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ABSTRACT

The isogeometric boundary element method (IGABEM) based on NURBS is adopted to model

fracture problem in 3D. The NURBS basis functions are used in both crack representation

and physical quantity approximation. A stable quadrature scheme for singular integration is

proposed to enhance the robustness of the method in dealing with highly distorted element.

The convergence study in crack opening displacement is performed for penny-shaped crack and

elliptical crack. Two ways to extract stress intensity factors (SIFs), the contour M integral

and virtual crack closure integral, are implemented based on the framework of dual integral

equations. An algorithm is outlined and validated to be stable for fatigue crack growth, thanks

to the smoothness not only in crack geometry but also in stress/SIFs solution brought by

IGABEM.
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1 Introduction

The simulation of the fatigue fracture propagation is not only crucial to perform the damage

tolerance assessment or predict the serving life of a mechanical component, but also to help get

understand of the mechanism of structure's failure in engineering. Versatile numerical methods

have been attempted for modeling fatigue fracture with the development of computational

mechanics in past decades. Challenges for numerical fracture modeling primarily lie in the

meshing/re-meshing procedure, as the initiation of the cracks are usually two or more orders

smaller in geometry size than the components. The di�erent scale of the cracks and components

requires a local re�ned mesh for the nucleation of the defects and re-meshing become necessary

for accurate simulation when the cracks propagate.

The �nite element method (FEM) can be applied to simulate the crack propagation directly with

certain adaptive re-meshing operation [1][2][3]. Some software packages have been developed

based on this idea [4][5] and a review paper can be referred [6]. Nevertheless, the re-meshing

becomes cumbersome for multi-cracks or for very complicated components as the complexity is

increased due to the presence of cracks as internal boundaries.

The idea of partition of unity (PU) enrichment has been proposed to release the mesh burden

in fracture modeling [7]. Due to the additional enrichment functions, the discontinuities are

introduced into the model and the representation of the crack only aims for initiating the en-

richments, which makes the crack mesh independent from the component's mesh. The extended

�nite element method (XFEM) [8], usually coupled with the level set functions as an implicit

representation of the crack, has been implemented for 3D crack growth problem [9][10][11][12]

as well as for industrial applications [13][14][15]. The meshfree methods have also been pro-

posed with the aim of further reducing the mesh burden, for instance, the element-free Galerkin

(EFG) [16] and the extended EFG (XEFG) [17][18][19]. For more details, the readers could

refer the review paper by Nguyen et al [20].

The fracture modeling by the boundary element method (BEM) exhibits more advantages than

by FEM in terms of mesh/re-mesh e�orts as only the boundary discretization is required in

BEM in order to approximate the quantity of interest. When cracks evolve, only the boundary

surfaces are updated instead of re-generating the volume mesh. In order to circumvent the

singular system caused by the collapsed surfaces in fracture, Hong and Chen [21] proposed
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the dual boundary integral representations by introducing the hyper-singular equation derived

from the secondary �eld [22]. The use of dual boundary integral equation makes the crack

propagation simulation more e�ective through a single domain. And the corresponding dual

BEM was subsequently implemented for 2D and 3D fracture [23][24][25] and was extended to

material-nonlinear fracture [26][27] and dynamic crack propagation [28]. Commercial packages

based on BEM are BEASY [29] and FRANC3D [30]. Apart from the dual BEM based on the

collocation method, the Galerkin BEM, in particular the symmetric Galerkin BEM (SGBEM)

has also drawn attention in the application for fracture analysis [31][32][33]. The symmetric

matrix system of SGBEM also facilitates the coupling with FEM [34][35].

The isogeometric analysis (IGA) was �rst introduced by Hughes et al [36]. The basic idea of

IGA is to use the same spline basis functions to represent the CAD geometries and approxi-

mate the physical quantities of interest. And the investigation on the joint of IGA and BEM

(IGABEM) has increasingly drawn attention recently since only the boundary representation of

the geometry is required in IGABEM, which facilitates the integration of design and analysis.

The IGABEM has already been applied in many �elds [37][38][39][40][41][42][43][44], and has

been further developed with more numerical aspects such as the PU enrichment [45][46], the

trimmed NURBS [47][48], the fast solution [49], the Galerkin form [50][51] etc. The bene�t of

smoothness to boundary integrals (BIEs) brought by IGA is investigated in [52].

The isogeometric analysis has been applied to fracture in corporation with XFEM [53][54][55][56].

Verhoosel et al presented a scheme to model cohesive crack propagation by using T-splines to

generate the local discontinuities [57]. Nguyen et al applied the B-spline based IGA to simulate

the 2D and 3D delamination in composites [58]. The shape sensitivity analysis of stress inten-

sity factors for curved cracks was performed by Choi and Cho [59]. Tambat et al proposed an

enriched IGAFEM based on the CAD-inspired hierachical partition of unity �eld compositions,

and the method bene�ts from a robust and non-iterative numerical distance �eld construction

[60][61]. Jeong et al proposed a geometrical mapping by which push-forwards of B-splines from

the parameter space into the physical space such that the singularity of type r1/2 can be cap-

tured in linear elastic cracks [62][63]. Natarajan et al enhanced the isogeometric analysis by

the scaled boundary �nite element method which inherits both advantages of FEM and IGA-

BEM, while certain subdivision of the domain needs to be done for complicated geometry in

order to obtain the scaling center [64]. The pivot tips of the application in fracture in the IGA
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framework can be concluded as:

(1) The higher-order continuity improves the accuracy of the stress �eld near the crack tip

which is crucial to fracture analysis and the degrees of freedom is reduced compared to the C0

Lagrange basis;

(2) The curvature, tangential and normal vectors are exactly retained and evolved thanks to

the exact representation of the curved cracks;

(3) The local crack tip (front) system can be constructed directly based on the spline-based

curve or surface-represented cracks, which helps to accurately evaluate the fracture parameters;

(4) The concept of integration through design to analysis facilities the mechanical/structural

design based on the fatigue fracture analysis.

In this work, the application of IGABEM in 3D fracture analysis and fatigue crack growth

will be explored. Besides using the conventional boundary integral equation as for elasticity,

the hyper-singular integral equation is introduced additionally by exploiting the smoothness

of NURBS geometries. An local singularity removing technique proposed by Guiggiani [65]

is applied on the various orders of singular integrals (up to hyper-singular O(1/r3)), and its

improved version tailored to distorted elements (or with high aspect ratio) which commonly arise

in isogeometric based methods is formulated. The crack is explicitly represented by NURBS

surface as internal boundary and an algorithm is outlined to describe the crack propagation

such that the smoothness in geometry brought by IGA and in solution brought by BEM is fully

investigated for extracting the stress intensity factors and crack growth.

The rest of the paper is organized as follows. Section 2 briefs the boundary integral equations

(BIEs) that applied in fracture modeling. Section 3 illustrates the NURBS basis functions on

2D surfaces and the collocation scheme. Section 4 outlines the improved singular integration

based on the singularity subtraction technique [65]. The crack growth related work is detailed

in section 5, including updating the crack surface geometrically, computing the stress intensity

factors and the fatigue fracture rule: the Paris law. Numerical examples for both static fracture

analysis and crack growth are given in section 6. We conclude our work and propose the future

research of interest in the last section.
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2 Boundary integral equations for crack modeling

Consider an arbitrary domain Ω which contains a crack as in Figure 1. The boundary of the

domain ∂Ω = S + Sc+ + Sc− , where S is composed of Su where Dirichlet boundary conditions

are prescribed (known displacement ū), St where Neumann boundary conditions are prescribed

(known traction t̄). The displacement BIE is given by �nding u and t such that

cij(s)uj(s) =

∫
∂Ω
Uij(s,x)tj(x)dS(x)−−

∫
∂Ω
Tij(s,x)uj(x)dS(x), (1)

where the Uij , Tij are called fundamental solutions and for linear elasticity,

Uij(s,x) =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j ] , (2)

Tij(s,x) = − 1

8π(1− ν)r2

{
∂r

∂n
[(1− 2ν)δij + 3r,ir,j ]− (1− 2ν)(r,inj − r,jni)

}
, (3)

where µ = E/[2(1 + ν)], E is Young's Modulus and ν Poisson's ratio. s is the source point (or

collocation point. This two terms will be used interchangeably in the remainder part of this

paper). −
∫
denotes the integral is interpreted in the Cauchy Principal Value sense. The traction

BIE is obtained by di�erentiation of the displacement BIE with respect to s and multiplication

by the elastic tensor Eijkl:

cij(s)tj(s) = −
∫
∂Ω
Kij(s,x)tj(x)dS(x)−=

∫
∂Ω
Hij(s,x)uj(x)dS(x), (4)

Hij(s,x) = Eikpq
∂Tpj(s,x)

∂sq
nk(s), Kij(s,x) = Eikpq

∂Upj(s,x)

∂sq
nk(s), (5)

where =
∫
denotes the Hadamard Finite Part integral.

