A modal logic for games with lies

Bruno Teheux

University of Luxembourg

The RÉNYI – ULAM game

A searching game with lies

- 1. ALICE chooses an element in $\{1, \ldots, M\}$.
- 2. BOB tries to guess this number by asking Yes/No questions.
- 3. ALICE is allowed to lie n 1 times in her answers.

BOB tries to guess ALICE's number as fast as possible.

The game is around for more than 50 years

Finding an optimal strategy :

Pelc, A. Searching games with errors - fifty years of coping with liars, *Theoretical Computer Science* 270 (1): 71-109.

Using logic and algebras to model the states of the games :

Mundici, D. The logic of Ulam's game with lies. In *Know-ledge, belief, and strategic interaction*. Cambridge University Press, 1992.

Tools for the algebraic/logical approach

Static model Łukasiewicz logic MV-algebras

Dynamic model Modal logic Kripke semantics

Łukasiewicz (n + 1)-valued logic and MV_n-algebras

$$\mathcal{L} = \{\neg, \rightarrow, 1\}$$
$$\neg x := 1 - x, \qquad x \to y := \min(1, 1 - x + y)$$

Łukasiewicz (n + 1)-valued logic and MV_n-algebras

$$\mathcal{L} = \{\neg, \rightarrow, 1\}$$
$$\neg x := 1 - x, \qquad x \to y := \min(1, 1 - x + y)$$

2

Łukasiewicz (n + 1)-valued logic and MV_n-algebras

$$\mathcal{L} = \{\neg, \rightarrow, 1\}$$
$$\neg x := 1 - x, \qquad x \to y := \min(1, 1 - x + y)$$

Static model Łukasiewicz logic MV-algebras

Dynamic model Modal logic Kripke semantics

An algebraic encoding of the states of knowledge

- 1. Knowledge space $K = \Bbbk_n^M$.
- 2. A state of knowledge $s \in k_n^M : s(m)$ is the 'distance' between *m* and the set of numbers that can be discarded.
- 3. A question Q is a subset of $\{1, \ldots, M\}$.
- 4. The *positive answer* to *Q* is the map $f_Q: M \to \{\frac{n-1}{n}, 1\}$ defined by

$$f_Q(m) = 1 \iff m \in Q$$

The *negative answer* to *Q* is the map $f_{M \setminus Q}$.

$$x \oplus y := (\neg x \to y)$$

= min(1, x + y) in \pounds_n
$$x \odot y := \neg(\neg x \oplus \neg y)$$

= max(0, x + y - 1) in \pounds_n

Proposition. If ALICE answers positively to *Q* at state of knowledge *s* then the new state of knowledge is

$$s' := s \odot f_Q.$$

Static model Łukasiewicz logic MV-algebras

Dynamic model Modal logic Kripke semantics

A dynamic model for every instance of the game

The model only talks about *states* of an instance of the game.

A dynamic model for every instance of the game

The model only talks about *states* of an instance of the game.

We want a language to talk about whole instances of the game.

A dynamic model for every instance of the game

The model only talks about *states* of an instance of the game.

We want a language to talk about whole instances of the game.

We want a language to talk about all instances of any game.

Static model Łukasiewicz logic MV-algebras

Dynamic model Modal logic Kripke semantics

We need KRIPKE models with many-valued worlds

 $\Pi_0 = \{atomic \ programs\}$ Prop = {propositional variables}

Definition. A (dynamic n + 1-valued) KRIPKE model is

 $\mathcal{M} = \langle \textit{W}, \textit{R}, \mathrm{Val} \rangle$

where

- ► $W \neq \varnothing$,
- *R* maps any $a \in \Pi_0$ to $R_a \subseteq W \times W$,
- ▶ $Val(u, p) \in k_n$ for any $u \in W$ and any $p \in Prop$.

