
Towards Flexible Evolution of Dynamically Adaptive Systems

Gilles Perrouin∗, Brice Morin†, Franck Chauvel†, Franck Fleurey†,
Jacques Klein‡, Yves Le Traon‡, Olivier Barais§ and Jean-Marc Jézéquel§

∗ PRECISE, University of Namur, Belgium
gilles.perrouin@fundp.ac.be
† SINTEF IKT, OSLO, Norway

{Brice.Morin,Franck.Chauvel,Franck.Fleurey}@sintef.no
‡ SnT - University of Luxembourg, Luxembourg

{jacques.klein,yves.letraon}@uni.lu
§ IRISA, University of Rennes 1, France

{jezequel,barais}@irisa.fr

Abstract—Modern software systems need to be continuously
available under varying conditions. Their ability to dynamically
adapt to their execution context is thus increasingly seen as a
key to their success. Recently, many approaches were proposed
to design and support the execution of Dynamically Adaptive
Systems (DAS). However, the ability of a DAS to evolve is
limited to the addition, update or removal of adaptation rules
or reconfiguration scripts. These artifacts are very specific to
the control loop managing such a DAS and runtime evolution
of the DAS requirements may affect other parts of the DAS. In
this paper, we argue to evolve all parts of the loop. We suggest
leveraging recent advances in model-driven techniques to offer
an approach that supports the evolution of both systems and
their adaptation capabilities. The basic idea is to consider the
control loop itself as an adaptive system.

Keywords-Dynamically Adaptive Systems; Evolution; Mod-
els@Run.Time

I. INTRODUCTION

We are now living in societies of digital systems [1]
where various devices interact in an unpredictably chang-
ing environment offering services to humans ranging from
mobile music experience to assistance in crises manage-
ment. To support such digital societies, we can recourse
to Dynamically Adaptive Systems (DAS). DAS can be seen
as open distributed systems that have the faculty to adapt
themselves to the ongoing circumstances and find a way
to continue accomplishing their functionalities. Engineer-
ing such systems is complex since they combine several
adaptation mechanisms that ensure that functional and non
functional-properties, such as security and performance, are
satisfied at any time.

Two main reasoning paradigms have been explored for
DAS: Event-Condition-Action (ECA) rules and goal opti-
mization. ECA-based techniques [2] directly link the fea-
tures of the system to specific context fragments through
a set of rules. With a rather low level of abstraction, they
provide an efficient runtime processing, but offer a limited
scalability for dealing with the full specification of a com-
plex adaptive system [3]. At a high-level of abstraction goal-

optimization approaches [4], [5], [6] propose to describe
which (QoS) properties should be optimized in which con-
texts. The impact of each feature on these properties guides
the selection of suitable configurations. These approaches
offer a high level of abstraction and better scalability but
the real-time adaptation can be penalized by the execution
of an optimization algorithm for each adaptation.

While DAS offer reconfiguration possibilities, combining
distinct reasoning approaches is hardly supported. This lack
of flexibility prevents proper support for unexpected events
and hinders evolution.

For example, let us consider a Dynamic Customer Rela-
tionship Management (D-CRM) system. The key objective
of the D-CRM is to provide accurate client-related informa-
tion depending on the context. When the user is working
in his office, the system can notify him by e-mail, via a
rich Web-based client. He can also access critical resources
because he is connected to a trusted network. When the user
is on the go, notifications are filtered retaining only client-
related or critical ones using a goal-based reasoner. Yet, if
the user is on the go and still would like to access to the
internal network, the use of a VPN is necessary. Such a VPN
has two alternative communication modes (IPSec or SSL),
which can be easily modeled via ECA rules. Yet, no ECA
reasoner is available in the system and since the choice of a
given communication mode is not driven by QoS properties,
tweaking these rules into goals, though possible, is rather
counter-intuitive and inefficient.

Moreover, since current approaches for developing and
executing DAS rely on hand-written ad hoc control loops,
which cannot change at runtime. For example, control usu-
ally handles only one adaptation paradigm (ECA or Goals)
or propose a hardwired combination of the two [3]. This
lack of flexibility in the control loops is a major lock for
the runtime evolution of adaptive systems.

In this paper, we present an innovative approach, which
allows dynamically adapting not only the system but also
both its adaptation mechanisms and its adaptation policies.