The idea of the boundary element method is to discretize the boundary geometry and the

physical �elds using sets of basis functions. Subsequently, the source point is placed at the

collocation points and the displacement BIE (1) is transformed into the system of linear algebraic

equations. However, when the domain contains a crack, the collocation points on the overlapping

surfaces Sc+ and Sc− could be coincided (refer to Figure 1 (b)), and then the system matrix

becomes singular. Two ways to deal with this problem are briefed in the following sections.
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Figure 1: Crack model

2.1 Dual equations

The di�culty caused by the collapsed crack surfaces is circumvented through the use of dual

equations, by prescribing the displacement BIE (Equation (1)) on one crack surface (Sc+) and

on the rest of the boundary S. For the collocation point s+ on the crack surface Sc+ , Equation

(1) can be rewritten as,

cij(s
+)uj(s

+) + cij(s
−
m)uj(s

+) =

∫
S
Uij(s

+,x)tj(x)dS(x)−
∫
S
Tij(s

+,x)uj(x)dS(x)

−−
∫
Sc+

Tij(s
+,x+)uj(x

+)dS(x)−−
∫
Sc−

Tij(s
−
m,x

−)uj(x
−)dS(x)

+

∫
Sc+

Uij(s
+,x+)tj(x

+)dS(x) +

∫
Sc−

Uij(s
−
m,x

−)tj(x
−)dS(x).

(6)

And analogously, the traction BIE (Equation (4)) on the other crack surface (Sc− in Figure

1(b)) becomes,

cij(s
−)tj(s

−) + cij(s
+
m)tj(s

−) =

∫
S
Kij(s

−,x)tj(x)dS(x)−
∫
S
Hij(s

−,x)uj(x)dS(x)

−=

∫
Sc−

Hij(s
−,x−)uj(x

−)dS(x) + =

∫
Sc+

Hij(s
+
m,x

+)uj(x
+)dS(x)

+−
∫
Sc−

Kij(s
−,x−)tj(x

−)dS(x)−−
∫
Sc+

Kij(s
+
m,x

−)tj(x
+)dS(x).

(7)

s−m denotes the mirror point of s+ on the Sc− , which means s−m and s− share the same physical

and parametric coordinate but the normal vectors at each are opposite. The last two terms of

both equations and left hand side of Equation (7) are omitted due to the fraction-free crack.
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Due to the collapse boundary in fracture problem, two jump terms arise in each BIE and each

operator not only exhibits singularity on the crack surface where the collocation points located,

but also on the one where the mirror points of the collocation points located.

2.2 Crack opening displacement (COD) equation

The boundary integral equation for crack problem can also be reformulated by setting the

boundary quantity as crack opening displacement over a couple of crack surfaces. Let the source

point approach to a single crack surface, for example Sc = Sc+ , and note that n = n+ = −n−,

we have:

cij(s
+)uj(s

+) + cij(s
−)uj(s

−) =

∫
S
Uij(s

+,x)tj(x)dS(x)−−
∫
S
Tij(s

+,x)uj(x)dS(x)

+

∫
Sc

Uij(s
+,x+)(tj(x

+) + tj(x
−))dS(x)

−−
∫
Sc

Tij(s
+,x+)(uj(x

+)− uj(x−))dS(x).

(8)

The corresponding traction BIE is:

cij(s
+)tj(s

+)− cij(s−)tj(s
−) = −

∫
S
Kij(s

+,x)tj(x)dS(x)−=

∫
S
Hij(s

+,x)uj(x)dS(x)

+−
∫
Sc

Kij(s
+,x+)(tj(x

+) + tj(x
−))dS(x)

−=

∫
Sc

Hij(s
+,x+)(uj(x

+)− uj(x−))dS(x).

(9)

Equation (9) can be used alone if only the COD will be presented as the unknown for fatigue

fracture problem. However if the displacement �eld needs to be known on the crack surfaces,

Equation (8) should be also solved. Let S →∞, and note that traction-free crack surfaces are

assumed, we arrive at:

0 = t∞j (s)−=

∫
Sc

Hij(s,x)Juj(x)KdS(x). (10)

Juj(x)K = uj(x
+)−uj(x−) is the crack opening displacement. All the subscripts `+' are omitted

since the integral is only over a single crack surface. t∞ is interpreted as the solution in the `no

crack' space.
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3 NURBS discretization and collocation

NURBS basis functions are the generalization of B-spline functions that allows a `projection'

from square and cubic domains to form complex geometries. So the basic concept of B-spline is

�rst outlined. B-spline basis functions are de�ned over a knot vector, which is a non-decreasing

sequence of real numbers given in the parameter space. A knot vector is denoted as Ξ =

{ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the ith parameter coordinate (knot), p is the order of the

polynomial in B-spline basis functions, n is the number of the basis functions. For a given order

p, the B-spline basis functions Ni,p with 1 6 a 6 n are de�ned by the Cox-de Boor recursion:

Ni,0(ξ) =


1 ξi 6 ξ < ξi+1

0 otherwise,

(11)

then, for p > 0,

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (12)

The continuity of B-spline basis functions at ξi can be decreased by repeating the knot several

times. If ξi has multiplicity k (ξi = ξi+1 = ... = ξi+k−1), then the basis functions are Cp−k

continuous at ξi. Particularly, when k = p, the basis is C0 and k = p+1 leads to a discontinuity

at ξi. If the �rst and last knot have k = p + 1, the knot vector is called an open knot vector.

More details can be referred in [66].

Given the knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1}, and the control

points net Pi,j . The B-spline surface S(ξ, η) is given by the tensor-product of B-spline basis

functions de�ned in 2D parametric domain [ξ1, ξn+p+1]× [η1, ηm+q+1],

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j , (13)

where Ni,p(ξ)Mj,q(η) are the 2D B-spline basis functions. The NURBS basis functions can be

constructed by rationalizing the tensor-product B-spline basis functions as

Ri,j(ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

k=1

∑m
l=1Nk,p(ξ)Ml,q(η)wk,l

, (14)
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where the scalar variable wi,j is the weight associated with the control point Pi,j . For integration

purpose, the 2D NURBS basis functions are usually calculated in the element de�ned by the

non-zero knot intervals [ξi, ξi+1]× [ηj , ηj+1] where the Gaussian rule can be applied [36].

The Greville abscissae has been used to generate the collocation points. For a closed domain

composed by trimless and compatible NURBS patches, the number of obtained collocation

points by the Greville abscissae is identical to the number of control points (or basis functions),

which means one collocation point is associated with one control point. For those collocation

points lie in the sharp edges or corners, or when discontinuous basis functions are needed, these

collocation points will be o�set from the original place by

ξs,i = ξs,i + α(ξs,i+1 − ξs,i), or

ξs,i = ξs,i − α(ξs,i − ξs,i−1), α ∈ (0, 1).

(15)

Note that in this case, the associated control points should be doubled such that the discontin-

uous basis functions are obtained, or the BIEs on the o�set collocation points should be merged

into one BIE, such that the number of equations and unknowns keeps consistence.

4 Numerical integration

Due to the singularities in BIEs, there will be singular integration and non-singular integration

after discretization. For the element containing the collocation point, singular integration is

performed and the element belongs to singular elements. Elements which exclude the collocation

point are called non-singular elements. The singular integration needs to be carefully treated in

BEM. Various numerical methods have been proposed in past decades, and one can refer to a

review work in [22]. A robust technique developed in [67] can be applied to regularized all the

singular terms into weakly singular, via the use of simple solution of BIE. The regularization

technique based on simple solutions has been applied or further developed in the framework

of IGABEM [39][68][52]. However, this method fails when dealing with open surfaces such as

cracks [69]. In the present work, we use the singularity subtraction technique (SST) proposed

by Guiggiani [69][65] to remove the singularities arise in both BIEs. The SST is a united method

for the treatment of singular integrals regardless of mesh dicretization and proved to be e�cient

for fracture via dual BEM [24].
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4.1 Singularity subtraction technique (SST) for singular integrals

The SST transforms various orders of singular integration into a weakly singular one based on

the intrinsic coordinate system of the singular element after discretization. Then the weakly

singular integration turns to be regular if the quadrature is performed in the polar coordinates.