The RÉNYI - ULAM game has a KRIPKE model

Language :

• Prop = {
$$p_m \mid m \in M$$
} where

 $p_m \equiv \text{how } m \text{ is far from the set of rejected elements.}$

$$\square \Pi_0 = \{ m \mid m \in M \}.$$

Model :

- $W = \Bbbk_n^M$ is the knowledge space.
- $(s, t) \in R_m$ if $t = s \odot f_{\{m\}}$
- $\operatorname{Val}(s, p_m) = s(m)$.

A modal language for the Kripke models

Programs $\alpha \in \Pi$ and formulas $\phi \in$ Form are defined by

Formulas
$$\phi ::= p \mid 0 \mid \phi \rightarrow \phi \mid \neg \phi \mid [\alpha] \phi$$

Programs $\alpha ::= a \mid \phi? \mid \alpha; \alpha \mid \alpha \cup \alpha \mid \alpha^*$

where $p \in \text{Prop}$ and $a \in \Pi_0$.

Word	Reading
$\alpha;\beta$	α followed by β
$\alpha\cup\beta$	lpha or eta
α^*	any number of execution of α
ϕ ?	test ϕ
$[\alpha]$	after any execution of α

Interpreting formulas in Kripke Models $Val(\cdot, \cdot)$ and *R* are extended by induction :

- In a truth functional way for \neg and \rightarrow ,
- ► $\operatorname{Val}(u, [\alpha]\psi) := \bigwedge \{\operatorname{Val}(v, \psi) \mid (u, v) \in R_{\alpha}\},\$
- $\blacktriangleright \ R_{\alpha;\beta} := R_{\alpha} \circ R_{\beta} \text{ and } R_{\alpha\cup\beta} := R_{\alpha} \cup R_{\beta},$

•
$$R_{\phi?} = \{(u, u) \mid \operatorname{Val}(u, \phi) = 1\},\$$

$$\blacktriangleright \ R_{\alpha^*} := (R_\alpha)^* = \bigcup_{k \in \omega} R_\alpha^k.$$

Definition. $\mathcal{M}, u \models \phi$ if $Val(u, \phi) = 1$ and $\mathcal{M} \models \phi$ if $\mathcal{M}, u \models \phi$ for every $u \in W$.

Interpreting formulas in Kripke Models $Val(\cdot, \cdot)$ and *R* are extended by induction :

- ▶ In a truth functional way for \neg and \rightarrow ,
- ► $\operatorname{Val}(u, [\alpha]\psi) := \bigwedge \{ \operatorname{Val}(v, \psi) \mid (u, v) \in R_{\alpha} \},$

$$\blacktriangleright \ \ R_{\alpha;\beta}:=R_{\alpha}\circ R_{\beta} \ \ \text{and} \ \ \ R_{\alpha\cup\beta}:=R_{\alpha}\cup R_{\beta},$$

•
$$R_{\phi?} = \{(u, u) \mid \operatorname{Val}(u, \phi) = 1\},\$$

$$\blacktriangleright \ R_{\alpha^*} := (R_\alpha)^* = \bigcup_{k \in \omega} R_\alpha^k.$$

Definition. $\mathcal{M}, u \models \phi$ if $Val(u, \phi) = 1$ and $\mathcal{M} \models \phi$ if $\mathcal{M}, u \models \phi$ for every $u \in W$.

$$T_n := \{ \phi \mid \mathcal{M} \models \phi \text{ for every Kripke model } \mathcal{M} \}$$

Find an axiomatization of T_n .

Static model Łukasiewicz logic MV-algebras

Dynamic model Modal logic Kripke semantics

Modal extensions of Łukasiewicz (n + 1)-valued logic

$$\mathcal{L}_{\Box} = \{\Box, \neg, \rightarrow, 1\}, \qquad \mathcal{M} = \langle W, R, Val \rangle$$

Theorem. The set $K_n := \{ \phi \in Form_{\mathcal{L}_{\square}} \mid \phi \text{ is a tautology } \}$ is the smallest subset of $Form_{\mathcal{L}_{\square}}$ that

- contains tautologies of Łukasiewicz (n + 1)-valued logic
- contains (K) $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- contains

 $\Box(\phi\star\phi)\leftrightarrow(\Box\phi)\star(\Box\phi)$

for $\star \in \{\odot, \oplus\}$

▶ is closed under MP, substitution and generalization.

