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Abstract—Recent advances in the field of intelligent transporta-
tion systems have focused on the use of wireless networks to
link vehicles and road infrastructure. Applications that might
result from such networks range from the adaptive management
of traffic lights to the detection of traffic jams and accidents.
Whatever the case may be, it seems important to explore the
possibilities and limitations of such networks, which the literature
often portrays in a somewhat idealistic way (e.g. no packet
loss, fully connected sensors, etc.). In this paper, we study the
deployment of wireless sensor networks at intersections in some of
the world’s major cities and characterize their topologies. Using a
propagation model that corresponds to a 2.4GHz IEEE 802.15.4
network interface, we focus our study on the global connectivity
of graphs resulting from different networks. By deploying this
type of network over 52 city and region maps extracted from
OpenStreetMap, we show that cities can reasonably be classified
into three network structure categories of low connectivity (i.e.
a high number of connected components) and that it should be
feasible to improve the networks by adding sensors. All the tools
and the complete dataset are freely available online.

Index Terms—Smart Cities, WSN, Network Topology, Graphs

I. INTRODUCTION

Smart cities constitute an active research domain, driving
experimental projects. The success of distributed systems
allows us to consider the deployment of sensor networks over
large areas such as cities. The use of wireless communication
links between devices allows them to be quickly installed on
the roads and thereby open the way to the gradual introduc-
tion of intelligent transportation systems. These devices are
powerful enough to organize themselves and decide a policy
locally [1]. Rather than wasting time communicating to a
central entity that can be compromised, saturated, or simply
not reactive enough to process requests within a workable time
frame [2], this latter approach allows for the creation of fully
autonomous areas with the ability to respond rapidly to sud-
den, unexpected events such as accidents. Finally, in addition
to providing a fixed infrastructure, this type of deployment
allows the development of vehicular networks which at present
are difficult to integrate [3].

Selecting a real deployment scenario – as well as algorithms
and protocols – requires to study the characteristics of the
network topologies. In [4], we studied the deployment of a
wireless sensor network over 52 cities whose maps had been
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extracted from OpenStreetMap. Based on graph theory and
the IEEE 802.15.4 communication standard, we concluded
that traditional graph models are not able to represent these
networks, whose degree distribution follows a gamma distribu-
tion accurately enough to be able to generate random graphs
approaching it. In addition, the graphs appear to be highly
partitioned and comprise a large number of isolated nodes.
Here, we want to go further by focusing on: (1) identifying
network categories in our data set; (2) studying global network
partitioning; (3) studying the maximum connected components
in order to deduce properties on the most covered areas; and
(4) improving the connectivity of these networks.

After describing a state-of-the-art in Section II, we briefly
recall our deployment strategy and present the tools we used in
Section III. The following sections offer a subsequent analysis
of the structure of the networks and of their partitioning
(Sec. IV and V). Finally, in Section VI, we discuss a strategy
for improving connectivity.

II. RELATED WORKS

Sensor networks experimental platforms are legion today,
but most of them are limited to one or a few buildings (e.g.
FlockLab [5]). In contrast, CitySense [6] is an urban wireless
network testbed deployed all over the city of Cambridge
(MA, USA), forming a mesh network of 100 Linux-based
computers. Even though the primary focus was to foster
mesh networks applications development, nodes have been
augmented with environmental and pollution sensors. Corredor
et al. [7] look at the deployment of magnetometers for
monitoring road traffic over smart highways. They propose
to deploy such sensors on every lane to maximize vehicles
detection probability and couple the sensors with roadside
units to solve connectivity problems. Hu et al. [8] proposes to
deploy sensors across the second ring road of Beijing (China)
for road traffic monitoring. They influence the deployment
so that the resulting topology forms a small world graph
to take advantage of this type of structures, by optimizing
transmission radiuses of the nodes and refining the location
of high coverage nodes using an evolutionary algorithm.
CitySee [9] is a project to deploy a sensor network in the
city of Wuxi (China) to measure the carbon dioxide level
in real-time. The paper models the deployment issue as a
relay node placement problem and evaluates the number of
additional nodes deployed for connectivity purposes. Some
authors in the literature define the deployment of traffic light
control algorithms that act locally on each intersection of a
road infrastructure [10], [11], [1]. Their algorithms are based978-1-4673-9907-4/15/$31.00 c© 2015 IEEE



on sensors deployed at an intersection for the purpose of
calculating a timed sequence of green lights corresponding
to the level of traffic. By defining the roles and hierarchy of
the sensors, [1] uses communications between the adjacent
intersections to create green waves (paths of successive green
lights). This process has the potential to be used in large urban
areas and studying the resulting graph would enable us to
verify at which level.