By expanding the integrand into a series with respect to the intrinsic coordinate, the singularity

can be represented explicitly. Then the singular terms are subtracted from the integrand, leaving

the remaining to be regular for which regular Gaussian rule is applied. the subtracted terms are

added back semi-analytically. Assume that the coordinate of point of interest is x(xi = x, y, z)

in physical space, ξ(ξi = ξ, η) in parametric space of NURBS basis functions, ξ̄(ξ̄i = ξ̄, η̄) in

parent space [−1, 1]× [−1, 1]. For the hyper-singular integral of the form

I = =

∫
S
H(s,x(ξ̄))R(ξ̄)J̄(ξ̄)dS, (16)

where H(s,x(ξ̄)) is the hyper-singular kernel, R(ξ̄) is the NURBS basis function and J̄(ξ̄) is the

Jacobi transformation from parent space to physical space (Figure 2). The polar coordinates

ρ(ρ, θ) centred at the source point are introduced in the parent space. The parent domain is

subdivided into triangles for quadrature naturally. For each �eld point ξ̄ in the sub-triangles,

we have

ξ̄ = ξ̄s + ρcosθ,

η̄ = η̄s + ρsinθ,

(17)

After the polar coordinate transformation, Equation (16) becomes

I = lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)
H(ρ, θ)R(ρ, θ)J̄(ρ, θ)ρdρdθ, (18)

where ρ̂(θ) = h/cosθ̄. h is the shortest distance from the source point to the element edge and

θ̄ is the angle from perpendicular direction to the �eld point as in Figure 2. If we de�ne θ0 is

the angle of the perpendicular line, then the angle to the �eld point can be computed as

θ = θ̄ + θ0. (19)
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Figure 2: Transformation between coordinate system for SST

The integrand F (ρ, θ) = H(ρ, θ)R(ρ, θ)J̄(ρ, θ)ρ is expanded as:

F (ρ, θ) =
F−2(θ)

ρ2
+
F−1(θ)

ρ
+ F0(θ) + F1(θ)ρ+ F2(θ)ρ2 + · · · =

∞∑
i=−1

Fi(θ)ρ
i. (20)

The �rst two singular terms on the right hand side are subtracted and added back semi-

analytically, resulting in:

I = I1 + I2,

I1 =

∫ 2π

0

∫ ρ̂(θ)

0

[
F (ρ, θ)− F−2(θ)

ρ2
− F−1(θ)

ρ

]
dρdθ,

I2 =

∫ 2π

0
I−1(θ)ln

ρ̂(θ)

β(θ)
dθ −

∫ 2π

0
I−2(θ)

[ γ(θ)

β2(θ)
+

1

ρ̂(θ)

]
dθ,

(21)

where I1 is regular and I2 are regular line integrals, Both can be applied with Gaussian quadra-

ture rule. The evaluation of α(ε, θ), β(θ) and γ(θ) as well as the limiting process are given in

Appendix A and more details can be referred in [65].

4.2 Conformal mapping for SST

It has been revealed by Rong et al [70] that the expansion coe�cients Fi(θ) in Equation (20)

exhibits various orders of near-singularity in the angular θ direction, although the singularity

in the radial ρ direction has been fully canceled. This near-singularity is sensitive to the shape

of the element and becomes severe when the element is highly distorted. The Fi(θ) can be

represented as:

Fi(θ) =
F̃i(θ)

Ap(θ)
=

F̃i(θ)

[0.5(|ms
1|2 + |ms

2|2)(ωsin(2θ + ϕ) + 1)]p/2
, (22)
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where F̃i(θ) are the regular trigonometric functions and integer `p' is the order associated with

`i'. The curve-linear basis vectors ms
i = mi|ξ̄=ξ̄s , (i = 1, 2) and are calculated as:

m1 =
[∂x
∂ξ̄
,
∂y

∂ξ̄
,
∂z

∂ξ̄

]
,

m2 =
[∂x
∂η̄
,
∂y

∂η̄
,
∂z

∂η̄

]
.

(23)

Introducing two parameters

λ = |ms
1|/|ms

2|,

cosψ = ms
1 ·ms

2/|ms
1||ms

2|,
(24)

such that

ϕ = arctan
λ2 − 1

2λcosψ
,

ω =

√
1− 4sin2ψ

(λ+ λ−1)2
< 1.

(25)

Then it can be concluded that when the element aspect ratio is large or angle between two

basis vectors tends to 0 or π (sinψ → 0), A(θ) will tend to 0, resulting the near-singularity of

Fi(θ). Both scenarios indicate a distorted shape of the singular element, which are common

phenomenon in isogeometric analysis.

Rong et al [70] constructed the conformal mapping from the parent space (ξ̄, η̄) to a new

parametric space (ξ̂, η̂) where the two curve linear basis vectors in the new parametric space

are orthogonal and have identical length to each other, i.e.

m̂s
1 · m̂s

2 = 0,

|m̂s
1| = |m̂s

2|.
(26)

Then A(θ) becomes a constant, which makes the integration nonsensitive to the element shape,

if the series is expanded in the new space. The quadrature for the singular integral turns to be

stable regardless the distorted mesh.

The mapping proposed by Rong et al is tailored for triangular element, in this work we extend

it into the quadrilateral element (Figure (2)). In [70], the Jacobian transformation matrix T
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from (ξ̄, η̄) to a new parametric space (ξ̂, η̂) is

T =

 1 δ1

0 δ2

 , so that ξ̂ = Tξ̄, (27)

where δ1 = cosψ/λ, δ2 = sinψ/λ. Then the new basis vectors

[
m̂s

1 m̂s
2

]
=

[
ms

1 ms
2

]
T−1 =

[
ms

1 −(δ1/δ2)ms
1 + (1/δ2)ms

2

]
(28)

will satisfy the relation in Equations (26). The bilinear interpolation is used from (ξ̄, η̄) to the

new parametric space (ξ̂, η̂) for a quadrilateral element:

ξ̂ =
4∑
I=1

NI(ξ̄)ξ̂
I
,

N1 = 0.25(ξ̄ − 1)(η̄ − 1),

N2 = 0.25(ξ̄ + 1)(η̄ − 1),

N3 = 0.25(ξ̄ + 1)(η̄ + 1),

N4 = 0.25(ξ̄ − 1)(η̄ + 1).

(29)

Combining Equations (27) and (29), the nodal coordinates ξ̂
I
can be obtained as ξ̂

1
(1 + δ1, δ2),

ξ̂
2
(−1 + δ1, δ2), ξ̂

3
(−1− δ1,−δ2) and ξ̂

4
(1− δ1,−δ2). It should be noted that since 0 < ψ < π,

δ2 > 0, the quadrilateral element is guaranteed to have positive area (one possible plot is shown

in Figure (2)). This requires the source point should not be located in the degenerated point

in the geometry where |ms
i | 6= 0.

It can be referred from Figure 2 that the shape of the element in conformal space is controlled

by the coe�cients δ1 and δ2. This means that if λ (re�ect element aspect ratio) and cosψ

(re�ect element distortion) deviate from 1, the conformal element will be skew. This will result

in sub-triangles with θ̄ approaches to ±π/2 if the �eld point closed to the edges adjacent to the

source point of the sub-triangles (Figure 2). Thus ρ̂(θ) = h/cosθ̄ is not calculated accurately.

To alleviate this near singularity in ρ̂(θ), the following Sigmoidal transformation is applied in

the angular direction such that the integration points will be clustered to the edges where the

near-singularity is severe adaptively according to the θ̄ [70],
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w(θ̄) =
1

π

(
θ̄ +

π

2

)
, θ̄ ∈ (−π

2
,
π

2
), z ∈ (0, 1)

z = z(s) = w(θ̄1) +
1

2
(s+ 1)(w(θ̄2)− w(θ̄1)), s ∈ (−1, 1), z ∈ (z(θ̄1), z(θ̄2)) ⊂ (0, 1)

f(z) =
zm

zm + (1− z)m
,

θ̄ = πf(z)− π

2
,

J−1(θ) =
∂θ

∂s
=
π[w(θ̄2)− w(θ̄1)]mf(z)m−1

2(f(z)m + (1− f(z))m)2
,

(30)

where s is the Guass point from interval (−1, 1), the relation of θ and θ̄ can be found in Equation

(19).

4.3 Numerical quadrature

In numerical implementation, Gaussian rule is applied in both radial and angular direction. 6

Gauss points are used in the radial direction. 18 Gauss points are used in angular direction of

each sub-triangle for conformal SST unless speci�ed particularly. For each non-singular element,

an adaptive subdivision scheme is used according to the relative distance between the element

and collocation point. All the rules are used imperially without any error control algorithm.

5 Crack growth

The approaches used to represent and track the crack propagation can be classi�ed into two

manifolds, the implicit method and the explicit method. A typical application of the former

method would be the level set method [71] which is coupled in the XFEM/GFEM to represent

and evolve the discontinuity [10][11]. The level set function is a signed distance function to

the crack surface de�ned on the underlying mesh, which could be consistent with the mesh

discretization of the problem or be independent structured mesh. Since the cracks are open

surfaces, one more level set function which should be de�ned perpendicular to the crack surface

is required in order to describe the crack front. The quality to represent the crack surface

depends on the resolution of the underlying mesh. Accurately describing the crack surface

usually introduces additional computational expense [72]. Advection-type equations should
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be solved so as to update the crack front when the crack evolves [73] which increases the

computational e�ort. Chopp and Sukumar [74] proposed the fast marching method to update

the crack front location, thus facilitating the process of updating the crack surface [9]. Fries

and Baydoun [75] proposed an implicit-explicit method, in which the level set represented crack

is explicitly dicretized by triangular facets. Idea shared analogous purpose would be the vector

level set method [17]. These methods take advantage of the level set representation for the PU

enrichment while avoiding to update the crack surface by solving the equations. Additionally,

sharp turns and kinks can be retained by use of explicit crack surfaces rather than pure level

sets.