Exploiting the state of the art on ECA-based and Goal-based
techniques, our idea is to define a dynamically reconfig-
urable adaptation loop. The dynamic reconfiguration of this
adaptation loop is achieved by employing similar adaptation
techniques as the ones used to adapt the system itself. This
“bootstrapping” of the adaptation loop allows evolving DAS
in a much more flexible manner.

The paper is organized as follows: Section II presents
some important concepts exploited by our proposal. This
proposal is described in Section III. Section IV wraps up.

II. BACKGROUND

To face evolution problems arising in our digital societies,
we rely on two important lines of research regarding DAS
engineering: control loops [7], [8] and software architecture
[9].

A. Modelling Control Loops

Control loops are the crucial to DAS engineering since
they describe the process by which DAS adapt to their
environment. Cheng et al [10], [7] claim that the loop should
be explicitly and externally modeled to enable designers to
think about control loops. This is the key to flexible evolu-
tion. Models@Run.Time [11] allows control loop models to
be updated and enacted dynamically in the running system.
To reason on variations of the environment, work carried out
by the Dynamic Software Product Line (DSPL) community
is particularly relevant [12]. In a DSPL, feature diagrams
[13] represent the variability space [14] at the functional
level i.e., the variability of the adaptive system. We can also
use feature models to describe the variability of the control
loop itself, which manages the adaptive system. This offers
a high-level support to reason about the control loop.

B. Software Architecture

Software architecture plays a major role in system’s
evolution and DAS are no exception to this rule [15]. One
the one hand, architectural patterns have been proposed
[9], [16] to separate the running system from its adapta-
tion and reasoning mechanisms. For example, Kramer and
Magee [9] propose a layered architecture in which a “goal
management” layer is responsible for deriving plans from
high-level goals, such plans are managed and transformed
into actions in the “change management” layer. Finally the
“component control” executes these actions and reports on
the status of the new derived architecture. On the other
hand, architecture research has permitted the development of
adaptive middelware based on reflection mechanisms [16],
[17], [18]. Using model-driven techniques, such as code
generation, it is possible to project the models to different
platforms, such as Fractal [18] or OSGi 1.

1http://www.osgi.org/Main/HomePage

III. DYNAMIC ADAPTATION OF THE MAPE LOOP

Our claim is that we can flexibly evolve a DAS by
dynamically adapting the components of its control loop.

Such a meta-adaptation mechanism is able to extend the
reasoning abilities of a DAS and thus make it resilient to
a larger number of unexpected situations. In our work, we
focus on the the well-known Monitoring-Analysis-Planning-
Execution loop (MAPE) [8] on which we illustrate the
main elements of a DAS before considering its dynamic
adaptation.

A. A DAS MAPE Loop

1) Monitoring: The way monitoring is performed is
specific to each business application and depends on the
types of targeted property. Monitoring can handle physical
resource information (battery, CPU, memory, etc), and/or
the user behavior (how the user uses the application, what
are her preferences, etc), and/or QoS properties (response
time, availability, etc). There exist different techniques to
bridge the gap between runtime events and context models:
Complex Event Processing (CEP) [19], Fuzzy Logic [20],
etc.

2) Analysis: The analysis activity determines which func-
tionalities to use in which context. ECA are if-then rules
that link such functional features to context fragments. A
goal-based reasoner is responsible for finding a selection of
features that offers the best trade-off between the goals of
the system, which may evolve depending on the context.
Finally, users can specify their preferences, by selecting the
features they need. As illustrated in Section I, the choice of
an adequate reasoner is context-dependent.

Once decided upon, features need to be combined in a
configuration. This can be done through the use of structural
or behavioral aspect weavers [11], [21], [22] or simply
chosen amongst pre-validated configurations in a repository.
Finally, it is important to ensure that these configurations
are consistent, before going further in the adaptation pro-
cess [23]. Depending on the structural/behavioral nature of
the configurations several options may be offered.

3) Plan Variability & Execute Variability: The plan-
ning activity consists in obtaining a safe reconfiguration
script [23] able to drive the transition from the actual system
to the target system and providing roll-back mechanisms if
the target configuration is not possible to reach. There exist
different planning strategies and tools (such as PDDL [24])
in order to optimize the order of the reconfiguration com-
mands, that could be integrated here. Execution consists in
applying the (optimal) sequence of reconfigurations com-
mands, either directly or in a transactional way, enabling to
return to the last consistent configuration.