All these papers propose different deployment strategies,
and the resulting connectivity graphs are expected to be
slightly different. In the literature, it is commonly assumed
that city maps are scale-free networks. Besides, the complex
networks analysis methods that are widely used in social net-
works analysis are also applied in urban networks (e.g. [12]).
However, the topology of the network deployed over a city in-
frastructure depends on the deployment method and this topol-
ogy has a strong effect on the network protocols performance
at all levels of the communication process [13]. Indeed, the
network density has an effect on local congestion and on nodes
energy consumption. A dense network is very challenging for
the medium access control layer. It generally utilizes poorly
the channel capacity, but it provides diversity that contributes
to fault tolerance. The median end-to-end delay increases
with the network diameter, which depends on the number of
deployed nodes, but also on the effort made to reduce network
partitioning. A partitioned network, on the other hand, requires
cellular or wired gateway to let autonomous clusters exchange
information, which influences the traffic patterns. Finally, the
network size has a direct influence on the addressing scheme
and on the memory required for routing tables, as well as on
the deployment cost.

III. DEPLOYMENT STRATEGY

In the scenario we imagine, a city operator wishes to deploy
sensors to monitor all the intersections of an urban road
network to count vehicles and feed an intelligent transportation
system. The results presented in this paper assume that the
sensors are deployed individually on each incoming lane, as
illustrated by the yellow dots on Fig. 1. We focus on this
strategy because we have in mind magnetometer-like sensors
which can accurately count vehicles passing over [14], and
which is one of the most popular deployment.

Fig. 1. One sensors deployment strategy on two intersections

In order to study the topology of the network formed by this
type of deployment, we chose to extract 52 maps of different

cities from OpenStreetMap maps data, using BBBike.org.
These maps give the GPS coordinates of each intersection,
as well of the characteristics of the roads that connect these
intersections. Note that certain selected maps are not strictly
confined to the boundaries of the cities: sometimes, it may be
a region around the city, including the outskirts (e.g. Paris and
its suburbs). In order to filter the information contained in these
maps by removing elements that are not relevant to our study
(e.g. bike lanes, pedestrian areas), we use NETCONVERT, a
tool provided by the SUMO (0.19) microscopic traffic flow
simulator [15]. In order to avoid overloading the network,
we kept only the main and the secondary streets1. We thus
eliminate roads that are inaccessible to motorized vehicles, as
well as a number of minor roads (e.g. residential areas).

The network formed on each map can be described as
a set of nodes that possess geographic coordinates and a
set of associated undirected edges, created by confronting
the Euclidean distances between each couple of sensors to a
distance modeling the nodes transmission range of a 2.4 GHz
IEEE 802.15.4 network interface [16]. This scenario, as well
as others with different levels of accuracy, is described in [4].
Moreover, the full dataset comprising the 52 city maps, the
results for each strategy and the scripts to generate the graphs
are available online at http://g.sfaye.com/. These
scripts invoke the different tools in sequence with configurable
parameters (path-loss model, deployment method, etc.) and
also generate OMNeT++ simulation models [17], [1].

IV. NETWORK STRUCTURES

Analyzing all the graphs, we came across various distribu-
tion profiles. Fig. 3 represents three categories of inter-sensors
distances distributions we found in our datasets, a criterion
which reflects the morphology of road structures. Most cities
seem to exhibit a unimodal and asymmetric distances dis-
tribution skewed to the left, as it is the case for Paris and
Madrid (Fig. 3(a)-3(c)). This type of distribution indicates that
these cities have a relatively uniform intersections repartition
and density. The width of the peak gives an indication on
how regular the city structure is. Its shift towards smaller
values is more pronounced in denser road networks. Some
other cities show a bimodal distances distribution, like New
Orleans (Fig. 3(b)). Finally, some distributions with a low
density of sensors are almost uniform and present profiles
whose representation deviates from that of the main two, for
example Bagdad 3(d).

Among the 52 cities that constitute our full dataset, we
selected 6 representative ones to illustrate our analysis. The
first property that influenced our choice is the area covered
by the city. We wanted to include large cities as well as
(relatively) small cities to account of the diversity of urbanism
rules. As illustrated in Fig. 2(a), we chose to include the largest
and the smallest cities within the set of representative cities:
New Orleans and Beirut respectively. The second selection
criterion is the nodes density, i.e. the number of nodes –

1http://wiki.openstreetmap.org/wiki/Key:highway
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(a) City size (km2)
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(b) Number of nodes

Fig. 2. Scale metrics for the 52 cities and regions that compose our dataset
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(b) New Orleans
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Fig. 3. Profiles generated from the inter-sensors distances distributions

Fig. 2(b) – per city size). Density has a direct effect on
network performance, as it influences collision and congestion
probability at the medium access level. We included the
densest and the sparsest networks in our dataset: Miami and
Cusco respectively. Finally, we added to the dataset two
more networks of average size and density: Madrid and Paris
because of the characteristics of their inter-sensors distances
distributions.