The latter method uses sets of triangular or quadrilateral facets to discretize the crack surface

directly. For �nite element based methods, the crack evolution process is usually companied

with automatic re-meshing operation. For XFEM/GFEM applications, the subdivision of the

3D solid elements needs to be performed for the integration purpose. Both will rely on well-

developed meshing/re-meshing packages [76][77]. The explicit representation of crack surfaces

by triangulation has been used in meshfree methods as well [16]. It should be noted that this

representation method usually results in C0 crack surface and the crack fronts are composed

of line segments. This will lead to at least two shortcomings: (1) the crack front is not cap-

tured exactly in computational aspect and this will give inaccuracy in the extraction of the

fracture parameters (for example the SIFs) from the numerical solution and geometry approx-

imation error will be accumulated with the crack growth; (2) the local crack front coordinate

system is not well de�ned and the de�ection angle is discontinuous, resulting in the non-unique

branch enrichment for some local tip center on the crack front, unless the branch enrichment

is abandoned [18]. As a remedy, the crack fronts need to be smoothed through some numerical

techniques [76][77]. Similar scenario occurs in Lagrange based BEM for fracture modeling. Be-

sides, Paluszny and Zimmerman [78] point out that large numbers of facets are needed in order

to more accurately represent the crack surface and the storage increases rapidly with respect to

the area of the crack surface when crack propagates. Hence they propose the use of paramet-

ric surface, i.e. the NURBS patch, to describe the crack propagation. In their approach, the

crack growth is realized geometrically by deforming the NURBS surface through the mid-range

La-Greca algorithm [79] to move the control points. Due to the parametrization of the NURBS

patch, the crack tip can be sampled anywhere along the crack front, thus the storage for crack
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Figure 3: Crack front updating. C(ξ) is the old crack front curve, C′(ξ) is the new crack front
curve after iteration

discretization increases mildly. Meanwhile the local crack front coordinate system is established

on the smooth geometry. However, this method based on re-meshing the �nite elements. The

mesh regeneration needs to be carefully controlled to ensure the mesh quality. Recently Tambat

et al proposed an explicitly represented lower-dimension geometry features by NURBS [60][61]

through the partition of unity approximation. Instead of using level sets, the lower-dimension

features such as cracks are accurately described through the calculation of the distance �eld in

an e�cient non-iterative way, providing a promising alternative to evolve discontinuity in the

IGAFEM framework. However, more suitable numerical quadrature scheme is desired in order

to fully exploit the exact representation in geometry.

In the present work, we use NURBS patches to descretize the crack surfaces. The crack front

is exactly described and the local crack tip system is de�ned naturally and uniquely based on

the NURBS patch. Meanwhile, the physical quantities are also approximated by the NURBS

basis in the spirit of isogeomtric analysis. Combining with BEM, the smoothness in geometry

and stress solution is fully exploited to calculate the fracture parameters and evolve the crack

in a stable manner.

5.1 Crack surface updating algorithm

Crack propagation is realized geometrically by advancing the crack front so that the new crack

front curve C′(ξ) shall pass through the new positions of the sample points on the old crack front

curve C(ξ) which is parameterized by the knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, n is the number

of basis functions. We de�ne the sample points on C(ξ) to be Mj = M(ξj), j = 0, 1, ..., N − 1,
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and the set of corresponding new positions to be M ′j . The N new positions of sample points

are served as the constraints during the deformation process from C(ξ) to C′(ξ), and we set

N = n here. We adopt the algorithm described in [79]. In this algorithm, the deformation of

a curve under multiple constraints is a iteration process. For t-th iterating step, we de�ne the

error vector as:

ej,t =
−−−−→
Mj,tM

′
j . (31)

If ‖et‖ < tol, the iteration ceases and the new crack front curve is obtained (tol = 1.e − 4 in

this work).

To update the control points Pi, i = 0, 1, ..., n− 1, we de�ne a movement vector m such that in

t-th iterating step:

Pi,t = Pi,t−1 +mi,t (32)

The movement vector mt can be computed as:

mi,t =
1

N

N−1∑
j=0

fijej,t−1, (33)

where fj = f(ξj) are the in�uence functions corresponding to each constraint M ′j . We choose

the in�uence functions to be the NURBS basis functions which are used to describe the curve,

i.e. fj = Rj . To make sure the in�uence functions fij = fi(ξj) associated with each constraint

M ′j are linearly independent (so that the constraint is e�ective to the deformation of the curve),

the parameter coordinate ξj of eachMj should satisfy ξj ∈ [ξi, ξi+p+1]. Thus we use the Greville

Abscisse to generate the sample points.

Finally, the error vector is calculated in a recursive way:

ej,t = ej,t−1 −
1

N

N−1∑
k=0

〈Rj , fk〉ek,t−1 (34)

The details for updating the crack front is given in Algorithm (1). Once the new crack front

curve is obtained, the new crack surfaces can be generated by lofting along the crack extension

direction from the old curve to the new curve. The generated crack surfaces shall be merged

into the old crack surfaces with C0 joint or C1 joint. In this work C0 merge is adopted.
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Algorithm 1 Crack front updating algorithm

Data: old crack front curve C(ξ); sample points Mj ; new positions of sample points M ′j
Result: new crack front curve that passes through all M ′j
t = 0;
tol = 1.e− 4;

ej,0 =
−−−−−→
Mj,0M

′
j ;

while ‖et‖ > tol do
t = t+ 1;
mi,t = 1

N

∑N−1
j=0 fijej,t−1;

Pi,t = Pi,t−1 +mi,t;

ej,t = ej,t−1 − 1
N

∑N−1
k=0 〈Rj , fk〉ek,t−1;

end

5.2 Computation of stress intensity factors

The driving force for the evolution of fatigue fracture is characterized by some fracture pa-

rameters such as the stress intensity factors (SIFs), which can be extracted from the numerical

solution. If the fracture parameters are computed based on the point-wise tips on the crack

front independently, it can be regarded as a local approach. The key factor to compute ac-

curately the SIFs in the local approach is to avoid the discretization and path dependence as

much as possible. Various methods have been developed to extract the SIFs in the framework

of FEM and BEM. The displacement correlation method [80], with or without the crack-tip

singular element, is a simple and fast way for this aim. Nevertheless, The path dependence of

this method can not be neglected and an extrapolation technique is performed upon a group of

calculations. The virtual crack extension method (VCE) [81][82], was applied to compute SIFs

based on the calculation of the released strain energy per a virtual crack extension. The original

VCE relies on the construction of structured mesh along the crack front, which increases the

mesh burden. however it should be noted that the variational form of the strain energy which

involves the energy release rate and the crack extension has been applied for automatic crack

growth [83][84] where the crack extension is assigned with physical interpretation. This method

minimize the strain energy in a global sense, thus leading to a signi�cant di�erence from local

approach and has recently been investigated in the framework of XFEM [85].

The virtual crack closure integral (VCCI) method is proposed based on the virtual crack ex-

tension, is another alternative to extract SIFs in linear elastic fracture. Due to the simplicity

and accuracy, the VCCI has been widely used in FEM and BEM [86]. While it should be noted
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Figure 4: Crack tip coordinate system

that this method requires the element near the crack front aligned in consistence with the nor-

mal direction of the crack front. The path-independent J integral proposed by Rice [87] is an

attractive method due to its robustness regarding the relative independence in discretization

and path of integral. The method soon was extended into many branches and achieve good

results in both FEM and BEM [88][89][90][91][92]. The contour J integral is advised to cast into

the equivalent domain integral form in FEM as the nodal stress is not straightforward solution

and requirement in mesh discretization is relaxed. While in BEM the contour de�nition can be

adopted directly [93]. In order to extract mixed mode SIFs, di�erent techniques are developed.

The Jx integrals (x = 1, 2, 3), as the components of J integral, can be directly used to evaluate

the SIFs. However, the evaluation of J2 and J3 (or GIII) exhibits numerical di�culty due to

the singularity [94]. The J1 integral (or J integral) can also been used to extract mixed mode

SIFs, with some auxiliary operation. One way is to decompose the displacement and stress

�elds into symmetric and antisymmetric portions with structured mesh along the crack front,

then three modes of J integral can be calculated directly [95][96][97][98]. The other method

named M integral (or interaction energy integral), was developed by introducing asymptotic

�elds as the auxiliary solution [89] has been extended in (X)FEM [99][11] and BEM [100].