B. Adaptation Logic of the MAPE Loop

The MAPE loop can be implemented as a component-
based system, so that a MAPE loop can potentially be



c1

c3 c4

c2

Business System

A

P E

M

Adaptation Layer

A

P E

M

Evolution Layer
(Meta-Adaptation Layer)

monitor

modify

monitor

modify

Requirements KnowledgeKnowledge

Figure 1. An Overview of the Proposed Approach: Dynamic Adaptation of the Adaptation Loop to Support Evolution

reconfigured at runtime. In other words, we can use a
MAPE loop to manage another MAPE loop, as illustrated
by Figure 1.

This basically defines a 3-layered architecture:
1) Business Layer (right): This layer describes the ar-

chitecture of the business application. This layer is managed
by the adaptation layer, which can dynamically reconfig-
ure the business architecture (addition/removal of compo-
nents/bindings) depending on the monitored context.

2) Adaptation Layer (middle): This layer is responsible
for managing the business layer. It basically consists of a
MAPE loop we usually found in most adaptive systems [8].
This MAPE loop is fed with knowledge (mainly variability
and reasoning models) to determine when and how to adapt
the business architecture. The novelty is that this loop is
dynamically adaptive and managed by the evolution layer.

3) Evolution (Meta-Adaptation) Layer (left): This layer
is responsible for managing the adaptation layer i.e., to re-
configure the MAPE loop that manages the business system.
This layer is also a MAPE loop, but it does not evolve at
runtime2. It monitors the requirements of the business ar-
chitecture. More precisely, it observes the knowledge of the
adaptation layer and can decide to dynamically reconfigure
the adaptation layer to make it to take full advantage of this
new knowledge.

The dynamic reconfiguration of the adaptation loop is
mainly driven by the evolution of the models (knowledge)
describing the different facets of the business system. Since
the evolution of models can be monitored similarly to the
evolution of the execution context [19], the information
necessary to drive the logic defining the subsequent evo-
lutions of the adaptation layer can be easily obtained. In
the following, we describe how to define such a logic with
respect to the evolution of the different models.

• Variability Model. An evolution of the variability
model implies that some functionalities may not be
available anymore or new functionalities have been

2Additional meta-adaptation layers can be defined [15].

added. In the latter case, this has an impact on building
configurations, e.g., it is not possible anymore to rely
uniquely on the selector repository since the available
configurations will not provide these new functional-
ities. We therefore need to deploy an aspect weaver
and a runtime checker to derive new configurations
containing novel functionalities and check their validity
at runtime. For example, the checker will ensure that
the necessary components realizing new functionalities
are accessible: either installed in the platform or via an
URL referring to a remote component repository.

• Reasoning Model. An evolution of the reasoning
model implies to ensure that all the adaptation logic
can be handled by the reasoners. If goals are intro-
duced and only the ECA reasoner is present we need
to deploy the goal-based reasoner as well. If some
reasoning paradigms are removed (e.g., no more ECA
rules) the corresponding reasoners have to be removed
accordingly to optimize performance and resource con-
sumption.

• Context Model. The evolution of the context model
has to be performed in accordance with the variability
model. if there is a new dimension of the environment
to observe then the corresponding monitoring com-
ponents has to be made available and shown in the
variability model.

The advantage of working at the evolution layer is that
by manipulating abstractions of the adaptation process (vari-
ability, reasoning and context) the number of elements to
consider is kept small and we can consider simple evolution
scenarios based on ECA-rules. These scenarios can be also
fully determined and checked at design-time.

IV. CONCLUSION

Adaptive systems have the ability to adapt to their ex-
ecution context according to planned rules or goals. These
systems are often managed by a control loop, which observes
the system and its context, reasons and determines if and
how to dynamically adapt the system. Current approaches



for developing and executing adaptive systems offer no or
very limited support for the evolution of such systems.
In particular, the loop controlling the adaptive system is
static: it cannot dynamically adapt to leverage new kind of
knowledge in a safe way.

In this paper, we sketched a vision to address adaptive
system evolution. By considering a MAPE loop as a model-
based adaptive system, we can combine reasoning strategies
(goals or ECA) to cope with new requirements, optimize
DAS to use the most adapted reasoner or easily integrate
new dimensions of the environment. Component-based DAS
approaches already own the basic building blocks on which
such a vision can be implemented. The first item on our
agenda is to support our vision and to assess its benefits on
concrete case studies.

ACKNOWLEDGMENT

This work was partially funded by: the Walloon Region
under the NAPLES project, the Belgian Science Policy
Office’s MoVES project, BNB and FNRS, Luxembourg’s
FNR MITER and SINTEF MODERATES projects.