V. CONNECTIVITY GRAPHS ANALYSIS

A. Connected components and network partitioning

To evaluate the global connectivity of the networks, we
analyze its partitioning by looking the number of connected
components in the resulting graph. A connected component
models a group of nodes that are connected together, but
disconnected from the rest of the network. Red bars on Fig. 4
shows the number of connected components in the different
networks. This number depends directly on the dimension of

the different networks as well as on the number of nodes.
Paris has for example more than 5,500 components for 29,000
nodes. This means that the network, without additional relays,
is composed of many areas and hence has limited interac-
tion possibilities. Green bars on Fig. 4 shows the number
of biconnected components in each network. A biconnected
component is a connected component in which there are at
least two node-disjoint paths between each couple of nodes.
It reflects the proportion of sub-networks that can tolerate any
single node failure. Note that the biconnected components, as
reported here, are created from connected components formed
by at least three nodes. Under three nodes, there is only one
path between the nodes. Note also that a connected component
may include several biconnected components. Fig. 4 indicates
that relatively few additional nodes need to be deployed to
comply with the classical N-1 reliability criterion (i.e. the loss
of any single element does not break a connected component
in two).
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Fig. 5. Percentage of isolated nodes
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Fig. 8. Analysis of the maximal component
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At a more detailed level, Fig. 5 shows the percentage of
connected components that are composed of only one single
node, i.e. the number of sensors who are too far away to be
connected directly to the rest of the network through wireless
LAN technology. This proportion naturally increases as the
nodes density decreases. Cusco, for example, has around 25%
of connected components composed of a single node, while
Paris has around 12.5%. Fig. 6 shows the cumulative distri-
bution function (CDF) of the number of components formed
by at least 3 nodes that have a given percentage (represented
on the x-axis) of their nodes that are articulation points. An
articulation point is a node whose removal disconnects the
component it belongs to, increasing the number of connected
components. The graphs are fairly redundant: in the worst case

(Madrid), almost 94 % of the components have no articulation
point. A network like Paris, for example, tends to have a
large number of articulation points, as the suburban area is
large. Madrid has the same characteristics as the city of Paris,
without the scattered suburbs, but with several areas of high
density around the city center. In this case, the increase rate
of articulation points is not as sharp.

B. Are these networks small-world?

Given the characteristics of the graphs we detailed above,
we have the intuition that the generated graphs indeed possess
the small world property, as many interaction graphs do.
However, the small world property is generally not verified in
networks with strong geographical constraints, such as urban
street networks, where the graphs are created by elements of
the road infrastructure (intersections, roads) [18]. To evaluate
this hypothesis, let us examine how the clustering coefficient
is distributed in these networks. The clustering coefficient of
a given node in a graph is defined as the probability that two
neighbors of this node are themselves mutual neighbors. This
classical metric accounts for the presence of communities in
the graph. In terms of networks, it indicates the presence of
dense areas, ultimately cliques, that yield to the creation of
shorter communication paths. Fig. 7 represents the CDF of
the clustering coefficients in the selected cities. As mentioned
in section V-A, the graph is partitioned, but this result shows
that most of the connected components have a high clustering
coefficient. Indeed, the graphs are influenced by geographic
constraints, but are biased by the high density of sensors de-
ployed at each intersection. We can conclude that unlike road-



intersection graphs, as the clustering coefficient is independent
of the total number of nodes, our graphs possess the small
world property. Besides, the small world property translates
into a short average distance between each couple of nodes in
the graph. This is confirmed by looking at the diameter of the
connected components (Fig. 9), which is, on average, lower
than the logarithm of the total number of nodes.
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C. Anatomy of the connected components

Fig. 9 represents the CDF of the diameters of the connected
components of each network. The diameter is the length of the
longest of the shortest paths between couples of nodes that
belong to the same component, expressed in number of hops.
We can see that this diameter remains very low, essentially due
to the presence of several small sized components. It should
be underlined that some components have a diameter that is
less than 1: this case occurs when a component has only one
node (sec. V-A). Networks are mainly composed of small-
sized connected components and a few large ones.