Both the VCCI and contour M integral have been investigated for the calculation of SIFs in

the fracture analysis via 3D isogeometric BEM. The point-wise crack tip coordinate system is

established along the crack front as in Figure 4. The physical quantities are all in the crack tip

local coordinate system thus the superscript `o' is omitted in this section.

5.2.1 Contour M integral

The de�nition of Jk integral stems from two dimensions as:

Jk := lim
Γε→0

∫
Γε

(Wδjk − σijui,k)njdΓ = lim
Γε→0

∫
Γε

PkjnjdΓ, k = 1, 2 (35)
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where Pkj is the Eshelby tensor, W = 1/2σijεij is the strain energy density. Γε is a small

contour with radius R centred at crack tip `o' in the `xo − yo' plane and nj is the unit outward

normal of Γε.

It can be extended to three dimensional point-wise de�nition by taking a tubular surface around

the crack front. When the contour Γε is small enough, the plane strain condition is approx-

imately satis�ed. We could use the contour de�nition directly on the premise that a small

contour is assumed.

It is known that the J integral (J1) and the SIFs have the relationship

J = GI +GII +GIII =
1− ν2

E
K2
I +

1− ν2

E
K2
II +

1

2µ
K2
III , (36)

where Gi and Ki (i = I, II, III) are the energy release rates and SIFs for the three modes of

fracture.

By applying the J integral under two states, one the real state (denoted with superscript `1'),

the other the auxiliary state (superscript `2'), then adding them together, the mixed term M

can be obtained:

J (1+2) =

∫
Γε

[
0.5(σ

(1)
ij + σ

(2)
ij )(ε

(1)
ij + ε

(2)
ij )δ1j − (σ

(1)
ij + σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

]
njdΓ (37)

Rearranging the two state terms gives

J (1+2) = J (1) + J (2) +M (1,2) (38)

where

M (1,2) =

∫
Γε

[
W (1,2)δ1j − σ(1)

ij

∂u
(2)
i

∂x1
− σ(2)

ij

∂u
(1)
i

∂x1

]
njdΓ (39a)

W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij (39b)

Combined with Equation (36), the following relationship can be obtained for the M integral,

M (1,2) =
2(1− ν2)

E
(K

(1)
I K

(2)
I +K

(1)
II K

(2)
II ) +

1

µ
K

(1)
IIIK

(2)
III . (40)

Then SIFs can be extracted respectively, for example, let state 2 be the pure mode III asymp-
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totic �elds with K
(2)
I = 0, K

(2)
II = 0, K

(2)
III = 1 and KIII in real state 1 can be found as

K
(1)
III = µM (1, mode III) (41)

KI and KII can be given in a similar fashion. Here the �rst order asymptotic displacement and

stress solutions (see Appendix B) are selected as the auxiliary �elds.

5.2.2 Virtual crack closure integral

In the VCCI, the strain energy release rate is equal to the work done by closing the virtual

crack extension. Three modes of the strain energy release rate are given by

GI =
1

2R

∫ R

0
σyy(x)Juy(R− x)Kdx,

GII =
1

2R

∫ R

0
σxy(x)Jux(R− x)Kdx,

GIII =
1

2R

∫ R

0
σyz(x)Juz(R− x)Kdx,

(42)

where OP ′ = R is the virtual crack advance. For the evaluation of Juj(R − x)K on PO, the

point inversion algorithm needs to be performed in order to �nd the parametric coordinate in

the crack modeled by NURBS surface [66]. The domains of these integrals OP ′ and PO are

dicretized by single linear element [101]. And the R is identical for all the crack tips. Then KI ,

KII and KIII can be computed according to Equation (36).

5.3 Paris law

The Paris-based laws have been used to describe the steady state crack growth in the fatigue

failure process. We use the original Paris law as follows:

da

dN
= C(∆K)m, (43)

where N denotes the number of load cycles. C and m are the material parameters. ∆K is the

SIF range. For mixed mode crack, the K is taken as the equivalent SIF Keq which is given as

[5]:

Keq =
√
K2
I +K2

II + (1 + ν)K2
III

(44)
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We specify the maximum crack advance ∆amax so that the number of load cycles can be

obtained according to the law. It should be noted that the crack propagation velocity could be

varied for the crack tips along the front. In a single propagation step, the crack advance for

each crack tip is regularized by the ∆amax,

∆ai = C(∆Ki
eq)

m ∆amax

C(∆Kmax
eq )

= ∆amax
( ∆Ki

eq

∆Kmax
eq

)m
. (45)

The maximum hoop stress criterion is used to determine the direction of crack propagation.

We assume that the crack propagates in the direction θc such that the hoop stress is maximum,

which is given by the following expression [102]

θc = 2arctan

[
−2(KII/KI)

1 +
√

1 + 8(KII/KI)2

]
. (46)

6 Numerical examples

In this section, numerical examples about the penny-shaped crack and elliptical crack will be

given, modeled in in�nite domain with the COD equation (10) and in �nite domain with the

dual equations (6) and (7). The convergence in COD is compared and the numerical SIFs are

calculated by both VCCI and M integral. Then the crack growth algorithm is checked. The

Young's modulus E = 1000 and Poisson's ratio ν = 0.3 for all the cases.

6.1 Penny-shaped crack

Suppose a penny-shaped crack is subjected to the remote tension σ0, i.e. t∞ = (0, 0, σ0). The

radius of circle is a. The inclination angle is ϕ and circular angle θ is de�ned in the crack plane

(Oxy) as in Figure 5. The analytical solution of SIFs reads:

KI =
2

π
σ0

√
aπcos2ϕ,

KII =
4

π(2− ν)
σ0

√
aπcosϕsinϕcosθ,

KIII =
4(1− ν)

π(2− ν)
σ0

√
aπcosϕsinϕsinθ.

(47)
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Figure 5: Geometry for penny-shaped crack (a = b) and elliptical crack (a 6= b)

In particular, when the crack plane is horizontal (ϕ = 0), the analytical normal displacement

is given as:

uz(r, θ, 0) =
2(1− ν)σ0

πµ

√
a2 − r2, r 6 a. (48)

6.1.1 Singular integration test

The problem is modeled by COD equation (10), so that only a single NURBS patch is used to

represent the crack, and the numerical COD will be compared with the analytical solution. The

collocation points are moved aside from the pole in order not to locate at the degenerated point.

The NURBS basis functions associated with the pole, however, are enforced to C0 through the

corresponding control points sharing the same degrees of freedom. The BIEs from these moved

collocation points are merged to one equation.

We note that the COD solution only varies in radial direction while keeping the same in angular

direction, thus 4 elements are used in angular direction. This will lead to high aspect ratio of

each element with the re�nement in radial direction. Figure 6 compares the L2 norm error

in COD for ϕ = 0. `ngp_s' denotes the number of Gauss points in angular direction in each

sub-triangle. original SST means a direct use of the method and improved SST denotes the

SST with conformal mapping. It can be observed that

• when ngp_s= 30, the original SST and improved SST get comparable error. However,

the error from original SST is non-uniformly distributed whilst the improved SST gets a

more uniform error distribution;
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• when ngp_s= 18, the error from original SST gets diverged (eL2 =1.467716e-1), while

improved SST keeps the same accuracy as it from ngp_s= 30;

• the error becomes big near the crack front. This is due to the crack tip singularity.

Thus we conclude that original SST need more Gauss points in order to get a reasonable

accuracy. If we move the knot (η = 0.875) next to the crack front in radial direction closer to

the crack front (η = 0.94) and repeat comparison as in Figure 7. We �nd that even ngp_s= 30,

original SST still gives big error. while the improved method shows a higher accuracy than

before. We can refer that, due to the crack tip singularity, a re�ned mesh near the crack front

should give better accuracy in COD, but the original SST is sensitive to the element distortion

and gives diverged results. The improved SST presents a robust application for this kind of

mesh con�guration.

(a) original SST, ngp_s=30, eL2 =3.344418e-2 (b) improved SST, ngp_s=30, eL2 =3.844282e-2

(c) original SST, ngp_s=18, eL2 =1.467716e-1 (d) improved SST, ngp_s=18, eL2=3.844282e-2

Figure 6: Error in crack opening displacement for penny crack. `ngp_s' denotes the number
of Gauss points in angular direction in each sub-triangle. Knot vectors: angular direction
ξ=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial direction η=[0,0,0,0.5,0.75,0.875,1,1,1]
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(a) original SST, ngp_s=30, eL2=8.138911e-1 (b) improved SST, ngp_s=30, eL2=1.755681e-2

(c) original SST, ngp_s=18, eL2=7.110011e-1 (d) improved SST, ngp_s=18, eL2=1.755679e-002

Figure 7: Error in crack opening displacement for penny crack. Knot vectors: angular direction
ξ=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial direction η=[0,0,0,0.5,0.75,0.94,1,1,1]
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Figure 8: NURBS(p = q = 2) represented crack surface meshes with 1, 5, and 9 uniformed
re�nement in radial direction, followed by graded re�ned elements (with black edges) close to
crack front. The blue dots are collocation points

6.1.2 Convergence test

Uniform mesh re�nement in the parametric space is performed and we calculate the element

size h as h =
√
Smaxe , where Smaxe denotes the maximum area of the element. The convergence

curve is plotted in Figure 9 where we compared both the quadratic and cubic NURBS basis

functions. It can be concluded that the degree elevation helps to improve the accuracy. But

the order of convergence rate (oc) keeps almost the same value (oc = 1). The deterioated oc is

due to the physical singularity along the crack front.

