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information available. The position of the particles is not available.
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Motivation

Problem: Analysis of an heterogeneous materials. Vague 
information available. The position of the particles is not available.

Solution: Homogenisation.

New problem: 
Assess the validity of the 
homogenisation.



Key ideas

Exact model

● To estimate error, we need a reference to compare our solution

● Reference: solution of an stochastic PDE

● Able to take into account the vague description of the domain

Error estimation

● Objective: Compare the solution of the two models (without solving 
the SPDE)

● Adapt classic a posteriori error bounds to this specific problem



Exact model



Proposed solution

Idea: Understand the original problem as an SPDE (the center of particles 
is a random variable) and  bound the distance between both models



Proposed solution

SPDE: Stochastic partial differential equation.
Collection of parametric problems + probability density function
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Problem statement

Heterogeneous problem Homogeneous problem

Aim: Bound  

The computation of the bound must be deterministic.

Heat equation
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Deterministic boundary conditions

Knowledge of the probability of being inside particle for every point of 
the domain.



Hypothesis

Hypothesis

Deterministic boundary conditions

Knowledge of the probability of being inside particle for every point of 
the domain.

If not known, it can be assumed to be a constant equal to the volume 
fraction.



Error estimation



Outline

Error estimation

● Objective: Compare the solution of the two models (without 
solving the SPDE)

● To estimate the error, an equilibrated flux field is needed

● With an equilibrated flux field, we can estimate the error in 
energy norm

● And with an estimator for the error  in energy norm, we can 
estimate the error in the QoI



Equilibrated flux field

An equilibrated flux field fulfills

strongly. 
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Equilibrated flux field

An equilibrated flux field fulfills

strongly. 

In contrast, in “temperature” FE , the temperature is the unknown and

In order to derive bounds, we will use flux FE to compute an 
homogenised equilibrated field

is fulfilled strongly.



Error in the energy norm

Rewriting the problem in terms of the flux and the temperature
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Rewriting the problem in terms of the flux and the temperature

     will fulfill exactly the first 2 equations.

    will fulfill exactly the 3rd equation.

In general,                          Discrepancy = measure of the error



Error in the energy norm

Formalizing this idea, it can be shown that
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Goal oriented error estimation

The error in energy norm is not always relevant.

Goal: Bound for the quantity of interest
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Goal oriented error estimation

Cauchy-Schwarz inequality 

Use the bound in the energy norm,

The error in energy norm is not always relevant.

Goal: Bound for the quantity of interest

Dual problem



More bounds

It is possible to lower bound the error in energy norm

Sharper bounds for the quantity of interest can be obtained 
through the use of polarisation identity 

It is tedious, but a bound for the second moment of the QoI 
can be obtained



Numerical example



Validation

The “exact” quantity of interest is computed with 512 MC realisations.

The quantity of the interest is the average temperature in the exterior faces. 
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Validation

Studied in a domain homogenised through rule of mixture.

Dual problem

Two problems solved twice:
– Using “temperature” FE
– Using “flux” FE



Validation

13



What if the bounds are not tight enough?

This is usually the case when the contrast is very high.

Two possible solutions

● Adaptivity: solve in a certain subdomain the heterogeneous problem

● Enrichment: solve an RVE and enrich the solution with its information 



Enriched approximation

Idea: Solve RVEs, filter their solution

to express our approximation as  



Enriched approximation

Assembling the system of equations, 3 types of terms appear

Idea: We do not need to solve the RVE for all particle layouts, we 
only need to compute 



Enriched approximation

Idea: We do not need to solve the RVE for all particle layouts, we 
only need to compute 

Remarks:

● We choose a filter to remove space dependence of these terms

● A single realization gives a good approximation of those constants

● The computation of error bounds is straightforward



Enriched approximation

Preliminary results

10% reduction
Further improvement expected by enriching the equilibrated flux field



Summary

– A method to estimate error in homogenisation was presented

• Represent the heterogeneous problem through an SPDE
• A posteriori error estimation tools used to compute the error
• The computation of the bound is deterministic
• The second moment of the quantity of interest can be bounded

– On going work: Making the bounds sharper

• Through adaptivity

• Enriching the homogenised solution with the solution of an RVE
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