Let us now focus on the maximum connected component
(maximal component), which is the connected component that
contains the largest number of nodes. Fig. 8(a) represents the
number of nodes that belong to this maximal component. This
number ranges from 33 nodes (New Orleans) to more than
130 nodes (Miami). Nodes that belong to the same connected
component can be seen as belonging to the same broadcast
domain, hence this figure gives an indication on the cost of
broadcasts and on how many nodes can be reached by control
packets (ARP, routing protocols, etc.). Fig. 8(b) shows the
CDF of the hop distances that separates couples of nodes
within this maximal component. It gives an indication on the
delays. We can see here that the distributions range from low
diameter components (about 4 hops) to larger components
(10 hops) and that these distributions do not always follow
the trend defined by the size of the component, or from the
average density. Madrid, for example, is sparser than Paris
(Fig. 2) but its maximum connected components has shorter
path for a comparable number of nodes. This means that the
intersections density is probably higher in downtown Madrid
than in Paris. Fig. 8(c) shows the CDF of the edge lengths
within the maximal component, in meters. This parameter

influences the attenuation on the wireless links and hence
the links quality or the expected number of transmissions.
The distribution is globally uniform, as the CDF is almost
linear for all networks. Differences come from the architectural
specificities of the cities.

VI. IMPROVING CONNECTIVITY

The analysis in the previous section was conducted on raw
graphs, created by only positioning sensors that had a mon-
itoring role. As no effort was made to improve connectivity,
these graphs are composed of many connected components:
an operator willing to acquire data or to disseminate policies
across its whole network shall interconnect these components.

In this section, we examine the effect of such an intercon-
nection strategy that relies on the insertion of relay nodes that
we suppose identical to the sensor nodes. These relay nodes
are positioned in order to merge two connected components.
We define the distance that separates two arbitrary connected
components as the minimum of the distance between couple
of nodes that belong to each component. Depending on this
distance, we would need one or more intermediate relays to
merge both sub-graphs. Knowing the transmission range of
a node, we place a chain of nodes between two neighboring
connected components. Let us suppose that the operator im-
poses a limit on the maximum number of intermediate nodes
that could be deployed for interconnection purposes between
two components and let us study the effect of setting this
limit from 1 to 10 relays. For example, if a chain of nodes
is sufficient to connect two connected components, we add
it. We determine whether this chain is sufficient based on
the propagation model used to simulate the deployment, and
separate each node in the chain with a distance equal to half
their maximum range, to prevent the transmitted signals from
being completely attenuated by the distance. Indeed, a value of
10 is most unlikely, as it would result in relying on chains of 10
nodes to interconnect components, knowing that the failure of
any of these nodes would result in partitioning the component.

Fig. 10(a) represents the evolution of the number of con-
nected components in function of the maximum number of
relays. The x-axis value of −1 represents the inverse situation
in which all the articulation points in the graph are removed.
We can see that inserting a single relay has a limited impact,
while increasing the threshold to 2 or 3 has a notable effect
in very scattered graphs. All scenarios seem to converge
to comparable values close to 200 components. Fig. 10(b)
represents the evolution of the number of deployed nodes in
function of the threshold. We can notice that the value tends
to increase faster in scattered networks, as the reduction of the
number of components slows down. In the case of Paris – the
network with the most components – we need to add around
60,000 nodes to obtain less than 1,000 connected components.
Finally, Fig. 10(c) shows the evolution of the number of nodes
that belong to the maximum component. This graph shows that
even though the improvement is not the same for all cities, this
component is able to gather up to 90 % of the nodes.
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Fig. 10. Improving the connectivity of the networks

Obviously, this strategy is only one option and other con-
nection methods could be imagined. Adding a chain of nodes
to link two connected components makes the structure fragile
and congestion is more likely to appear on paths involving
nodes with a high centrality. One could think of an algorithm
that adds enough relay nodes to merge connected components
with a strict constraint on the resulting betweenness centrality.
K−1 long backhaul links could also be created to interconnect
the K components. Using a vehicular network to ferry mes-
sages between these components could also be an interesting
alternative. However, the goal here is simply to demonstrate
that with a naive strategy, it is possible to improve network
connectivity without too much difficulty.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we examined and characterized the con-
nectivity of a wireless sensor network deployed at the in-
tersections of various cities. Examining the partitioning in
connected components, we show that the resulting graph is
highly disconnected and comprises up to 25 % of isolated
nodes. Nevertheless, the network presents a good redundancy
level within connected components. The average diameter
of connected component is low, but can rise to fair values.
Finally, we show that a real deployment should be feasible
and that a moderate proportion of relay nodes is required to
let the maximum connected component encompass most of
the network and cover flagship urban areas (e.g. downtown)
with a single sub-network.

In future work, it would be interesting to study other deploy-
ment strategies. Our complete results show, for example, that
if we deploy a node at the center of each intersection while
adopting the assumptions made in this article, a maximum of
14 adjacent intersections could be covered in the city of Paris
without an additional relay node. Before analyzing networking
aspects, it would also be interesting to use a more complex
propagation model and consider the presence of buildings as
a means of creating more realistic graphs.
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