As stated in the above section, the uniform re�nement is not an e�cient way to improve the

accuracy for penny crack. Thus �ve mesh con�gurations are designed through keeping the ele-

ment number in angular direction while the mesh is uniformly re�ned with the element number

2, 4, 6, 8 and 10 in radial direction, then the element at crack front is further gradely re�ned

via a consecutive knot insertion in order to reduce the error caused by crack tip singularity

(Figure 8 shows mesh 1, 3 and 5). Figure 10 plots the result for convergence study. It can be

seen that the accuracy is improved almost by one order and the �nal estimate convergence rate

is two times higher than the uniform re�nement. This indicates the e�ciency of IGABEM in

the application of fracture simulation.

6.1.3 Stress intensity factor test

In this subsection, the computation of SIFs is checked. Instead of using COD equation to model

the penny-shaped crack in the in�nite domain, we put two overlapped crack surfaces in a cube
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Figure 11: Path independence check for VCCI and M integral

with size L = 200a such that we could compare the numerical SIFs with the analytical solution

for in�nite domain. Dual equations are used for this case.

Figure 11 investigates the path independence of the M integral and VCCI for mode I penny-

shaped crack. Here `R' denotes the virtual crack advance in VCCI and the radius of the contour

in M integral. It can be seen that when R/a is from 0.02 to 0.08, both methods show path

dependent behavior. For M integral, the error varies within 2%. When the radius of contour is

small, KI converges to analytical value; while increasing R, since the stress �eld for the crack

tip is in�uence by other tips in the crack front, plane strain condition is not satis�ed properly,

the method becomes inaccurate. For VCCI, the error varies within 6% and generally a small

virtual crack advance is needed. However, if R is too small, di�culty in numerical evaluation

of stress and COD close to crack front will arise which lead to the inaccuracy of KI . From the

�gure we can also refer that M integral presents a smaller reduction in error than VCCI.

Figure 12 compares the SIFs obtained from M integral with R = 0.02a and VCCI with R =

0.04a for the mixed mode penny-shaped crack with inclination angle ϕ = π/6. It is seen that

both methods agree well with the analytical solution. KIII from M integral shows deviation

near θ = π/2 and 3π/2. Table 1 presents the error at θ = 0, π/4 and π/2. It can be observed

that the error of KI and KII is within 1% by both methods, while within 7% for KIII by M

integral. we can conclude that the IGABEM can provide accurate SIFs, and the numerical
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Figure 12: Stress intensity factors for penny crack with ϕ = π/6

SIFs along crack front is quite smooth, although with only 4 elements in angular direction and

without any smoothness operation. This gives the premise for a stable evolution for the crack

growth simulation.

KII KIII

VCCI M integral VCCI M integral

θ = 0 7.133e-3 2.008e-3 2.898e-8 5.221e-9

θ = π/4 7.167e-3 1.983e-3 1.591e-4 6.243e-2

θ = π/2 1.622e-8 1.228e-8 2.010e-4 1.894e-2

Table 1: Error of SIFs for penny-shaped crack with ϕ = π/6.

6.2 Elliptical crack

Suppose an elliptical crack is subjected to the remote tensile loading σ0 in the normal direction,

i.e. t∞ = (0, 0, σ0). The semi-major axes is a, semi-minor axes b. The inclination angle is ϕ

and elliptical angle θ is de�ned in the crack plane as in Figure 5. The analytical solution of
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SIFs reads:

KI =
σ0

2
(1 + cos2ϕ)

√
bπf(θ)

E(k)
,

KII =
σ0

2
sin2ϕ

√
bπk2(b/a)cosθ

f(θ)B(k)
,

KIII =
σ0

2
sin2ϕ

√
bπk2(1− ν)sinθ

f(θ)B(k)
,

k2 = 1− b2

a2
,

f(θ) = (sin2θ +
b2

a2
cos2θ)1/4,

B(k) = (k2 − ν)E(k) + ν
b2

a2
K(k),

(49)

where K(k) and E(k) are elliptical integrals of the �rst kind and second kind, respectively:

K(k) =

∫ π/2

0

1√
1− k2sin2θ

dθ,

E(k) =

∫ π/2

0

√
1− k2sin2θdθ.

(50)

In particular, when ϕ = 0, the displacement in the crack normal direction reads:

uz(x, y, 0) =
2(1− ν)σ0

µ

b

E(k)

√
1− x2

a2
− y2

b2
. (51)

The di�erence of the elliptical crack and penny crack is that the mode I SIF is not a constant,

due to the variation of curvature along the crack front. The problem is modeled by COD

equation (10) and mesh con�guration and collocation is analogous to penny-shaped crack. The

tip in numerical aspect is, for elliptical crack, the elements have high element aspect ratio as

well as non-orthogonal basis vectors. Figure 13 shows that original SST presents erroneous

result with 18 Gauss points in angular direction. While the improved SST gives a reasonable

COD and error distribution.

For the convergence study, we �rst give the result of uniform re�nement in parametric space

in Figure 15. Then the same graded mesh con�gurations for elliptical crack are generated as

done for penny crack as in Figure 14. Figure 16 compares the result between uniform mesh and

graded mesh. The convergence feature is almost the same as that of penny crack. And we can

conclude that the IGABEM also suits well for modeling elliptical crack.

For the test of SIFs computation, we put two overlapped crack surfaces in a cube with size
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(a) original SST, ngp_s=18, eL2=4.603473e-1 (b) improved SST, ngp_s=18, eL2=3.798002e-2

Figure 13: Error in crack opening displacement for elliptical crack. Knot vectors: angular di-
rection ξ=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial direction η=[0,0,0,0.5,0.75,0.875,1,1,1]

Figure 14: NURBS(p = q = 2) represented crack surface meshes with 1, 5, and 9 uniformed
re�nement in radial direction, followed by graded re�ned elements (with black edges) close to
crack front. The blue dots are collocation points
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Figure 15: L2 norm error of COD for elliptical crack
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Figure 16: L2 norm error of COD for elliptical crack

L = 200a such that we could compare the numerical SIFs with the analytical solution for

in�nite domain. Dual equations are used. Figure 17 compares the SIFs obtained from M

integral with R = 0.02b and VCCI with R = 0.02b for the mixed mode elliptical crack with

inclination angle ϕ = π/6. Table 2 presents the error at θ = 0 and π/2 for the SIF in three

modes. It can be seen that the error for all the SIFs is within 7%. And the SIFs along the crack

front is smooth. We note that the SIFs accuracy of elliptical crack is a bit worse than penny

crack, which is due to the varied curvature along the crack front. Since the �xed R is used, the

singularity at the sample points near the semi-major and semi-minor axes would be di�erent,

which will lead to inaccuracy in SIFs evaluation. More suitable way to estimate the SIFs for

elliptical crack would be one of the future work.

KI KII KIII

VCCI M integral VCCI M integral VCCI M integral

θ = 0 4.564e-2 1.534e-2 4.138e-2 1.279e-2 1.226e-7 2.174e-7

θ = π/2 8.284e-3 2.214e-2 6.936e-8 5.152e-8 6.882e-3 5.959e-2

Table 2: error of SIFs for elliptical crack with ϕ = π/6

6.3 Fatigue crack growth

In this section, the crack surface updating algorithm is tested combined with the Paris law.

We �st check the crack growth of the horizontal penny crack under the uniform tension from
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Figure 17: Stress intensity factors for elliptical crack with ϕ = π/6

section 6.1.3. The fatigue parameters m = 2.1 and the speci�ed ∆amax = 0.2a. We propagate

10 steps and make a comparison with the exact result and the result from the XFEM+level

set method [103] as in Figure 18(a) and (b). It can be observed that the crack front for each

step agrees well with exact solution by IGABEM, while the crack front deviates gradually from

the exact solution with the crack growth by XFEM+level set method, due to the fact that the

level set method is restricted in describing the crack front exactly and this inaccuracy will be

accumulated step by step. We then compute the crack propagation for m = 5, and the result

is presented in Figure 18 (c). We �nd that the numerical crack front still agrees well with the

exact front, although the high index value is supposed to exaggerate the error of velocities of

the sample points. This test shows the proposed crack propagation scheme owns the ability to

evolve the crack in a stable manner, thanks to the smoothness in the numerical stress and SIFs

solution and exact representation in crack evolution. Finally, we simulate the crack growth for

elliptical crack with inclination angle ϕ = π/6 modeled by the dual equations in �nite domain

taken from section 6.2. Figure 19 illustrates the 1, 5 and 10th of the propagation step.