REFERENCES

[1] A. Carzaniga, G. Denaro, M. Pezze, J. Estublier, and A. L.
Wolf, “Toward deeply adaptive societies of digital systems,”
in ICSE COMPANION. IEEE, 2009, pp. 331–334.

[2] P. David and T. Ledoux, “Safe dynamic reconfigurations of
fractal architectures with fscript,” in 5th Fractal Workshop at
ECOOP, vol. 4067, 2006.

[3] F. Fleurey and A. Solberg, “A domain specific modeling
language supporting specification, simulation and execution
of dynamic adaptive systems,” in MoDELS, 2009, pp. 606–
621.

[4] H. J. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
D. Hughes, “Goal-based modeling of dynamically adaptive
system requirements,” in ECBS. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 36–45.

[5] A. van Lamsweerde, “Goal-oriented requirements engineer-
ing: a guided tour,” in RE. IEEE Computer Society, 2001,
pp. 249–262.

[6] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: A frame-
work for engineering self-tuning self-adaptive software sys-
tems,” in Proceedings of the eighteenth ACM SIGSOFT inter-
national symposium on Foundations of software engineering.
ACM, 2010, pp. 7–16.

[7] S. Cheng, D. Garlan, and B. Schmerl, “Making self-
adaptation an engineering reality,” in SELF-STAR. Springer,
2004, pp. 158–173.

[8] J. Kephart and D. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[9] J. Kramer and J. Magee, “A rigorous architectural approach
to adaptive software engineering,” J. Comput. Sci. Technol.,
vol. 24, no. 2, pp. 183–188, 2009.

[10] B. Cheng and et al., “Software engineering for self-adaptive
systems: A research roadmap,” in Software Engineering for
Self-Adaptive Systems. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 1–26.

[11] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Sol-
berg, “Models@ Run.time to Support Dynamic Adaptation,”
Computer, vol. 42, no. 10, pp. 44–51, 2009.

[12] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dy-
namic software product lines,” Computer, vol. 41, no. 4, pp.
93–95, 2008.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son, “Feature-Oriented Domain Analysis (FODA) Feasibility
Study,” Software Engineering Institute, Tech. Rep. CMU/SEI-
90-TR-21, Nov. 1990.

[14] G. Perrouin, F. Chauvel, J. DeAntoni, and J.-M. Jézéquel,
“Modeling the variability space of self-adaptive applications,”
in DSPL@SPLC, Limerick, Ireland, Sep. 2008, pp. 15–22.

[15] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Med-
vidovic, G. Sukhatme, and B. Petrus, “Architecture-driven
self-adaptation and self-management in robotics systems,” in
SEAMS workshop@ICSE. IEEE, 2009, pp. 142–151.

[16] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: architecture-based self-adaptation with reusable
infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[17] N. Bencomo, G. Blair, C. Flores, and P. Sawyer, “Reflective
component-based technologies to support dynamic variabil-
ity,” in VaMoS, Essen, Germany, 2008.

[18] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and
J. Stefani, “The Fractal Component Model and its Support
in Java,” Software Practice and Experience, vol. 36, no. 11-
12, pp. 1257–1284, 2006.

[19] B. Morin, T. Ledoux, M. Ben Hassine, F. Chauvel, O. Barais,
and J.-M. Jézéquel, “Unifying Runtime Adaptation and De-
sign Evolution,” in Conference on Computer and Information
Technology, Xiamen, China, Oct 2009.

[20] F. Chauvel, O. Barais, I. Borne, and J.-M. Jézéquel, “Compo-
sition of qualitative adaptation policies,” ASE, pp. 455–458,
2008.

[21] J. Kienzle, W. Al Abed, and J. Klein, “Aspect-oriented multi-
view modeling,” in AOSD. New York, NY, USA: ACM,
2009, pp. 87–98.

[22] C. Parra, X. Blanc, A. Cleve, and L. Duchien, “Unifying
design and runtime software adaptation using aspect models,”
Science of Computer Programming, 2011.

[23] B. Morin, O. Barais, G. Nain, and J. Jézéquel, “Taming
Dynamically Adaptive Systems with Models and Aspects,”
in ICSE, Vancouver, Canada, May 2009.

[24] M. Ghallab, ENSICA, C. K. Isi, K. Golden, S. Penberthy,
D. E. Smith, Y. Sun, D. Weld, and D. Mcdermott, “The
planning domain definition language,” Yale CVC, Tech. Rep.,
1998.