Static model Łukasiewicz logic MV-algebras

Dynamic model Modal logic Kripke semantics

 $T_n := \{ \phi \mid \mathcal{M} \models \phi \text{ for every Kripke model } \mathcal{M} \}$

There are three ingredients in the axiomatization

Definition. PDL_n is the smallest set of formulas that contains formulas in Ax_1 , Ax_2 , Ax_3 and closed for the rules in Ru_1 , Ru_2 .

Łukasiewicz $n + 1$ -valued logic		
Ax ₁	Axiomatization	
Ru₁	MP, uniform substitution	

Crisp modal $n + 1$ -valued logic	
Ax ₂	$egin{aligned} & [lpha](m{p} o m{q}) o ([lpha]m{p} o [lpha]m{p}), \ & [lpha](m{p} \oplus m{p}) \leftrightarrow [lpha]m{p} \oplus [lpha]m{p}, \ & [lpha](m{p} \odot m{p}) \leftrightarrow [lpha]m{p} \odot [lpha]m{p}, \end{aligned}$
Ru ₂	$\phi \nearrow [lpha] \phi$

Theorem (Completeness).

$$T_n = PDL_n$$

Remark. If n = 1, it boils down to PDL (introduced by FISCHER and LADNER in 1979).

Focus on the induction axiom

The formula

$$(\boldsymbol{\rho} \wedge [\alpha^*](\boldsymbol{\rho} \to [\alpha]\boldsymbol{\rho})^n) \to [\alpha^*]\boldsymbol{\rho}$$

means

'if after an undetermined number of executions of α the truth value of *p* cannot decrease after a new execution of α , then the truth value of *p* cannot decrease after any undetermined number of executions of α '.

Focus on the homogeneity axioms

Proposition. The axioms

 $[\alpha](\phi \star \phi) \leftrightarrow ([\alpha]\phi \star [\alpha]\phi), \qquad \star \in \{\odot, \oplus\},$

can be replaced by n axioms that state equivalence between

the truth value of $[\alpha]\phi$ is at least $\frac{i}{n}$, and

'after any execution of α , the truth-value of ϕ is at least $\frac{i}{n}$ '

About the expressive power of the many-valued modal language.

The ability to distinguish between frames

$$\mathcal{L}_{\Box} = \{\Box, \neg, \rightarrow, \mathbf{1}\}$$

Frame : $\mathfrak{F} = \langle W, R \rangle$

 $Mod_n(\Phi) := \{\mathfrak{F} \mid \mathcal{M} \models \Phi \text{ for any } (n+1)\text{-valued } \mathcal{M} \text{ based on } \mathfrak{F}\}$

Definition. A class C of frames is \underline{L}_n -definable if there is $\Phi \subseteq \text{Form}_{\mathcal{L}_{\square}}$ such that

$$\mathcal{C} = \operatorname{Mod}_n(\Phi).$$

The ability to distinguish between frames

$$\mathcal{L}_{\Box} = \{\Box, \neg, \rightarrow, \mathbf{1}\}$$

Frame : $\mathfrak{F} = \langle W, R \rangle$

 $\operatorname{Mod}_n(\Phi) := \{\mathfrak{F} \mid \mathcal{M} \models \Phi \text{ for any } (n+1) \text{-valued } \mathcal{M} \text{ based on } \mathfrak{F} \}$

Definition. A class C of frames is \underline{L}_n -definable if there is $\Phi \subseteq \operatorname{Form}_{\mathcal{L}_{\square}}$ such that

 $\mathcal{C} = \operatorname{Mod}_n(\Phi).$

Proposition. If C is k_1 -definable then it is k_n -definable for every $n \ge 1$.

