changes of the peers’ availability.
• Healer (H = c/2, S = 0) — each cache holds the freshest possible entries.
• Swapper (H = 0, S = c/2) — cache contents are exchanged between the nodes (up

to c/2− 1 entries).
If it comes to the protocols between these extremes, the following properties apply [83]:
• The higher the value of H, the fewer dead links are present in the cache and the faster

they are eliminated from the network (in case of crash failures and churn). Therefore,
the H should be set as high as possible. Additionally, in realistic churn scenarios, the
protocol performs similarly to the fault-free executions if H ≥ 1 [83].
• As stated before, the values of S control the diversity of the views. In practice it means,
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c/2

Healer

Swapper

Blind

Figure C.2: The triangle of gossip protocols. In this example c = 20. Extreme settings are
marked with big, black points and all possible states in between them with small,
blue points.

that the probability of including the cache entry received during the communication
phase increases with the increasing value of S, with a side effect of removing more and
more unique addresses (comparing both caches of peers participating in the messages’
exchange).

Each possible configuration enforces some trade-offs and there is no ideal setting [83].
The last parameter is the synchronisation time T . A conservative setting, commonly used

in simulations is 10 seconds. The value of T affects the load of each peer during the protocol’s
execution — the lower the value, the higher the load.

Graph metrics for the emerging P2P networks are usually computed in a simulated envi-
ronment. The simulation is executed in the synchronised fashion with the synchronisation
time set to T . In each step, every node is selected once — in random order — to initiate a
cache-exchange. Such context allows defining a convergence time, as a time required by
the network to reach the state of equilibrium (from the global point of view) from its initial
configuration. Regardless of the initialisation method and the parameters’ settings, all net-
works tested in [83] converge in less than 50 simulation steps. All the properties, metrics and
values discussed further will refer to a situation, when the network is already in the state of
equilibrium.

Although, the distribution of local graph metrics is not uniform among the peers, it does
not create a permanent setting. The situation changes at the each synchronisation cycle
of the protocol. Therefore, if there are any bottlenecks in the network, “they will not be
associated with the same nodes all the time” [83]. Thus, this improves the robustness and
provides sort of load balancing.

Existence of bottlenecks is determined by the in-degree distribution (see Definition 2.2.2).
The higher this value is for a given node, the more incoming connections are expected
(precisely d/c, where d is the in-degree and c is the maximum cache size). The discussed
metric tracked over time for a single node has a similar distribution like the one computed for
all the peers at any simulation step, therefore the value is dynamically changing and does not
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remain static. In the extreme configurations, only the swapper has the normal distribution
of the nodes’ in-degree with the average at the maximum cache size. For two others, the
distribution is skewed in the direction of lower values.

Usually, the path statistics and the clustering coefficient in the case of the P2P protocol
analysis are measured on the underlying graph (see Definition 2.1.3). A small average path
length (see Definition 2.2.9) is required to consider a concrete configuration of the gossip
protocol as scalable. For all settings, the measured values of this metric are reported in [83]
as very low, with the protocols having large S values to be the closest to the random graph
(see Section 2.3).

The last discussed metric is the clustering coefficient (see Definition 2.2.12). In the context
of P2P protocols, “a high clustering coefficient has potentially damaging effects on both
information dissemination (by increasing the number of redundant messages) and also on
the self-healing capacity by weakening the connection of a cluster to the rest of the graph
thereby increasing the probability of partitioning” [83]. Yet, for the distributed Agent-based
Evolutionary Algorithms (AEAs) the redundancy of the messages is a desired property of
the protocol. As reported in [83], the clustering is mainly controlled by H. Its high values
result in significant clustering, which are far from the random graph. This is due to the high
similarity of the cache occurring right after the exchange and integration of the cache entries.
For the high values of S, this statistic is close to random, because S controls the diversity of
the caches.

C.3 Chating faults and “malicious gossip”

P2P protocols, like DGVCS’s, have to cope with the malicious behaviour of their participants.
Although in this case, such actions are not driven by the incentives of any kind, but it is rather
a problem associated with the anonymity (as described in Section 3.1.3). Byzantine attacks
on the network are aimed to bias the peer selection process [84] or break the connectivity
between the nodes. On of the key requirements making gossip protocols effective, namely the
push part of the communication, is also the cause of the problem in case when the contents
of the messages are altered, because it aids active spreading of the falsified data (what will
be visible further).

C.3.1 Attack models

This situation is illustrated on Figure C.3. If at any time during the execution a group of
nodes contact in a sequence a single, designed peer, then his view (or cache) will be (with a
high probability) fully filled with their descriptors. If some other member of the system will
not contact the mentioned node after that, then he will not be able to reconnect with the
network. Yet, even if this happens, there is not guarantee that the node will stay connected
to the network for long. It all depends on the protocol parameters, as it is highly probable
that some malicious descriptors will be retained in the cache and the peer might simply
choose one of the members of a malicious group for the subsequent cache exchange. As a
side effect, a node which helped with the partial recovery of the view (with a high chance)
will also integrate the malicious data into his cache, experiencing the same risk as described
above.

Figure C.4 presents one of possible variants of the attack executed in a full scale. During
the time when all members of the network follow the protocol (Figure C.4a), all the benefits
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Figure C.3: The cache takeover (i.e. view poisoning) attack. Here the situation is greatly
simplified: the maximum size of the cache is small (only four cache entries) and
the execution is synchronous. After a current target of the attack is chosen (node
u), cheating peers (from m1 to m4 in this example) start to flood the u’s local
view (messages from 2 – 5) with the addresses from their own group. Upon the
success, the content of the cache of the targeted node is filled with descriptors
leading only to the malicious group. Additionally, possibly cutting of u from the
rest of the network. If by some chance, the attacked peer managed to send its
descriptor to the network before or during the attack, then it is possible that his
view may be partially restored to the correct state by the incoming connection.
On the illustration, the ID of u was “pushed” to v1 at the beginning of the
synchronisation phase (message number one), unfortunately it was replaced by
other, fresher entries during the later steps of the execution (see the bottom
figure).
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Appendix C A Framework for Description of Gossip Protocols

(a) (b) (c)

Figure C.4: An example of the “hub attack”. The network consists of 49 nodes, with the
cache size limit set to 10. Figure (a) presents a snapshot of the network before
the attack, (b) the culmination point of the activities of 10 cooperating, malicious
users. They took the control over the network by filling the caches of the other
peers with entries pointing to the malicious group — forming a hub-based overlay.
The state of the network after malicious group left the system is depicted on
Figure (c) — a set of fully disconnected nodes.

of gossiping described before are provided and all properties of the connection graph are
preserved.

At some point, a group of colluding nodes joins the system — the number of the attackers
does not have to be big and generally the “maximum cache size (c)” of them is enough to
cause the problem. Instead of the normal execution of the protocol, they pursue their own
agenda by sending the descriptors of the malicious group members. This in turn causes
increasing pollution of the network with their addresses, with the additional and unaware
help of the honest nodes. The more malicious descriptors are present, the higher is the
chance that some node will contact an attacker facilitating further spread of this harmful
data. All this, finally leads to a situation depicted on Figure C.4b.

When such state of the execution is reached, malicious users have the full control of the
information flow within the network, forming a hub — therefore “the hub-attack” [84]. Yet,
it is not the only issue: if at any time after that all members of the attacking group decide
to leave the system, the rest of the nodes will become instantaneously disconnected (see
Figure C.4c).
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