7 Conclusions

The formulation and implementation of isogeometric boundary element methods (IGABEM)

for simulating 3D fatigue fracture problem are outlined in this paper. The same NURBS basis

functions are used for the discretization of geometry/crack and the approximation of displace-
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(a) IGABEM, m = 2.1

By using the present technique, a fully automated and accurate fatigue crack growth simulation is carried
out without the need to remesh the crack during its evolution. This is in contrast to finite element methods
based on re-meshing [5], which engender significant complexity in maintaining and describing the crack
geometry during fatigue growth analysis. As opposed to three-dimensional elastostatic fracture computa-
tions using the element-free Galerkin (EFG) method [3,34], the X-FEM as a fracture tool appears to
provide results that are more robust and accurate for general planar crack geometries.

7. Conclusions

A novel numerical paradigm for three-dimensional crack propagation of planar cracks was proposed.
The new technique is based on the nexus of the X-FEM to the FMM. In the X-FEM, the finite element
space is enriched by adding special functions to the approximation using the notion of partition of unity.
The planar three-dimensional crack was represented by two level set functions: one for the crack front and
the other for the crack plane. For three-dimensional crack modeling, a discontinuous function was used to
model the interior of the crack surface, and functions from the two-dimensional asymptotic crack-tip
displacement fields were used for the crack front enrichment. These enrichment functions were added to the
finite element approximation within the context of a displacement-based Galerkin formulation. A second-
order upwind finite difference scheme was adopted in the FMM. A computational algorithm for crack
growth using the X-FEM and the FMM was also presented.
The performance of the new technique for three-dimensional static cracks was studied. Benchmark mode

I problems of penny and elliptical cracks in an infinite domain were solved. The numerical SIFs were found
to be in good agreement with the exact solution for these problems. Fatigue crack growth simulations were
also carried out. First we studied the growth of an elliptical crack that grew to a circular crack. In addition,
we also demonstrated that an initial penny-shaped crack remained circular in shape under fatigue growth.
This study has demonstrated that by combining the X-FEM to the FMM, a powerful and accurate

numerical tool emerges for modeling three-dimensional planar cracks. By using a discontinuous (gener-
alized Heaviside) function to model the crack interior [20], the simplicity of the method and the ease of
implementation within a finite element framework is readily seen. Enrichment of the displacement field by
the two-dimensional asymptotic crack fields [2] accurately models the crack front and also provides good

Fig. 11. Fatigue crack growth simulation of a penny-shaped crack.

46 N. Sukumar et al. / Engineering Fracture Mechanics 70 (2003) 29–48

(b) XFEM/FMM, m = 2.1, Sukumar et al 2003
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(c) IGABEM, m = 5

Figure 18: Fatigue crack growth of the �rst 10 steps of a penny crack

(a) Step 2 (b) Step 5 (c) Step 10

Figure 19: Fatigue crack growth simulation of an elliptical crack
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ment/traction in the isogeometric framework. The singularity subtraction technique (SST)

proposed in [65] for the treatment of (hyper-)singular integrals in BEM. The improved SST

[70] has been extended to quadrilateral element such that it can be applied to tensor-product

NURBS basis functions. Both the COD form and dual equations of IGABEM have been real-

ized for the crack modeling. And the two ways to extract SIFs, the contour-based M integral

and VCCI, are compared. An algorithm to propagate the NURBS-represented crack surface is

presented and validated. The highlights of this work include:

(1) The proposed singular integration scheme can preserve the quadrature accuracy for highly

distorted elements which exist commonly in IGA. Thus it enables a robust IGABEM imple-

mentation;

(2) By selecting the graded mesh re�nement in the direction where the crack tip singularity

varies, the convergence rate can be improved by 2 times and accuracy can be improved by one

order, than the uniform re�nement. This shows the e�ciency of IGABEM in the application

of fracture problem;

(3) The local crack tip system is setup naturally and uniquely thanks to the NURBS repre-

sentation of the crack surface. Combining with the continuity in stress solution in BEM, the

obtained SIFs along the crack front are smooth and accurate;

(4) The proposed algorithm for crack propagation is validated to be stable, even for high index

value in Paris law, due to the smoothness in crack front geometry and numerical SIFs.

The future work will focus on the surface cracks problem, where the crack will have intersection

with the body geometry. Meanwhile, the fast solution as proposed in [49] is also a point of

interest.
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Appendix

A The local expansions in SST

Supposing the parametric coordinate ξ(ξ, η) is in the knot interval [ξ1, ξ2]×[η1, η2], the mapping

between parametric coordinate and parent coordinate is:

ξ =
1

2
(ξ2 − ξ1)ξ̄ +

1

2
(ξ2 + ξ1),

η =
1

2
(η2 − η1)η̄ +

1

2
(η2 + η1).

(52)

And the Jacobian transformation for this would be:

J̄ξ =
∂ξ

∂ξ̄
=

1

2
(ξ2 − ξ1),

J̄η =
∂η

∂η̄
=

1

2
(η2 − η1),

J̄(ξ) = J̄ξJ̄η.

(53)

The Taylor expansion of xi − si with respect to the source point in the parent space would be:

xi − si =
[∂xi
∂ξ̄

∣∣∣
ξ̄=ξ̄s

(ξ̄ − ξ̄s) +
∂xi
∂η̄

∣∣∣
ξ̄=ξ̄s

(η̄ − η̄s)
]

+
[∂2xi
∂ξ̄2

∣∣∣
ξ̄=ξ̄s

(ξ̄ − ξ̄s)2

2

+
∂2xi
∂ξ̄∂η̄

∣∣∣
ξ̄=ξ̄s

(ξ̄ − ξ̄s)(η̄ − η̄s) +
∂2xi
∂η̄2

∣∣∣
ξ̄=ξ̄s

(η̄ − η̄s)2

2

]
+ · · ·.

(54)
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Note that:
∂xi
∂ξ̄

=
∂xi
∂ξ

∂ξ

∂ξ̄
=
∂xi
∂ξ

J̄ξ,

∂xi
∂η̄

=
∂xi
∂η

∂η

∂η̄
=
∂xi
∂η

J̄η,

∂2xi
∂ξ̄2

=
∂2xi
∂ξ2

(∂ξ
∂ξ̄

)2
=
∂2xi
∂ξ2

J̄2
ξ ,

∂2xi
∂η̄2

=
∂2xi
∂η2

(∂η
∂η̄

)2
=
∂2xi
∂η2

J̄2
η ,

∂2xi
∂ξ̄∂η̄

=
∂2xi
∂ξ∂η

∂ξ

∂ξ̄

∂η

∂η̄
=

∂2xi
∂ξ∂η

J̄ξJ̄η

(55)

Now the polar coordinates ρ(ρ, θ) centred at the source point are introduced in the parent space

as in Figure 2, The parent domain is subdivided into four triangles for quadrature naturally.

Each triangle is regarded as a degenerated square [−1, 1]×[−1, 1] with two points joint together.

Supposing a point ρ(ρ, θ) ∈ [0, ρ̂(θ)]×[θ1, θ2] in the triangle, a linear mapping between the polar

coordinates and the square coordinates system ξ̃(ξ̃, η̃) is performed as:

ρ =
1

2
(η̃ + 1)ρ̂(θ),

θ =
1

2
(θ2 − θ1)ξ̃ +

1

2
(θ2 + θ1).

(56)

And the Jacobian transformation for this would be:

J̃ρ =
∂ρ

∂η̃
=

1

2
ρ̂(θ),

J̃θ =
∂θ

∂ξ̃
=

1

2
(θ2 − θ1),

J̃(ρ) = J̃ρJ̃θ.

(57)

Equation (54) becomes:

xi − si = ρ
[∂xi
∂ξ̄

∣∣∣
ξ̄=ξ̄s

cosθ +
∂xi
∂η̄

∣∣∣
ξ̄=ξ̄s

sinθ
]

+ ρ2
[∂2xi
∂ξ̄2

∣∣∣
ξ̄=ξ̄s

cos2θ

2
+
∂2xi
∂ξ̄∂η̄

∣∣∣
ξ̄=ξ̄s

cosθsinθ +
∂2xi
∂η̄2

∣∣∣
ξ̄=ξ̄s

sin2θ

2

]
+O(ρ3)

: = ρAi(θ) + ρ2Bi(θ) +O(ρ3).

(58)
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And we de�ne:

A :=

(
3∑

k=1

[Ak(θ)]
2

) 1
2

,

C :=
3∑

k=1

Ak(θ)Bk(θ).

(59)

The derivatives of r = |x− s| are:

r,i =
xi − si
r

=
Ai
A

+

(
Bi
A
−Ai

C

A3

)
ρ+O(ρ2)

:= di0 + di1ρ+O(ρ2).