Enriching the signature of frames

Theorem. If C contains ultrapowers of its elements, then

C is k_n -definable if and only if C is k_1 -definable.

The many-valued modal language is not adapted for the signature of frames.

Enriching the signature of frames

Theorem. If C contains ultrapowers of its elements, then

C is k_n -definable if and only if C is k_1 -definable.

The many-valued modal language is not adapted for the signature of frames.

Definition. An \underline{k}_n -frame is a structure

 $\mathfrak{F} = \langle W, R, \{ r_m \mid m \text{ is a divisor of } n \} \rangle,$

where $r_m \subseteq W$ for any *m*. A model $\mathcal{M} = \langle W, R, \text{Val} \rangle$ is based on \mathfrak{F} if

$$u \in r_m \implies \operatorname{Val}(u, \phi) \in \mathsf{L}_m$$

Ł_n-frames

$$\mathfrak{F} = \langle W, R, \{ r_m \mid m \text{ is a divisor of } n \} \rangle,$$

 $u \in r_m \implies \operatorname{Val}(u, \phi) \in \Bbbk_m$

Example. (Forbidden situation)

If $\operatorname{Val}(u, p) = 1$ and $\operatorname{Val}(v, p) = 1/3$ then $\operatorname{Val}(u, \Box p) = 1/3 \notin \Bbbk_2$

Ł_n-frames

$$\mathfrak{F} = \langle W, R, \{ r_m \mid m \text{ is a divisor of } n \} \rangle,$$

 $u \in r_m \implies \operatorname{Val}(u, \phi) \in \Bbbk_m$

Example. (Forbidden situation)

If $\operatorname{Val}(u, p) = 1$ and $\operatorname{Val}(v, p) = 1/3$ then $\operatorname{Val}(u, \Box p) = 1/3 \notin \Bbbk_2$

Additional conditions on L_n -frames :

- ► $r_m \cap r_k = r_{gcd(m,k)}$
- $u \in r_m \Longrightarrow Ru \subseteq r_m$

Goldblatt - Thomason theorem

 $\mathcal{C} \cup \{\mathfrak{F}\} = \text{class of } \Bbbk_n \text{-frames}$

 $Mod(\Phi) := \{\mathfrak{F} \mid \mathcal{M} \models \Phi \text{ for any } (n+1)\text{-valued } \mathcal{M} \text{ based on } \mathfrak{F}\}$

Definition. A class C of L_n -frames is *definable* if there is $\Phi \subseteq \text{Form}_{\mathcal{L}_{\square}}$ such that

 $\mathcal{C} = \mathrm{Mod}(\Phi).$

Goldblatt - Thomason theorem

 $\mathcal{C} \cup \{\mathfrak{F}\} = \text{class of } \Bbbk_n \text{-frames}$

 $\operatorname{Mod}(\Phi) := \{\mathfrak{F} \mid \mathcal{M} \models \Phi \text{ for any } (n+1)\text{-valued } \mathcal{M} \text{ based on } \mathfrak{F}\}$

Definition. A class C of L_n -frames is *definable* if there is $\Phi \subseteq Form_{\mathcal{L}_{\square}}$ such that

 $\mathcal{C} = Mod(\Phi).$

Theorem. If C is closed under ultrapowers, then the following conditions are equivalent.

- C is definable
- C is closed under Ł_n-generated subframes, Ł_n-bounded morphisms, disjoint unions and reflects canonical extensions.

What to do next?

- 1. Shows that PDL_n can actually help in stating many-valued program specifications.
- 2. There is an epistemic interpretation of PDL. Can it be generalized to the n + 1-valued realm?
- 3. What happens if KRIPKE models are not crisp.
- 4. Can coalgebras explain why PDL and PDL_n are so related ?