(60)

The term 1/r3 is:
1

r3
=

1

A3ρ3
− 3C

A5ρ2
+O(

1

ρ
)

:=
S−2

ρ3
+
S−1

ρ2
+O(

1

ρ
).

(61)

The NURBS basis function is also expanded as:

Na(ξ) = Na(ξs) + ρ
[∂Na

∂ξ

∣∣∣
ξ̄=ξ̄s

J̄ξcosθ +
∂Na

∂η

∣∣∣
ξ̄=ξ̄s

J̄ηsinθ
]

+O(ρ2)

:= Na0 +Na1(θ)ρ+O(ρ2).

(62)

For the surface point ξ(ξ, η) in the knot interval [ξ1, ξ2] × [η1, η2], we de�ne two tangential

vectors along the ξ and η directions respectively as:

m1 =
[∂x
∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

]
,

m2 =
[∂x
∂η
,
∂y

∂η
,
∂z

∂η

]
.

(63)

And we can get the normal vectors through:

n̄ = m1 ×m2 =
[∂y
∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η
,
∂z

∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η
,
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

]
. (64)

The Jacobian for transformation from parametric space to physical space is the length of the
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normal vector n̄:

J(ξ) =
[(∂y
∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)2
+
(∂z
∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η

)2
+
(∂x
∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

)2]1/2

: =
[ 3∑
k=1

J2
k (ξ)

]1/2
(65)

The unit normal vector n could be expressed as:

n(ξ) =
n̄

J(ξ)
. (66)

The component Ji(ξ) can be expanded at the source point. For instance:

J1(ξ) = J1(ξs) + ρ
[∂J1

∂ξ

∣∣∣
ξ̄=ξ̄s

J̄ξcosθ +
∂J1

∂η

∣∣∣
ξ̄=ξ̄s

J̄ηsinθ
]

+O(ρ2)

: = J10 + J11(θ)ρ+O(ρ2),

∂J1

∂ξ
=

∂

∂ξ

(∂y
∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)
.

(67)

So we can obtain Ji(ξ) as:

Ji(ξ) = Ji0 + Ji1(θ)ρ+O(ρ2). (68)

Combining with Equation (66), we arrive at:

ni(ξ) =
1

J(ξ)
[Ji0 + Ji1(θ)ρ+O(ρ2)]. (69)

Now, all the terms are prepared for the expansion of the integrand. Let's take a simple example:

I = =

∫
S

r,ini(ξ)Na(ξ)

r3
dS. (70)

After discretization,

I =

∫ 2π

0

∫ ρ̂(θ)

0

r,iniNa

r3
J(ξ)J̄(ξ)ρdρdθ, (71)

where J̄(ξ) is from parent to parametric space de�ned in Equation (53), J(ξ) from parametric

to physical space de�ned in Equation (65). ρ̂(θ) is the upper bound of ρ and can be seen in

Figure 2.
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And substitute Equations (60)(61)(69)(62) into the discretization:

I =

∫ 2π

0

∫ ρ̂(θ)

0

[
di0 + di1ρ+O(ρ2)

] 1

J(ξ)

[
Ji0 + Ji1ρ+O(ρ2)

][
Na0 +Na1ρ+O(ρ2)

]
[S−2

ρ3
+
S−1

ρ2
+O(

1

ρ
)
]
J(ξ)J̄(ξ)ρdρdθ

=

∫ 2π

0

∫ ρ̂(θ)

0

[
di0Ji0Na0 + (di1Ji0Na0 + di0Ji1Na0 + di0Ji0Na1)ρ+O(ρ2)

]
[S−2

ρ2
+
S−1

ρ
+O(1)

] 1

ρJ(ξ)
J(ξ)J̄(ξ)ρdρdθ

=

∫ 2π

0

∫ ρ̂(θ)

0

(I−2

ρ2
+
I−1

ρ
+O(1)

)
J̄(ξ)dρdθ,

(72)

where I−2, I−1 are only functions of θ:

I−2 = S−2di0Ji0Na0,

I−1 = S−1di0Ji0Na0 + S−2(di1Ji0Na0 + di0Ji1Na0 + di0Ji0Na1).

(73)

Subtracting the explicit singular part in the original integrand in Equation (71), the regular

integral will be obtained:

Ireg =

∫ 2π

0

∫ ρ̂(θ)

0

[r,iniNa

r3
J(ξ)ρ− I−2

ρ2
− I−1

ρ

]
J̄(ξ)dρdθ, (74)

This double integral can be evaluated using normal Gaussian rule. And the explicit part then

will be added back and treated in a semi-analytical way. For the source point located in the

singular element, a small circle is created to exclude the source point radius ε in physical

space. When mapping the circle into the intrinsic polar coordinate, the circle will be distorted

generally. The polar coordinate ρ is represented with respect to ε as:

ρ := α(ε, θ) = εβ(θ) + ε2γ(θ) +O(ε3). (75)

To evaluate the coe�cients β and γ, the radius of the circle is given as the Taylor expansion in

intrinsic polar coordinates as:

ε = ρA(θ) + ρ2C(θ)

A(θ)
+O(ρ3). (76)
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The reversion of this series is:

ρ = α(ε, θ) = ε
1

A
− ε2 C

A4
+O(ε3). (77)

Thus we get:

β =
1

A
,

γ = − C

A4
,

(78)

which are only functions of θ. Then let's �rst look at the explicit strong singular part given in

the limit form as:

lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

I−1(θ)

ρ
J̄(ξ)dρdθ

= lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

I−1(θ)

ρ
J̄(ξ)J̃(ρ)dη̃dξ̃

= lim
ε→0

∫ 2π

0
I−1(θ)J̄(ξ)J̃θ

[ ∫ ρ̂(θ)

α(ε,θ)

1

ρ
J̃ρdη̃

]
dξ̄

= lim
ε→0

∫ 2π

0
I−1(θ)J̄(ξ)J̃θ

[ ∫ ρ̂(θ)

α(ε,θ)

1

ρ
dρ
]
dξ̃

= lim
ε→0

∫ 2π

0
I−1(θ)J̄(ξ)J̃θ[lnρ̂(θ)− lnα(ε, θ)]dξ̃

=

∫ 2π

0
I−1(θ)J̄(ξ)lnρ̂(θ)J̃θdξ̃ − lim

ε→0

∫ 2π

0
I−1(θ)J̄(ξ)lnα(ε, θ)J̃θdξ̃

=

∫ 2π

0
I−1(θ)J̄(ξ)lnρ̂(θ)J̃θdξ̃ − lim

ε→0

∫ 2π

0
I−1(θ)J̄(ξ)lnεβ(θ)J̃θdξ̃

=

∫ 2π

0
I−1(θ)J̄(ξ)ln

ρ̂(θ)

β(θ)
J̃θdξ̃ − J̄(ξ)lnε lim

ε→0

∫ 2π

0
I−1(θ)dθ

=

∫ 2π

0
I−1(θ)J̄(ξ)ln

ρ̂(θ)

β(θ)
J̃θdξ̃,

(79)

where J̃(ρ) is from polar to square coordinates de�ned in Equation (57). Note that the last

term is canceled since: ∫ 2π

0
I−1(θ)dθ = 0. (80)

After integrating the singular term with respect to ρ analytically and with the use of Equations

(75)(80), the explicit strong singular integrand is transferred as a regular one-dimensional in-

tegral and normal Gaussian rule then can be applied. Similar treatment applies to the explicit
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hyper-singular term. The full evaluation for Equation (71) is obtained:

I = Ireg +

∫ 2π

0
I−1(θ)J̄(ξ)ln

ρ̂(θ)

β(θ)
J̃θdξ̃ −

∫ 2π

0
I−2(θ)J̄(ξ)

[ γ(θ)

β2(θ)
+

1

ρ̂(θ)

]
J̃θdξ̃ (81)

B Auxiliary displacement and stress �elds in M integral

The auxiliary stress �eld σ
(2)
ij and displacement �eld u

(2)
j are given as:

σxx =
K

(2)
I√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
−

K
(2)
II√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
σyy =

K
(2)
I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

K
(2)
II√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
,

τxy =
K

(2)
I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

K
(2)
II√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
,

τyz =
K

(2)
III√
2πr

cos
θ

2
,

τzx = −
K

(2)
III√
2πr

sin
θ

2
,

τzz = ν(σxx + σyy),

ux =
KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2sin2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
sin

θ

2

(
κ+ 1 + 2cos2

θ

2

)
,

uy =
KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2cos2

θ

2

)
+

(1 + ν)KII

E

√
r

2π
cos

θ

2

(
1− κ+ 2sin2 θ

2

)
,

uz =
2KIII

µ

√
r

2π
sin

θ

2
.

(82)

where (r, θ) are the crack tip polar coordinates and µ = E
2(1+ν) , κ = 3− 4ν.

The auxiliary strain �eld can be obtained by di�erentiating uj with respect to the physical

coordinate.
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